EP3157708A1 - Verfahren und vorrichtung zur finish-bearbeitung von umfangsflächen rotationssymmetrischer werkstückabschnitte - Google Patents

Verfahren und vorrichtung zur finish-bearbeitung von umfangsflächen rotationssymmetrischer werkstückabschnitte

Info

Publication number
EP3157708A1
EP3157708A1 EP15729485.1A EP15729485A EP3157708A1 EP 3157708 A1 EP3157708 A1 EP 3157708A1 EP 15729485 A EP15729485 A EP 15729485A EP 3157708 A1 EP3157708 A1 EP 3157708A1
Authority
EP
European Patent Office
Prior art keywords
workpiece
axis
movement
tool
finishing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15729485.1A
Other languages
English (en)
French (fr)
Other versions
EP3157708B1 (de
Inventor
Marcel Bosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagel Maschinen und Werkzeugfabrik GmbH
Original Assignee
Nagel Maschinen und Werkzeugfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53404573&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3157708(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nagel Maschinen und Werkzeugfabrik GmbH filed Critical Nagel Maschinen und Werkzeugfabrik GmbH
Publication of EP3157708A1 publication Critical patent/EP3157708A1/de
Application granted granted Critical
Publication of EP3157708B1 publication Critical patent/EP3157708B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/26Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding workpieces with arcuate surfaces, e.g. parts of car bodies, bumpers or magnetic recording heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B33/00Honing machines or devices; Accessories therefor
    • B24B33/04Honing machines or devices; Accessories therefor designed for working external surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/16Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding peculiarly surfaces, e.g. bulged

Definitions

  • the invention relates to a method for finish machining peripheral surfaces of rotationally symmetrical workpiece sections and to a device suitable for carrying out the method.
  • Finishing which is also referred to as superfinishing, is a machining process with indefinite cutting edges.
  • workpieces such as crankshafts, camshafts, transmission shafts or other components for power and working machines can be edited to produce a desired surface fine structure.
  • a finishing tool with granular cutting agent is pressed against the peripheral surface to be machined.
  • the workpiece is rotated about its workpiece axis. At the same time, a relative movement that oscillates parallel to the workpiece surface is produced between the workpiece and the finish tool resting against the peripheral surface.
  • the workpiece section to be machined may be, for example, a main bearing or a crank bearing of a crankshaft or a camshaft bearing.
  • finishing is a thermally neutral processing method in which no soft skin interspersed with microcracks or surface tensions arises. Finishing is often used after a grinding process as the last machining process of a process chain to remove the soft skin, re-exposing the original microstructure, increasing the support of the roughened surface structure, and improving the component geometry in terms of roundness and shortwave errors in the axial and circumferential directions.
  • Grinding is the last shaping machining operation.
  • the geometry of the grinding tool of the machine control is known, so that the workpiece can be contoured by grinding according to the guided by the machine control tool guide.
  • a prerequisite for this shaping is the regular dressing or calibration of the grinding tools.
  • the grinding process is usually unable to achieve the achievable by the finish machining surface properties.
  • the preservation of the axial contour is usually in the foreground.
  • An improvement in the form values on cylindrical bearings takes place mainly in the radial direction and is highly dependent on the pre-processing.
  • short-wave error components e.g. with more than 15 waves on the circumference
  • long-wave components such as e.g. Ovals, triangles or quadrilaterals can not be positively influenced by finishing.
  • the cutting volume through the finishing process is usually below about 10 ⁇ .
  • the material removal of the finishing process is normally adjusted to the pre-processing.
  • Grinding is usually the last shaping machining operation. This means that the contouring of a rotationally symmetrical bearing point essentially takes place through the grinding process preceding the finishing process.
  • a continuous dressing of the grinding wheel is imperative for the shaping and design of the bearing. Depending on the requirement and the drawing tolerance of the bearing, the dressing cycle is reduced or extended. However, the grinding process is usually not able to achieve the achievable by the finish machining surface properties.
  • a crowned (barrel-shaped, convex) shape of rotationally symmetric bearing sections can help to reduce bearing damage due to flight and form errors of the components interacting in the bearing.
  • specified by the customer final generatrix requirements regarding crowning are usually expressed in diameter differences of a few micrometers between different axial positions of the bearing section.
  • FIG. EP 1 514 642 A2 describes a device for finish machining of shafts, in particular crankshafts and camshafts, with a tool carrier and an endless grinding belt, which has a flexible carrier and an abrasive layer with hard material.
  • the device is used for processing a rotating about its axis of rotation workpiece.
  • a sanding belt drive continuously drives the sanding belt during workpiece machining.
  • the tool carrier has a machining head with two mutually spaced band deflections, which limit a working range of the machining head, wherein the grinding belt is guided over the tape deflections and passes in the work area on the peripheral surface of the workpiece to be machined.
  • the circulating abrasive belt outside of the work area is associated with a device for dressing the abrasive layer, which has a deliverable during the workpiece processing against the abrasive layer of the belt at a speed adjusted to the workpiece processing belt speed adjustable dressing tool.
  • the dressing tool has a convex contour transverse to the direction of tape travel, which is transferred to the abrasive layer during dressing. As a result, a slightly convex contour can be generated on the machined workpiece section.
  • the possibility should be created to produce non-cylindrical workpiece sections with predefinable spherical shape by means of finishing.
  • the invention provides a method having the features of claim 1. Furthermore, an apparatus suitable for carrying out the method with the features of claim 5 is provided. Advantageous developments are specified in the dependent claims. The content of all claims is incorporated herein by reference.
  • the finishing tool or the decisive for the material removal provided with cutting means part of the finishing tool during a linear linear motion parallel to the axis of rotation of the workpiece imposed on this linear motion pivotal movement, so that the abrasive part of the finishing tool is guided along an at least partially curved tool path.
  • different, axially juxtaposed axial sections on the machined workpiece section can be finishen specifically with different degrees of material removal, whereby a desired, in the axial direction not rectilinear generating line form can be selectively generated.
  • the generatrix shape can thus be changed by means of a special machine configuration with respect to the generatrix line resulting from the preprocessing.
  • a shaping processing by Finishen is possible.
  • control of the machine is carried out so that in a final phase of a linear stroke of the linear machine axis leading in the direction of movement of the linear motion leading end portion of the finishing tool closer to the workpiece axis and / or is pressed with higher local contact force to the peripheral surface than a trailing rear end section.
  • the forms include, in particular, a full-crowned generatrix line shape, a cylindrical-crowned generatrix line shape or a cylindrical-logarithmic generatrix line shape.
  • an additional or more specifically controllable machine axis namely a rotary machine axis, is provided to a two-dimensional, almost arbitrary by a superposition of two linear axes of motion and a rotation axis Trajectory for the finish tool to realize.
  • a robust and reliably working variant of a device is characterized in that the translatory machine axis has a horizontal slide comprising a rotary machine axis with a rotary table which relative to the carriage by means of a numerically controlled rotary drive, for example a servomotor, corresponding to one of the pivot axis horizontal axis of rotation is rotatable.
  • the rotary table may carry a stone guide having a translatory machine axis to move the tool holder along a feed direction which is perpendicular to the pivot axis and corresponds to the pressing direction.
  • machine axes in other ways, for example by providing a rotary machine axis with a rotary table carrying a linear guide for a translatory machine axis.
  • the rotary axis is realized as an integrated into the finish tool axis, that is located on the tool side of the tool holder. This also makes it possible to achieve that the abrasive cutting means along the desired arcuate gene career is positively driven, for example, to generate a spherical shape on the workpiece section.
  • FIG. 1 is a side view of a processing situation in an embodiment of a method for finish machining a peripheral surface of a workpiece.
  • FIG. 2 shows an axial view of the machining situation from FIG. 1;
  • Fig. 3 Details on the kinematics of the tool movement
  • FIG. 4 shows an embodiment of an apparatus for carrying out the method in side view (FIG. 4A) and in front view (FIG. 4B);
  • Fig. 5 shows an embodiment of a finishing tool with integrated pivot axis.
  • FIGS. 1 and 2 show a side view of a typical machining situation in one exemplary embodiment of a method for finish machining a peripheral surface 195 of a rotationally symmetrical workpiece section on a workpiece 190.
  • the workpiece is supported by a rotating device for generating a rotational movement of the workpiece about a workpiece rotation axis or workpiece axis 192 rotated constant speed.
  • the workpiece section to be machined may, for example, be a main bearing of a crankshaft or a bearing surface of another shaft, for example a camshaft or a balancing shaft.
  • a finishing tool 100 with a pressing force F acting in a pressing direction AR is pressed against the circumferential surface to be machined or onto the workpiece section to be machined.
  • the finishing machine has a corresponding pressing device.
  • the removal of material is supported by the fact that an oscillating relative movement between the workpiece and the finishing tool aligned parallel to the workpiece surface is produced by means of an oscillation device (see double arrow OSZ).
  • the oscillation device is mounted on the side of the finish tool, so that the finish tool is oscillated in an oscillation direction OR perpendicular to the pressing direction AR, while the workpiece only rotates about the workpiece axis 192.
  • the oscillation device here comprises a pneumatic oscillator, which can move the finish tool relative to the tool holder 180.
  • a translatory machine axis (numerically controlled linear axis) which can effect a linear movement of the finishing tool superimposed on the oscillatory movement in a linear lifting direction LR which runs parallel to the workpiece axis 192. If required, this linear movement (double arrow LIN) can take place over a linear stroke length which is greater than the oscillation stroke.
  • a rotary axis (numerically controlled axis of rotation) for generating a linear movement of the superimposed pivotal movement of the finishing tool is provided.
  • the pivoting movement (curved double arrow SW) takes place about a pivot axis SA, which is perpendicular to the workpiece axis and perpendicular to the pressing direction AR.
  • the control of the finishing machine is configured in the example so that a pivotal position of the finishing tool, i. the current rotational position about the pivot axis SA, in response to an axial position of the linear movement LIN is controllable.
  • a pivotal position of the finishing tool i. the current rotational position about the pivot axis SA
  • the orientation of the oscillation direction OSZ with respect to the machine coordinate system in the example a function of the axial position of the linear movement and the pivot position and is phased not parallel, but at varying acute angle to the workpiece axis.
  • the finish tool 100 mounted on the free end of a tool holder 180 has a cutting means carrier 110, which is typically made of tool steel or other metallic material and includes means for mounting the finish tool to the tool holder 180 at its rear.
  • a cutting pad 120 is attached, for example, by means of an adhesive or by means of screws.
  • the cutting coating formed by a sintered material contains a plurality of cutting agent grains, which are distributed in the example homogeneously within a matrix of a binder.
  • Cutting agent grains may be, for example, diamond grains or cubic boron nitride (CBN) grains.
  • CBN cubic boron nitride
  • As a binder for example, a ceramic or a metallic material into consideration.
  • the cutting coating normally has a rectangular cross section on its base side facing the cutting medium carrier.
  • the longitudinal direction L of the cutting pad is that direction which, in the finish machining, is substantially parallel to the workpiece rotational axis.
  • the transverse direction Q extends in such a way that the longitudinal direction and transverse direction lie in a plane perpendicular to the pressing direction.
  • the cutting coating On the side facing away from the cutting medium carrier, the cutting coating forms an abrasive, concave-cylindrical cutting surface 125, with which the cutting coating rests more or less extensively on the peripheral surface to be machined during finish machining.
  • the cross-directional cutting face Q has a concave shape whose radius of curvature substantially corresponds to the target radius of curvature of the workpiece portion to be machined at the end of finish machining.
  • the workpiece 190 rotates about its workpiece axis 192.
  • the finish tool 100 is pressed by means of the pressing device in the pressing direction AR to the rotationally symmetrical workpiece outer surface.
  • the finishing tool oscillates relative to the tool carrier in the oscillation direction OSZ perpendicular to the pressing direction.
  • the oscillation movement is superimposed on a linear movement LIN running parallel to the workpiece rotation axis 192, for which a numerically controlled linear axis of the finishing machine is provided.
  • the linear stroke i. the stroke length of the linear movement is exaggerated in FIG.
  • the oscillation stroke is in the range of a few millimeters, for example in the range of ⁇ 0.5 mm to ⁇ 3 mm.
  • the additionally achievable by the linear movement stroke can be in the same order of magnitude, that is, for example, between 1 mm and 3 mm. Other stroke lengths and stroke length ratios are possible.
  • the axis-parallel linear movement is superimposed on a pivoting movement of the finishing tool about a perpendicular to the linear direction and perpendicular to the pressing direction pivot axis.
  • the pivoting movement is controlled so that in an end phase of a Linearhubs, ie in the second half of a Linearhubs after exceeding a central position, according to a control program in the direction of movement of the linear motion vorseilender front end portion of the finish tool is closer to the workpiece axis 192 or is pressed against the peripheral surface with a higher local pressure force than is in the motion Direction lagging rear end portion.
  • the finish tool moves leftward in the first direction R1 in FIG. 3, the front end portion E1 is pressed against the workpiece surface with a stronger local pressing force than the trailing second end portion E2.
  • the pressing direction is oriented perpendicular to the workpiece rotation axis and both end sections of the finishing tool are pressed against the peripheral surface with approximately the same local contact pressure
  • the second end portion E2 now leads the first end portion E1 and is pressed against the peripheral surface with a stronger local pressing force than the first end portion E1.
  • the maximum swing angle of the pivotal movement i. the maximum angle between the instantaneous orientation of the pressing direction and the zero point position (pressing direction perpendicular to the workpiece rotation axis 192) is normally very small and is generally below 1 °, possibly also below 0.1 °.
  • the swivel angle may be e.g. in the range 0.01 ° to 0.1 °.
  • the oscillation direction OR always runs with this kinematics parallel to the workpiece surface in an axial plane containing the workpiece axis 192.
  • the pressing force acts in this kinematics, regardless of the axial position of the finishing tool always substantially in the normal direction to the currently machined part of the workpiece section, ie perpendicular to the workpiece surface.
  • the local removal of material is essentially determined by the locally prevailing pressing force, so that the convex surface line can be produced with the aid of the finish machining.
  • the linear movement and the pivoting movement is superimposed on a linear compensating movement extending in the pressing direction.
  • the degree of crowning for example given by the difference in radius AR between the region of greatest radius or diameter and the region of smallest radius or diameter is normally of the order of a few micrometers, for example between 1 and 5 ⁇ m.
  • 4A shows a side view parallel to the direction of movement of a horizontal, linear machine axis, which executes the linear stroke.
  • 4B shows a front view of the device in a horizontal direction perpendicular to this linear direction, which corresponds to the axial direction of a rotary machine axis.
  • a linear machine axis LA is provided with a horizontal axis direction. Through this, the described linear motion is generated.
  • the linear machine axis includes a horizontal slide 420, which is guided along horizontal guide rails 425 and is moved by means of a servo motor (not shown) via a ball screw.
  • the carriage 420 carries a rotary machine axis, which comprises a rotary table 430 which can be rotated relative to the carriage 420 by means of a numerically controlled rotary drive about a horizontal axis of rotation corresponding to the pivot axis SA.
  • the rotatable about the pivot axis rotary table 430 carries on its front side a so-called stone guide 440 which includes a translational machine axis to move the tool holder 180 along a direction perpendicular to the pivot axis SA extending feed direction, which corresponds to the pressing AR.
  • Attached to the front end of the tool holder is the finish tool 100, which processes the workpiece 190 which is driven for machining by means of a rotator to rotate about its workpiece rotation axis 192 at a predetermined speed (eg, between 50 min -1 and 300 rpm ) min "1 turns.
  • the device can work as follows. While the workpiece 190 is rotated about the workpiece axis 192, the finish tool 100 performs a rapid oscillation in the oscillation direction OR along the movement axis of the oscillator. In addition, an interpolating movement is superimposed by the stone guide to the finishing tool to produce an axial geometry of the machined workpiece section.
  • the stonecutter For this purpose along the horizontal direction of movement of the linear axis LA performs a relatively slow and large stroke.
  • the rotary table 430 pivots the stone guide 440 about the pivot axis SA, while the linear axis, which can move the tool holder 180 linear, causes a corresponding length compensation. In this way, an arcuate tool path is imposed on the finish tool. This can be produced by finishing a round or any other axial tool path on the machined workpiece section, whereby a corresponding generatrix line shape can be generated on the workpiece.
  • a high oscillation frequency of the oscillation movement (typically at least 10 Hz) parallel to the axial contour ensures a self-sharpening effect of the finish tool, so that a dressing of a finish tool unlike grinding tools is not required.
  • the process chain can be significantly reduced and investments can be saved.
  • the rotary pivot axis is a machine axis
  • the finish tool is a conventional passive finish tool.
  • the pivoting movement or a corresponding pivot axis can be integrated into an actively activatable finish tool.
  • 5 shows an example of a finishing tool 500 with integrated pivot axis.
  • the cutting medium carrier 510 of the finishing tool 500 is constructed in several parts.
  • a machine-side fixed part 512 is fixed with suitable fasteners on the tool carrier 1 10.
  • the fixed part carries a relative to the fixed part of the movable part 514, which is opposite to the fixed part by a Swivel axis SA is limited pivot.
  • the cutting pad 520 is attached to the front of the movable part 514.
  • the pivotal movement of the movable part with cutting surface with respect to the fixed part is accomplished by means of actuators ACT, which may be constructed using piezo elements, for example.
  • the actuators are controlled via the control unit of the finishing device and cause a pivoting of the movable part relative to the fixed part in dependence on the linear movement of the translational axis parallel to the workpiece rotation axis.
  • the movable part 514 with the cutting pad 520 can be considered as a finishing tool, while the fixed part 512 can be considered as part of the tool holder 180.
  • the variant of FIGS. 1, 2 and 4 then differs from the variant from FIG. 5 in that in the first case the pivot axis is arranged on the machine side of the tool holder and in the latter case on the tool side of the tool holder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Bei einem Verfahren zur Finish-Bearbeitung von Umfangsflachen rotationssymmetrischer Werkstückabschnitte an Werkstücken wird bei der Bearbeitung einer Umfangsfläche ein Finish-Werkzeug (100) mit einer Andrückkraft in einer Andrückrichtung (AR) an die zu bearbeitende Umfangsfläche angedrückt. Zur Erzeugung von Materialabtrag wird das Werkstück um eine Werkstückachse (192) gedreht und es wird eine oszillierende Relativbewegung zwischen dem Finish-Werkzeug und dem Werkstück erzeugt. Zur Erzeugung der oszillierenden Relativbewegung wird das Finish-Werkzeug entlang einer Oszillationsrichtung mit einer vorgebbaren Oszillationshublänge und Oszillationsfrequenz hin und her bewegt. Der Oszillationsbewegung wird eine parallel zur Werkstückachse verlaufende Linearbewegung des Finish-Werkzeugs über eine Linearhublänge überlagert. Der Linearbewegung und der Oszillationsbewegung wird eine Schwenkbewegung des Finish-Werkzeugs um eine senkrecht zur Werkstückachse und zur An drückrichtung verlaufende Schwenkachse überlagert. Eine Schwenkposition des Finish- Werkzeugs wird in Abhängigkeit von einer Axialposition der Linearbewegung gesteuert. Dadurch können unterschiedliche axiale Mantellinienprofile mittel Finishen gezielt erzeugt werden, um z.B. eine ballige Gestalt der Werkstückabschnitte zu erhalten.

Description

Verfahren und Vorrichtung zur Finish-Bearbeitung von Umfangsflächen rotationssvmmetrischer
Werkstückabschnitte
ANWENDUNGSGEBIET UND STAND DER TECHNIK
Die Erfindung bezieht sich auf ein Verfahren zur Finish-Bearbeitung von Umfangsflächen rotationssymmetrischer Werkstückabschnitte sowie auf eine zur Durchführung des Verfahrens geeignete Vorrichtung.
Das Finishen, das auch als Superfinishen bezeichnet wird, ist ein spanendes Feinbearbeitungsverfahren mit unbestimmten Schneiden. Durch Finishen können Werkstückoberflächen von rotationssymmetrischen oder nicht-rotationssymmetrischen Werkstückabschnitten an Werkstücken wie Kurbelwellen, Nockenwellen, Getriebewellen oder anderen Bauteilen für Kraft- und Arbeitsmaschinen zur Erzeugung einer gewünschten Oberflächenfeinstruktur bearbeitet werden. Beim Finishen im Einstechverfahren wird ein mit körnigem Schneidmittel besetztes Finish- Werkzeug an die zu bearbeitende Umfangsfläche angedrückt. Zur Erzeugung der für den Materialabtrag erforderlichen Schnittgeschwindigkeit wird das Werkstück um seine Werkstückachse gedreht. Gleichzeitig wird eine parallel zur Werkstückoberfläche oszillierende Relativbewegung zwischen dem Werkstück und dem an der Umfangsfläche anliegenden Finish-Werkzeug erzeugt. Durch die Kombination der Rotationsbewegung des Werkstückes und der überlagerten Oszillationsbewegung kann ein so genanntes Kreuzschliffmuster erzeugt werden, wodurch die bearbeiteten Werkstückoberflächen z.B. als Laufflächen für Gleitlager oder Wälzlager oder dergleichen besonders geeignet sind. Bei dem zu bearbeiteten Werkstückabschnitt kann es sich beispielsweise um ein Hauptlager oder ein Hublager einer Kurbelwelle oder um ein Nockenwellenlager handeln.
Im Unterschied zum Schleifen ist das Finishen ein thermisch neutrales Bearbeitungsverfahren, bei dem keine mit Mikrorissen oder Oberflächenspannungen durchsetzte Weichhaut entsteht. Das Finishen wird häufig nach einem Schleifprozess als letztes spanabhebendes Bearbeitungsverfahren einer Prozesskette eingesetzt, um die Weichhaut zu entfernen, die ursprüngliche Gefügestruktur wieder freizulegen, den Traganteil der aufgerauten Oberflächenstruktur zu erhöhen und die Bauteilgeometrie bezüglich Rundheit und kurzwelligen Fehlern in Axialrichtung und Umfangsrichtung zu verbessern.
Das Schleifen ist dabei die letzte formgebende Bearbeitungsoperation. Beim Schleifen ist die Geometrie des Schleifwerkzeugs der Maschinensteuerung bekannt, so dass das Werkstück entsprechend der durch die Maschinensteuerung bewirkten Werkzeugführung durch Schleifen konturiert werden kann. Eine Voraussetzung für diese Formgebung ist das regelmäßige Abrichten oder Einmessen der Schleifwerkzeuge. Der Schleifprozess ist aber in der Regel nicht in der Lage, die durch die Finish-Bearbeitung erzielbaren Oberflächeneigenschaften zu erzielen.
Bei der Finish-Bearbeitung rotationssymmetrischer Lagerstellen steht normalerweise die Erhaltung der axialen Kontur im Vordergrund. Eine Verbesserung der Formwerte an zylindrischen Lagerstellen findet überwiegend in radialer Richtung statt und steht stark in Abhängigkeit zur Vorbearbeitung. So können beispielsweise kurzwellige Fehleranteile z.B. mit mehr als 15 Wellen am Umfang, relativ prozesssicher verbessert werden, während langwellige Anteile, wie z.B. Ovale, Dreiecke oder Vierecke, durch Finishen in der Regel nicht positiv beeinflusst werden können. Das Zerspanungsvolumen durch den Finish-Prozess liegt in der Regel unter ca. 10 μηη. Um die Geometrie bestmöglich zu erhalten, wird der Materialabtrag des Finish-Prozesses im Normalfall auf die Vorbearbeitung abgestimmt.
Das Schleifen ist in der Regel die letzte formgebende Bearbeitungsoperation. Das bedeutet, dass die Konturierung einer rotationssymmetrischen Lagerstelle im Wesentlichen durch den dem Finish-Prozess vorgeschalteten Schleifprozess erfolgt. Ein kontinuierliches Abrichten der Schleifscheibe ist für die Formgebung und Gestaltung der Lagerstelle zwingend notwendig. Je nach Anforderung und Zeichnungstoleranz an die Lagerstelle reduziert oder verlängert sich der Abricht-Zyklus. Der Schleifprozess ist aber in der Regel nicht in der Lage, die durch die Finish- Bearbeitung erzielbaren Oberflächeneigenschaften zu erzielen.
Bei der Bearbeitung von Lagerabschnitten an Wellen sind die Geometrieanforderungen häufig so, dass einzelne oder alle Lagerabschnitte eine leicht ballige Gestalt aufweisen sollen. Eine ballige (tonnenförmige, konvexe) Gestalt rotationssymmetrischer Lagerabschnitten kann dazu beitragen, Lagerschäden aufgrund von Flucht- und Formfehlern der im Lager zusammenwirkenden Komponenten zu vermindern. Entsprechende, vom Kunden vorgegebene finale Mantellinienanforderungen bezüglich Balligkeit drücken sich in der Regel in Durchmesserunterschieden von wenigen Mikrometern zwischen unterschiedlichen axialen Positionen des Lagerabschnitts aus.
Beim Schleifen von Kurbelwellen-Lagerabschnitten kann eine ballige Makroform durch entsprechende Abrichtung der Umfangsflächen der beim Schleifen verwendeten Schleifscheiben erreicht werden (vgl. z.B. EP 1 181 132 B1 , Fig. 5). Die EP 1 514 642 A2 beschreibt eine Vorrichtung zur Finish-Bearbeitung von Wellen, insbesondere von Kurbel- und Nockenwellen, mit einem Werkzeugträger und einem endlosem Schleifband, das einen flexiblen Träger und eine Schleifmittelschicht mit Hartstoff aufweist. Die Vorrichtung dient zur Bearbeitung eines um seine Rotationsachse rotierenden Werkstückes. Ein Schleifbandantrieb treibt das Schleifband während einer Werkstückbearbeitung kontinuierlich an. Es ist eine Spannvorrichtung für das Schleifband vorgesehen. Der Werkzeugträger hat einen Bearbeitungskopf mit zwei zueinander beabstandeten Bandumlenkungen, die einen Arbeitsbereich des Bearbeitungskopfes begrenzen, wobei das Schleifband über die Bandumlenkungen geführt ist und im Arbeitsbereich an der zu bearbeitenden Umfangsfläche des Werkstückes vorbeiläuft. Dem umlaufenden Schleifband ist außerhalb des Arbeitsbereiches eine Vorrichtung zum Abrichten der Schleifmittelschicht zugeordnet, welche ein während der Werkstückbearbeitung gegen die Schleifmittelschicht des mit einer auf die Werkstückbearbeitung abgestimmten Bandgeschwindigkeit umlaufenden Schleifbandes zustellbares Abrichtwerkzeug aufweist. Bei einer Ausführungsform hat das Abrichtwerkzeug quer zur Bandlaufrichtung eine ballige Kontur, die beim Abrichten auf die Schleifmittelschicht übertragen wird. Dadurch kann am bearbeiteten Werkstückabschnitt eine leicht ballige Kontur erzeugt werden.
AUFGABE UND LÖSUNG
Es ist eine Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung für einen Finish-Prozess bereitzustellen, die es gestatten, mit Hilfe der Finish-Bearbeitung aus einer Vorbearbeitung resultierende Formwerte bearbeiteter Werkstückabschnitte nicht nur zu erhalten und ggf. leicht zu verbessern, sondern bei Bedarf auch gezielt beeinflussen und erzeugen bzw. verändern zu können. Insbesondere soll die Möglichkeit geschaffen werden, mittels Finishen nichtzylindrische Werkstückabschnitte mit vorgebbarer balliger Gestalt zu erzeugen.
Zur Lösung dieser Aufgabe stellt die Erfindung ein Verfahren mit den Merkmalen von Anspruch 1 bereit. Weiterhin wird eine zur Durchführung des Verfahrens geeignete Vorrichtung mit den Merkmalen von Anspruch 5 bereitgestellt. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Der Inhalt sämtlicher Ansprüche wird durch Bezugnahme zum Inhalt der Beschreibung gemacht.
Bei der beanspruchten Erfindung wird dem Finish-Werkzeug bzw. dem für den Materialabtrag maßgeblichen, mit Schneidmittel versehenen Teil des Finish-Werkzeugs während einer geradlinigen Linearbewegung parallel zur Rotationsachse des Werkstücks eine dieser Linearbewegung überlagerte Schwenkbewegung aufgezwungen, so dass der abrasive Teil des Finish- Werkzeugs entlang einer mindestens teilweise gekrümmten Werkzeuglaufbahn geführt wird. Hierdurch lassen sich am bearbeiteten Werkstückabschnitt unterschiedliche, axial nebeneinander liegende Axialabschnitte gezielt mit unterschiedlich starkem Materialabtrag finishen, wodurch eine gewünschte, in Axialrichtung nicht geradlinig verlaufende Mantellinienform gezielt erzeugt werden kann. Die Mantellinienform kann somit mit Hilfe einer speziellen Maschinenkonfiguration gegenüber der aus der Vorbearbeitung resultierenden Mantellinienform verändert werden. Somit ist eine formgebende Bearbeitung mittels Finishen möglich.
Bei manchen Bearbeitungsvarianten erfolgt die Steuerung der Maschine so, dass in einer Endphase eines Linearhubes der linearen Maschinenachse ein in Bewegungsrichtung der Linearbewegung vorauseilender vorderer Endabschnitt des Finish-Werkzeugs näher an der Werkstückachse liegt und/oder mit höherer lokaler Andrückkraft an die Umfangsfläche angedrückt wird als ein nacheilender hinterer Endabschnitt. Hierdurch sind generell konvexe bzw. ballige Formen erzielbar. Zu den Formen gehören insbesondere eine voll-ballige Mantellinienform, eine zylindrisch-ballige Mantellinienform oder eine zylindrisch-logarithmische Mantellinienform.
In konstruktiver Hinsicht kann dies bei einer Vorrichtung dadurch realisiert werden, dass im Vergleich zu herkömmlichen Maschinenkonzepten eine zusätzliche bzw. weitere gezielt ansteuerbare Maschinenachse, nämlich eine rotatorische Maschinenachse, vorgesehen wird, um durch eine Überlagerung zweier linearer Bewegungsachsen und einer Rotationsachse eine zweidimensionale, nahezu beliebige Bahnkurve für das Finish-Werkzeug zu realisieren.
Eine robuste und zuverlässig arbeitende Variante einer Vorrichtung zeichnet sich dadurch aus, dass die translatorische Maschinenachse einen Horizontalschlitten aufweist, der eine rotatorische Maschinenachse mit einem Rundtisch umfasst, welche relativ zum Schlitten mit Hilfe eines numerisch gesteuerten Drehantriebs, beispielsweise eines Servomotors, um eine der Schwenkachse entsprechende horizontale Rotationsachse verdrehbar ist. Der Rundtisch kann eine Steinführung tragen, die eine translatorische Maschinenachse aufweist, um den Werkzeughalter entlang einer Vorschubrichtung zu bewegen, die senkrecht zur Schwenkachse verläuft und der Andrückrichtung entspricht.
Es wäre auch möglich, die Maschinenachsen auf andere Weise zu kombinieren, beispielsweise indem eine rotatorische Maschinenachse mit einem Rundtisch vorgesehen ist, der eine Linearführung für eine translatorische Maschinenachse trägt.
Es ist auch möglich, dass die rotatorische Achse als eine in das Finish-Werkzeug integrierte Achse realisiert wird, also an der Werkzeugseite des Werkzeughalters liegt. Auch hierdurch kann erreicht werden, dass das abrasive Schneidmittel entlang der gewünschten bogenförmi- gen Laufbahn zwangsgeführt wird, um beispielsweise eine ballige Gestalt am Werkstückabschnitt zu generieren.
KURZBESCHREIBUNG DER ZEICHNUNGEN
Weitere Vorteile und Aspekte der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen der Erfindung, die nachfolgend anhand der Figuren erläutert sind. Dabei zeigen:
Fig. 1 eine Seitenansicht einer Bearbeitungssituation bei einem Ausführungsbeispiel eines Verfahrens zur Finish-Bearbeitung einer Umfangsfläche eines Werkstücks;
Fig. 2 eine axiale Ansicht der Bearbeitungssituation aus Fig. 1 ;
Fig. 3 Details zur Kinematik der Werkzeugbewegung;
Fig. 4 ein Ausführungsbeispiel einer Vorrichtung zur Durchführung des Verfahrens in Seitenansicht (Fig. 4A) und Vorderansicht (Fig. 4B); und
Fig. 5 ein Ausführungsbeispiel eines Finish-Werkzeugs mit integrierter Schwenkachse.
DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
Anhand der Fig. 1 und 2 werden einige für das Verständnis von Ausführungsformen der Erfindung hilfreiche Zusammenhänge und Begriffe erläutert. Dabei zeigt Fig. 1 eine Seitenansicht einer typischen Bearbeitungssituation bei einem Ausführungsbeispiel eines Verfahrens zur Finish-Bearbeitung einer Umfangsfläche 195 eines rotationssymmetrischen Werkstückabschnitts an einem Werkstück 190. Das Werkstück wird mithilfe einer Dreheinrichtung zur Erzeugung einer Drehbewegung des Werkstücks um eine Werkstückrotationsachse bzw. Werkstückachse 192 mit konstanter Drehgeschwindigkeit gedreht. Bei dem zu bearbeitenden Werkstückabschnitt kann es sich beispielsweise um ein Hauptlager einer Kurbelwelle oder eine Lagerfläche einer anderen Welle, beispielsweise einer Nockenwelle oder einer Ausgleichswelle, handeln.
Um an dem Werkstückabschnitt mittels Finishen einen Materialabtrag zu bewirken, wird ein Finish-Werkzeug 100 mit einer in einer Andrückrichtung AR wirkenden Andrückkraft F an die zu bearbeitende Umfangsfläche bzw. an den zu bearbeitenden Werkstückabschnitt angedrückt. Hierzu hat die Finish-Maschine eine entsprechende Andrückeinrichtung. Der Materialabtrag wird dadurch unterstützt, dass mithilfe einer Oszillationseinrichtung eine parallel zur Werkstückoberfläche ausgerichtete oszillierende Relativbewegung zwischen dem Werkstück und dem Finish-Werkzeug erzeugt wird (siehe Doppelpfeil OSZ). Im Beispielsfall ist die Oszillationseinrichtung auf Seiten des Finish-Werkzeugs angebracht, so dass das Finish- Werkzeug in einer senkrecht zur Andrückrichtung AR verlaufenden Oszillationsrichtung OR oszillierend bewegt wird, während das Werkstück sich lediglich um die Werkstückachse 192 dreht. Die Oszillationseinrichtung umfasst hier einen pneumatischen Schwinger, der das Finish- Werkzeug relativ zum Werkzeughalter 180 bewegen kann.
Weiterhin ist eine translatorische Maschinenachse (numerisch gesteuerte Linearachse) vorgesehen, die eine der Oszillationsbewegung überlagerte Linearbewegung des Finish-Werkzeugs in einer Linearhubrichtung LR bewirken kann, welche parallel zur Werkstückachse 192 verläuft. Diese Linearbewegung (Doppelpfeil LIN) kann bei Bedarf über eine Linearhublänge erfolgen, die größer als der Oszillationshub ist.
Weiterhin ist eine rotatorische Achse (numerisch gesteuerte Rotationsachse) zur Erzeugung einer der Linearbewegung überlagerten Schwenkbewegung des Finish-Werkzeugs vorgesehen. Die Schwenkbewegung (gekrümmter Doppelpfeil SW) erfolgt um eine Schwenkachse SA, die senkrecht zur Werkstückachse und senkrecht zur Andrückrichtung AR verläuft.
Die Steuerung der Finishmaschine ist im Beispielsfall so konfiguriert, dass eine Schwenkposition des Finish-Werkzeugs, d.h. die aktuelle Drehposition um die Schwenkachse SA, in Abhängigkeit von einer Axialposition der Linearbewegung LIN steuerbar ist. Damit wird die Orientierung der Oszillationsrichtung OSZ in Bezug auf das Maschinekoordinatensystem im Beispielsfall eine Funktion der Axialposition der Linearbewegung und der Schwenkposition und verläuft phasenweise nicht parallel, sondern in variierendem spitzem Winkel zur Werkstückachse.
Das am freien Ende eines Werkzeughalters 180 montierte Finish-Werkzeug 100 weist einen Schneidmittelträger 1 10 auf, der typischerweise aus Werkzeugstahl oder einem anderen metallischen Werkstoff gefertigt ist und an seiner Rückseite Einrichtungen zur Montage des Finish- Werkzeugs am Werkzeughalter 180 umfasst. An der Vorderseite des Schneidmittelträgers ist ein Schneidbelag 120 zum Beispiel mithilfe eines Klebers oder mittels Schrauben befestigt. Der durch einen Sinterwerkstoff gebildete Schneidbelag enthält eine Vielzahl von Schneidmittelkörnern, die im Beispielsfall homogen innerhalb einer Matrix aus einem Bindemittel verteilt sind. Schneidmittelkörner können beispielsweise Diamantkörner oder Körner aus kubischem Bornitrid (CBN) sein. Als Bindemittel kommt beispielsweise ein keramischer oder ein metallischer Werkstoff in Betracht. Der Schneidbelag hat an seiner dem Schneidmittelträger zugewandten Grundseite normalerweise einen Rechteckquerschnitt. Definitionsgemäß ist die Längsrichtung L des Schneidbelags diejenige Richtung, die bei der Finish-Bearbeitung im Wesentlichen parallel zur Werkstückrotationsachse verläuft. Senkrecht zur Längsrichtung L verläuft die Querrichtung Q in der Weise, dass Längsrichtung und Querrichtung in einer Ebene senkrecht zur Andrückrichtung liegen.
Auf der dem Schneidmittelträger abgewandten Seite bildet der Schneidbelag eine abrasive, konkav-zylindrische Schneidfläche 125, mit der der Schneidbelag während der Finish- Bearbeitung mehr oder weniger großflächig an der zu bearbeitenden Umfangsfläche anliegt. Wie in Fig. 2 gut zu erkennen ist, hat die Schneidfläche in Querrichtung Q eine konkave Form, deren Krümmungsradius im Wesentlichen dem Soll-Krümmungsradius des zu bearbeitenden Werkstückabschnitts am Ende der Finish-Bearbeitung entspricht.
Anhand der schematischen Fig. 3 werden Details der Kinematik der Werkzeugbewegung bei der Erzeugung einer voll-balligen axialen Geometrie eines Werkstückabschnitts 194 des Werkstücks 190 erläutert. Die Verhältnisse sind nicht maßstabsgerecht dargestellt. Das Werkstück 190 rotiert um seine Werkstückachse 192. Das Finish-Werkzeug 100 wird mittels der Andrückeinrichtung in Andrückrichtung AR an die rotationssymmetrische Werkstückaußenfläche angedrückt. Das Finish-Werkzeug oszilliert relativ zum Werkzeugträger in Oszillationsrichtung OSZ senkrecht zur Andrückrichtung. Der Oszillationsbewegung ist eine parallel zur Werkstückrotationsachse 192 verlaufende Linearbewegung LIN überlagert, für die eine numerisch gesteuerte Linearachse der Finish-Maschine vorgesehen ist.
Der Linearhub, d.h. die Hublänge der Linearbewegung, ist in Fig. 3 übertrieben dargestellt. Typischerweise liegt der Oszillationshub im Bereich einiger Millimeter, beispielsweise im Bereich von ±0.5 mm bis ±3 mm. Der durch die Linearbewegung zusätzlich erzielbare Hub kann in der gleichen Größenordnung liegen, also beispielsweise zwischen 1 mm und 3 mm. Auch andere Hublängen und Hublängenverhältnisse sind möglich.
Der achsparallelen Linearbewegung ist eine Schwenkbewegung des Finish-Werkzeugs um eine senkrecht zur Linearrichtung und senkrecht zur Andrückrichtung verlaufende Schwenkachse überlagert. Um die dargestellte konvexe, d.h. tonnenförmige Gestalt des Umfangsabschnitts zu erreichen, wird die Schwenkbewegung so gesteuert, dass in einer Endphase eines Linearhubs, also in der zweiten Hälfte eines Linearhubs nach Überschreiten einer Mittelposition, nach Vorgabe eines Steuerprogramms ein in Bewegungsrichtung der Linearbewegung vorauseilender vorderer Endabschnitt des Finish-Werkzeugs näher an der Werkstückachse 192 liegt bzw. mit höherer lokaler Andrückkraft an die Umfangsfläche angedrückt wird als ein in der Bewegungs- richtung nacheilender hinterer Endabschnitt. Bewegt sich das Finish-Werkzeug beispielsweise in die erste Richtung R1 in Fig. 3 nach links, so wird der vordere Endabschnitt E1 mit stärkerer lokaler Andrückkraft an die Werkstückoberfläche angedrückt als der nacheilende zweite Endabschnitt E2. Hierzu verläuft die Andrückrichtung in einem von 90° abweichenden Winkel zur Werkstückrotationsachse 192. In der mittleren Phasen der linearen Hubbewegung ist die Andrückrichtung senkrecht zur Werkstückrotationsachse ausgerichtet und beide Endabschnitte des Finish-Werkzeugs werden mit etwa gleicher lokaler Andrückkraft an die Umfangsfläche angedrückt. Bei Annäherung an den Umkehrpunkt auf der anderen Seite (in die zweite Richtung R2) eilt nun der zweite Endabschnitt E2 dem ersten Endabschnitt E1 voraus und wird mit stärkerer lokaler Andrückkraft an die Umfangsfläche angedrückt als der erste Endabschnitt E1.
Der maximale Schwenkwinkel der Schwenkbewegung, d.h. der maximale Winkel zwischen momentaner Orientierung der Andrückrichtung und der Nullpunktslage (Andrückrichtung senkrecht zur Werkstückrotationsachse 192) ist normalerweise sehr klein und liegt in der Regel unterhalb von 1 °, ggf. auch unterhalb von 0.1 °. Der Schwenkwinkel kann z.B. im Bereich 0.01 ° bis 0.1 ° liegen.
Die Oszillationsrichtung OR verläuft mit dieser Kinematik immer parallel zur Werkstückoberfläche in einer die Werkstückachse 192 enthaltenden Axialebene. Die Andrückkraft wirkt bei dieser Kinematik unabhängig von der axialen Position des Finish-Werkzeugs immer im Wesentlichen in Normalenrichtung zum gerade bearbeiteten Teil des Werkstückabschnitts, also senkrecht zur Werkstückoberfläche. Bei gleichmäßiger Rotationsgeschwindigkeit des Werkstücks und gleichmäßiger Oszillationsfrequenz wird der lokale Materialabtrag im Wesentlichen durch die lokal herrschende Andrückkraft bestimmt, so dass mithilfe der Finish-Bearbeitung die ballige Gestalt mit konvexer Mantellinie erzeugt werden kann.
Um zu erreichen, dass die gewünschte Andrückkraft unabhängig vom lokalen Durchmesser des gerade bearbeiteten Teils des Werkstückabschnitts allein durch die Ansteuerung der Andrückeinrichtung bestimmt wird, ist der Linearbewegung und der Schwenkbewegung noch eine in Andrückrichtung verlaufende lineare Ausgleichsbewegung überlagert.
Es ist ersichtlich, dass nach dem gleichen Prinzip auch andere axiale Geometrien erzeugt werden können. Wird die Schwenkbewegung beispielsweise so gestaltet, dass die Andrückrichtung AR in einem breiteren Bereich um die axiale Mitte des Umfangsabschnitts senkrecht zur Werkstückrotationsachse 192 ausgerichtet bleibt und nur in den Endphasen nahe der Umkehrpunkte das Finish-Werkzeug verschwenkt wird, so kann beispielsweise eine zylindrisch-ballige axiale Geometrie erzeugt werden, bei der sich im Mittelbereich ein zylindrischer Teil des Werkstück- abschnitts befindet, der zu den axialen Rändern hin zur Verkleinerung des Durchmessers verrundet wird. Auch eine zylindrisch-logarithmische oder ein konkave Mantellinienform kann auf diese Weise erzeugt werden.
Das Ausmaß der Balligkeit, beispielsweise gegeben durch den Radienunterschied AR zwischen dem Bereich mit größtem Radius bzw. Durchmesser und dem Bereich mit kleinstem Radius bzw. Durchmesser liegt normalerweise in der Größenordnung einiger Mikrometer, beispielsweise zwischen 1 und 5 μηη.
Anhand von Fig. 4 wird ein Ausführungsbeispiel einer Vorrichtung 400 zur Finish-Bearbeitung von Umfangsflächen erläutert, mit der die besondere Werkzeugkinematik realisiert werden kann. Fig. 4A zeigt hierzu eine Seitenansicht parallel zur Bewegungsrichtung einer horizontalen, linearen Maschinenachse, die den Linearhub ausführt. Fig. 4B zeigt eine Vorderansicht der Vorrichtung in einer senkrecht zu dieser Linearrichtung stehenden Horizontalrichtung, die der Achsrichtung einer rotatorischen Maschinenachse entspricht.
An einem vertikalen Träger 410 der Vorrichtung ist eine lineare Maschinenachse LA mit horizontaler Achsrichtung vorgesehen. Durch diese wird die beschriebene Linearbewegung erzeugt. Die lineare Maschinenachse umfasst einen Horizontalschlitten 420, der entlang von horizontalen Führungsschienen 425 geführt ist und mithilfe eines Servomotors (nicht gezeigt) über eine Kugelrollspindel bewegt wird. Der Schlitten 420 trägt eine rotatorische Maschinenachse, welche einen Rundtisch 430 umfasst, der relativ zum Schlitten 420 mithilfe eines numerisch gesteuerten Drehantriebs um eine horizontale Rotationsachse verdreht werden kann, die der Schwenkachse SA entspricht. Der um die Schwenkachse verdrehbare Rundtisch 430 trägt an seiner Vorderseite eine sogenannte Steinführung 440, die eine translatorische Maschinenachse beinhaltet, um den Werkzeughalter 180 entlang einer senkrecht zur Schwenkachse SA verlaufenden Vorschubrichtung zu verschieben, welche der Andrückrichtung AR entspricht. Am vorderen Ende des Werkzeughalters ist das Finish-Werkzeug 100 angebracht, welches das Werkstück 190 bearbeitet, das für die Bearbeitung mithilfe einer Dreheinrichtung so angetrieben wird, dass es sich um seine Werkstückrotationsachse 192 mit einer vorgegebenen Drehzahl (beispielsweise zwischen 50 min"1 und 300 min"1 dreht.
Die Vorrichtung kann wie folgt arbeiten. Während das Werkstück 190 um die Werkstückachse 192 gedreht wird, führt das Finish-Werkzeug 100 entlang der Bewegungsachse der Oszillationseinrichtung eine schnelle Oszillationsbewegung in Oszillationsrichtung OR aus. Zusätzlich wird zur Erzeugung einer axialen Geometrie des bearbeitenden Werkstückabschnitts dem Finish-Werkzeug eine interpolierende Bewegung durch die Steinführung überlagert. Die Steinfüh- rung führt hierzu entlang der horizontalen Bewegungsrichtung der Linearachse LA einen relativ langsamen und großen Hub aus. Gleichzeitig schwenkt der Rotationstisch 430 die Steinführung 440 um die Schwenkachse SA, während die Linearachse, die den Werkzeughalter 180 linear verschieben kann, einen entsprechenden Längenausgleich bewirkt. Auf diese Weise wird dem Finish-Werkzeug eine bogenförmige Werkzeuglaufbahn aufgezwungen. Dadurch kann am bearbeiteten Werkstückabschnitt durch Finishen eine runde oder beliebige andere axiale Werkzeuglaufbahn erzeugt werden, wodurch eine entsprechende Mantellinienform am Werkstück erzeugt werden kann.
Durch die Veränderung des Schwenkwinkels in Verbindung mit der Bewegung der linearen Maschinenachse LA sind alle denkbaren Konturen in axialer Richtung des bearbeiteten Umfangs- abschnitts zu gestalten und zu beeinflussen. Konvexe wie auch konkave Linienformen der Mantellinie können erzielt werden.
Durch die hiermit geschaffene Möglichkeit, mittels Finishen die Mantellinienform von Lagerstellen in axialer Richtung gezielt beeinflussen zu können, kann in zukünftigen Fertigungsprozessen gegebenenfalls auf das bei herkömmlichen Prozessen vorgelagerte Fertigschleifen verzichtet werden. Dadurch, dass die Finish-Bearbeitung nun als formgebende Bearbeitung ausgelegt sein kann, steht der Finish-Prozess nicht mehr in Abhängigkeit zur Vorbearbeitung bzw. ist weniger von der Vorbearbeitung abhängig. Der Finish-Prozess kann dadurch gegebenenfalls auch leistungsfähiger mit größerem Zerspanungsvolumen ausgelegt werden. Auf die früher üblichen Abrichtzyklen bei Schleifwerkzeugen nach einer gewissen Anzahl bearbeiteter Lagerstellen kann gegebenenfalls unter Nutzung dieser neuartigen Finish-Technologie verzichtet werden. Eine hohe Schwingungsfrequenz der Oszillationsbewegung (typisch erweise mindestens 10 Hz) parallel zur axialen Kontur gewährleistet einen Selbstschärfeffekt des Finish-Werkzeugs, so dass ein Abrichten eines Finish-Werkzeugs anders als bei Schleifwerkzeugen nicht erforderlich ist. Somit kann die Prozesskette deutlich reduziert und Investitionen können eingespart werden.
Bei dem bisher dargestellten Beispiel ist die rotatorische Schwenkachse eine Maschinenachse, während das Finish-Werkzeug ein konventionelles passives Finish-Werkzeug ist. Bei anderen Ausführungsbeispielen kann auf eine rotatorische Schwenkachse in der Finish-Vorrichtung verzichtet werden. Stattdessen kann die Schwenkbewegung bzw. eine entsprechende Schwenkachse in ein aktiv ansteuerbares Finish-Werkzeug integriert sein. Fig. 5 zeigt hierzu beispielhaft ein Finish-Werkzeug 500 mit integrierter Schwenkachse. Der Schneidmittelträger 510 des Finish-Werkzeugs 500 ist hierzu mehrteilig konstruiert. Ein maschinenseitiger fester Teil 512 wird mit geeigneten Befestigungsmitteln fest am Werkzeugträger 1 10 befestigt. Der feste Teil trägt einen gegenüber dem festen Teil beweglichen Teil 514, der gegenüber dem festen Teil um eine Schwenkachse SA begrenzt verschwenkbar ist. Der Schneidbelag 520 ist an der Vorderseite des beweglichen Teils 514 befestigt. Die Schwenkbewegung des beweglichen Teils mit Schneidbelag gegenüber dem festen Teil wird mithilfe von Aktoren ACT bewerkstelligt, die beispielsweise mithilfe von Piezoelementen aufgebaut sein können. Die Aktoren werden über die Steuereinheit der Finish-Vorrichtung angesteuert und bewirken eine Verschwenkung des beweglichen Teils gegenüber dem festen Teil in Abhängigkeit von der Linearbewegung der translatorischen Achse parallel zur Werkstückrotationsachse.
Bei dieser Variante kann der bewegliche Teil 514 mit dem Schneidbelag 520 als Finish- Werkzeug angesehen werden, während der feste Teil 512 als Teil des Werkzeughalters 180 angesehen werden kann. Die Variante der Figuren 1 , 2 und 4 unterscheidet sich dann von der Variante aus Fig. 5 dadurch, dass im ersten Fall die Schwenkachse an der Maschinenseite des Werkzeughalters und im letzten Fall auf der Werkzeugseite des Werkzeughalters angeordnet ist.

Claims

Patentansprüche
1 . Verfahren zur Finish-Bearbeitung von Umfangsflächen rotationssymmetrischer Werkstückabschnitte an Werkstücken, bei dem bei der Bearbeitung einer Umfangsflache ein Finish- Werkzeug (100, 500) mit einer Andrückkraft in einer Andrückrichtung (AR) an die zu bearbeitende Umfangsflache angedrückt wird und zur Erzeugung von Materialabtrag das Werkstück um eine Werkstückachse (192) gedreht und eine oszillierende Relativbewegung zwischen dem Finish-Werkzeug und dem Werkstück erzeugt wird, wobei
zur Erzeugung der oszillierenden Relativbewegung das Finish-Werkzeug entlang einer Oszillationsrichtung (OR) mit einer vorgebbaren Oszillationshublänge und Oszillationsfrequenz hin und her bewegt wird;
der Oszillationsbewegung eine parallel zur Werkstückachse verlaufende Linearbewegung des Finish-Werkzeugs über eine Linearhublänge überlagert wird, und
der Linearbewegung und der Oszillationsbewegung eine Schwenkbewegung des Finish- Werkzeugs um eine senkrecht zur Werkstückachse und zur Andrückrichtung verlaufende Schwenkachse (SA) überlagert wird,
wobei eine Schwenkposition des Finish-Werkzeugs in Abhängigkeit von einer Axialposition der Linearbewegung gesteuert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in einer Endphase eines Linearhubes ein in Bewegungsrichtung der Linearbewegung vorauseilender vorderer Endabschnitt des Finish-Werkzeugs näher an der Werkstückachse liegt und/oder mit höherer lokaler Andrückkraft an die Umfangsfläche angedrückt wird als ein nacheilender hinterer Endabschnitt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schwenkbewegung eine lineare Ausgleichsbewegung des Finish-Werkzeugs in Andrückrichtung (AR) überlagert wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Finish-Bearbeitung ein Umfangsabschnitt erzeugt wird, der eine voll-ballige, eine zylindrisch-ballige oder eine zylindrisch-logarithmische axiale Geometrie aufweist.
5. Vorrichtung zur Finish-Bearbeitung von Umfangsflächen rotationssymmetrischer Werkstückabschnitte an Werkstücken mit:
einer Dreheinrichtung zur Erzeugung einer Drehbewegung des Werkstückes (190) um eine Werkstückachse (192); einer Andrückeinrichtung zum Andrücken eines Finish-Werkzeugs (100) an eine zu bearbeitende Umfangsfläche (195) derart, dass das Finish-Werkzeug mit einer Andrückkraft in einer Andrückrichtung (AR) an die Umfangsfläche angedrückt wird; und
einer Oszillationseinrichtung zur Erzeugung einer oszillierenden Bewegung des Finish- Werkzeugs gegenüber dem Werkstück entlang einer Oszillationsrichtung (OR) mit einer vorgebbaren Oszillationshublänge und Oszillationsfrequenz;
gekennzeichnet durch
eine translatorische Maschinenachse (LA) zur Erzeugung einer der Oszillationsbewegung überlagerten, parallel zur Werkstückachse verlaufende Linearbewegung des Finish-Werkzeugs; und eine rotatorische Achse zur Erzeugung einer der Linearbewegung überlagerten Schwenkbewegung des Finish-Werkzeugs um eine senkrecht zur Werkstückachse und zur Andrückrichtung verlaufende Schwenkachse (SA);
wobei eine Steuerung der Vorrichtung so konfigurierbar ist, dass eine Schwenkposition des Finish-Werkzeugs in Abhängigkeit von einer Axialposition der Linearbewegung steuerbar ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die rotatorische Achse eine Maschinenachse ist.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die translatorische Maschinenachse (LA) einen Horizontalschlitten (420) aufweist, der entlang von horizontalen Führungsschienen (425) geführt ist und dass der Schlitten 420 die rotatorische Maschinenachse trägt, welche einen Rundtisch (430) umfasst, der relativ zum Schlitten (420) mithilfe eines numerisch gesteuerten Drehantriebs um eine horizontale Rotationsachse verdrehbar ist, welche der Schwenkachse SA entspricht.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Rundtisch (430) eine Steinführung (440) trägt, die eine translatorische Maschinenachse aufweist, um den Werkzeughalter (180) entlang einer senkrecht zur Schwenkachse (SA) verlaufenden Vorschubrichtung zu verschieben, welche der Andrückrichtung (AR) entspricht.
9. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die rotatorische Achse eine in das Finish-Werkzeug (500) integrierte Achse ist.
EP15729485.1A 2014-06-23 2015-06-17 Verfahren und vorrichtung zur finish-bearbeitung von umfangsflächen rotationssymmetrischer werkstückabschnitte Active EP3157708B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014211937.5A DE102014211937C5 (de) 2014-06-23 2014-06-23 Verfahren und Vorrichtung zur Finish-Bearbeitung von Umfangsflächen rotationssymmetrischer Werkstückabschnitte
PCT/EP2015/063608 WO2015197448A1 (de) 2014-06-23 2015-06-17 Verfahren und vorrichtung zur finish-bearbeitung von umfangsflächen rotationssvmmetrischer werkstückabschnitte

Publications (2)

Publication Number Publication Date
EP3157708A1 true EP3157708A1 (de) 2017-04-26
EP3157708B1 EP3157708B1 (de) 2019-02-27

Family

ID=53404573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15729485.1A Active EP3157708B1 (de) 2014-06-23 2015-06-17 Verfahren und vorrichtung zur finish-bearbeitung von umfangsflächen rotationssymmetrischer werkstückabschnitte

Country Status (6)

Country Link
EP (1) EP3157708B1 (de)
CN (1) CN107073673B (de)
DE (1) DE102014211937C5 (de)
ES (1) ES2725460T3 (de)
HU (1) HUE043411T2 (de)
WO (1) WO2015197448A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205644B4 (de) * 2015-03-27 2021-03-25 Supfina Grieshaber Gmbh & Co. Kg Finishsteinhaltevorrichtung
CN107378742A (zh) * 2017-08-03 2017-11-24 上海晟禧精密机械设备有限公司 滚子超精机
CN111002110A (zh) * 2019-11-15 2020-04-14 江苏米孚自动化科技有限公司 一种机电一体化数控机床板材圆弧边打磨工艺
CN113414704B (zh) * 2021-05-19 2022-06-21 黄山明明德集团有限公司 一种超精机摆头用新型摆动驱动机构
DE102022202259A1 (de) 2022-03-07 2023-09-07 Nagel Maschinen- und Werkzeugfabrik Gesellschaft mit beschränkter Haftung. Finishverfahren und Finishvorrichtung zur Finishbearbeitung von Wälzkörperlaufbahnen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225977A1 (de) 1982-07-10 1984-01-12 Supfina Maschinenfabrik Hentzen GmbH & Co KG, 5630 Remscheid Verfahren und vorrichtung zur feinstbearbeitung konvexer oder konkaver mantelflaechen rotationssymmetrischer werkstuecke, insbesondere von waelzlagerrollen
US5531631A (en) 1994-04-28 1996-07-02 Industrial Metal Products Corporation Microfinishing tool with axially variable machining effect
JP2788231B2 (ja) 1996-09-04 1998-08-20 川崎重工業株式会社 長尺バー材加工装置とその加工方法
DE19919893A1 (de) * 1999-04-30 2000-11-09 Junker Erwin Maschf Gmbh Vor- und Fertigschleifen einer Kurbelwelle in einer Aufspannung
DE602004006654T2 (de) 2003-02-12 2008-02-07 Nissan Motor Co., Ltd., Yokohama Vorrichtung und Verfahren zur Oberflächen-Endbearbeitung
DE10342137B4 (de) * 2003-09-12 2010-07-29 Thielenhaus Technologies Gmbh Vorrichtung und Verfahren zur Finishbearbeitung von Wellen, insbesondere von Kurbel- und Nockenwellen
JP4812489B2 (ja) 2006-03-28 2011-11-09 Ntn株式会社 ころ軸受軌道輪の超仕上げ加工装置
DE102007054897B4 (de) * 2007-11-15 2010-05-20 Thielenhaus Technologies Gmbh Vorrichtung zur mechanischen Finishbearbeitung von sphärischen Flächen an rotationssymmetrischen Werkstücken
DE102011087252B3 (de) * 2011-11-28 2013-01-17 Supfina Grieshaber Gmbh & Co. Kg Vorrichtung zur Finishbearbeitung eines insbesondere ringförmigen Werkstücks
DE102013007775B4 (de) * 2013-05-04 2016-05-25 Hochschule Magdeburg-Stendal Antriebseinrichtung zur Finishbearbeitung gekrümmter Flächen
EP2871445B1 (de) * 2013-11-12 2019-01-02 Supfina Grieshaber GmbH & Co. KG Vorrichtung zur Finishbearbeitung eines Werkstücks
CN203599994U (zh) * 2013-12-17 2014-05-21 环驰轴承集团有限公司 一种轴承外圈超精机

Also Published As

Publication number Publication date
EP3157708B1 (de) 2019-02-27
WO2015197448A1 (de) 2015-12-30
HUE043411T2 (hu) 2019-08-28
CN107073673A (zh) 2017-08-18
DE102014211937C5 (de) 2016-06-02
CN107073673B (zh) 2019-06-21
DE102014211937B3 (de) 2015-10-22
ES2725460T3 (es) 2019-09-24

Similar Documents

Publication Publication Date Title
EP3157708B1 (de) Verfahren und vorrichtung zur finish-bearbeitung von umfangsflächen rotationssymmetrischer werkstückabschnitte
EP2823924B1 (de) Doppelabrichter
DE102006007055B4 (de) Verfahren zum Schleifen von stabförmigen Werkstücken, Schleifmaschine zur Durchführung des Verfahrens und Schleifzelle in Zwillingsanordnung
EP2021144B1 (de) Verfahren zum bearbeiten der lagersitze der haupt- und hublager von kurbelwellen
DE60007542T2 (de) Verfahren zum Schleifen eines Werkstücks, mit welchem konstante Ansorderungen an die Spindelleistung erzielt werden
DE102008009124B4 (de) Verfahren zum Schleifen von stabförmigen Werkstücken und Schleifmaschine
EP2440369B1 (de) Schleifstützvorrichtung
DE102007054897B4 (de) Vorrichtung zur mechanischen Finishbearbeitung von sphärischen Flächen an rotationssymmetrischen Werkstücken
EP2338640A1 (de) Maschine zur Bearbeitung von optischen Werkstücken, insbesondere von Kunststoff-Brillengläsern
EP1991392A1 (de) Verfahren zum hinterschleifen der schneidzähne von gewindebohrern, gewindeformern und ähnlichen werkzeugen, und schleifmaschine zur durchführung des verfahrens
EP2794156B1 (de) Maschine und verfahren zum drehen zumindest von hublagerzapfen umgebenden planschultern einer kurbelwelle
DE19751750B4 (de) Verfahren und Vorrichtung zum Herstellen von polierbaren, optischen Linsen aus Linsenrohlingen
EP2636482B1 (de) Werkstückbearbeitungssystem und Verfahren zur Feinstbearbeitung eines Werkstücks
DE102006036004A1 (de) Vorrichtung und Verfahren zur Oberflächenbearbeitung von Werkstücken, insbesondere von metallischen oder keramischen Werkstücken
DE10041925A1 (de) Schleifverfahren und Vorrichtung zur Durchführung
EP3157709B1 (de) Finish-werkzeug
WO2012025072A2 (de) Verfahren zur herstellung von gehonten oberflächen
DE19607778A1 (de) Vorrichtung zur Finish-Bearbeitung, insbesondere von Kurbel- oder Nockenwellen
DE19607776A1 (de) Verfahren und Vorrichtung zur Finish-Bearbeitung, insbesondere von Kurbel- oder Nockenwellen
EP1884315A1 (de) Werkzeug, Vorrichtung und Verfahren zur Herstellung eines insbesondere als Kugelrollspindel ausgebildeten Werkstücks
DE19607821A1 (de) Vorrichtung zur Finish-Bearbeitung, insbesondere von Kurbel- oder Nockenwellen
DE102011007732B4 (de) Finishsystem
WO2015036594A1 (de) Verfahren zum betreiben einer vorrichtung zur mechanischen endbearbeitung von umfangsflächen an werkstücken
EP2871024B1 (de) Vorrichtung zur Finishbearbeitung einer gekrümmten Werkstückoberfläche und Verfahren zum Betreiben der Vorrichtung
DE19607775A1 (de) Vorrichtung zur Finish-Bearbeitung, insbesondere von Kurbel- oder Nockenwellen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1100638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008133

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E043411

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2725460

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015008133

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SUPFINA GRIESHABER GMBH & CO. KG

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1100638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230719

Year of fee payment: 9

Ref country code: CH

Payment date: 20230702

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502015008133

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20240424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240527

Year of fee payment: 10

Ref country code: FR

Payment date: 20240612

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240530

Year of fee payment: 10

Ref country code: HU

Payment date: 20240530

Year of fee payment: 10