EP3150744B1 - Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate - Google Patents

Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate Download PDF

Info

Publication number
EP3150744B1
EP3150744B1 EP15187511.9A EP15187511A EP3150744B1 EP 3150744 B1 EP3150744 B1 EP 3150744B1 EP 15187511 A EP15187511 A EP 15187511A EP 3150744 B1 EP3150744 B1 EP 3150744B1
Authority
EP
European Patent Office
Prior art keywords
palladium
copper
substrate
alloy
electroplating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP15187511.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3150744A1 (en
Inventor
Coline Nelias
Samuele CIAPPELLI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coventya SpA
Original Assignee
Coventya SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54249387&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3150744(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Coventya SpA filed Critical Coventya SpA
Priority to EP15187511.9A priority Critical patent/EP3150744B1/en
Priority to ES15187511T priority patent/ES2790583T3/es
Priority to PT151875119T priority patent/PT3150744T/pt
Priority to PCT/EP2016/073427 priority patent/WO2017055553A1/en
Priority to EP16778284.6A priority patent/EP3356579B1/en
Priority to CN201680056531.XA priority patent/CN108138346B/zh
Priority to ES16778284T priority patent/ES2791197T3/es
Priority to PT167782846T priority patent/PT3356579T/pt
Publication of EP3150744A1 publication Critical patent/EP3150744A1/en
Publication of EP3150744B1 publication Critical patent/EP3150744B1/en
Application granted granted Critical
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/005Jewels; Clockworks; Coins

Definitions

  • the invention provides an electroplating bath for electrochemical deposition of a novel Cu-Sn-Zn-Pd alloy on a substrate.
  • the novel alloy is characterized by exceptional corrosion resistance.
  • the commonly used precious metal intermediate layer e.g. a Pd-layer
  • the novel alloy can be provided free of toxic metals (e.g. free of nickel) which makes it hypoallergenic and not prone to cause skin irritation.
  • the plating of the inventive alloy between a substrate and its finishing layer prevents discolouration or colour fading of the finishing layer over time. All these advantages render the novel alloy particularly suitable for plating it on items of the fashion industry.
  • Nickel has been highlighted as an allergenic metal and its use in consumer products is strongly restricted. Prior to these restrictions, a decorative galvanic layer sequence comprised a nickel layer to reach the bright aspect of the final article, but also to optimize the corrosion resistance properties and to function as a copper diffusion barrier. A high robustness is required for the final object in order to resist the aggressive media created by environmental pollution. A specific nickel-phosphorus alloy was also proposed in order to protect articles produced for the Asian market, where the atmosphere tends to contain high nitrogen and sulphur oxide concentrations.
  • bronze as a protective under-layer does not provide the provision of a corrosion resistance like the one previously achieved with nickel. These copper alloys are also less efficient as copper diffusion barriers.
  • a nickel layer with a bronze layer most variants require the use of a precious metal under-layer like palladium which is commonly applied between the bronze layer and the final decorative finishing layer. This additional under-layer considerably increases the production costs and can lead to a lack of adhesion of the finishing layer due to palladium passivity.
  • Tin and other tin alloys as barrier layers with high tin content have also been developed, but are not really efficient regarding the high brightness required by the fashion market or the high resistance necessary to pass pertinent corrosion tests.
  • EP 1 930 478 B1 presents a quaternary bronze alloy where the fourth metal is gallium, indium or thallium.
  • Thallium was introduced into the decorative market as a grain refining agent to substitute lead previously present in typical cyanide bronze electrolytes.
  • the use of thallium does not raise the bronzes corrosion resistance i.e. the alloy is still highly sensitive to acidity generated by nitrogen and sulphur oxides present ubiquitously in polluted atmospheres.
  • thallium is highly toxic.
  • Gallium and indium alloys have the disadvantage that they are poorly resistant to aggressive media such as synthetic sweat or saline humidity.
  • EP 2 035 602 B1 proposes the introduction of a palladium, ruthenium, rhodium or cobalt layer between the copper-tin layer and the finishing layer. These metals raise considerably the production costs of the final article. Moreover, the passivity of these electroplated layers results in poor adhesion of the final layer and in poor performance regarding corrosion resistance.
  • EP 2 757 180 A1 recommends the use of tin alloys with a precious metal, ruthenium in this particular case.
  • the ruthenium content needs to be high and this does not allow reducing the production costs due to the high price of ruthenium.
  • the process does not yield products with the bright aspect required by the decorative and fashion industries.
  • CN 1 175 287 A discloses the deposition of white ornamental surfaces built on a base material covered with copper with a thickness of 1 micron as an under-layer. Said layer is followed by a layer of a Sn-Cu-Pd alloy in a thickness of 0.2 microns or higher, comprising 10-20 wt.-% Sn, 10-80 wt.-% Cu and 10-50 wt.-% Pd as the essential components. Owing to the lack of zinc in this alloy, it does not give the required performance regarding the efficiency as a copper migration barrier.
  • This ternary copper-tin-palladium alloy is not suitable as a nickel substitute since the deposit is not bright and shows only poor corrosion resistance.
  • JP 2 977503 B2 discloses an alkaline copper-palladium alloy plating liquid comprising a soluble zinc compound, an alkaline salt, a soluble copper compound, a soluble palladium component and a soluble stannic alkaline compound, wherein the concentration of the palladium component is 5 to 20 g/L.
  • WO2017/021916 A2 with publication date 09-02-2017 discloses an electroplating bath for electrochemical deposition of a Cu-Sn-Zn-Pd alloy on a substrate, comprising water, a source of copper ions, a source of tin ions, a source of zinc ions and a palladium complex.
  • an electroplating bath for electrochemical deposition of a Cu-Sn-Zn-Pd alloy (preferably a quaternary Cu-Sn-Zn-Pd alloy) on a substrate is provided, the bath comprising or consisting of
  • the inventive electroplating bath allows the provision of a substrate having an alloy layer which comprises the precious metal palladium.
  • the novel alloy resists aggressive atmospheric and other environmental conditions and considerably increases the shelf and usage life of substrates (plated articles). Even without an intermediate precious metal under-layer (e.g. a palladium under-layer) between the substrate and the finishing layer, excellent corrosion protection is provided (pertinent standardized corrosion tests are successfully passed). Furthermore, without disadvantages related to corrosion protection, the use of the inventive alloy allows a substantial reduction of the production costs compared to the use of a pure precious metal underlayer.
  • the final article can be provided free of toxic metals (e.g. free of nickel) which renders it hypoallergenic and not prone to cause skin irritation.
  • the new alloy provides a smooth coating to the article and prevents diffusion of metallic components from the lower layers to the finishing layer and vice versa. Thus, a colour fading or discolouration of the final aspect is prevented.
  • the new bronze alloy layer has lower production costs, very high brightness, very high corrosion resistance and excellent ageing behaviour.
  • the final colour (yellow or white bronze) may be adjusted.
  • a concentration range of 1 to 20 % wt.-% zinc in the final alloy is sufficient.
  • the palladium content of ⁇ 0.25 wt.-% in the alloy was found sufficient for providing the required corrosion resistance.
  • Production costs can be minimized by keeping the palladium concentration ⁇ 5 wt.-% in the final alloy while corrosion protection performance is maintained. It was found that a palladium content higher than 5 wt.-% in the alloy considerably raises the production costs without significantly improving corrosion resistance.
  • the electroplating bath does not comprise a source of nickel ions, preferably no source of nickel and silver ions, optionally no source of nickel, silver and indium ions.
  • the electroplating bath may further comprise
  • the electroplating bath comprises an organic brightening agent, preferably selected from the group consisting of reaction product of an amine and epihalohydrine derivatives.
  • the electroplating bath comprises a complexing agent and a surfactant, preferably a complexing agent, a surfactant and a brightening agent (inorganic and/or organic), more preferably a complexing agent, a surfactant, a brightening agent and a base.
  • a complexing agent preferably a complexing agent, a surfactant and a brightening agent (inorganic and/or organic), more preferably a complexing agent, a surfactant, a brightening agent and a base.
  • a method for the electrochemical deposition of a Cu-Sn-Zn-Pd alloy on a substrate comprising the steps
  • the method may be characterized in that a substrate is used that comprises or consists of a metal or an alloy selected from the group consisting of bronze, brass, Zamack, alpaca, copper alloy, tin alloy, steel and mixtures thereof and/or the substrate used is a metal-plated object of plastic and/or an alloy-plated object of plastic.
  • a positive electrode may be used that comprises or consists of an insoluble anode material, preferably graphite, mixed metal oxides, platinated titanium and/or stainless steel.
  • the applied voltage is adjusted to provide a current density of 0.05 to 5 A/dm 2 , preferably 0.2 to 3 A/dm 2 .
  • the temperature of the electroplating bath may be kept at between 20 and 80 °C, preferably at between 40 to 70 °C. At temperatures below 20 °C, the coating is less bright, not homogeneous and not uniform in its colour. Above 80 °C, the electroplating results in too many break-down products which results in a quick build-up of potassium carbonate as well as a rapid ageing of the electrolyte. The optimum temperature range was discovered to be between 40 to 70°C.
  • a substrate comprising an electrochemically deposited Cu-Sn-Zn-Pd alloy layer
  • the alloy layer comprising or consisting of
  • the Cu-Sn-Zn-Pd alloy layer electrochemically deposited on the inventive substrate is free of cracks, bright and provides the substrate with excellent corrosion resistance. Moreover, the inventive substrate is characterized by an excellent ageing behaviour i.e. it does not show discolouration or colour fading over time.
  • the alloy comprises
  • a concentration of zinc between 2 and 15% wt.-%.in the alloy was discovered to give the most effective copper diffusion barrier.
  • the alloy layer is free of nickel, preferably free of nickel and silver, optionally free of nickel, silver and indium or free of nickel, silver, indium and mercury.
  • the thickness of the electrochemically deposited Cu-Sn-Zn-Pd alloy layer may be 1 nm to 25 ⁇ m, preferably 10 nm to 20 ⁇ m, more preferably 0.1 ⁇ m to 15 ⁇ m, even more preferably 1 ⁇ m to 10 ⁇ m, most preferably 2 ⁇ m to 5 ⁇ m.
  • the inventive substrate may be characterized in that it comprises additionally an electrochemically deposited layer comprising or consisting of acidic copper, wherein said layer is preferably located between the substrate and the electrochemically deposited Cu-Sn-Zn-Pd alloy layer.
  • the inventive substrate is characterized in that it comprises additionally an electrochemically deposited finishing layer comprising or consisting of a noble metal.
  • the electrochemically deposited Cu-Sn-Zn-Pd alloy layer is located between the substrate and the electrochemically deposited finishing layer.
  • the electrochemically deposited layer comprising or consisting of acidic copper has a thickness of 1 nm to 1 mm, preferably 10 nm to 500 ⁇ m, more preferably 0.1 ⁇ m to 100 ⁇ m, even more preferably 1 ⁇ m to 50 ⁇ m, most preferably 5 ⁇ m to 20 ⁇ m or even 10 ⁇ m to 15 ⁇ m.
  • the electrochemically deposited finishing layer may optionally have a thickness of 0.01 ⁇ m to 20 ⁇ m, preferably 0.02 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, most preferably 0.1 ⁇ m to 3.0 ⁇ m or even 0.2 ⁇ m to 0.5 ⁇ m.
  • the substrate is producible with the inventive method.
  • the inventive substrate as fashion item is suggested, preferably as an article selected from the group consisting of jewellery, fashion, leather article, watch, eyewear, trinket, lock and/or perfume packaging application.
  • the inventive substrate fulfils all requirements of the fashion industry (especially the one for jewellery and leather goods articles), namely:
  • the electroplating method for depositing an alloy on a substrate comprised the following plating sequence: - copper layer on substrate: 10 - 15 microns layer thickness - bronze layer on copper layer: ⁇ 2 microns layer thickness - gold finishing layer on bronze layer: 0.2 - 0.5 microns layer thickness
  • Example 1 Electrodeposition of a quaternary white bronze Cu-Sn-Zn-Pd deposit
  • the deposit was obtained using the following electrolyte solution: - copper as CuCN: 6 g/L - tin as K 2 SnO 3 : 30 g/L - zinc as Zn(CN) 2 : 1 g/L - palladium as Pd(NH 3 ) 4 SO 4 : 50 mg/L - free potassium cyanide: 50 g/L - free potassium hydroxide: 25 g/L - surfactant solution: 3 mL/L - brightening agent solution: 3 mL/L
  • the electrodeposition was performed at 60 °C since this temperature turned out to be the best compromise for spreading the (white) brightness range to its maximum and obtaining a homogeneous alloy throughout the current density range.
  • the copper plated substrate is introduced into the electrolyte after proper cleaning and activation, with a current density of 1 A/dm 2 applied for 20 minutes in order to raise the Cu-Sn-Zn-Pd bronze layer thickness to 5 microns.
  • the final aspect of the ternary Cu-Sn-Zn-Pd bronze layer is bright and presents a white colour.
  • Example 2 Electrodeposition of a quaternary yellow bronze Cu-Sn-Zn-Pd deposit
  • the deposit was obtained using the following electrolyte solution: - copper as CuCN: 15 g/L - tin as K 2 SnO 3 : 12 g/L - palladium as Pd(NH 3 ) 4 Cl 2 : 30 mg/L - zinc as Zn(CN) 2 : 1 g/L - free potassium cyanide: 35 g/L - free potassium hydroxide: 15 g/L - surfactant solution: 3 mL/L - brightening agent solution: 5 mL/L
  • the electrodeposition was performed at 50°C since this temperature turned out to be the best compromise for spreading the (yellow) brightness range at its maximum and obtain a homogeneous alloy through the current density range.
  • the copper plated substrate is introduced into the electrolyte after proper cleaning and activation with a current density at 1.5 A/dm 2 applied for 15 minutes in order to raise the Cu-Sn-Zn-Pd bronze layer thickness to 5 microns.
  • the final aspect of the quaternary Cu-Sn-Zn-Pd bronze layer is bright and presents a pale yellow colour.
  • Reference example 1 Electrodeposition of a ternary white bronze Cu-Sn-Zn deposit
  • a deposit was obtained using the following electrolyte solution: - copper as CuCN: 6 g/L - tin as K 2 SnO 3 : 30 g/L - zinc as Zn(CN) 2 : 1 g/L - free potassium cyanide: 50 g/L - free potassium hydroxide: 25 g/L - surfactant solution: 3 mL/L - brightening agent solution: 3 mL/L
  • the electrodeposition is performed using the same conditions as in Example 1.
  • the final aspect of the ternary Cu-Sn-Zn bronze layer is bright and presents a white colour.
  • Reference example 2 Electrodeposition of a ternary white bronze Cu-Sn-Pd deposit
  • the deposit was obtained using the following electrolyte solution: - copper as CuCN: 6 g/L - tin as K 2 SnO 3 : 30 g/L - palladium as Pd(NH 3 ) 4 SO 4 : 50 mg/L - free potassium cyanide: 50 g/L - free potassium hydroxide: 25 g/L - surfactant solution: 3 mL/L - brightening agent solution: 3 mL/L
  • the electrodeposition is performed using same conditions as in Example 1.
  • the final aspect of the ternary Cu-Sn-Pd bronze layer is hazy and presents a grey colour.
  • the aspect of the deposit is not homogeneous.
  • the deposit was obtained using the following electrolyte solution: - copper as CuCN: 15 g/L - tin as K 2 SnO 3 : 12 g/L - zinc as Zn(CN) 2 : 1 g/L - free potassium cyanide: 35 g/L - free potassium hydroxide: 15 g/L - surfactant solution: 3 mL/L - brightening agent solution 2: 5 mL/L
  • the electrodeposition is performed using the same conditions as in Example 2.
  • the final aspect of the ternary Cu-Sn-Zn bronze layer is bright and presents a pale yellow colour.
  • the deposit was obtained using the following electrolyte solution: - copper as CuCN: 15 g/L - tin as K 2 SnO 3 : 12 g/L - palladium as Pd(NH 3 ) 4 Cl 2 : 30 mg/L - free potassium cyanide: 35 g/L - free potassium hydroxide: 15 g/L - surfactant solution: 3 mL/L - brightening agent solution: 5 mL/L
  • the electrodeposition is performed using the same conditions as in Example 2.
  • the final aspect of the ternary Cu-Sn-Pd bronze layer is bright and presents a yellow colour.
  • This nickel layer sequence is used as a reference to highlight the comparable behaviour of the new quaternary Cu-Sn-Zn-Pd alloy regarding corrosion resistance of final articles.
  • - substrate copper alloys (brass or Zamack)
  • - copper 15 microns
  • - bright nickel 10 microns
  • nickel phosphorus 3 microns
  • finishing gold
  • Reference Example 6 Electrodeposition of a white ternary Cu-Sn-Zn alloy and a precious metal underlayer sequence
  • the layer of ternary bronze and palladium as underlayer sequence is used as a reference to highlight the advantages of the nickel-free quaternary Cu-Sn-Zn-Pd alloy regarding corrosion resistance and the savings in production costs in comparison of the actual hypoallergenic solution.
  • - substrate copper alloys (brass or Zamack)
  • - copper 15 microns
  • ternary Cu-Sn-Zn alloy 5 microns
  • palladium alloy 0.3 microns
  • gold finishing 0.5 microns
  • Example 1 Copper content Tin content Zinc content Palladium content
  • Example 1 49% 42% 7% 2% White Cu-Sn-Zn-Pd alloy
  • Example 2 79% 16% 4.5% 0.5% Yellow Cu-Sn-Zn-Pd alloy Ref.
  • Example 1 44% 46% 9% - White Cu-Sn-Zn alloy Ref.
  • Example 2 48% 49% - 3% White Cu-Sn-Pd alloy Ref.
  • Example 3 78% 18% 4% - Yellow Cu-Sn-Zn alloy Ref.
  • Example 4 80% 19% - 1% Yellow Cu-Sn-Pd alloy
  • the electroplated products obtained in Examples 1 and 2 and Reference Examples 1 to 6 were subjected to corrosion resistance tests. Salt spray tests were performed according to the ISO 9227 standard. Synthetic sweat resistance tests were conducted following NFS 80722 requirements, and leather interaction resistance was evaluated in accordance with ISO 4611 testing conditions. The resistance to a SO 2 /NO x atmosphere was tested in a close container with high SO 2 and NO x gas concentrations. The results are shown in Table 2.
  • Example 1 No oxidation at 96h No alteration after 48h (upper than required) Similar aspect after 96h (upper than required) No pitting WHITE Cu-Sn-Zn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m
  • Example 2 Oxidation visible at 72h Slight oxidation at 24h No oxidation at 48h No pitting YELLOW Cu-Sn-Zn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Slight oxidation at 96h Ref.
  • Example 1 Oxidation visible after 48h Corrosion product after 12h Slight alteration after 48h Pitting WHITE Cu-Sn-Zn alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Ref.
  • Example 2 Corrosion products visible after 24h Oxidation visible after 6h Alteration starts at 24h Strong pitting WHITE Cu-Sn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Ref.
  • Example 3 Oxidation visible after 24h Corrosion product after 6h Alteration after 48h Pitting YELLOW Cu-Sn-Zn alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Ref.
  • Example 4 Oxidation visible after 48h Corrosion product after 12h Alteration after 48h Slight pitting YELLOW Cu-Sn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Ref.
  • Example 5 No oxidation at 96h No alteration after 48h (upper than required) Similar aspect after 96h (upper than required) No pitting Nickel + Nickel Phosphorus (15 microns in total) Gold finishing 0.5 ⁇ m Ref.
  • Example 6 Oxidation visible at 72h Slight oxidation at 24h No oxidation at 48h Slight pitting WHITE Cu-Sn-Zn alloy 5 ⁇ m Palladium alloy 0.3 Gold finishing 0.5 ⁇ m Slight oxidation at 96h
  • Example 1 Bright Bright WHITE Cu-Sn-Zn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Without alteration
  • Example 2 Bright Bright YELLOW Cu-Sn-Zn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Without alteration Ref.
  • Example 1 Bright Gold and white bronze layer mixed (white aspect) WHITE Cu-Sn-Zn alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Ref.
  • Example 2 Hazy Under-plated copper is migrating to the top of the final articles WHITE Cu-Sn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Ref.
  • Example 3 Bright Spots due to copper migration YELLOW Cu-Sn-Zn alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Ref.
  • Example 4 Bright Under-plated copper is migrating to the top of the final articles YELLOW Cu-Sn-Pd alloy 5 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Ref.
  • Example 5 Bright Bright Nickel + Nickel Phosphorus (15 microns in total) Gold finishing 0.5 ⁇ m Without alteration Without alteration Ref.
  • Example 6 Bright Bright WHITE Cu-Sn-Zn alloy 5 ⁇ m Palladium alloy 0.3 ⁇ m Gold finishing 0.5 ⁇ m Without alteration Without alteration
  • Nitric acid resistance Example 1 Cu-Sn-Zn-Pd is not altered by nitric acid WHITE Cu-Sn-Zn-Pd alloy 5 ⁇ m
  • Example 2 Nitric acid dissolves 25% of the alloy YELLOW Cu-Sn-Zn-Pd alloy 5 ⁇ m Ref.
  • Example 1 Cu-Sn-Zn alloy is dissolved WHITE Cu-Sn-Zn alloy 5 ⁇ m Ref.
  • Example 2 Cu-Sn-Pd alloy is dissolved WHITE Cu-Sn-Pd alloy 5 ⁇ m Ref.
  • Example 3 Cu-Sn-Zn alloy is dissolved YELLOW Cu-Sn-Zn alloy 5 ⁇ m Ref.
  • Example 4 Cu-Sn-Pd alloy is dissolved YELLOW Cu-Sn-Pd alloy 5 ⁇ m Ref.
  • Example 5 Nickel phosphorus is not altered by nitric acid Nickel + Nickel Phosphorus (15 microns in total)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
EP15187511.9A 2015-09-30 2015-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate Revoked EP3150744B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15187511.9A EP3150744B1 (en) 2015-09-30 2015-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate
ES15187511T ES2790583T3 (es) 2015-09-30 2015-09-30 Baño de galvanoplastia para el depósito electroquímica de una aleación de Cu-Sn-Zn-Pd, procedimiento para el depósito electroquímica de dicha aleación, sustrato que comprende dicha aleación y usos del sustrato
PT151875119T PT3150744T (pt) 2015-09-30 2015-09-30 Banho de galvanoplastia para deposição eletroquímica de uma camada de liga de cu-sn-zn-pd, método para a deposição eletroquímica da referida camada de liga, substrato que compreende a referida camada de liga e utilizações do substrato revestido
EP16778284.6A EP3356579B1 (en) 2015-09-30 2016-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy, method for electrochemical deposition of said alloy, substrate comprising said alloy and uses of the substrate
PCT/EP2016/073427 WO2017055553A1 (en) 2015-09-30 2016-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy, method for electrochemical deposition of said alloy, substrate comprising said alloy and uses of the substrate
CN201680056531.XA CN108138346B (zh) 2015-09-30 2016-09-30 用于电化学沉积Cu-Sn-Zn-Pd合金的电镀浴、所述合金的电化学沉积方法、包含所述合金的基材和基材的用途
ES16778284T ES2791197T3 (es) 2015-09-30 2016-09-30 Baño de galvanoplastia para la deposición electroquímica de una aleación de Cu-Sn-Zn-Pd, procedimiento para la deposición electroquímica de dicha aleación, sustrato que comprende dicha aleación y usos del sustrato
PT167782846T PT3356579T (pt) 2015-09-30 2016-09-30 Banho de galvanoplastia para deposição eletroquímica de uma camada de liga de cu-sn-zn-pd, método para a deposição eletroquímica da referida camada de liga, substrato que compreende a referida camada de liga e utilizações do substrato revestido

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15187511.9A EP3150744B1 (en) 2015-09-30 2015-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate

Publications (2)

Publication Number Publication Date
EP3150744A1 EP3150744A1 (en) 2017-04-05
EP3150744B1 true EP3150744B1 (en) 2020-02-12

Family

ID=54249387

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15187511.9A Revoked EP3150744B1 (en) 2015-09-30 2015-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate
EP16778284.6A Revoked EP3356579B1 (en) 2015-09-30 2016-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy, method for electrochemical deposition of said alloy, substrate comprising said alloy and uses of the substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16778284.6A Revoked EP3356579B1 (en) 2015-09-30 2016-09-30 Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy, method for electrochemical deposition of said alloy, substrate comprising said alloy and uses of the substrate

Country Status (5)

Country Link
EP (2) EP3150744B1 (zh)
CN (1) CN108138346B (zh)
ES (2) ES2790583T3 (zh)
PT (2) PT3150744T (zh)
WO (1) WO2017055553A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150744B1 (en) 2015-09-30 2020-02-12 COVENTYA S.p.A. Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate
EP3540097A1 (en) 2018-03-13 2019-09-18 COVENTYA S.p.A. Electroplated products and electroplating bath for providing such products
IT201800004235A1 (it) * 2018-04-05 2019-10-05 Lega di bronzo bianco, bagno galvanico e procedimento al fine di produrre la lega di bronzo bianco tramite deposizione elettrogalvanica
CN108864200B (zh) * 2018-08-06 2020-12-11 金川集团股份有限公司 电镀用硫酸乙二胺钯的一步制备方法
IT202000011203A1 (it) * 2020-05-15 2021-11-15 Bluclad S P A Lega di bronzo inossidabile e suo impiego in prodotti galvanizzati
FR3118067B1 (fr) * 2020-12-18 2023-05-26 Linxens Holding Procédé de dépôt d’un alliage de bronze sur un circuit imprimé et circuit imprimé obtenu par ce procédé

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440151A (en) 1965-06-02 1969-04-22 Robert Duva Electrodeposition of copper-tin alloys
BE805602A (en) 1973-10-03 1974-02-01 Johnson Matthey Co Ltd Cyanide-free gold electroplating bath - contg alkali metal gold complex and complexing agent and additives
JPH06293990A (ja) 1993-04-07 1994-10-21 Nippon Shinkinzoku Kako Kk Sn−Cu−Pd合金めっき部材、その製造に用いるめっき浴
JPH10219467A (ja) 1997-02-13 1998-08-18 Bikutoria:Kk 銅−パラジウム系合金メッキ液及びメッキ基材
US5972526A (en) 1995-12-07 1999-10-26 Citizen Watch Co., Ltd. Decorative member
US6780527B2 (en) * 2000-06-27 2004-08-24 Citizen Watch Co., Ltd. Decorative article having white film and production method therefor
US20140055026A1 (en) 2011-03-09 2014-02-27 Umicore Ag & Co. Kg Amalgam balls having an alloy coating
EP2799595A1 (de) 2013-05-03 2014-11-05 Delphi Technologies, Inc. Elektrisches Kontaktelement
WO2015039152A1 (de) 2013-09-18 2015-03-26 Ing.W.Garhöfer Gesellschaft M.B.H. Abscheidung von cu, sn, zn-beschichtungen auf metallischen substraten
WO2017021916A2 (en) * 2015-08-05 2017-02-09 Bluclad S.R.L. Tin/copper alloys containing palladium, method for their preparation and use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916423A (en) 1957-06-19 1959-12-08 Metal & Thermit Corp Electrodeposition of copper and copper alloys
CH662583A5 (fr) 1985-03-01 1987-10-15 Heinz Emmenegger Bain galvanique pour le depot electrolytique d'alliages d'or-cuivre-cadmium-zinc.
JPH0827590A (ja) 1994-07-13 1996-01-30 Okuno Chem Ind Co Ltd 光沢銅−錫合金めっき浴
CN1097644C (zh) 1995-12-07 2003-01-01 西铁城钟表有限公司 装饰件
CN101096769A (zh) 2006-06-26 2008-01-02 比亚迪股份有限公司 一种电镀方法
EP1930478B1 (en) 2006-12-06 2013-06-19 Enthone, Inc. Electrolyte composition and method for the deposition of quaternary copper alloys
JP5642928B2 (ja) 2007-12-12 2014-12-17 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 青銅の電気めっき
EP2757180B1 (en) 2013-01-18 2015-08-12 Valmet Plating S.R.L. A process for electrolytically depositing a tin- and ruthenium-based alloy, the electrolytic bath that permits said alloy to deposit and the alloy obtained by means of said process
EP3150744B1 (en) 2015-09-30 2020-02-12 COVENTYA S.p.A. Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440151A (en) 1965-06-02 1969-04-22 Robert Duva Electrodeposition of copper-tin alloys
BE805602A (en) 1973-10-03 1974-02-01 Johnson Matthey Co Ltd Cyanide-free gold electroplating bath - contg alkali metal gold complex and complexing agent and additives
JPH06293990A (ja) 1993-04-07 1994-10-21 Nippon Shinkinzoku Kako Kk Sn−Cu−Pd合金めっき部材、その製造に用いるめっき浴
US5972526A (en) 1995-12-07 1999-10-26 Citizen Watch Co., Ltd. Decorative member
JPH10219467A (ja) 1997-02-13 1998-08-18 Bikutoria:Kk 銅−パラジウム系合金メッキ液及びメッキ基材
JP2977503B2 (ja) * 1997-02-13 1999-11-15 株式会社ビクトリア 銅−パラジウム系合金メッキ液及びメッキ基材
US6780527B2 (en) * 2000-06-27 2004-08-24 Citizen Watch Co., Ltd. Decorative article having white film and production method therefor
US20140055026A1 (en) 2011-03-09 2014-02-27 Umicore Ag & Co. Kg Amalgam balls having an alloy coating
EP2799595A1 (de) 2013-05-03 2014-11-05 Delphi Technologies, Inc. Elektrisches Kontaktelement
WO2015039152A1 (de) 2013-09-18 2015-03-26 Ing.W.Garhöfer Gesellschaft M.B.H. Abscheidung von cu, sn, zn-beschichtungen auf metallischen substraten
WO2017021916A2 (en) * 2015-08-05 2017-02-09 Bluclad S.R.L. Tin/copper alloys containing palladium, method for their preparation and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEPOTO ET AL.: "White Bronze, Copper-Tin-Zinc Tri-metal: Expanding Applications and New Developments in a Changing Landscape", 20 May 2013 (2013-05-20), XP055142805, Retrieved from the Internet <URL:https://www.pfonline.com/articles/white-bronze-copper-tin-zinc-tri-metal-expanding-applications-and-new-developments-in-a-changing-landscape>

Also Published As

Publication number Publication date
CN108138346A (zh) 2018-06-08
ES2791197T3 (es) 2020-11-03
EP3356579A1 (en) 2018-08-08
EP3150744A1 (en) 2017-04-05
PT3150744T (pt) 2020-05-12
WO2017055553A1 (en) 2017-04-06
ES2790583T3 (es) 2020-10-28
CN108138346B (zh) 2021-03-05
PT3356579T (pt) 2020-06-16
EP3356579B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
EP3150744B1 (en) Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate
Jung et al. Electrochemical plating of Cu-Sn alloy in non-cyanide solution to substitute for Ni undercoating layer
CN101665963B (zh) 一种环保型无氰银电镀液
US8147671B2 (en) Electroplating method and electroplated product
JP4904933B2 (ja) ニッケルめっき液とその製造方法、ニッケルめっき方法およびプリント配線板用銅箔
EP2980279B1 (en) Zinc-nickel alloy plating solution and plating method
EP2171130B1 (en) Method of providing a metallic coating layer
EP3159436B1 (en) Article having multilayer plating film
EP3030698B1 (en) Electrolyte for the electrolytic deposition of silver-palladium alloys and method for deposition thereof
CN101289756B (zh) 用于金铜合金电解沉积的电解组合物及方法
CN103806060A (zh) 一种提高镀银层与基体结合力的电镀方法
CN108350592A (zh) 用于银钯合金电解质的添加剂
EP2017373B1 (en) High speed method for plating palladium alloys
EP3765658B1 (en) Electroplated products and electroplating bath for providing such products
EP2730682B1 (en) Alkaline, cyanide-free solution for electroplating of gold alloys, a method for electroplating and a substrate comprising a bright, corrosion-free deposit of a gold alloy
CN102605394A (zh) 一种无氰酸性白铜锡电镀液
CN104233401A (zh) 一种Cu-Co合金的电镀制备方法
Gamburg et al. Technologies for the electrodeposition of metals and alloys: electrolytes and processes
EP3686319A1 (en) Indium electroplating compositions and methods for electroplating indium on nickel
KR102024419B1 (ko) 습식 전기 도금 방법
WO2004001101A2 (en) Electrolytic bath for the electrodeposition of noble metals and their alloys
WO2021199087A1 (en) Galvanic process for the electrodeposition of a protective layer, and associated bath
EP4043202A1 (en) Electroplated non-allergenic pt-ni alloy and bath and galvanic cycle thereof
CN113774465A (zh) 一种文具钢带及其制备方法
TW202219326A (zh) 氰系電解銀合金鍍敷液

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170426

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20181011

17Q First examination report despatched

Effective date: 20181026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015046682

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0003580000

Ipc: C22C0009020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 9/02 20060101AFI20191022BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20191125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015046682

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3150744

Country of ref document: PT

Date of ref document: 20200512

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200505

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2790583

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602015046682

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BLUCLAD S.P.A.

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 602015046682

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 602015046682

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220818

Year of fee payment: 8

Ref country code: RO

Payment date: 20220921

Year of fee payment: 8

Ref country code: PT

Payment date: 20220818

Year of fee payment: 8

Ref country code: IT

Payment date: 20220825

Year of fee payment: 8

Ref country code: DE

Payment date: 20220818

Year of fee payment: 8

Ref country code: AT

Payment date: 20220819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220819

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1232196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20221003

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221001

Year of fee payment: 8

27W Patent revoked

Effective date: 20220311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1232196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220311

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC