EP3140519B1 - Verfahren und anordnung zum betrieb einer dampfturbinenanlage in kombination mit einer thermischen wasseraufbereitung - Google Patents

Verfahren und anordnung zum betrieb einer dampfturbinenanlage in kombination mit einer thermischen wasseraufbereitung Download PDF

Info

Publication number
EP3140519B1
EP3140519B1 EP15724551.5A EP15724551A EP3140519B1 EP 3140519 B1 EP3140519 B1 EP 3140519B1 EP 15724551 A EP15724551 A EP 15724551A EP 3140519 B1 EP3140519 B1 EP 3140519B1
Authority
EP
European Patent Office
Prior art keywords
raw water
water
evaporator
carrier gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15724551.5A
Other languages
English (en)
French (fr)
Other versions
EP3140519A1 (de
Inventor
Alexander Tremel
Markus Ziegmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3140519A1 publication Critical patent/EP3140519A1/de
Application granted granted Critical
Publication of EP3140519B1 publication Critical patent/EP3140519B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant

Definitions

  • the invention relates to a method and an arrangement for operating a steam turbine plant in combination with a thermal water treatment plant for the purification of condensate from the exhaust gas of a steam turbine process.
  • Steam power plants are the predominant type of power plants for power generation. High demands are placed on the water quality of the boiler feed water of the water cycle of such power plants. When evaporating the boiler feed water to steam, depending on the design, liquid water is completely transferred to the gas phase on hot surfaces. All non-volatile boiler feedwater components are deposited on this hot surface. Disadvantageously, these deposits hinder the heat transfer or lead to mechanical failure of, for example, valves. Furthermore, many inorganic constituents in the boiler feed water cause the corrosion tendency of the components in the steam cycle to increase even further. This can lead to stress cracks in components, in particular components made of steel.
  • the object is achieved by means of a method according to claim 1 and by means of an arrangement according to claim 9.
  • the inventive method for operating a steam turbine plant in combination with a thermal water treatment plant comprises several steps. First, steam is condensed from a steam turbine plant in a first condenser to raw water. At least a portion of the raw water is added with a carrier gas in a vaporizer, wherein in the evaporator between raw water and the carrier gas, a mass transfer and a heat transfer take place. The raw water and the carrier gas are passed in the evaporator in countercurrent. In this case, the carrier gas is heated in the evaporator and pure water is taken up from the raw water of the carrier gas.
  • the raw water cools down and the impurities, especially the low-volatile impurities, concentrate in the raw water.
  • the raw water with the concentrated impurities is collected after the evaporator in a tank.
  • the loaded with pure water Carrier gas is fed into a second condenser.
  • the purified water is condensed from the carrier gas, and the second condenser is cooled with raw water from the tank.
  • the purified water is then returned to a steam cycle.
  • the preheated in the second condenser raw water is fed to a first heater, with heat from the steam turbine plant or the steam cycle passes to the preheated raw water.
  • the preheated raw water is then passed from the heater in the evaporator.
  • the arrangement for operating a steam turbine plant in combination with a thermal water treatment plant comprises a first condenser for condensing water vapor from the steam turbine plant to raw water. Furthermore, it comprises a Verdunster for operation with raw water and a carrier gas, wherein takes place in the evaporator material and heat transfer. Furthermore, the arrangement comprises a tank for collecting the raw water concentrated with impurities. The arrangement further comprises a second condenser for condensing the pure water from the carrier gas after the evaporator. The arrangement also includes at least one steam turbine for operation with at least a portion of the purified water.
  • the method and the arrangement advantageously use both heat from the steam turbine process and the steam cycle, in particular the steam generator, as well as components of the exhaust gas of the steam turbine, in particular the water vapor.
  • the evaporation of the raw water from the exhaust gas of the steam turbine works on the principle of forced convection.
  • the raw water cooled second capacitor advantageously provides for the recovery of the heat of evaporation.
  • the water and the carrier gas are advantageously conducted in countercurrent through the evaporator. The temperature of the carrier gas increases during the countercurrent process, while the temperature of the raw water decreases. At an altitude or a separation stage of the evaporator, the air temperature is lower as the temperature of the raw water.
  • a low electrical energy requirement and low other operating costs of the cleaning process of the boiler feed water of the steam turbine is achieved by the coupling of the heat flows. Furthermore, it is possible with the method, regardless of the quality of the raw water, as a product of fully desalted water, which has been purified from poorly volatile components, to obtain a consistent product quality.
  • heat must be provided only at a low temperature level. The water treatment comes with almost no additional electrical energy input.
  • the required thermal energy is advantageously taken from the steam turbine plant or the steam cycle.
  • the steam cycle typically includes at least one steam generator, multiple condensers, and heaters.
  • the raw water comprises ammonia as a conditioning agent for the boiler feed water for the steam turbine process.
  • the pH of the raw water before the evaporator is adjusted so acidic that the ammonia remains in the evaporator in the raw water.
  • Ammonia by itself is a volatile component.
  • Ammonia in water can be conditioned so that the ammonia is present as an ammonium ion. This is the case for low pHs of at least one pH unit below the pKa of ammonia of 9.2. If ammonia is hydrolyzed in water as an ammonium ion, it loses its volatility. This allows it to be separated in the evaporator, as it does not pass into the gas phase.
  • ammonia should also be present in the water after the purification in order to influence the corrosion properties of the water.
  • the pH is selected to be so high that it is above the pKa value of the ammonia, so that it is volatile and merges with the carrier gas and thus recovered with the purified water in the condenser can be.
  • conditioned water is already available as boiler feed water.
  • fresh raw water is added to the tank.
  • This raw water is in particular water from the condensate of the exhaust gas of the steam turbine.
  • the raw water can also be river water, seawater or wastewater or come from another source of water.
  • the process of evaporation makes it possible to use heavily polluted wastewater.
  • Even more water can be supplied to the process.
  • the temperature of the raw water in the evaporator of 60 ° C to 100 ° C. Due to this low temperature level, it is advantageously possible to heat the raw water only by means of the waste heat of the steam cycle, in particular of the steam generator, or of the exhaust gas of the steam turbine. This is advantageous very energy efficient.
  • the heater is operated with the heat of the exhaust gas of a steam generator of the steam turbine process.
  • the water treatment is thus advantageously almost without additional electrical energy input.
  • the required thermal energy is advantageously removed completely from the steam cycle or the exhaust gas of the steam turbine process.
  • the evaporator is a falling film evaporator or a trickle flow evaporator.
  • the boundary surface between the carrier gas, in particular air, and the raw water is advantageously particularly large in order to allow material and heat transfer.
  • the carrier gas from bottom to top, the raw water is passed from top to bottom.
  • FIG. 1 shows an arrangement 1 with a coupling of the steam turbine power plant with the thermal water treatment arrangement 5.
  • the steam generator 4 generates by means of heat supply 12, typically an external heat source, live steam 7 from boiler feed water 14.
  • the live steam 7 is then passed into the turbine 2 for power generation.
  • the exhaust gas 6, which is formed in the steam generation 4 is passed to a heater 15, which heats the raw water 10 of the thermal water treatment assembly 5.
  • the steam 8 leaves the turbine 2 and is then condensed in a first condenser 3 to condensate 9. Part of this condensate 9 is passed as raw water 10 in the thermal water treatment 5. It is also possible to lead the entire condensate 9 into the thermal water treatment 5.
  • thermal water treatment 5 additional fresh raw water 11 can be added from another external source. This can be, for example, sea or river water.
  • raw water 19 concentrated with impurities leaves the thermal water treatment arrangement 5.
  • purified water 22 leaves the thermal water treatment arrangement 5.
  • the boiler feed water 14 is then in turn fed to the steam generator 4.
  • a purified proportion of boiler feed water 14 with a non-purified portion of condensate 9 mixed to boiler feed water 14 become.
  • heat can also be removed at various points of the steam cycle, in the case of several turbine stages and between stages, to heat the heater 15.
  • FIG. 2 shows the thermal water treatment assembly 5 in detail.
  • the core of the thermal water treatment arrangement 5 is the evaporator.
  • a Rieselstromverdunster 16 is used in particular.
  • the raw water 10 to be cleaned flows from top to bottom through a structured Verdunsterpackung.
  • the air 13 as a carrier gas is passed from bottom to top through the Rieselstromverdunster 16.
  • the temperatures in the Rieselstromverdunster 16 are in a range between 60 C and 100 ° C.
  • the Rieselstromverdunster 16 works by means of convective assisted evaporation of water.
  • the pure water evaporates into the countercurrent air 13 and can then be condensed again in a second condenser 17 and fed as clean water 22 back into the steam generator 4.
  • the second condenser 17 is cooled with raw water 10.
  • the already heated raw water 18 is then passed through the heater 15 to bring the raw water to the temperature required in Rieselstromverdunster 16.
  • the raw water 18 is then trickled over a suitable evaporator material.
  • materials in particular structured packings of plastic, metal or cellulose with a specific surface area of 100 m 2 / m 3 to 300 m 2 / m 3 are used.
  • the Rieselstromverdunster 16 is operated in countercurrent. That is, the temperature of the downflowing raw water 18 drops from the head to the bottom of Rieselstromverdunsters 16 because the water is extracted by evaporation and air heating energy. By contrast, the temperature of the countercurrent air rises from the foot to the head of the trickle flow evaporator 16. On a separation stage, that is at an altitude in Rieselstromverdunster 16, the temperature of the air always remains lower than the temperature of the raw water. Thus, the heat transfer from the falling water to the rising air, and according to the rising temperature, the air in the upper part of the Rieselstromverdunster 16 absorb more water vapor.
  • the raw water 19 concentrated with impurities is partly put into a tank 20 for storage, partly it is conveyed out of the system.
  • the tank 20 is filled with fresh raw water 11.
  • the fresh raw water 11 may on the one hand be the condensed water from the turbine 2, but on the other hand also water from other water sources, such as river water, seawater or sewage treatment plant.
  • the advantage of the evaporation process used is that even the treatment of heavily polluted waste water is possible.
  • the boiler feed water 14 is typically conditioned prior to steam generation to operate the steam turbine such that the tendency to corrosion decreases. This happens, for example, with the addition of volatile alkalizing agents, in particular of ammonia.
  • volatile alkalizing agents in particular of ammonia.
  • usual ammonia concentrations range from 0.5 mg / L to 1 mg / L (with the addition of phosphate) or> 5 mg / L (without added phosphate).
  • ammonia can lead to corrosion, in particular due to the formation of ammonium salts, in the heat-steam circuit. Therefore, depending on the driving style, it may be necessary to remove ammonia in the thermal water treatment assembly 5 from the system.
  • Ammonia is a volatile component and would pass into the vapor phase in Rieselstromverdunster 16 without conditioning the raw water and so burden the purified water.
  • the pH of the raw water 18 is adjusted to be at least one pH unit below the pKa of ammonia of 9.2. In this pH range, the ammonia is present as ammonium ion in water. The ammonium ion is hydrolyzed and thereby little fleeting. Thus, it does not go into the gas phase in Rieselstromverdunster 16, but leaves the Rieselstromverdunster 16 with the concentrated raw water 19th Ammonia can then be added to the boiler feed water 14 in the desired concentration.
  • a pH may be selected that is at least one pH unit above the pKa of 9.2.
  • the ammonia can be fed into the second condenser 17 together with the air 21 charged with the purified water.
  • This water can be returned directly as a conditioned boiler feed water 14 in the steam cycle of the turbine 2.
  • ammonia is enriched in the condensate of the water treatment plant due to its high vapor pressure.

Description

  • Die Erfindung betrifft ein Verfahren und eine Anordnung zum Betrieb einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage zur Reinigung von Kondensat aus dem Abgas eines Dampfturbinenprozesses.
  • Dampfkraftwerke gehören zur vorherrschenden Bauart der Kraftwerke zur Stromerzeugung. An die Wasserqualität des Kesselspeisewassers des Wasserkreislaufs solcher Kraftwerke werden hohe Anforderungen gestellt. Beim Verdampfen des Kesselspeisewassers zu Dampf wird je nach Bauart auf heißen Oberflächen flüssiges Wasser komplett in die Gasphase überführt. Sämtliche nichtflüchtige Kesselspeisewasserkomponenten werden dabei auf dieser heißen Oberfläche abgelagert. Nachteiligerweise behindern diese Ablagerungen den Wärmeübergang oder führen zum mechanischen Ausfall von beispielsweise Ventilen. Weiterhin führen viele anorganische Inhaltsstoffe im Kesselspeisewasser dazu, dass die Korrosionsneigung der Bauteile im Wasserdampfkreislauf noch weiter zunimmt. Dies kann zu Spannungsrissen in Bauteilen, insbesondere Bauteilen aus Stahl, führen.
  • Zur Minderung der korrosiven Eigenschaften von Wasser bzw. Wasserdampf in Wasserdampfkreisläufen existieren verschiedene Verfahren der Konditionierung. Hierzu zählen vor allem die Alkalisierung des Wassers und die Sauerstoffdosierung. Sowohl ein erhöhter pH-Wert als auch eine erhöhte Redoxspannung führen zu einer verminderten Löslichkeit von Eisenoxid. Allerdings kann eine Alkalisierung mit festen Alkalisierungsmitteln nachteiligerweise nicht in Durchlauferhitzern angewandt werden, da hier das Wasser vollständig verdampft wird und somit Ablagerungen auftreten würden. Daher wird in diesem Fall häufig Ammoniak als flüchtiges Alkalisierungsmittel eingesetzt.
  • Zur Reinigung des Kesselspeisewassers von Verunreinigungen sind unterschiedliche Aufbereitungsverfahren bekannt. Diese Verfahren basieren in der Regel auf Ionenaustausch. Ionenaustauschprozesse können allerdings auch als Kontaminationsquelle auftreten. Abbauprodukte des Harzmaterials können sich auf trockenen Oberflächen verschiedener Bauteile im Wärmedampfkreislauf nachteilerweise ablagern. Weiterhin kann die Reinigung des Kesselspeisewassers mit einem Umkehrosmoseprozess bewerkstelligt werden. Bei der Umkehrosmose jedoch führen hohe Belastungen des Rohwassers nachteilig zu einem erniedrigten Flux bei der Umkehrosmose. Des Weiteren sind die bekannten Verfahren sehr energieintensiv. Der Druckschrift BE-505083 offenbart einen solchen bekannten Aufbereitungsverfahren. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Anordnung zur Wasseraufbereitung für einen Wasserdampfkreislauf anzugeben, welche die genannten Nachteile überwinden.
    Die Aufgabe wird mittels eines Verfahrens gemäß Anspruch 1 und mittels einer Anordnung gemäß Anspruch 9 gelöst.
    Das erfindungsgemäße Verfahren zum Betrieb einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage umfasst mehrere Schritte. Zunächst wird Wasserdampf aus einer Dampfturbinenanlage in einem ersten Kondensator zu Rohwasser kondensiert. Wenigstens ein Anteil des Rohwassers wird mit einem Trägergas in einen Verdunster gegeben, wobei in dem Verdunster zwischen Rohwasser und dem Trägergas ein Stoff- und ein Wärmeübergang stattfinden. Das Rohwasser und das Trägergas werden in dem Verdunster im Gegenstrom geführt. Dabei erwärmt sich das Trägergas in dem Verdunster und reines Wasser wird aus dem Rohwasser von dem Trägergas aufgenommen. Das Rohwasser kühlt ab und die Verunreinigungen, insbesondere die schwer flüchtigen Verunreinigungen, konzentrieren sich in dem Rohwasser auf. Das Rohwasser mit den aufkonzentrierten Verunreinigungen wird nach dem Verdunster in einem Tank gesammelt. Das mit reinem Wasser beladene Trägergas wird in einen zweiten Kondensator geführt. In dem zweiten Kondensator wird das gereinigte Wasser aus dem Trägergas kondensiert, wobei der zweite Kondensator mit Rohwasser aus dem Tank gekühlt wird. Das gereinigte Wasser wird anschließend in einen Wasserdampfkreislauf zurückgeführt. Das im zweiten Kondensator vorgewärmte Rohwasser wird zu einem ersten Heizer geführt, wobei Wärme aus der Dampfturbinenanlage oder dem Wasserdampfkreislauf an das vorgewärmte Rohwasser übergeht. Das vorgewärmte Rohwasser wird danach aus dem Heizer in den Verdunster geführt.
  • Die Anordnung zum Betrieb einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage umfasst einen ersten Kondensator zum Kondensieren von Wasserdampf aus der Dampfturbinenanlage zu Rohwasser. Weiterhin umfasst sie einen Verdunster zum Betrieb mit Rohwasser und einem Trägergas, wobei in dem Verdunster Stoff- und Wärmeübertragung stattfindet. Weiterhin umfasst die Anordnung einen Tank zum Auffangen des mit Verunreinigungen aufkonzentrierten Rohwassers. Die Anordnung umfasst weiterhin einen zweiten Kondensator zum Kondensieren des reinen Wassers aus dem Trägergas nach dem Verdunster. Die Anordnung umfasst auch wenigstens eine Dampfturbine zum Betrieb mit wenigstens einem Anteil des gereinigten Wassers.
  • Das erfindungsgemäße Verfahren und die Anordnung nutzen vorteilhafterweise sowohl Wärme aus dem Dampfturbinenprozess und dem Wasserdampfkreislauf, insbesondere dem Dampferzeuger, als auch Komponenten des Abgases der Dampfturbine, insbesondere den Wasserdampf. Die Verdunstung des Rohwassers aus dem Abgas der Dampfturbine arbeitet nach dem Prinzip der erzwungenen Konvektion. Der Rohwasser gekühlte zweite Kondensator sorgt vorteilhaft für die Rückgewinnung der Verdunstungswärme. Das Wasser und das Trägergas werden vorteilhaft im Gegenstrom durch den Verdunster geführt. Die Temperatur des Trägergases steigt dabei während des Gegenstromprozesses an, während die Temperatur des Rohwassers sinkt. Auf einer Höhe bzw. einer Trennstufe des Verdunsters ist die Lufttemperatur niedriger als die Temperatur des Rohwassers. Vorteilhafterweise wird durch die Kopplung der Wärmeströme ein geringer elektrischer Energiebedarf und geringe sonstige Betriebskosten des Reinigungsprozesses des Kesselspeisewassers der Dampfturbine erreicht. Weiterhin ist es mit dem Verfahren möglich, unabhängig von der Qualität des Rohwassers, als Produkt voll entsalztes Wasser, welches von schwer flüchtigen Komponenten gereinigt wurde, mit gleichbleibender Produktqualität zu erhalten. Vorteilhaft muss Wärme lediglich bei niedrigem Temperaturniveau bereitgestellt werden. Die Wasseraufbereitung kommt nahezu ohne zusätzlichen elektrischen Energieeintrag aus. Die erforderliche thermische Energie wird vorteilhaft der Dampfturbinenanlage oder dem Wasserdampfkreislauf entnommen. Der Wasserdampfkreislauf umfasst typischerweise wenigstens einen Dampferzeuer, mehrere Kondensatoren und Heizer.
  • In einer vorteilhaften Weiterbildung der Erfindung umfasst das Rohwasser Ammoniak als Konditionierungsmittel für das Kesselspeisewasser für den Dampfturbinenprozess. Weiterhin wird der pH-Wert des Rohwassers vor dem Verdunster derart sauer eingestellt, dass das Ammoniak im Verdunster im Rohwasser verbleibt. Ammoniak für sich gesehen ist eine leicht flüchtige Komponente. Ammoniak in Wasser kann derart konditioniert werden, dass das Ammoniak als Ammonium-Ion vorliegt. Dies ist für niedrige pH-Werte von wenigstens einer pH-Einheit unterhalb des pKs-Wertes von Ammoniak von 9,2 der Fall. Liegt Ammoniak in Wasser hydrolysiert als Ammonium-Ion vor, verliert es seine Flüchtigkeit. Dadurch kann es im Verdunster abgetrennt werden, da es nicht in die Gasphase übergeht.
  • Es ist ebenso denkbar, dass Ammoniak in dem Wasser auch nach der Reinigung vorliegen soll, um die Korrosionseigenschaften des Wassers zu beeinflussen. In dieser vorteilhaften Weiterbildung der Erfindung wird der pH-Wert derart hoch gewählt, dass er oberhalb des pKs-Wertes vom Ammoniak liegt, so dass dieses leichtflüchtig ist und mit in das Trägergas übergeht und so mit dem gereinigten Wasser im Kondensator wiedergewonnen werden kann. In diesem Fall steht bereits konditioniertes Wasser als Kesselspeisewasser zu Verfügung.
  • In einer Ausgestaltung der Erfindung wird in den Tank frisches Rohwasser hinzugegeben. Dieses Rohwasser ist insbesondere Wasser aus dem Kondensat des Abgases der Dampfturbine. Das Rohwasser kann auch Flusswasser, Meerwasser oder Abwasser sein oder aus einer weiteren Wasserquelle stammen. Durch den Prozess der Verdunstung ist es möglich, auch stark verschmutztes Abwasser zu verwenden. Je nach Menge des Rohwassers, welches aus dem Kondensat des Abgases der Dampfturbine anfällt, kann so noch weiteres Wasser dem Prozess zugeführt werden.
  • In einer weiteren Ausgestaltung der Erfindung beträgt die Temperatur des Rohwassers im Verdunster von 60°C bis 100°C. Durch dieses niedrige Temperaturniveau ist es vorteilhaft möglich, das Rohwasser lediglich mittels der Abwärme des Wasserdampfkreislaufs, insbesondere des Dampferzeugers, oder des Abgases der Dampfturbine zu erhitzen. Dies ist vorteilhaft sehr energiesparend.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der Heizer mit der Wärme des Abgases eines Dampferzeugers des Dampfturbinenprozesses betrieben. Die Wasseraufbereitung kommt somit vorteilhaft nahezu ohne zusätzlichen elektrischen Energieeintrag aus. Die benötigte thermische Energie wird vorteilhaft vollständig aus dem Wasserdampfkreislauf oder dem Abgas des Dampfturbinenprozesses entnommen.
  • In einer weiteren Ausgestaltung der Erfindung ist der Verdunster ein Fallfilmverdunster oder ein Rieselstromverdunster. Bei diesen Verdunsterausführungen ist vorteilhaft die Grenzfläche zwischen dem Trägergas, insbesondere Luft, und dem Rohwasser besonders groß, um Stoff- und Wärmeübergang zu ermöglichen. Typischerweise wird das Trägergas von unten nach oben, das Rohwasser von oben nach unten geführt.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Bezugnahme auf die angehängten Zeichnungen beschrieben. Es zeigen:
  • Figur 1
    eine Anordnung mit einem Wasserdampfkreislauf, Turbine, Kondensatoren und thermischer Wasseraufbereitung;
    Figur 2
    eine thermische Wasseraufbereitungsanordnung mit Verdunster und Kondensator.
  • Figur 1 zeigt einen eine Anordnung 1 mit einer Kopplung des Dampfturbinenkraftwerks mit der thermischen Wasseraufbereitungsanordnung 5. Exemplarisch ist in Figur 1 nur eine Turbinenstufe 2 dargestellt. Der Dampferzeuger 4 erzeugt mit Hilfe von Wärmezufuhr 12, typischerweise einer externen Wärmequelle, Frischdampf 7 aus Kesselspeisewasser 14. Der Frischdampf 7 wird anschließend in die Turbine 2 zur Stromerzeugung geleitet. Das Abgas 6, welches bei der Dampferzeugung 4 entsteht wird zu einem Heizer 15 geleitet, welcher das Rohwasser 10 der thermischen Wasseraufbereitungsanordnung 5 erwärmt. Der Dampf 8 verlässt die Turbine 2 und wird anschließend in einem ersten Kondensator 3 zu Kondensat 9 kondensiert. Ein Teil dieses Kondensats 9 wird als Rohwasser 10 in die thermische Wasseraufbereitung 5 geleitet. Es ist ebenso möglich, das gesamte Kondensat 9 in die thermische Wasseraufbereitung 5 zu führen. Zur thermischen Wasseraufbereitung 5 kann zusätzlich frisches Rohwasser 11 aus einer anderen externen Quelle hinzugefügt werden. Dies kann beispielsweise Meer- oder Flusswasser sein. Nach der Wasseraufbereitung 5 verlässt mit Verunreinigungen aufkonzentriertes Rohwasser 19 die thermische Wasseraufbereitungsanordnung 5. Weiterhin verlässt gereinigtes Wasser 22 die thermische Wasseraufbereitungsanordnung 5. Das Kesselspeisewasser 14 wird anschließend wiederum dem Dampferzeuger 4 zugeführt. Je nach Grad der Verunreinigung des Dampfes 8 beziehungsweise des Kondensats 9 kann ein gereinigter Anteil Kesselspeisewasser 14 mit einem nicht gereinigten Anteil Kondensat 9 zu Kesselspeisewasser 14 gemischt werden. Für den Fall, dass die Wärme des Abgases 6 nach der Dampferzeugung im Dampferzeuger 4 zu gering ist, kann zusätzlich an verschiedenen Stellen des Wasserdampfkreislaufs, im Falle mehrere Turbinenstufen auch zwischen den Stufen, Wärme entnommen werden, um den Heizer 15 zu erwärmen.
  • Figur 2 zeigt die thermische Wasseraufbereitungsanordnung 5 im Detail. Das Kernstück der thermischen Wasseraufbereitungsanordnung 5 ist der Verdunster. In diesem Beispiel wird insbesondere ein Rieselstromverdunster 16 eingesetzt. Dabei fließt das zu reinigende Rohwasser 10 von oben nach unten durch eine strukturierte Verdunsterpackung. Die Luft 13 als Trägergas wird von unten nach oben durch den Rieselstromverdunster 16 geführt. Die Temperaturen in dem Rieselstromverdunster 16 liegen in einem Bereich zwischen 60 C und 100°C. Der Rieselstromverdunster 16 arbeitet mittels einer konvektiv unterstützten Verdunstung von Wasser. Das reine Wasser verdunstet in die im Gegenstrom geführte Luft 13 und kann anschließend in einem zweiten Kondensator 17 wieder kondensiert werden und als sauberes Wasser 22 zurück in den Dampferzeuger 4 geführt werden. Der zweite Kondensator 17 wird mit Rohwasser 10 gekühlt. Das schon erwärmte Rohwasser 18 wird anschließend durch den Heizer 15 geführt, um das Rohwasser auf die Temperatur zu bringen, die im Rieselstromverdunster 16 benötigt wird. Das Rohwasser 18 wird anschließend über einem geeigneten Verdunstermaterial verrieselt. As Materialen werden insbesondere strukturierte Packungen aus Kunststoff, Metall oder Cellulose mit einer spezifischen Oberfläche von 100 m2/m3 bis 300 m2/m3 verwendet.
  • Der Rieselstromverdunster 16 wird im Gegenstrom betrieben. Das heißt, die Temperatur des abwärts strömenden Rohwassers 18 sinkt vom Kopf zum Fuß des Rieselstromverdunsters 16, weil dem Wasser durch Verdunstung und Lufterwärmung Energie entzogen wird. Die Temperatur der entgegenströmenden Luft steigt dagegen vom Fuß zum Kopf des Rieselstromverdunsters 16 an. Auf einer Trennstufe, das heißt auf einer Höhe im Rieselstromverdunster 16, bleibt die Temperatur der Luft immer niedriger als die Temperatur des Rohwassers. Damit erfolgt die Wärmeübertragung vom fallenden Wasser auf die aufsteigende Luft, und entsprechend der ansteigenden Temperatur kann die Luft im oberen Bereich des Rieselstromverdunster 16 mehr Wasserdampf aufnehmen. Das mit Verunreinigungen aufkonzentrierte Rohwasser 19 wird teilweise in einen Tank 20 zur Speicherung vorgelegt, teilweise wird es aus dem System hinaus befördert. Je nach Bedarfsmenge des Kesselspeisewassers 14 und nach Qualität des aufkonzentrierten Rohwassers 19 wird der Tank 20 mit frischem Rohwasser 11 aufgefüllt. Das frische Rohwasser 11 kann einerseits das kondensierte Wasser aus der Turbine 2 sein, andererseits aber auch Wasser aus anderen Wasserquellen, wie beispielsweise Flusswasser, Meerwasser oder Abwasser einer Kläranlage. Der Vorteil des eingesetzten Verdunstungsverfahrens ist, dass selbst die Aufbereitung von stark verschmutzten Abwässern möglich ist.
  • Das Kesselspeisewasser 14 wird typischerweise vor der Dampferzeugung zum Betrieb der Dampfturbine derart konditioniert, dass die Korrosionsneigung abnimmt. Dies geschieht beispielsweise mit der Zugabe von flüchtigen Alkalisierungsmitteln, insbesondere von Ammoniak. Übliche Ammoniakkonzentrationen liegen in Abhängigkeit der Fahrweise in einem Bereich von 0,5 mg/L bis 1 mg/L (unter Zugabe von Phosphat) oder >5 mg/L (ohne Phosphatzugabe). Ammoniak kann in zu hohen Konzentrationen in Gegenwart von Fremdionen wie Phosphat allerdings wiederum zur Korrosion, insbesondere aufgrund der Bildung von Ammoniumsalzen, im Wärmedampfkreislauf führen. Daher kann es in Abhängigkeit der Fahrweise nötig sein, Ammoniak in der thermischen Wasseraufbereitungsanordnung 5 aus dem System zu entfernen. Ammoniak ist eine flüchtige Komponente und würde im Rieselstromverdunster 16 ohne eine Konditionierung des Rohwassers in die Gasphase übergehen und so das gereinigte Wasser belasten. Um dies zu verhindern, wird der pH-Wert des Rohwassers 18 derart eingestellt, dass er um wenigstens eine pH-Einheit unterhalb des pKs-Werts von Ammoniak von 9,2 liegt. In diesem pH-Bereich liegt das Ammoniak als Ammonium-Ion in Wasser vor. Das Ammonium-Ion ist hydrolysiert und dadurch wenig flüchtig. Somit geht es im Rieselstromverdunster 16 nicht in die Gasphase über, sondern verlässt den Rieselstromverdunster 16 mit dem aufkonzentrierten Rohwasser 19. Ammoniak kann anschließend wieder dem Kesselspeisewasser 14 in der gewünschten Konzentration hinzugegeben werden.
  • Für den Fall, dass Ammoniak nicht aus dem Rohwasser entfernt 10 werden soll, kann ein pH-Wert gewählt werden, der wenigstens eine pH-Einheit oberhalb des pKs-Werts von 9,2 liegt. So kann das Ammoniak zusammen mit der mit dem gereinigten Wasser beladenen Luft 21 in den zweiten Kondensator 17 geführt werden. Dieses Wasser kann direkt als konditioniertes Kesselspeisewasser 14 in den Wasserdampfkreislauf der Turbine 2 zurückgeführt werden. Bei einer solchen Betriebsweise wird allerdings Ammoniak aufgrund seines hohen Dampfdruckes im Kondensat der Wasseraufbereitungsanlage angereichert.
  • Die Notwendigkeit einer Entfernung des Ammoniaks hängt von mehreren Faktoren ab. In erster Linie ist die Art der Kesselspeisewasserkonditionierung entscheidend. Für den Fall, dass die Ammoniakkonzentration begrenzt werden muss, gilt es zu beachten, ob, wie in Figur 1 gezeigt, direkt ein Teil des Kondensats 9 nach der Turbine 2 wieder in den Dampferzeuger 4 geführt wird. Für den Fall, dass ein Teil des Kondensats 9 direkt ohne Aufbereitung in den Dampferzeuger 4 geführt wird, ist eine Reinigung auch vom Verhältnis dieser Kondensatmenge 9 zu der Menge an eingesetztem Rohwassers 10 abhängig. Dieses nicht gereinigte Kondensat 9 beinhaltet Ammoniak in einer definierten Konzentration. In Abhängigkeit dieser Konzentration muss nun in der thermischen Wasseraufbereitung 5 das Ammoniak entsprechend erniedrigt werden, um die gewünschte Ammoniakkonzentration im Kesselspeisewasser 14 einzustellen.
  • Im Falle, dass Ammoniak nicht vollständig aus dem Rohwasser 10 entfernt werden soll, aber auch nicht vollständig im Rohwasser 10 verbleiben oder sogar aufkonzentriert werden soll, besteht die Möglichkeit, durch entsprechende Wahl eines pH-Wertes innerhalb des Bereiches (pKs -1) < pH < (pKs + 1) die gewünschte Ammoniak-Konzentration einzustellen.

Claims (10)

  1. Verfahren zum Betrieb einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage (5) mit folgenden Schritten:
    - Kondensieren von Wasserdampf aus der Dampfturbinenanlage zu Rohwasser in einem ersten Kondensator (3),
    - Zugeben von einem Trägergas (13) und wenigstens einem Anteil des Rohwassers (10) zu einem Verdunster (16), wobei in dem Verdunster (16) zwischen dem Rohwasser (10) und dem Trägergas (13) ein Stoff- und Wärmeübergang stattfinden,
    - Führen des Rohwassers (10) und des Trägergases (13) im Gegenstrom in dem Verdunster (16), wobei sich das Trägergas (13) in dem Verdunster (16) erwärmt und reines Wasser aus dem Rohwasser (10) aufnimmt und sich das Rohwasser (10) abkühlt und sich die Verunreinigungen aufkonzentrieren,
    - Sammeln des Rohwassers (10) mit den aufkonzentrierten Verunreinigungen (19) nach dem Verdunster (16) in einem Tank (20),
    - Führen des mit reinem Wasser beladenen Trägergases (21) in einen zweiten Kondensator (17),
    - Kondensieren von gereinigtem Wasser (22) aus dem Trägergas (21) in dem zweiten Kondensator (17), wobei der zweite Kondensator (17) mit dem Rohwasser (10) aus dem Tank (20) gekühlt wird,
    - Führen des gereinigten Wassers (22) in einen Wasserdampfkreislauf der Dampfturbinenanlage (2),
    - Führen des vorgewärmten Rohwassers (18) aus dem zweiten Kondensator (17) zu einem ersten Heizer (15), wobei Wärme aus der Dampfturbinenanlage oder dem Wasserdampfkreislauf an das vorgewärmte Rohwasser (18) übergeht,
    - Führen des vorgewärmten Rohwassers (18) aus dem Heizer (15) in den Verdunster (16).
  2. Verfahren nach Anspruch 1, wobei das Rohwasser (10) Ammoniak umfasst und der pH-Wert des Rohwassers (10) derart sauer eingestellt wird, dass das Ammoniak im Verdunster (16) im Rohwasser (10) verbleibt.
  3. Verfahren nach Anspruch 1, wobei das Rohwasser (10) Ammoniak umfasst und der pH-Wert des Rohwassers (10) derart basisch eingestellt wird, dass das Ammoniak in das Trägergas (13) übergeht.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei in den Tank (20) frisches Rohwasser (11) zugegeben wird.
  5. Verfahren nach Anspruch 4, wobei das frische Rohwasser (11) Kondensatwasser aus dem Abgas der Dampfturbine, Flusswasser, Meerwasser oder Abwasser ist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Temperatur des Rohwassers (18) im Verdunster (16) in dem Bereich 60°C bis 100°C liegt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Heizer (15) mit der Wärme des Abgases (6) eines Dampferzeugers (4) des Wasserdampfkreislaufs betrieben wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei als Trägergas (13) Luft verwendet wird.
  9. Anordnung zum Betrieb einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage (5) mit
    - einem ersten Kondensator (3) zum Kondensieren von Wasserdampf aus der Dampfturbinenanlage zu Rohwasser (10),
    - einem Verdunster (16) zum Betrieb mit Rohwasser (10) und einem Trägergas (13), wobei in dem Verdunster (16) Stoff- und Wärmeübertragung stattfinden, und wobei sich das Trägergas (13) in dem Verdunster (16) erwärmt und reines Wasser aus dem Rohwasser (10) aufnimmt und sich das Rohwasser (10) abkühlt und sich die Verunreinigungen aufkonzentrieren,
    - einem Tank (20) zum Auffangen des mit Verunreinigungen aufkonzentrierten Rohwassers (19),
    - einem zweiten Kondensator (17) zum Kondensieren des reinen Wassers aus dem Trägergas (21) nach dem Verdunster (16),
    - wenigstens einer Dampfturbine (2) zum Betrieb mit wenigstens einem Anteil des gereinigten Wassers (22).
  10. Anordnung nach Anspruch 9, wobei der Verdunster ein Fallfilmverdunster oder ein Rieselstromverdunster (16) ist.
EP15724551.5A 2014-08-29 2015-05-11 Verfahren und anordnung zum betrieb einer dampfturbinenanlage in kombination mit einer thermischen wasseraufbereitung Not-in-force EP3140519B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217280.2A DE102014217280A1 (de) 2014-08-29 2014-08-29 Verfahren und Anordnung einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitung
PCT/EP2015/060321 WO2016030029A1 (de) 2014-08-29 2015-05-11 Verfahren und anordnung zum betrieb einer dampfturbinenanlage in kombination mit einer thermischen wasseraufbereitung

Publications (2)

Publication Number Publication Date
EP3140519A1 EP3140519A1 (de) 2017-03-15
EP3140519B1 true EP3140519B1 (de) 2018-07-25

Family

ID=53267317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15724551.5A Not-in-force EP3140519B1 (de) 2014-08-29 2015-05-11 Verfahren und anordnung zum betrieb einer dampfturbinenanlage in kombination mit einer thermischen wasseraufbereitung

Country Status (6)

Country Link
US (1) US20170306799A1 (de)
EP (1) EP3140519B1 (de)
KR (1) KR101915066B1 (de)
CN (1) CN106605042B (de)
DE (1) DE102014217280A1 (de)
WO (1) WO2016030029A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220666A1 (de) 2014-10-13 2016-04-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung einer thermischen Aufbereitungsanlage mittels Verdunstung
WO2017157487A1 (de) * 2016-03-15 2017-09-21 Siemens Aktiengesellschaft Rohwasseraufbereitung
WO2017157488A1 (de) * 2016-03-15 2017-09-21 Siemens Aktiengesellschaft Ammoniumreduktion im abwasser von kraftwerken
DE102016214019A1 (de) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft Vorrichtung zum Abtrennen von Produktwasser aus verunreinigtem Rohwasser und Verfahren zum Betrieb dieser Vorrichtung
DE102016218347A1 (de) 2016-09-23 2018-03-29 Siemens Aktiengesellschaft Kraftwerksanlage
DE102018207875A1 (de) * 2018-05-18 2019-11-21 Siemens Aktiengesellschaft Kombinierte Nutzung von Abwärme und Abwasser/Sole zur Trinkwasserproduktion in Gas- und Dampf-Kraftwerken
DE102022109435A1 (de) 2022-04-19 2023-10-19 Oliver Kerschgens System zur wasseraufbereitung und entsalzung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE505083A (de) *
US3438202A (en) * 1967-10-27 1969-04-15 Saline Water Conversion Corp Condensing power plant system
DE3427302A1 (de) * 1984-07-20 1986-01-30 Kraftwerk Union AG, 4330 Mülheim Dampfkraftanlage zur erzeugung von dampf aus salzhaltigem rohwasser
HUT47173A (en) * 1988-08-19 1990-01-30 Energiagazdalkodasi Intezet Apparatus for replacing the feedwater of power plant
US5405503A (en) * 1993-11-05 1995-04-11 Simpson; Gary D. Process for desalinating water while producing power
JPH0874602A (ja) * 1994-09-02 1996-03-19 Kawasaki Heavy Ind Ltd ガスタービンコージェネレーションシステム
DE19549139A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser
US5896740A (en) 1996-09-12 1999-04-27 Shouman; Ahmad R. Dual cycle turbine engine having increased efficiency and heat recovery system for use therein
DE10230610A1 (de) 2001-07-23 2003-02-13 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Verhinderung von Ablagerungen in Dampfsystemen
JP2006103561A (ja) * 2004-10-07 2006-04-20 Mitsubishi Heavy Ind Ltd 船舶の造水装置、排気ガス熱温水変換装置及び造水方法。
EP1662096A1 (de) * 2004-11-30 2006-05-31 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Dampfkraftanlage, insbesondere einer Dampfkraftanlage eines Kraftwerks zur Erzeugung von zumindest elektrischer Energie, und entsprechende Dampfkraftanlage
US7531096B2 (en) * 2005-12-07 2009-05-12 Arizona Public Service Company System and method of reducing organic contaminants in feed water
GB2436128B (en) 2006-03-16 2008-08-13 Rolls Royce Plc Gas turbine engine
FR2906529B1 (fr) * 2006-10-02 2009-03-06 Air Liquide Procede et usine de production conjointe d'electricite, de vapeur et d'eau desalinisee.
JP2008212900A (ja) * 2007-03-07 2008-09-18 Miura Co Ltd 濃縮、冷却、脱気を行う装置およびこれを用いたコージェネレーションシステム
EP2246531A1 (de) * 2009-04-30 2010-11-03 Alstom Technology Ltd Kraftwerk mit CO2-Abscheidung und Wasseraufbereitung
DE102009022491A1 (de) 2009-05-25 2011-01-05 Kirchner, Hans Walter, Dipl.-Ing. Kombinierter Kraftwerksprozess mit STIG- und Hochdruckdampfturbine
US9114406B2 (en) * 2009-12-10 2015-08-25 Ex-Tar Technologies Steam driven direct contact steam generation
MA33957B1 (fr) * 2010-02-10 2013-01-02 Basf Se Procede de traitement de l'eau
US20130269347A1 (en) * 2012-04-12 2013-10-17 General Electric Company Combined power and water production system and method
WO2013170916A1 (de) * 2012-05-14 2013-11-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zur betriebsabwasserreinigung
DE102012217717A1 (de) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Verfahren zur Rückgewinnung von Prozessabwässern einer Dampfkraftanlage
DE102013208002A1 (de) * 2013-05-02 2014-11-06 Siemens Aktiengesellschaft Thermische Wasseraufbereitung bei STIG Kraftwerkskonzepten

Also Published As

Publication number Publication date
DE102014217280A1 (de) 2016-03-03
EP3140519A1 (de) 2017-03-15
KR20170044734A (ko) 2017-04-25
KR101915066B1 (ko) 2018-11-05
US20170306799A1 (en) 2017-10-26
CN106605042B (zh) 2018-05-11
WO2016030029A1 (de) 2016-03-03
CN106605042A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
EP3140519B1 (de) Verfahren und anordnung zum betrieb einer dampfturbinenanlage in kombination mit einer thermischen wasseraufbereitung
EP3174622B1 (de) Verfahren zur regeneration einer membranwand in einer destillationsvorrichtung
EP2885578B1 (de) Verfahren zur rückgewinnung von prozessabwässern einer dampfkraftanlage
EP2986910B1 (de) System und prozess zur vorwärmung von zusatzwasser in dampfkraftwerken mit prozessdampfauskopplung
WO2014090973A1 (de) Verfahren und anlage zur aufbereitung und verarbeitung von wässern
CH624479A5 (de)
EP3448813B1 (de) Meerwasserentsalzungsvorrichtung zum entsalzen von meerwasser
WO2014106667A2 (de) Verfahren zur solvolyse von wässrigen organischen suspensionen und lösungen zu konzentrierten, wässrigen, schwarzlaugenähnlichen und/oder salzartigen lösungen organischer verbindungen
DE1767207A1 (de) Destillationsanlage
DE3935892C2 (de) Verfahren und Vorrichtung zum Konzentrieren einer Schwefelsäure und Wasser enthaltenden Flüssigkeit
EP3130383A1 (de) Kraftwerksanlage mit thermischer meerwasserentsalzungseinrichtung
DE102009007193A1 (de) Verfahren und Anordnung zum Reinigen salzhaltigen Wassers mittels heisser Abgase
EP0981014A1 (de) Dampfkraftanlage und Verfahren zum Anfahren und zur Reinigung deren Dampf-Wasserkreislaufs
DE102013210425A1 (de) Anlage und Verfahren zum Aufbereiten von Wasser
DE3332845A1 (de) Verfahren zum verdampfen einer loesung unter verwendung einer rekompressions-verdampfungsanlage
CH625015A5 (de)
DE2346609A1 (de) Verfahren und anlage zum eindampfen einer krustenbildenden oder aetzenden loesung
WO2013170916A1 (de) Verfahren und vorrichtung zur betriebsabwasserreinigung
DE19928064C5 (de) Verfahren und Vorrichtung zum Eindampfen bzw. Verdampfen von Flüssigkeiten
DE102015210910B4 (de) Anlage und Verfahren zum Trennen einer wässrigen Lösung in gereinigtes Wasser und Rückstände der Lösung
EP3280883B1 (de) Verfahren zum aufbereiten eines flüssigen mediums und aufbereitungsanlage
WO2015097011A1 (de) Verfahren zur abtrennung von wasser aus einem wasser enthaltenden fluidgemisch
EP3271509B1 (de) Verfahren und vorrichtung zur erhöhung eines feststoffgehalts bei einem grundstoff, steuereinrichtung, anlage zur bearbeitung eines grundstoffs und papierfabrik
DE3214647A1 (de) Verfahren und anlage zur aufbereitung von schmutzwasser
DE3427302A1 (de) Dampfkraftanlage zur erzeugung von dampf aus salzhaltigem rohwasser

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190528

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190517

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190509

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005227

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190511

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1021999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725