EP3143173B1 - Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium - Google Patents

Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium Download PDF

Info

Publication number
EP3143173B1
EP3143173B1 EP15720740.8A EP15720740A EP3143173B1 EP 3143173 B1 EP3143173 B1 EP 3143173B1 EP 15720740 A EP15720740 A EP 15720740A EP 3143173 B1 EP3143173 B1 EP 3143173B1
Authority
EP
European Patent Office
Prior art keywords
silicon
aluminium alloy
iron
manganese
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15720740.8A
Other languages
German (de)
English (en)
Other versions
EP3143173B2 (fr
EP3143173A1 (fr
Inventor
Roman Morgenstern
Silvio Stephan
Scott Kenningley
Philipp Koch
Isabella Sobota
Martin Popp
Robert Willard
Klaus Lades
Rainer Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Nuernberg GmbH
Original Assignee
Federal Mogul Nuernberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53052874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3143173(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Federal Mogul Nuernberg GmbH filed Critical Federal Mogul Nuernberg GmbH
Publication of EP3143173A1 publication Critical patent/EP3143173A1/fr
Publication of EP3143173B1 publication Critical patent/EP3143173B1/fr
Application granted granted Critical
Publication of EP3143173B2 publication Critical patent/EP3143173B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/06Casting

Definitions

  • the present invention relates to a method for producing and using an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is gravity-cast, an engine component at least partially made of an aluminum alloy, and the use of an aluminum alloy for producing such an engine component ,
  • a piston for a combustion engine must have a high heat resistance and at the same time be as light and strong as possible. It is of particular importance how the microstructural distribution, morphology, composition and thermal stability of highly heat-resistant phases are formed. An optimization in this regard usually takes into account a minimum content of pores and oxide inclusions.
  • the material sought must be optimized for both isothermal fatigue strength (HCF) and thermo-mechanical fatigue strength (TMF).
  • HCF isothermal fatigue strength
  • TMF thermo-mechanical fatigue strength
  • a fine microstructure reduces the risk of microplasticity or microcracks on relatively large primary phases (in particular of primary silicon precipitates) and thus also the risk of crack initiation and propagation.
  • the JP 2004-256873A describes an alloy used in particular for pistons.
  • the DE 44 04 420 A1 describes an alloy which can be used in particular for pistons and for components which are exposed to high temperatures and are stressed mechanically.
  • the described aluminum alloy comprises 8.0 to 10.0% by weight of silicon, 0.8 to 2.0% by weight of magnesium, 4.0 to 5.9% by weight of copper, 1.0 to 3.0 Wt .-% nickel, 0.2 to 0.4 wt .-% manganese, less than 0.5 wt .-% iron and at least one element selected from antimony, zirconium, titanium, strontium, cobalt, chromium, and vanadium wherein at least one of these elements is present in an amount of> 0.3% by weight, the sum of these elements being ⁇ 0.8% by weight.
  • the EP 0 924 310 B1 describes an aluminum-silicon alloy which has its application in the production of pistons, in particular for pistons in internal combustion engines.
  • the aluminum alloy has the following composition: 10.5 to 13.5% by weight of silicon, 2.0 to less than 4.0% by weight of copper 0.8 to 1.5% by weight of magnesium, 0, 5 to 2.0% by weight of nickel, 0.3 to 0.9% by weight of cobalt, at least 20 ppm of phosphorus and either 0.05 to 0.2% by weight of titanium or up to 0.2% by weight. % Zirconium and / or up to 0.2% by weight vanadium and balance aluminum and unavoidable impurities.
  • the WO 00/71767 A1 describes an aluminum alloy suitable for high temperature applications, such as heavy loaded pistons or other applications in internal combustion engines.
  • the aluminum alloy is composed of the following elements: 6.0 to 14.0% by weight of silicon, 3.0 to 8.0% by weight of copper, 0.01 to 0.8% by weight of iron, 0 , 5 to 1.5% by weight of magnesium, 0.05 to 1.2% by weight of nickel, 0.01 to 1.0% by weight of manganese, 0.05 to 1.2% by weight of titanium , 0.05 to 1.2 wt .-% zirconium, 0.05 to 1.2 wt .-% vanadium, 0.001 to 0.10 wt .-% strontium and balance aluminum.
  • the DE 103 33 103 B4 describes a piston made of a cast aluminum alloy, wherein the aluminum casting alloy contains: 0.2 or less wt .-% magnesium, 0.05 to 0.3 mass% titanium, 10 to 21 wt .-% silicon, 2 to 3, 5 wt.% Copper, 0.1 to 0.7 wt.% Iron, 1 to 3 wt.% Nickel, 0.001 to 0.02 wt.% Phosphorus, 0.02 to 0.3 wt. % Zirconium and balance aluminum and impurities.
  • the size of a non-metallic inclusion present within the bulb is less than 100 ⁇ m.
  • the EP 1 975 262 B1 describes an aluminum casting alloy consisting of: 6 to 9% silicon, 1.2 to 2.5% copper, 0.2 to 0.6% magnesium, 0.2 to 3% nickel, 0.1 to 0.7% iron, 0.1 to 0.3% titanium, 0.03 to 0.5% zirconium, 0.1 to 0.7% manganese, 0.01 to 0.5% vanadium and one or more of the following elements: strontium 0.003 to 0.05%, antimony 0.02-0.2% and sodium 0.001-0.03%, the total amount of titanium and zirconium being less than 0.5%, and aluminum and unavoidable impurities forming the balance when the total amount is 100 percent by mass is used.
  • the WO 2010/025919 A2 describes a method for producing a piston of an internal combustion engine, wherein a piston blank made of an aluminum-silicon alloy with the addition of copper portions is poured and then finished.
  • the invention provides that the copper content is at most 5.5% of the aluminum-silicon alloy and that the aluminum-silicon alloy portions of titanium (Ti), zirconium (Zr), chromium (Cr) or vanadium (V) are admixed and the sum of all ingredients is 100%.
  • the registration DE 102011083969 relates to a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is gravity-poured by casting, an engine component that consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing an engine component.
  • the aluminum alloy has the following alloying elements: 6 to 10 wt .-% silicon, 1.2 to 2 wt .-% nickel, 8 to 10 wt .-% copper, 0.5 to 1.5 wt .-% magnesium , 0.1 to 0.7% by weight of iron, 0.1 to 0.4% by weight of manganese, 0.2 to 0.4% by weight of zirconium, 0.1 to 0.3% by weight Vanadium, 0.1 to 0.5 wt .-% of titanium and aluminum and avoidable impurities as the remainder.
  • this alloy has a phosphorus content of less than 30 ppm.
  • EP 1 340 827 B1 which describes the effects of beryllium in an aluminum-silicon casting alloy with relatively low magnesium concentration. Additions of 5-100 ppm beryllium contribute to the formation of an advantageous, thin, stoichiometric MgO layer, which favors the flowability and the short-time oxidation behavior of the alloy.
  • An object of the present invention is to provide a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is poured by gravity die casting, so that a highly heat resistant engine component can be produced by gravity die casting.
  • a further object of the invention is to provide an engine component, in particular a piston for an internal combustion engine, which is highly heat-resistant and at least partially consists of an aluminum alloy.
  • the selected aluminum alloy By the selected aluminum alloy, it is possible to produce a motor component in the gravity die casting process, which has a high proportion of finely divided, highly heat-resistant, thermally stable phases and a fine microstructure. Susceptibility to crack initiation and crack propagation e.g. On oxides or primary phases is reduced by the choice of the alloy according to the invention over the previously known manufacturing processes of pistons and similar engine components and increases the TMF-HCF life.
  • the alloy according to the invention in particular the comparatively low silicon content, also results in comparatively less and finer primary silicon being present in its thermally highly loaded bowl edge region, at least in the case of a piston produced according to the invention, so that the alloy leads to particularly good properties of a piston produced according to the invention.
  • a highly heat resistant engine component can be produced by the gravity die casting method.
  • the alloy properties can be optimized in an application-specific manner by a targeted selection of the Cu content in the range according to the invention.
  • higher Cu contents improve the heat resistance of the alloy.
  • lower contents allow the increase of the thermal conductivity and reduction of the density of the alloy.
  • the proportions of cobalt and phosphorus according to the invention are advantageous in that cobalt increases the hardness and (warm) strength of the alloy and phosphorus as a nucleating agent for primary silicon precipitates contributes to their being precipitated particularly finely and evenly distributed.
  • zirconium and cobalt contribute to increases in strength at elevated temperatures, in particular in the edge area of the bowl.
  • the said aluminum alloys preferably comprise 0.6% by weight to 0.8% by weight of magnesium, which in the preferred concentration range contributes, in particular, to the effective formation of secondary, strength-increasing phases without excessive oxide formation occurring.
  • the alloy alternatively or additionally preferably has from 0.4% by weight to 0.6% by weight of iron, which advantageously reduces the tendency of the alloy to stick in the casting mold, wherein the formation of plate-shaped phases remains limited in said concentration range.
  • the aluminum alloys described above may also be from about 0.0005, preferably from> about 0.006 and more preferably from about 0.01% to about 0.5, preferably to about ⁇ about 0.1% by weight beryllium (Be), wherein the content of calcium is limited to ⁇ about 0.0005% by weight.
  • Be beryllium
  • the addition of beryllium results in a particularly good castability of the alloy. Its addition to the melt causes a dense oxide skin on the melt, which acts as a diffusion barrier and reduces the oxidation and hydrogen uptake of the melt. The diffusion of aluminum and magnesium can also be prevented.
  • the above effects are particularly relevant when using holding furnaces.
  • a fine / thin oxide layer is formed on the solidification front during casting, for example, in a mold, which improves flowability.
  • the addition of beryllium improves the strength characteristics of the alloy as a whole. During aging, a higher density of strength enhancing precipitates is achievable.
  • the addition of beryllium adds to the beneficial effects of the present aluminum alloys by reducing the oxidation of the melt, contributes to better castability, particularly in gravity die casting, and improves the strength of the alloy.
  • alloys A, B and C realize the above-mentioned technical advantages.
  • the comparatively high Cu and Zr content proves to be advantageous, which causes an increase in strength-increasing precipitations.
  • the preferred alloy B which has a reduced nickel content, which further contributes to the reduction of alloying costs.
  • the relatively high content of Zr, V and Ti in Alloy C also adds to the increase in strength increasing precipitations. In general, an increased Zr content causes a further improvement in strength.
  • Alloy C particularly preferably has an Si content ⁇ 10.5% by weight.
  • Alloy D is advantageous in that the addition of beryllium, as described above, improves the oxidation and flow behavior of the melt as well as the strength of the alloy. This effect is further increased by the comparatively low Mg content and the limited to a low level Ca content. Alloy D may also have the alloying elements in the following preferred concentration ranges: nickel (Ni) from about 2 to about 3.5 wt%, copper (Cu) from about 3.7 to about 5.2 wt%.
  • the presence / addition of beryllium to improve the oxidation, flow and strength properties is also possible in / to the alloys A, B and C.
  • the calcium content should also be limited to the specified low level in order not to counteract the beneficial effects of beryllium. Overall, there is a certain combinability between the alloys A, B and C, so that their advantageous technical effects can also be realized together in a single alloy.
  • the weight ratio of iron to manganese in said aluminum alloys is at most about 5: 1, preferably about 2.5: 1.
  • the aluminum alloy contains at most five parts iron versus one part manganese, preferably about 2.5 parts iron versus one part manganese.
  • the nickel concentration is ⁇ 3.5 wt .-%, since otherwise can form too large, plate-shaped (primary, nickel-rich) phases in the structure, which can reduce their strength and / or life due to their notch effect.
  • a thermally stable primary phase network is produced with connectivity and contiguity.
  • the sum of nickel and cobalt in said aluminum alloys is> 2.0 wt% and ⁇ 3.8 wt%.
  • the lower limit ensures an advantageous strength of the alloy and the upper limit advantageously ensures a fine microstructure and avoids the formation of coarse, plate-shaped phases which would reduce the strength.
  • the aluminum alloys have a fine microstructure with a low content of pores and inclusions and / or little and small primary silicon, especially in the highly loaded bowl rim area.
  • a low content of pores is preferably to be understood as meaning a porosity of ⁇ 0.01% and less than a few primary silicon ⁇ 1%.
  • the fine microstructure is advantageously described by the fact that the average length of the primary silicon about ⁇ 5 microns and its maximum length is about ⁇ 10 microns and the intermetallic phases and / or primary precipitates lengths of on average about ⁇ 30 microns and have a maximum ⁇ 50 microns.
  • the fine microstructure contributes in particular to the improvement of the thermomechanical fatigue strength. Limiting the size of the primary phases can reduce the susceptibility to crack initiation and crack propagation, thus significantly increasing the TMF-HCF lifetime. Furthermore, it is particularly advantageous due to the notch effect of pores and inclusions to keep their content low.
  • An engine component according to the invention consists at least partially of one of the abovementioned aluminum alloys.
  • Another independent aspect of the invention is the use of the above-mentioned aluminum alloys for the manufacture of an engine component, in particular a piston of an internal combustion engine, according to claim 19 and the related subclaim.
  • the aluminum alloys found are processed by gravity die casting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Claims (20)

  1. Procédé de fabrication d'un composant de moteur, en particulier d'un piston pour un moteur à combustion interne, dans lequel un alliage d'aluminium est coulé au cours d'un procédé de moulage en coquille par gravité,
    dans lequel l'alliage d'aluminium présente les éléments d'alliage suivants : silicium : 7 % en poids à < 14,5 % en poids, nickel : > 1,2 % en poids à < 3,5 % en poids, cuivre : > 3,7 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,1 % en poids à 1,5 % en poids, fer : 0,1 % en poids à ≤ 0,7 % en poids, manganèse : 0,1 % en poids à ≤ 0,7 % en poids, zirconium : > 0,1 % en poids à < 0,5 % en poids, vanadium: ≥ 0,1 % en poids à ≤ 0,3 % en poids, titane : 0,05 % en poids à 0,5 % en poids, phosphore : 0,004 % en poids à ≤ 0,05 % en poids, en option béryllium : 0,0005 % en poids à 0,5 % en poids et en option calcium : à ≤ 0,0005 % en poids
    et le reste étant de l'aluminium et des impuretés inévitables.
  2. Procédé selon la revendication 1, dans lequel l'alliage d'aluminium présente en outre : béryllium : 0,0005 % en poids à 0,5 % en poids et calcium : à ≤ 0,0005 % en poids.
  3. Procédé selon la revendication 1 ou 2, dans lequel l'alliage d'aluminium présente : silicium: 9 % en poids à < 10,5 % en poids, nickel : > 2 % en poids à < 3,5 % en poids, cuivre: > 5,2 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,5 % en poids à 1,5 % en poids, fer : 0,1 % en poids à 0,7 % en poids, manganèse : 0,1 % en poids à 0,4 % en poids, zirconium : 0,2 % en poids à < 0,4% en poids, vanadium : > 0,1 % en poids à < 0,2 % en poids, titane : 0,05 % en poids à < 0,2 % en poids, phosphore : 0,004 % en poids à 0,008 % en poids,
    et le reste étant de l'aluminium et des impuretés inévitables.
  4. Procédé selon la revendication 1 ou 2, dans lequel l'alliage d'aluminium présente : silicium: 9 % en poids à < 10,5 % en poids, nickel: > 1,2 % en poids à < 2,0 % en poids, cuivre: > 5,2 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,5 % en poids à 1,5 % en poids, fer : 0,1 % en poids à 0,7 % en poids, manganèse: 0,1 % en poids à 0,4 % en poids, zirconium : 0,2 % en poids à < 0,4% en poids, vanadium: > 0,1 % en poids à < 0,2 % en poids, titane : 0,05 % en poids à < 0,2 % en poids, phosphore : 0,004 % en poids à 0,008 % en poids,
    et le reste étant de l'aluminium et des impuretés inévitables.
  5. Procédé selon la revendication 1 ou 2, dans lequel l'alliage d'aluminium présente : silicium: 9 % en poids à < 12 % en poids, nickel : 2 % en poids à < 3,5 % en poids, cuivre : > 3,7 % en poids à 5,2 % en poids, cobalt : à < 1 % en poids, magnésium : 0,5 % en poids à 1,5 % en poids, fer : 0,1 % en poids à 0,7 % en poids, manganèse: 0,1 % en poids à 0,4 % en poids, zirconium : 0,2 % en poids à 0,4% en poids, vanadium: 0,1 % en poids à 0,3 % en poids, titane : 0,1 % en poids à 0,5 % en poids, phosphore : 0,004 % en poids à 0,008 % en poids,
    et le reste étant de l'aluminium et des impuretés inévitables.
  6. Procédé selon la revendication 1, dans lequel l'alliage d'aluminium présente : silicium: 7 % en poids à < 14,5 % en poids, nickel : > 1,2 % en poids à < 3,5 % en poids, cuivre : > 3,7 % en poids à ≤ 5,5 % en poids, cobalt : à < 1 % en poids, magnésium: 0,1 % en poids à 1,2 % en poids, fer : 0,1 % en poids à ≤ 0,7 % en poids, manganèse : 0,1 % en poids à ≤ 0,7 % en poids, zirconium : > 0,1 % en poids à < 0,5 % en poids, vanadium: ≥ 0,1 % en poids à ≤ 0,3 % en poids, titane : 0,05 % en poids à ≤ 0,2 % en poids, phosphore : 0,004 % en poids à ≤ 0,05 % en poids, béryllium : 0,0005 % en poids à 0,5 % en poids, calcium : à ≤ 0,0005 % en poids
    et le reste étant de l'aluminium et des impuretés inévitables.
  7. Procédé selon l'une quelconque des revendications précédentes 1 à 6, dans lequel un rapport pondéral de fer à manganèse dans l'alliage d'aluminium s'élève à sensiblement 5:1 au maximum, de préférence le rapport pondéral de fer à manganèse s'élève à sensiblement 2,5:1.
  8. Procédé selon l'une quelconque des revendications précédentes 1 à 7, dans lequel une somme de nickel et cobalt représente de préférence > 2,0 % en poids et < 3,8 % en poids.
  9. Procédé selon l'une quelconque des revendications précédentes 1 à 8, dans lequel l'alliage d'aluminium présente une microstructure fine avec une basse teneur en pores et inclusions et/ou une faible et petite quantité de silicium primaire, en particulier dans une zone de bord de cavité du composant de moteur, dans lequel la porosité représente < 0,01 % et/ou la teneur en silicium primaire représente < 1 %, dans lequel le silicium primaire présente des longueurs en moyenne < 5 µm et/ou des longueurs maximales < 10 µm, et les phases intermétalliques et/ou précipitations primaires présentent des longueurs en moyenne < 30 µm et/ou des longueurs maximales < 50 µm.
  10. Composant de moteur, en particulier piston pour un moteur à combustion interne, qui est constitué au moins en partie d'un alliage d'aluminium, dans lequel l'alliage d'aluminium présente les éléments d'alliage suivants : silicium: 7 % en poids à < 14,5 % en poids, nickel : > 1,2 % en poids à < 3,5 % en poids, cuivre: > 3,7 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,1 % en poids à 1,5 % en poids, fer : 0,1 % en poids à ≤ 0,7 % en poids, manganèse : 0,1 % en poids à ≤ 0,7 % en poids, zirconium : > 0,1 % en poids à < 0,5 % en poids, vanadium: ≥ 0,1 % en poids à ≤ 0,3 % en poids, titane : 0,05 % en poids à 0,5 % en poids, phosphore : 0,004 % en poids à ≤ 0,05 % en poids, en option béryllium : 0,0005 % en poids à 0,5 % en poids et en option calcium : à ≤ 0,0005 % en poids
    et le reste étant de l'aluminium et des impuretés inévitables.
  11. Composant de moteur selon la revendication 10, dans lequel l'alliage d'aluminium présente en outre : béryllium : 0,0005 % en poids à 0,5 % en poids et calcium : à ≤ 0,0005 % en poids
  12. Composant de moteur selon la revendication 10 ou 11, dans lequel l'alliage d'aluminium présente : silicium: 9 % en poids à < 10,5 % en poids, nickel : > 2 % en poids à < 3,5 % en poids, cuivre: > 5,2 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,5 % en poids à 1,5 % en poids, fer : 0,1 % en poids à 0,7 % en poids, manganèse: 0,1 % en poids à 0,4 % en poids, zirconium : 0,2 % en poids à < 0,4% en poids, vanadium: > 0,1 % en poids à < 0,2 % en poids, titane : 0,05 % en poids à < 0,2 % en poids, phosphore : 0,004 % en poids à 0,008 % en poids,
    et le reste étant de l'aluminium et des impuretés inévitables.
  13. Composant de moteur selon la revendication 10 ou 11, dans lequel l'alliage d'aluminium présente : silicium: 9 % en poids à < 10,5 % en poids, nickel: > 1,2 % en poids à < 2,0 % en poids, cuivre: > 5,2 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,5 % en poids à 1,5 % en poids, fer : 0,1 % en poids à 0,7 % en poids, manganèse: 0,1 % en poids à 0,4 % en poids, zirconium : 0,2 % en poids à < 0,4% en poids, vanadium: > 0,1 % en poids à < 0,2 % en poids, titane : 0,05 % en poids à < 0,2 % en poids, phosphore : 0,004 % en poids à 0,008 % en poids,
    et le reste étant de l'aluminium et des impuretés inévitables.
  14. Composant de moteur selon la revendication 10 ou 11, dans lequel l'alliage d'aluminium présente : silicium : 9 % en poids à < 12 % en poids, nickel : 2 % en poids à < 3,5 % en poids, cuivre : > 3,7 % en poids à 5,2 % en poids, cobalt : à < 1 % en poids, magnésium : 0,5 % en poids à 1,5 % en poids, fer : 0,1 % en poids à 0,7 % en poids, manganèse : 0,1 % en poids à 0,4 % en poids, zirconium : 0,2 % en poids à 0,4 % en poids, vanadium : 0,1 % en poids à 0,3 % en poids, titane : 0,1 % en poids à 0,5 % en poids, phosphore : 0,004 % en poids à 0,008 % en poids,
    et le reste étant de l'aluminium et des impuretés inévitables.
  15. Composant de moteur selon la revendication 10, dans lequel l'alliage d'aluminium présente : silicium: 7 % en poids à < 14,5 % en poids, nickel : > 1,2 % en poids à < 3,5 % en poids, cuivre : > 3,7 % en poids à ≤ 5,5 % en poids, cobalt : à < 1 % en poids, magnésium: 0,1 % en poids à 1,2 % en poids, fer : 0,1 % en poids à ≤ 0,7 % en poids, manganèse : 0,1 % en poids à ≤ 0,7 % en poids, zirconium : > 0,1 % en poids à < 0,5% en poids, vanadium: ≥ 0,1 % en poids à ≤ 0,3 % en poids, titane : 0,05 % en poids à ≤ 0,2 % en poids, phosphore : 0,004 % en poids à ≤ 0,05 % en poids, béryllium : 0,0005 % en poids à 0,5 % en poids, calcium : à ≤ 0,0005 % en poids
    et le reste étant de l'aluminium et des impuretés inévitables.
  16. Composant de moteur selon l'une quelconque des revendications précédentes 10 à 15, dans lequel un rapport pondéral de fer à manganèse dans l'alliage d'aluminium s'élève à sensiblement 5:1 au maximum, de préférence le rapport pondéral de fer à manganèse s'élève à sensiblement 2,5:1.
  17. Composant de moteur selon l'une quelconque des revendications précédentes 10 à 16, dans lequel une somme de nickel et cobalt représente de préférence > 2,0 % en poids et < 3,8 % en poids.
  18. Composant de moteur selon l'une quelconque des revendications précédentes 10 à 17, dans lequel l'alliage d'aluminium présente une microstructure fine avec une basse teneur en pores et inclusions et/ou une faible et petite quantité de silicium primaire, en particulier dans une zone de bord de cavité du composant, dans lequel la porosité représente < 0,01 % et/ou la teneur en silicium primaire représente < 1 %, dans lequel le silicium primaire présente des longueurs en moyenne < 5 µm et/ou des longueurs maximales < 10 µm, et les phases intermétalliques et/ou précipitations primaires présentent des longueurs en moyenne < 30 µm et/ou des longueurs maximales < 50 µm.
  19. Utilisation d'un alliage d'aluminium pour la fabrication d'un composant de moteur, en particulier d'un piston d'un moteur à combustion interne,
    dans lequel l'alliage d'aluminium présente les éléments d'alliage suivants : silicium: 7 % en poids à < 14,5 % en poids, nickel : > 1,2 % en poids à < 3,5 % en poids, cuivre: > 3,7 % en poids à < 10 % en poids, cobalt : à < 1 % en poids, magnésium : 0,1 % en poids à 1,5 % en poids, fer : 0,1 % en poids à ≤ 0,7 % en poids, manganèse : 0,1 % en poids à ≤ 0,7 % en poids, zirconium : > 0,1 % en poids à < 0,5 % en poids, vanadium: ≥ 0,1 % en poids à ≤ 0,3 % en poids, titane : 0,05 % en poids à 0,5 % en poids, phosphore : 0,004 % en poids à ≤ 0,05 % en poids, en option béryllium : 0,0005 % en poids à 0,5 % en poids et en option calcium : à ≤ 0,0005 % en poids et le reste étant de l'aluminium et des impuretés inévitables.
  20. Utilisation selon la revendication 19, dans lequel l'alliage d'aluminium présente en outre : béryllium : 0,0005 % en poids à 0,5 % en poids et calcium : à ≤ 0,0005 % en poids
EP15720740.8A 2014-05-14 2015-05-11 Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium Active EP3143173B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014209102.0A DE102014209102A1 (de) 2014-05-14 2014-05-14 Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminiumlegierung
PCT/EP2015/060319 WO2015173172A1 (fr) 2014-05-14 2015-05-11 Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium

Publications (3)

Publication Number Publication Date
EP3143173A1 EP3143173A1 (fr) 2017-03-22
EP3143173B1 true EP3143173B1 (fr) 2019-12-11
EP3143173B2 EP3143173B2 (fr) 2022-08-10

Family

ID=53052874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15720740.8A Active EP3143173B2 (fr) 2014-05-14 2015-05-11 Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium

Country Status (9)

Country Link
US (1) US11280292B2 (fr)
EP (1) EP3143173B2 (fr)
JP (1) JP2017519105A (fr)
KR (1) KR102379579B1 (fr)
CN (1) CN106795591B (fr)
BR (1) BR112016026554A2 (fr)
DE (1) DE102014209102A1 (fr)
MX (1) MX2016014860A (fr)
WO (1) WO2015173172A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205895A1 (de) * 2015-04-01 2016-10-06 Federal-Mogul Nürnberg GmbH Aluminium-Gusslegierung, Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminium-Gusslegierung zur Herstellung eines Motorbauteils
CZ306719B6 (cs) * 2015-10-25 2017-05-24 Univerzita J. E. Purkyně V Ústí Nad Labem Hliníková slitina zejména pro výrobu tenkostěnných a tvarově složitých odlitků
KR101896806B1 (ko) 2016-12-15 2018-09-07 현대자동차주식회사 인서트 링 용 알루미늄 합금, 이를 이용한 알루미늄 인서트 링 및 이를 이용한 피스톤 제조방법
CN107937767B (zh) * 2017-12-28 2019-07-26 苏州仓松金属制品有限公司 一种新型高性能铝合金材料及其制备方法
CN109355534A (zh) * 2018-12-14 2019-02-19 广东省海洋工程装备技术研究所 一种多元共晶Al-Si合金材料及其制备方法和活塞
DE102020205193A1 (de) 2019-05-16 2020-11-19 Mahle International Gmbh Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und die Verwendung einer Aluminiumlegierung
JPWO2021112155A1 (fr) * 2019-12-04 2021-06-10
CN113444927B (zh) * 2021-06-18 2022-11-25 中铝材料应用研究院有限公司 一种铝合金活塞材料及其制备方法
CN113502417A (zh) * 2021-07-14 2021-10-15 无锡华星机电制造有限公司 一种高热强度铝硅合金材料及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539328A1 (fr) 1991-10-23 1993-04-28 ALUMINIUM RHEINFELDEN GmbH Procédé d'affinage du grain d'alliage de coulée à base d'aluminium, en particulier d'alliages de coulée à base d'aluminium-silicium
JP2004256873A (ja) * 2003-02-26 2004-09-16 Nippon Light Metal Co Ltd 高温強度に優れた鋳物用アルミニウム合金
JP2006316725A (ja) 2005-05-13 2006-11-24 Toyota Motor Corp ピストン及びピストンの製造方法
CN101294875A (zh) 2008-06-07 2008-10-29 中国铝业股份有限公司 多元素铝合金标准样品的制备方法
DE102011083969A1 (de) 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil
WO2014076174A1 (fr) 2012-11-14 2014-05-22 Federal-Mogul Nürnberg GmbH Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648918A (en) * 1984-03-02 1987-03-10 Kabushiki Kaisha Kobe Seiko Sho Abrasion resistant aluminum alloy
DE4404420C2 (de) 1994-02-11 1997-07-17 Alcan Gmbh Aluminium-Silicium-Legierung und ihre Verwendung
JPH08104937A (ja) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd 高温強度に優れた内燃機関ピストン用アルミニウム合金及び製造方法
JP3875338B2 (ja) * 1997-02-19 2007-01-31 株式会社日立製作所 ピストン用アルミニウム合金
GB2332448B (en) * 1997-12-20 2002-06-26 Ae Goetze Automotive Ltd Aluminium alloy
WO2000071767A1 (fr) 1999-05-25 2000-11-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Alliage aluminium-silicium possedant des proprietes ameliorees a des temperatures elevees, et articles coules a partir de cet alliage
DE10206035A1 (de) * 2002-02-14 2003-08-28 Ks Kolbenschmidt Gmbh Aluminium-Silizium-Gusslegierung sowie daraus hergestellter Kolben und Gussstück
US6918970B2 (en) * 2002-04-10 2005-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High strength aluminum alloy for high temperature applications
US7682469B2 (en) * 2002-07-22 2010-03-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Piston made of aluminum cast alloy and method of manufacturing the same
CN1563456A (zh) * 2004-03-21 2005-01-12 浙江瑞明汽车部件有限公司 耐磨铝合金气缸体及其制造工艺
EP1820866B2 (fr) 2006-02-13 2018-08-08 Hydro Aluminium Rolled Products GmbH Alliage d'aluminium sans carbure d'aluminium
JP5344527B2 (ja) 2007-03-30 2013-11-20 株式会社豊田中央研究所 鋳物用アルミニウム合金、アルミニウム合金鋳物およびその製造方法
EP1978120B1 (fr) 2007-03-30 2012-06-06 Technische Universität Clausthal Alliage de fonte, d'aluminium et de silice et son procédé de fabrication
DE502007002411D1 (de) * 2007-05-24 2010-02-04 Rheinfelden Aluminium Gmbh Warmfeste Aluminiumlegierung
DE102009039838A1 (de) 2008-09-05 2010-04-29 Ks Kolbenschmidt Gmbh Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine, bestehend aus einer verbesserten Aluminiumsilizium-Legierung
US9222151B2 (en) 2010-07-16 2015-12-29 Nippon Light Metal Company, Ltd. Aluminum alloy excellent in high temperature strength and heat conductivity and method of production of same
DE102011083967A1 (de) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil
DE102011083972A1 (de) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil
DE102011083968A1 (de) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil
JP5910206B2 (ja) * 2012-03-16 2016-04-27 いすゞ自動車株式会社 アルミニウム合金
JP6028546B2 (ja) * 2012-11-30 2016-11-16 いすゞ自動車株式会社 アルミニウム合金

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539328A1 (fr) 1991-10-23 1993-04-28 ALUMINIUM RHEINFELDEN GmbH Procédé d'affinage du grain d'alliage de coulée à base d'aluminium, en particulier d'alliages de coulée à base d'aluminium-silicium
JP2004256873A (ja) * 2003-02-26 2004-09-16 Nippon Light Metal Co Ltd 高温強度に優れた鋳物用アルミニウム合金
JP2006316725A (ja) 2005-05-13 2006-11-24 Toyota Motor Corp ピストン及びピストンの製造方法
CN101294875A (zh) 2008-06-07 2008-10-29 中国铝业股份有限公司 多元素铝合金标准样品的制备方法
DE102011083969A1 (de) 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil
WO2014076174A1 (fr) 2012-11-14 2014-05-22 Federal-Mogul Nürnberg GmbH Procédé de fabrication d'un composant de moteur, composant de moteur et utilisation d'un alliage d'aluminium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMONE FRANKE: "Giesserei-Lexikon", 2019, SCHIELE & SCHÖN GMBH

Also Published As

Publication number Publication date
DE102014209102A1 (de) 2015-11-19
KR20170007404A (ko) 2017-01-18
MX2016014860A (es) 2017-06-27
BR112016026554A2 (pt) 2017-08-15
CN106795591A (zh) 2017-05-31
JP2017519105A (ja) 2017-07-13
US20170226957A1 (en) 2017-08-10
EP3143173B2 (fr) 2022-08-10
CN106795591B (zh) 2018-10-26
WO2015173172A1 (fr) 2015-11-19
KR102379579B1 (ko) 2022-03-29
EP3143173A1 (fr) 2017-03-22
US11280292B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
EP3143173B1 (fr) Procédé de fabrication d&#39;un composant de moteur, composant de moteur et utilisation d&#39;un alliage d&#39;aluminium
EP2920334B1 (fr) Procédé de fabrication d&#39;un composant de moteur, composant de moteur et utilisation d&#39;un alliage d&#39;aluminium
DE102009012073B4 (de) Verwendung einer Aluminiumgusslegierung
EP1718778B1 (fr) Materiau a base d&#39;alliage d&#39;aluminium, procede de production et utilisation correspondants
EP2748347B1 (fr) Procédé de fabrication d&#39;un composant de moteur et composant de moteur
DE602004004028T2 (de) Aluminium-Gusslegierung, Aluminium-Gusslegierungen und deren Herstellungsverfahren
WO2009010264A2 (fr) Alliage de fonderie d&#39;aluminium et utilisation
WO2007124915A2 (fr) Alliage de cuivre multi-matière et son utilisation
DE102020205193A1 (de) Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und die Verwendung einer Aluminiumlegierung
DE4404420C2 (de) Aluminium-Silicium-Legierung und ihre Verwendung
EP3024958A1 (fr) Alliage pour coulée en aluminium résistant aux hautes températures et pièce coulée pour moteurs à combustion interne coulée à partir d&#39;un tel alliage
WO2017174185A1 (fr) Alliage d&#39;aluminium destiné notamment à un procédé de coulée, et procédé de fabrication d&#39;une pièce dans un tel alliage d&#39;aluminium
EP2455505A1 (fr) Tête de cylindre pour moteurs à combustion à partir d&#39;un alliage en aluminium
EP3810818B1 (fr) Alliage d&#39;aluminium, procédé de fabrication d&#39;un élément du moteur, élément du moteur et utilisation d&#39;un alliage d&#39;aluminium pour la fabrication d&#39;un élément du moteur
EP2742164B1 (fr) Procédé de fabrication d&#39;un composant de moteur et composant de moteur
WO2013050357A1 (fr) Procédé de fabrication d&#39;un composant de moteur et composant de moteur
EP2748346B1 (fr) Procédé de production d&#39;un élément de moteur et élément de moteur
DE102014224229A1 (de) Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminiumlegierung
DE102008024531A1 (de) Hochwarmfeste Aluminium-Gusslegierung sowie Verwendung einer hochwarmfesten Aluminium-Gusslegierung
WO2005007913A1 (fr) Matériau de fonte
EP3763845B1 (fr) Alliage de magnesium et son procédé de fabrication
WO2016156084A1 (fr) Alliage coulé en aluminium, procédé de fabrication d&#39;un composant de moteur, composant de moteur et utilisation d&#39;un alliage coulé en aluminium pour la fabrication d&#39;un composant de moteur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1212247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011199

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015011199

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1212247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220810

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502015011199

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9