EP3140519B1 - Procédé et système de fonctionnement d'une centrale à vapeur avec un dispositif de traitement thermique de l'eau - Google Patents

Procédé et système de fonctionnement d'une centrale à vapeur avec un dispositif de traitement thermique de l'eau Download PDF

Info

Publication number
EP3140519B1
EP3140519B1 EP15724551.5A EP15724551A EP3140519B1 EP 3140519 B1 EP3140519 B1 EP 3140519B1 EP 15724551 A EP15724551 A EP 15724551A EP 3140519 B1 EP3140519 B1 EP 3140519B1
Authority
EP
European Patent Office
Prior art keywords
raw water
water
evaporator
carrier gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15724551.5A
Other languages
German (de)
English (en)
Other versions
EP3140519A1 (fr
Inventor
Alexander Tremel
Markus Ziegmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3140519A1 publication Critical patent/EP3140519A1/fr
Application granted granted Critical
Publication of EP3140519B1 publication Critical patent/EP3140519B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant

Definitions

  • the invention relates to a method and an arrangement for operating a steam turbine plant in combination with a thermal water treatment plant for the purification of condensate from the exhaust gas of a steam turbine process.
  • Steam power plants are the predominant type of power plants for power generation. High demands are placed on the water quality of the boiler feed water of the water cycle of such power plants. When evaporating the boiler feed water to steam, depending on the design, liquid water is completely transferred to the gas phase on hot surfaces. All non-volatile boiler feedwater components are deposited on this hot surface. Disadvantageously, these deposits hinder the heat transfer or lead to mechanical failure of, for example, valves. Furthermore, many inorganic constituents in the boiler feed water cause the corrosion tendency of the components in the steam cycle to increase even further. This can lead to stress cracks in components, in particular components made of steel.
  • the object is achieved by means of a method according to claim 1 and by means of an arrangement according to claim 9.
  • the inventive method for operating a steam turbine plant in combination with a thermal water treatment plant comprises several steps. First, steam is condensed from a steam turbine plant in a first condenser to raw water. At least a portion of the raw water is added with a carrier gas in a vaporizer, wherein in the evaporator between raw water and the carrier gas, a mass transfer and a heat transfer take place. The raw water and the carrier gas are passed in the evaporator in countercurrent. In this case, the carrier gas is heated in the evaporator and pure water is taken up from the raw water of the carrier gas.
  • the raw water cools down and the impurities, especially the low-volatile impurities, concentrate in the raw water.
  • the raw water with the concentrated impurities is collected after the evaporator in a tank.
  • the loaded with pure water Carrier gas is fed into a second condenser.
  • the purified water is condensed from the carrier gas, and the second condenser is cooled with raw water from the tank.
  • the purified water is then returned to a steam cycle.
  • the preheated in the second condenser raw water is fed to a first heater, with heat from the steam turbine plant or the steam cycle passes to the preheated raw water.
  • the preheated raw water is then passed from the heater in the evaporator.
  • the arrangement for operating a steam turbine plant in combination with a thermal water treatment plant comprises a first condenser for condensing water vapor from the steam turbine plant to raw water. Furthermore, it comprises a Verdunster for operation with raw water and a carrier gas, wherein takes place in the evaporator material and heat transfer. Furthermore, the arrangement comprises a tank for collecting the raw water concentrated with impurities. The arrangement further comprises a second condenser for condensing the pure water from the carrier gas after the evaporator. The arrangement also includes at least one steam turbine for operation with at least a portion of the purified water.
  • the method and the arrangement advantageously use both heat from the steam turbine process and the steam cycle, in particular the steam generator, as well as components of the exhaust gas of the steam turbine, in particular the water vapor.
  • the evaporation of the raw water from the exhaust gas of the steam turbine works on the principle of forced convection.
  • the raw water cooled second capacitor advantageously provides for the recovery of the heat of evaporation.
  • the water and the carrier gas are advantageously conducted in countercurrent through the evaporator. The temperature of the carrier gas increases during the countercurrent process, while the temperature of the raw water decreases. At an altitude or a separation stage of the evaporator, the air temperature is lower as the temperature of the raw water.
  • a low electrical energy requirement and low other operating costs of the cleaning process of the boiler feed water of the steam turbine is achieved by the coupling of the heat flows. Furthermore, it is possible with the method, regardless of the quality of the raw water, as a product of fully desalted water, which has been purified from poorly volatile components, to obtain a consistent product quality.
  • heat must be provided only at a low temperature level. The water treatment comes with almost no additional electrical energy input.
  • the required thermal energy is advantageously taken from the steam turbine plant or the steam cycle.
  • the steam cycle typically includes at least one steam generator, multiple condensers, and heaters.
  • the raw water comprises ammonia as a conditioning agent for the boiler feed water for the steam turbine process.
  • the pH of the raw water before the evaporator is adjusted so acidic that the ammonia remains in the evaporator in the raw water.
  • Ammonia by itself is a volatile component.
  • Ammonia in water can be conditioned so that the ammonia is present as an ammonium ion. This is the case for low pHs of at least one pH unit below the pKa of ammonia of 9.2. If ammonia is hydrolyzed in water as an ammonium ion, it loses its volatility. This allows it to be separated in the evaporator, as it does not pass into the gas phase.
  • ammonia should also be present in the water after the purification in order to influence the corrosion properties of the water.
  • the pH is selected to be so high that it is above the pKa value of the ammonia, so that it is volatile and merges with the carrier gas and thus recovered with the purified water in the condenser can be.
  • conditioned water is already available as boiler feed water.
  • fresh raw water is added to the tank.
  • This raw water is in particular water from the condensate of the exhaust gas of the steam turbine.
  • the raw water can also be river water, seawater or wastewater or come from another source of water.
  • the process of evaporation makes it possible to use heavily polluted wastewater.
  • Even more water can be supplied to the process.
  • the temperature of the raw water in the evaporator of 60 ° C to 100 ° C. Due to this low temperature level, it is advantageously possible to heat the raw water only by means of the waste heat of the steam cycle, in particular of the steam generator, or of the exhaust gas of the steam turbine. This is advantageous very energy efficient.
  • the heater is operated with the heat of the exhaust gas of a steam generator of the steam turbine process.
  • the water treatment is thus advantageously almost without additional electrical energy input.
  • the required thermal energy is advantageously removed completely from the steam cycle or the exhaust gas of the steam turbine process.
  • the evaporator is a falling film evaporator or a trickle flow evaporator.
  • the boundary surface between the carrier gas, in particular air, and the raw water is advantageously particularly large in order to allow material and heat transfer.
  • the carrier gas from bottom to top, the raw water is passed from top to bottom.
  • FIG. 1 shows an arrangement 1 with a coupling of the steam turbine power plant with the thermal water treatment arrangement 5.
  • the steam generator 4 generates by means of heat supply 12, typically an external heat source, live steam 7 from boiler feed water 14.
  • the live steam 7 is then passed into the turbine 2 for power generation.
  • the exhaust gas 6, which is formed in the steam generation 4 is passed to a heater 15, which heats the raw water 10 of the thermal water treatment assembly 5.
  • the steam 8 leaves the turbine 2 and is then condensed in a first condenser 3 to condensate 9. Part of this condensate 9 is passed as raw water 10 in the thermal water treatment 5. It is also possible to lead the entire condensate 9 into the thermal water treatment 5.
  • thermal water treatment 5 additional fresh raw water 11 can be added from another external source. This can be, for example, sea or river water.
  • raw water 19 concentrated with impurities leaves the thermal water treatment arrangement 5.
  • purified water 22 leaves the thermal water treatment arrangement 5.
  • the boiler feed water 14 is then in turn fed to the steam generator 4.
  • a purified proportion of boiler feed water 14 with a non-purified portion of condensate 9 mixed to boiler feed water 14 become.
  • heat can also be removed at various points of the steam cycle, in the case of several turbine stages and between stages, to heat the heater 15.
  • FIG. 2 shows the thermal water treatment assembly 5 in detail.
  • the core of the thermal water treatment arrangement 5 is the evaporator.
  • a Rieselstromverdunster 16 is used in particular.
  • the raw water 10 to be cleaned flows from top to bottom through a structured Verdunsterpackung.
  • the air 13 as a carrier gas is passed from bottom to top through the Rieselstromverdunster 16.
  • the temperatures in the Rieselstromverdunster 16 are in a range between 60 C and 100 ° C.
  • the Rieselstromverdunster 16 works by means of convective assisted evaporation of water.
  • the pure water evaporates into the countercurrent air 13 and can then be condensed again in a second condenser 17 and fed as clean water 22 back into the steam generator 4.
  • the second condenser 17 is cooled with raw water 10.
  • the already heated raw water 18 is then passed through the heater 15 to bring the raw water to the temperature required in Rieselstromverdunster 16.
  • the raw water 18 is then trickled over a suitable evaporator material.
  • materials in particular structured packings of plastic, metal or cellulose with a specific surface area of 100 m 2 / m 3 to 300 m 2 / m 3 are used.
  • the Rieselstromverdunster 16 is operated in countercurrent. That is, the temperature of the downflowing raw water 18 drops from the head to the bottom of Rieselstromverdunsters 16 because the water is extracted by evaporation and air heating energy. By contrast, the temperature of the countercurrent air rises from the foot to the head of the trickle flow evaporator 16. On a separation stage, that is at an altitude in Rieselstromverdunster 16, the temperature of the air always remains lower than the temperature of the raw water. Thus, the heat transfer from the falling water to the rising air, and according to the rising temperature, the air in the upper part of the Rieselstromverdunster 16 absorb more water vapor.
  • the raw water 19 concentrated with impurities is partly put into a tank 20 for storage, partly it is conveyed out of the system.
  • the tank 20 is filled with fresh raw water 11.
  • the fresh raw water 11 may on the one hand be the condensed water from the turbine 2, but on the other hand also water from other water sources, such as river water, seawater or sewage treatment plant.
  • the advantage of the evaporation process used is that even the treatment of heavily polluted waste water is possible.
  • the boiler feed water 14 is typically conditioned prior to steam generation to operate the steam turbine such that the tendency to corrosion decreases. This happens, for example, with the addition of volatile alkalizing agents, in particular of ammonia.
  • volatile alkalizing agents in particular of ammonia.
  • usual ammonia concentrations range from 0.5 mg / L to 1 mg / L (with the addition of phosphate) or> 5 mg / L (without added phosphate).
  • ammonia can lead to corrosion, in particular due to the formation of ammonium salts, in the heat-steam circuit. Therefore, depending on the driving style, it may be necessary to remove ammonia in the thermal water treatment assembly 5 from the system.
  • Ammonia is a volatile component and would pass into the vapor phase in Rieselstromverdunster 16 without conditioning the raw water and so burden the purified water.
  • the pH of the raw water 18 is adjusted to be at least one pH unit below the pKa of ammonia of 9.2. In this pH range, the ammonia is present as ammonium ion in water. The ammonium ion is hydrolyzed and thereby little fleeting. Thus, it does not go into the gas phase in Rieselstromverdunster 16, but leaves the Rieselstromverdunster 16 with the concentrated raw water 19th Ammonia can then be added to the boiler feed water 14 in the desired concentration.
  • a pH may be selected that is at least one pH unit above the pKa of 9.2.
  • the ammonia can be fed into the second condenser 17 together with the air 21 charged with the purified water.
  • This water can be returned directly as a conditioned boiler feed water 14 in the steam cycle of the turbine 2.
  • ammonia is enriched in the condensate of the water treatment plant due to its high vapor pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (10)

  1. Procédé pour faire fonctionner une installation à turbine à vapeur en combinaison avec une installation (5) thermique de traitement des eaux, comprenant les stades suivants :
    - condensation de vapeur d'eau de l'installation à turbine à vapeur en eau brute dans un premier condenseur (3),
    - addition d'un gaz (13) porteur et au moins d'une partie de l'eau (10) brute à un évaporateur (16), un échange de matière et de chaleur ayant lieu dans l'évaporateur (16) entre l'eau (10) brute et le gaz (13) porteur,
    - envoi de l'eau (10) brute et du gaz (13) porteur à contre-courant dans l'évaporateur (16), le gaz (13) porteur s'échauffant dans l'évaporateur (16) et absorbant de l'eau pure de l'eau (10) brute et l'eau (10) brute se refroidissant et les impuretés se concentrant,
    - collecte de l'eau (10) brute avec les impuretés (19) concentrées, après l'évaporateur (16), dans une cuve (20),
    - envoi du gaz (21) porteur chargé d'eau pure dans un deuxième condenseur (17),
    - condensation d'eau (22) épurée à partir du gaz (21) porteur dans le deuxième condenseur (17), le deuxième condenseur (17) étant refroidi par l'eau (10) brute provenant de la cuve (20),
    - envoi de l'eau (22) épurée dans un circuit de vapeur d'eau de l'installation (2) à turbine à vapeur,
    - envoi de l'eau (18) brute préchauffée du deuxième condenseur (17) à un premier dispositif (15) de chauffage, de la chaleur passant de l'installation à turbine à vapeur, ou du circuit de vapeur d'eau, à l'eau (18) brute préchauffée,
    - envoi de l'eau (18) brute préchauffée du dispositif (15) de chauffage à l'évaporateur (16).
  2. Procédé suivant la revendication 1, dans lequel l'eau (10) brute comprend de l'ammoniac et le pH de l'eau (10) brute est réglé de manière acide, de façon à ce que l'ammoniac reste dans l'eau (10) brute dans l'évaporateur (16).
  3. Procédé suivant la revendication 1, dans lequel l'eau (10) brute comprend de l'ammoniac et le pH de l'eau (10) brute est réglé de manière basique, de façon à ce que l'ammoniac passe dans le gaz (13) porteur.
  4. Procédé suivant l'une des revendications précédentes, dans lequel on ajoute de l'eau (11) brute fraîche dans la cuve (20).
  5. Procédé suivant la revendication 4, dans lequel l'eau (11) brute fraîche est de l'eau de condensat provenant du gaz d'échappement de la turbine à vapeur, de l'eau fluviale, de l'eau de mer ou de l'eau résiduaire.
  6. Procédé suivant l'une des revendications précédentes, dans lequel la température de l'eau (18) brute, dans l'évaporateur (16), est dans la plage allant de 60°C à 100°C.
  7. Procédé suivant l'une des revendications précédentes, dans lequel on fait fonctionner le dispositif (15) de chauffage par la chaleur des gaz (6) perdus d'un générateur (4) de vapeur du circuit de vapeur d'eau.
  8. Procédé suivant l'une des revendications précédentes, dans lequel on utilise de l'air comme gaz (13) porteur.
  9. Système pour faire fonctionner une installation à turbine à vapeur en combinaison avec une installation (5) thermique de traitement des eaux, comprenant
    - un premier condenseur (3) pour condenser de la vapeur d'eau de l'installation à turbine à vapeur en eau (10) brute,
    - un évaporateur (16) destiné à fonctionner avec de l'eau (10) brute et un gaz (13) porteur, une transmission de matière et de chaleur ayant lieu dans l'évaporateur (16), et dans lequel le gaz (13) porteur s'échauffe dans l'évaporateur (16) et absorbe de l'eau pure de l'eau (10) brute et l'eau (10) brute se refroidit et les impuretés se concentrent,
    - une cuve (20) de réception de l'eau (19) brute concentrée en impuretés,
    - un deuxième condenseur (17) pour condenser l'eau propre à partir du gaz (21) porteur après l'évaporateur (16),
    - au moins une turbine (2) à vapeur, destinée à fonctionner avec au moins une partie de l'eau (22) épurée.
  10. Système suivant la revendication 9, dans lequel l'évaporateur est un évaporateur à flot descendant ou un évaporateur (16) à courant ruisselant.
EP15724551.5A 2014-08-29 2015-05-11 Procédé et système de fonctionnement d'une centrale à vapeur avec un dispositif de traitement thermique de l'eau Not-in-force EP3140519B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217280.2A DE102014217280A1 (de) 2014-08-29 2014-08-29 Verfahren und Anordnung einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitung
PCT/EP2015/060321 WO2016030029A1 (fr) 2014-08-29 2015-05-11 Dispositif et ensemble pour faire fonctionner une installation de turbine à vapeur en combinaison avec une installation de traitement d'eau thermique

Publications (2)

Publication Number Publication Date
EP3140519A1 EP3140519A1 (fr) 2017-03-15
EP3140519B1 true EP3140519B1 (fr) 2018-07-25

Family

ID=53267317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15724551.5A Not-in-force EP3140519B1 (fr) 2014-08-29 2015-05-11 Procédé et système de fonctionnement d'une centrale à vapeur avec un dispositif de traitement thermique de l'eau

Country Status (6)

Country Link
US (1) US20170306799A1 (fr)
EP (1) EP3140519B1 (fr)
KR (1) KR101915066B1 (fr)
CN (1) CN106605042B (fr)
DE (1) DE102014217280A1 (fr)
WO (1) WO2016030029A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220666A1 (de) 2014-10-13 2016-04-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung einer thermischen Aufbereitungsanlage mittels Verdunstung
WO2017157488A1 (fr) * 2016-03-15 2017-09-21 Siemens Aktiengesellschaft Réduction d'ammonium dans les eaux usées de centrales électriques
WO2017157487A1 (fr) * 2016-03-15 2017-09-21 Siemens Aktiengesellschaft Traitement d'eaux usées
DE102016214019A1 (de) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft Vorrichtung zum Abtrennen von Produktwasser aus verunreinigtem Rohwasser und Verfahren zum Betrieb dieser Vorrichtung
DE102016218347A1 (de) 2016-09-23 2018-03-29 Siemens Aktiengesellschaft Kraftwerksanlage
DE102018207875A1 (de) * 2018-05-18 2019-11-21 Siemens Aktiengesellschaft Kombinierte Nutzung von Abwärme und Abwasser/Sole zur Trinkwasserproduktion in Gas- und Dampf-Kraftwerken
DE102022109435A1 (de) 2022-04-19 2023-10-19 Oliver Kerschgens System zur wasseraufbereitung und entsalzung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE505083A (fr) *
US3438202A (en) * 1967-10-27 1969-04-15 Saline Water Conversion Corp Condensing power plant system
DE3427302A1 (de) * 1984-07-20 1986-01-30 Kraftwerk Union AG, 4330 Mülheim Dampfkraftanlage zur erzeugung von dampf aus salzhaltigem rohwasser
HUT47173A (en) * 1988-08-19 1990-01-30 Energiagazdalkodasi Intezet Apparatus for replacing the feedwater of power plant
US5405503A (en) * 1993-11-05 1995-04-11 Simpson; Gary D. Process for desalinating water while producing power
JPH0874602A (ja) * 1994-09-02 1996-03-19 Kawasaki Heavy Ind Ltd ガスタービンコージェネレーションシステム
DE19549139A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser
US5896740A (en) 1996-09-12 1999-04-27 Shouman; Ahmad R. Dual cycle turbine engine having increased efficiency and heat recovery system for use therein
DE10230610A1 (de) 2001-07-23 2003-02-13 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Verhinderung von Ablagerungen in Dampfsystemen
JP2006103561A (ja) * 2004-10-07 2006-04-20 Mitsubishi Heavy Ind Ltd 船舶の造水装置、排気ガス熱温水変換装置及び造水方法。
EP1662096A1 (fr) * 2004-11-30 2006-05-31 Siemens Aktiengesellschaft Procédé de fonctionnement d'une centrale à vapeur, notamment d'une centrale à vapeur pour la production de l'éléctricité au moins et la centrale à vapeur correspondante
US7531096B2 (en) * 2005-12-07 2009-05-12 Arizona Public Service Company System and method of reducing organic contaminants in feed water
GB2436128B (en) 2006-03-16 2008-08-13 Rolls Royce Plc Gas turbine engine
FR2906529B1 (fr) * 2006-10-02 2009-03-06 Air Liquide Procede et usine de production conjointe d'electricite, de vapeur et d'eau desalinisee.
JP2008212900A (ja) * 2007-03-07 2008-09-18 Miura Co Ltd 濃縮、冷却、脱気を行う装置およびこれを用いたコージェネレーションシステム
EP2246531A1 (fr) * 2009-04-30 2010-11-03 Alstom Technology Ltd Centrale électrique avec capture du CO2 et purification d'eau
DE102009022491A1 (de) 2009-05-25 2011-01-05 Kirchner, Hans Walter, Dipl.-Ing. Kombinierter Kraftwerksprozess mit STIG- und Hochdruckdampfturbine
US9114406B2 (en) * 2009-12-10 2015-08-25 Ex-Tar Technologies Steam driven direct contact steam generation
EP2534104A1 (fr) * 2010-02-10 2012-12-19 Basf Se Procédé de traitement de l'eau
US20130269347A1 (en) * 2012-04-12 2013-10-17 General Electric Company Combined power and water production system and method
WO2013170916A1 (fr) * 2012-05-14 2013-11-21 Siemens Aktiengesellschaft Procédé et dispositif d'épuration d'eaux usées industrielles
DE102012217717A1 (de) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Verfahren zur Rückgewinnung von Prozessabwässern einer Dampfkraftanlage
DE102013208002A1 (de) * 2013-05-02 2014-11-06 Siemens Aktiengesellschaft Thermische Wasseraufbereitung bei STIG Kraftwerkskonzepten

Also Published As

Publication number Publication date
CN106605042A (zh) 2017-04-26
DE102014217280A1 (de) 2016-03-03
WO2016030029A1 (fr) 2016-03-03
EP3140519A1 (fr) 2017-03-15
KR101915066B1 (ko) 2018-11-05
CN106605042B (zh) 2018-05-11
US20170306799A1 (en) 2017-10-26
KR20170044734A (ko) 2017-04-25

Similar Documents

Publication Publication Date Title
EP3140519B1 (fr) Procédé et système de fonctionnement d'une centrale à vapeur avec un dispositif de traitement thermique de l'eau
EP3174622B1 (fr) Procédé de régénération d'une paroi de membrane dans un dispositif de distillation
EP2885578B1 (fr) Procédé de récupération des eaux usées d'un groupe vapeur
EP2986910B1 (fr) Système et procédé de préchauffage d'eau d'alimentation dans des centrales électriques à vapeur avec découplage de la vapeur de processus
WO2014090973A1 (fr) Procédé et installation de traitement et transformation d'eaux
CH624479A5 (fr)
AT507297B1 (de) Solare kondensationsanlage mit kaskadenverdunstung
EP3448813B1 (fr) Dispositif de dessalement d'eau de mer pour dessaler de l'eau de mer
DE3935892C2 (de) Verfahren und Vorrichtung zum Konzentrieren einer Schwefelsäure und Wasser enthaltenden Flüssigkeit
EP0981014A1 (fr) Centrale d'énergie et procédé pour sa mise en marche et pour la purification de son cycle eau-vapeur
DE1767207A1 (de) Destillationsanlage
DE102009007193A1 (de) Verfahren und Anordnung zum Reinigen salzhaltigen Wassers mittels heisser Abgase
WO2014195110A1 (fr) Installation et procédé de traitement d'eau
CH625015A5 (fr)
DE2346609A1 (de) Verfahren und anlage zum eindampfen einer krustenbildenden oder aetzenden loesung
DE19928064C5 (de) Verfahren und Vorrichtung zum Eindampfen bzw. Verdampfen von Flüssigkeiten
DE102015210910B4 (de) Anlage und Verfahren zum Trennen einer wässrigen Lösung in gereinigtes Wasser und Rückstände der Lösung
EP3280883B1 (fr) Procédé servant à préparer un milieu fluide et installation de préparation
WO2015097011A1 (fr) Procédé pour séparer l'eau d'un mélange fluide aqueux
EP3271509B1 (fr) Procédé et dispositif destinés à augmenter une teneur en matière solide d'une matière première, dispositif de commande, installation de traitement d'une matière première et fabrication de papier
EP3705458B1 (fr) Procédé de traitement de liquides contenant l'ammoniaque et installation de mise en oeuvre du procédé
DE2930545C2 (de) Verfahren zur Eindampfung von Schwarzlaugen aus Einjahrespflanzen
DE19903781A1 (de) Verfahren und Einrichtung zur Mehrfachdestillation in kontinuierlicher Arbeitsweise
DE102014101298B4 (de) Verfahren und Vorrichtung zum Aufheizen, Reinigen und Trocknen von Trocknungsgütern
WO2017157488A1 (fr) Réduction d'ammonium dans les eaux usées de centrales électriques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190528

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190517

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190509

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005227

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190511

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1021999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725