EP3135381B1 - Zentrifuge - Google Patents

Zentrifuge Download PDF

Info

Publication number
EP3135381B1
EP3135381B1 EP16182783.7A EP16182783A EP3135381B1 EP 3135381 B1 EP3135381 B1 EP 3135381B1 EP 16182783 A EP16182783 A EP 16182783A EP 3135381 B1 EP3135381 B1 EP 3135381B1
Authority
EP
European Patent Office
Prior art keywords
centrifuge
flow guide
safety vessel
centrifuge according
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16182783.7A
Other languages
English (en)
French (fr)
Other versions
EP3135381A1 (de
Inventor
Matthias Hornek
Robert Hegele
Klaus-Günter Eberle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andreas Hettich GmbH and Co KG
Original Assignee
Andreas Hettich GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Hettich GmbH and Co KG filed Critical Andreas Hettich GmbH and Co KG
Priority to PL16182783T priority Critical patent/PL3135381T3/pl
Publication of EP3135381A1 publication Critical patent/EP3135381A1/de
Application granted granted Critical
Publication of EP3135381B1 publication Critical patent/EP3135381B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating

Definitions

  • the invention relates to a centrifuge according to the specified in the preamble of claim 1. Art.
  • centrifuges especially laboratory centrifuges
  • sample material that is sensitive to temperature is often centrifuged.
  • a certain temperature for example 37 ° C., must not be exceeded, since otherwise the properties of the material change.
  • heat is generated due to the friction between the rotor and the air present in the interior of the centrifuge.
  • the heat can be dissipated by indirect cooling. If sample temperatures below the ambient temperature are to be realized, the installation of a refrigeration system is required and the heat is removed from the outside of the safety boiler by a refrigerant. When sample temperatures above ambient, such as 37 ° C, are permitted, ambient air is typically passed through the centrifuge to dissipate heat. These fans are located inside a housing of the centrifuge and directed to heat transfer surfaces such as the outside of the safety boiler. However, this type of cooling requires high air flows to carry away the amounts of heat, which is technically complex and causes high noise emissions. Therefore, indirect cooling is mainly suitable for low power centrifuges.
  • the JP 2008284517 A or the JP 2008-307219 A a centrifuge in which air is sucked from the environment via a recess in a centrifuge lid.
  • An arranged in a safety boiler rotor acts during operation of the centrifuge similar to a fan, in the region of the axis of rotation of the rotor creates a negative pressure, air above the rotor is aspirated and displaced by inflowing air, flows in the interior of the centrifuge on the safety boiler and on a arranged below the safety boiler drive motor and leaves the interior through an outlet opening on a rear side of the centrifuge.
  • Air-cooled centrifuges are also known in which air is sucked into the space via the cover and blown out into a channel which is located in the centrifuge housing.
  • the channel is designed so that it leads vertically downwards on the outside of the boiler.
  • the object of the invention is, while avoiding the disadvantages mentioned, to develop a centrifuge such that both within the housing a uniform heat dissipation takes place on the safety boiler and the drive motor, as well as the noise emissions lowered and a simple assembly possible.
  • the invention is based on the finding that by a noise-encapsulating parts encapsulating molding, which carries and fixes the safety boiler, a defined flow control of the cooling medium specifically calms the flow and can be targeted to the heat-conducting areas, so that by the additional use of the outer surface of the safety boiler as a heat-transferring surface, the air flow can be reduced while maintaining the cooling effect, and thus the noise emissions of the centrifuge are significantly reduced.
  • a channel is provided for the gaseous cooling medium, which runs at least in some areas helically around the safety boiler and at least forms a flow guide, which limits the channel in the radial direction and in the axial direction partially, so that at least in the area of the safety boiler a directed Flow around the safety boiler arises around.
  • the cooling medium is continuously transferred from a turbulent flow in the region of the suction flow in a laminar flow, which has a significant reduction in noise emissions result.
  • the course of the flow of the cooling medium can thereby be controlled so that a larger area of the outer wall of the safety boiler is overflowed, as is the case with a non-directional flow. This causes a more efficient cooling of the centrifuge.
  • the flow guide is formed at least by a molded part, which is designed in particular as a housing insert.
  • the safety boiler is mounted in the molded part or the molded parts by a clamp connection. This can be dispensed at least partially with other storage and fastening elements for the safety boiler.
  • the molded part and thus the housing insert holds the safety boiler or hold the molded parts and thus the housing inserts the safety boiler. This saves costs for production and maintenance of the centrifuge.
  • the clamping of the elastic molded parts between the housing and the safety boiler prevents these components from being excited to vibrate, in particular when operating with imbalance, and thus emit noises.
  • the molded part can be easily introduced into the housing, in particular a part of the molded part is clamped on the safety boiler, whereby it seals the channel laterally and prevents flow short circuit.
  • the molded part acts as a muffler. From the inside of the centrifuge outgoing or caused by the flow of coolant in the channel sound waves and sound waves, which are reflected on the outside of the safety vessel in the channel, are directly absorbed in the channel up, down and out in the molding.
  • the channel extends to just below the safety boiler.
  • the flow guide is designed to be more continuous in the area of the safety boiler. In particular, this has a constant slope.
  • the suction opening is arranged in the centrifuge lid, and the cooling medium enters the interior axially.
  • the intake and the supply of ambient air can be structurally very easily integrated into the centrifuge, whereby costs are saved.
  • the flow guide is formed as a separate component from the housing. This allows the use of various low-cost materials for the production of the flow guide and adapted to the particular requirements installation in the centrifuge. This saves costs and increases the efficiency of the cooling of the safety boiler.
  • the flow guide is detachably connected to the housing.
  • the flow guide is U-shaped, semicircular or V-shaped in cross-section. This minimizes drag in the duct and calms the coolant faster. The noise emissions can thereby be further reduced.
  • the heat extraction is particularly efficient when the flow guide is applied to the boiler.
  • the flow guide has the effect of additional cooling elements, if they are conductive Material is formed.
  • the flow guide thereby increases the heat transfer surface even further.
  • the flow guide in particular as part of a housing insert, tight against the safety boiler.
  • the cooling medium then flows in the limited channel from all sides, whereby the boundary is formed by the safety boiler and the flow guide.
  • the flow of the cooling medium can be controlled even more precisely, and the cooling medium flows directly over the safety boiler to be cooled, which is usually made of metal and thus has a good thermal conductivity.
  • the flow guide With appropriate design of the flow guide considerable ease of assembly, especially if the flow guide is part of a housing insert.
  • the flow guide forms a channel which runs helically, ie at an angle of inclination and at a constant distance from the rotor axis, at least in regions from top to bottom in the housing.
  • the cooling medium can flow past the outer wall of the safety boiler almost over the entire surface. The efficiency of the cooling is thereby further increased.
  • the flow guide at least in the area around the safety boiler, has a helically running design, which can be one or more continuous.
  • the inclination is constant or increases.
  • the flow of the coolant is calmed over a large distance.
  • the noise emissions of the centrifuge are further reduced.
  • the inclination, the surface shape of the flow guide and the cross section of the channel are formed so that a laminar flow of the cooling medium in the channel is established.
  • the path of the cooling medium is extended and thus increases the frictional resistance, so that the speed of the cooling medium is reduced. Consequently, the noise emissions are reduced.
  • the flow guide forms an enlarging channel cross section at least in the area of the safety boiler. This also serves to reduce noise emissions, as the channel cross-section continuously increases in the direction of the outlet opening, resulting in a reduction of the flow velocity. This has a positive effect on the ease of use of the centrifuge.
  • the molded part is made of foam, such as PUR, EPP, EPE or EPS.
  • Foam moldings can be produced in exactly the desired shape, have sound-absorbing properties and are elastic and relatively inexpensive.
  • the cross-section of the outlet opening is at least 150% of the smallest cross-sectional area of the channel. In practice, it has been shown that this reduces flow velocity in the region of the outlet opening and thus noise emissions are reduced.
  • the outlet opening is arranged axially above the lowest flow course of the cooling medium.
  • the flow guide is guided upward from the lowest flow path to the outlet opening, so that the cooling medium again flows in the largely axial direction. This prevents that the noise generated by the engine can pass unhindered to the outside. This further reduces the noise emissions of the centrifuge.
  • the outlet opening is arranged above a drive motor for the drive shaft of the rotor.
  • the above-described sound-insulating effect also relates to the drive motor. This allows a particularly efficient reduction of noise emissions.
  • Fig. 1 shows a centrifuge 10 according to the invention in a lateral sectional view, with a front side VS of the centrifuge 10 as seen from the viewer to the left side and a back side RS to the right side.
  • the Figures 2 and 3 show the centrifuge 10 from different perspectives.
  • the centrifuge 10 is provided with a housing 12.
  • a drive motor 36 is arranged, which via a drive shaft 37 a mounted on the drive shaft 37, rotatably connected thereto and above the Drive motor 36 mounted rotor 32 drives.
  • the rotor 32 is surrounded by a rotationally symmetrical safety boiler 26 in order to minimize the risk of damage to the centrifuge 10 and contamination of the interior 24 and the environment in the event of a crash or a vessel breakage.
  • the safety boiler 26 is mounted on a motor housing 36 a surrounding the drive motor 36.
  • Rotor 32, safety boiler 26, drive shaft 37 and drive motor 36 are arranged concentrically to a rotor axis R.
  • a bellows 34 is provided between safety boiler 26 and motor housing 36a for decoupling vibrations occurring during operation.
  • the bellows 34 serves to seal a recess 27 provided in the safety boiler 26, through which the drive shaft 37 engages from below into the safety boiler 26.
  • a molded part 38 is provided, which rests on all sides at least partially on the housing 12.
  • the inner diameter of the molded part 38 is substantially dimensioned such that the molded part 38 bears against the boiler wall, but a channel 41 extending helically around the safety boiler 26 relative to the rotor axis R is introduced, which extends from the guide 40 of FIG Shaped part 38 is partially limited.
  • the guide 40 is U-shaped. The channel 41 thus becomes radial outwardly and axially bounded by the guide 40 of the molding 38 and radially inwardly from the vessel wall 28.
  • the molding 38 extends from the bottom of the upper Wandungsbreichs 12 a of the housing 12, on which the lid 16 is disposed in the closed state, to Bottom 12b of the housing.
  • the molded part 38 surrounds the safety boiler 26 completely and is usually constructed of two parts, which are simply plugged into the housing 12 and enter into a clamping connection with the safety boiler 26.
  • the safety boiler 26 is held only by the molded part 38. As a result, the channel 41 is laterally sealed to the safety vessel 26.
  • the diameter of the inner contour 39 corresponds approximately to the diameter of the safety vessel 26, wherein the molded part 38 is spaced from the motor housing 36 a and the safety vessel 26.
  • an opening 42 pointing to the rear side RS of the centrifuge is introduced, to which an outlet channel 44 adjoins.
  • the outlet channel 44 extends from the opening 42, initially in a first portion 44a orthogonal to the rotor axis R back to the back RS and is then guided adjacent to a rear wall 12a in a second portion 44b up to the level of the bellows 34 parallel to the rotor axis R. There, the outlet channel 44 opens into an outlet opening 44, which is introduced into the rear wall 12 a.
  • the lid 16 of the centrifuge 10 has an outwardly curved top wall 16a, a bottom wall 16b and four side walls 16c.
  • a suction port 18 is introduced in the side facing the rear side RS of the centrifuge 10 side wall 16c.
  • an intake opening 20 is arranged so that it is concentric with the rotor axis R in the closed state of the lid 16.
  • An intake passage 19 is inserted in the lid 16 connecting the suction port 18 and the suction port 20.
  • an opening 14 is provided whose diameter is larger than the diameter of the rotor 32 so that the rotor 32 can be easily loaded and unloaded and also change and maintenance of the rotor 32 are easy to perform.
  • a guide portion 22 is provided around the suction port 20, which engages in the opening 14 of the housing 12 when the lid 16 is closed.
  • the guide region 22 terminates flush with the bottom wall 16b, while on the side facing the rotor 32, starting from the rotor axis R, it extends radially obliquely downward.
  • the guide region 22 forms a control surface 22a.
  • the rotor 32 Comparable with a fan, the rotor 32 generates by its rotation during operation, a negative pressure in the region above the rotor 32, whereby more air from the intake passage 19 in the lid 16 is sucked.
  • the displaced by the subsequent air from the area above the rotor 32 air is placed in a spiral movement and flows through a formed between the boiler wall 28 and the housing 12 associated edge 22 b of the control surface 22 a gap 30 in the guide 40
  • the guide 40 describes a two-speed, left-handed helix with a constant pitch of 100 mm.
  • the air is guided in a homogeneous channel without air separation edges, and the turbulent flow after entering the air into the centrifuge 10 is increasingly converted into a laminar flow.
  • the air flows from the guide 40 into the region of the interior space 24 delimited by the cylindrical inner contour 39 of the molded part 38, in which the drive motor 36 is arranged.
  • the air flows around the motor housing 36a before it passes through the previously described outlet channel 44 to the outlet opening 46, through which it leaves the centrifuge 10. Due to the helical guide 40, the circulation movement of the cooling air is maintained even in the region of the inner space 24 bounded by the cylindrical inner contour 39 of the molded part 38.
  • the motor housing 36a flows around in a circumferential direction of the motor housing 36a and thereby improves the cooling effect.
  • FIGS. 1 to 3 illustrated embodiment it is assumed that a comparatively low cooling capacity is required, so that ambient air is used as the cooling medium. Depending on the field of application, this air could still be actively cooled before it enters the intake opening 18, or carbon dioxide or nitrogen, for example, could be selected as the cooling medium.
  • Fig. 4 shows a perspective view of a molded part 38 in a split design with two axially symmetrical halves, wherein the viewer from the rear half of the mold half 38a and the front half of the mold half 38b.
  • the split design facilitates the introduction of the molding 38 in the housing 12 of the centrifuge 10 and thus the assembly.
  • the molded part 38 thus forms a housing insert.
  • the molded part 38 is made of PUR because of the good sound-insulating properties.
  • Other foams such as EPP, EPE and EPS are well suited.
  • Fig. 5 shows the in Fig. 2 reproduced sectional view of the centrifuge 10 from the front with a schematic representation of the air flow within the centrifuge 10th
  • the air for cooling enters from the outside via the intake opening 18, which can not be seen from this perspective, into the intake duct 19 arranged in the cover 16. Via the intake opening 20, the air flows into the safety boiler 26 and is distributed in the area between the rotor 32 and the control surface 22a provided on the underside of the cover 16. The air flows around the rotor 32 in regions, taking heat, and then passes through the gap 30 in the guide 40th
  • the air In the helically around the safety vessel 26 arranged around guide 40, the air is calmed due to the uniform channel shape and the constant tilt angle and increased in a laminar flow.
  • the air from the boiler wall 28 takes heat.
  • the air has flowed into the guide 40, it passes after about 0.5 to 2 orbits of the safety boiler 26 in guide 40 in the lying below the safety boiler 26 interior 24 of the centrifuge 10, where it flows around the motor housing 36a of the drive motor 36 and also removes heat.
  • the air finally passes into the first section 44a of the outlet channel 44, which as described above is orthogonal to the rotor axis R, and on to the second section 44b, which is not visible from this perspective, and which is arranged parallel to the rotor axis R.
  • the heat-transporting air is blown out of the centrifuge 10.

Landscapes

  • Centrifugal Separators (AREA)

Description

  • Die Erfindung betrifft eine Zentrifuge gemäß der im Oberbegriff des Patentanspruches 1 angegebenen Art.
  • Bei Zentrifugen, insbesondere Laborzentrifugen, wird häufig Probenmaterial zentrifugiert, das temperaturempfindlich ist. Gewöhnlich darf etwa bei der Zentrifugation von biologischem Material eine bestimmte Temperatur, beispielsweise 37° C, nicht überschritten werden, da sich sonst die Eigenschaften des Materials ändern.
  • Während des Betriebs der Zentrifuge entsteht Wärme auf Grund der Reibung zwischen dem Rotor und der im Innenraum der Zentrifuge vorhandenen Luft. Die Wärme kann durch indirekte Kühlung abgeführt werden. Sollen Probentemperaturen unter der Umgebungstemperatur realisiert werden, ist der Einbau einer Kälteanlage erforderlich und der Außenseite des Sicherheitskessels wird von einem Kältemittel die Wärme entzogen. Sind Probentemperaturen über der Umgebungstemperatur, wie beispielsweise 37°C zulässig, wird üblicherweise Umgebungsluft zum Abführen der Wärme durch die Zentrifuge geleitet. Dazu sind Ventilatoren im Inneren eines Gehäuses der Zentrifuge angeordnet und auf wärmeübertragende Flächen wie die Außenseite des Sicherheitskessels gerichtet. Diese Art von Kühlung macht jedoch hohe Luftströme erforderlich, um die Wärmemengen abzutransportieren, was technisch aufwändig ist und hohe Geräuschemissionen verursacht. Daher ist indirekte Kühlung hauptsächlich für Zentrifugen mit einer geringen Antriebsleistung geeignet.
  • Bei größeren Zentrifugen ohne eingebaute Kälteanlage wird gewöhnlich direkt gekühlt. Beispielsweise offenbart die JP 2008284517 A oder die JP 2008-307219 A eine Zentrifuge, bei der über eine Ausnehmung in einem Zentrifugendeckel Luft aus der Umgebung eingesaugt wird. Ein in einem Sicherheitskessel angeordneter Rotor wirkt während des Betriebs der Zentrifuge ähnlich wie ein Lüfterrad, Im Bereich der Drehachse des Rotors entsteht ein Unterdruck, Luft oberhalb des Rotors wird angesaugt und durch nachströmende Luft verdrängt, strömt im Innenraum der Zentrifuge an dem Sicherheitskessel sowie an einem unterhalb des Sicherheitskessels angeordneten Antriebsmotor vorbei und verlässt den Innenraum durch eine Austrittsöffnung an einer Rückseite der Zentrifuge.
  • Diese Lösung ist kostengünstig und einfach. Allerdings sind die Geräuschemissionen erheblich, da die im Gehäuse befindliche Luft in Undefinierten Bahnen strömt, sich Luftabrisskanten bilden und die Luft dem geringsten Widerstand folgend das Gehäuse auf dem kürzesten Wege verlässt Dabei dringt der während des Betriebs im Inneren der Zentrifuge entstehende Schall ungehindert nach außen bzw. entsteht an den Luftabrisskanten. Ferner verteilt sich die Luft nicht zwingend gleichmäßig im Innenraum der Zentrifuge, insbesondere nicht gezielt am Sicherheitskessel. Daher ist eine gleichmäßige Wärmeentnahme am Sicherheitskessel und am Antriebsmotor nicht garantiert.
  • Aus der DE 103 55 179 A1 und der der DE 103 16 897 A1 sind ebenfalls luftgekühlte Zentrifugen bekannt, bei denen über den Deckel Luft in den Raum angesaugt wird und in einen Kanal, der sich im Zentrifugengehäuse befindet, ausgeblasen wird. Der Kanal ist dabei so ausgeführt, dass dieser an der Außenseite des Kessels senkrecht nach unten führt.
  • Aus der CN 202 191 968 U ist eine gattungsgemäße Zentrifuge bekannt, welche Leitbleche aufweist um den Luftstrom um den Sicherheitskessel herum zu führen.
  • Nachteil bei diesen Lösungen ist jedoch, dass die Luft nur über einen minimalen Bereich der Außenseite des Sicherheitskessels strömt und somit nahezu kein Wärmeübertrag stattfinden kann und es zu Luftumlenkungen von mindestens 90° im Bereich des Sicherheitskessels kommt, die zu Schallemissionen führen.
  • Aufgabe der Erfindung ist es, unter Vermeidung der genannten Nachteile eine Zentrifuge derart weiterzubilden, dass sowohl innerhalb des Gehäuses eine gleichmäßige Wärmeabfuhr am Sicherheitskessel und am Antriebsmotor erfolgt, als auch auch die Geräuschemissionen gesenkt und eine einfache Montage ermöglicht werden.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruches 1 in Verbindung mit seinen Oberbegriffsmerkmalen gelöst.
  • Die Unteransprüche bilden vorteilhafte Weiterbildungen der Erfindung.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass durch ein die geräuschemittierenden Teile kapselndes Formteil, welches den Sicherheitskessel trägt und fixiert, eine definierte Strömungsführung des Kühlmediums die Strömung gezielt beruhigt und zielgerichtet auf die wärmeführenden Bereiche gerichtet werden kann, so dass durch die zusätzliche Nutzung der Außenfläche des Sicherheitskessels als wärmeübertragende Fläche, der Luftstrom bei gleichbleibender Kühlwirkung reduziert werden kann, und dadurch die Geräuschemissionen der Zentrifuge erheblich reduziert werden.
  • Nach der Erfindung ist für das gasförmige Kühlmedium ein Kanal vorgesehen, der zumindest in Teilbereichen spiralförmig um den Sicherheitskessel herum verläuft und zumindest eine Strömungsführung bildet, die den Kanal in radialer Richtung und in axialer Richtung bereichsweise begrenzt, so dass zumindest im Bereich des Sicherheitskessels eine gerichtete Strömung um den Sicherheitskessel herum entsteht. Das Kühlmedium wird von einer im Bereich der Einsaugöffnung turbulenten Strömung stetig in eine laminare Strömung übergeleitet, was eine deutliche Senkung der Geräuschemission zur Folge hat. Zudem kann der Verlauf der Strömung des Kühlmediums dadurch so gesteuert werden, dass ein größerer Bereich der Außenwand des Sicherheitskessels überströmt wird, als dies bei einer ungerichteten Strömung der Fall ist. Dies bewirkt eine effizientere Kühlung der Zentrifuge. Dadurch ist die Zentrifuge für den Einsatz in kleineren Räumen bzw. in unmittelbarer Nähe zum Bediener besser geeignet. Dabei ist die Strömungsführung zumindest durch ein Formteil gebildet, das insbesondere als Gehäuseeinsatz ausgebildet ist. Dies ermöglicht ein flexibles Einsetzen und Austauschen der Strömungsführung und erleichtert somit die Montage. Der Sicherheitskessel ist in dem Formteil bzw. den Formteilen durch eine Klemmverbindung gelagert. Dadurch kann zumindest teilweise auf andere Lager- und Befestigungselemente für den Sicherheitskessel verzichtet werden. Vorzugsweise hält dabei das Formteil und somit der Gehäuseeinsatz den Sicherheitskessel oder halten die Formteile und somit die Gehäuseeinsätze den Sicherheitskessel. Dies spart Kosten bei Herstellung und Instandhaltung der Zentrifuge. Durch die Klemmung der elastischen Formteile zwischen Gehäuse und Sicherheitskessel wird verhindert, dass diese Bauteile insbesondere bei Betrieb mit Unwucht zum Schwingen angeregt werden können und somit Geräusche emittieren. Zudem kann das Formteil einfach in das Gehäuse eingebracht werden, insbesondere liegt ein Teil des Formteils klemmend am Sicherheitskessel an, wodurch dieser den Kanal seitlich abdichtet und einen Strömungskurzschluss verhindert.
  • Neben dem bereits beschriebenen Effekt der Reduzierung der Strömungsgeräusche durch Herabsetzung der Strömungsgeschwindigkeit ermöglicht auch die, zumindest partielle, Umfassung der geräuschemittierenden Komponenten wie Motor und Rotor mit dem Formteil eine Geräuschkapselung. Insbesondere bei der Ausführung, in der die Strömungsführung schraubenförmig um den Sicherheitskessel geführt wird, wirkt das Formteil als Schalldämpfer. Vom Inneren der Zentrifuge ausgehende oder durch die Strömung des Kühlmittels im Kanal entstehende Schallwellen sowie Schallwellen, die an der Außenseite des Sicherheitskessels im Kanal reflektiert werden, werden im Kanal nach oben, unten und außen im Formteil unmittelbar absorbiert.
  • Vorteilhaft ist, wenn sich der Kanal bis kurz unterhalb des Sicherheitskessels erstreckt. Bei geringen Bauhöhen ist die Strömungsführung mehrgängig im Bereich des Sicherheitskessels ausgebildet. Insbesondere weist diese dabei eine konstante Steigung auf.
  • Vorzugsweise ist die Einsaugöffnung im Zentrifugendeckel angeordnet, und das Kühlmedium tritt axial in den Innenraum ein. So können die Einsaugöffnung und die Zufuhr von Umgebungsluft baulich sehr leicht in die Zentrifuge integriert werden, wodurch Kosten eingespart werden.
  • In einer Ausführungsform hat es sich als vorteilhaft erwiesen, eine Einsaugöffnung unterhalb des Rotors anzuordnen. Dies eröffnet weitere gestalterische Möglichkeiten, insbesondere bezüglich der Zufuhr von Umgebungsluft.
  • Es ist zweckmäßig, dass die Strömungsführung als vom Gehäuse separates Bauteil ausgebildet ist. Dies ermöglicht den Einsatz verschiedener kostengünstiger Materialien zur Herstellung der Strömungsführung und einen an die jeweiligen Anforderungen angepassten Einbau in die Zentrifuge. Dadurch werden Kosten eingespart, und die Effizienz der Kühlung des Sicherheitskessels wird erhöht.
  • Um die Reparatur bzw. Wartung zu vereinfachen und um erforderlichenfalls einen Austausch gegen eine anders ausgebildete Strömungsführung zu ermöglichen, ist es von Vorteil, wenn die Strömungsführung lösbar mit dem Gehäuse verbunden ist.
  • Günstig ist es, wenn die Strömungsführung im Querschnitt u-förmig, halbkreisförmig oder v-förmig ausgebildet ist. So werden Strömungswiderstände im Kanal minimiert, und das Kühlmedium wird schneller beruhigt. Die Geräuschemissionen können dadurch weiter verringert werden.
  • Die Wärmeentnahme ist besonders effizient, wenn die Strömungsführung auf dem Kessel aufgebracht ist. Die Strömungsführung hat den Effekt von zusätzlichen Kühlelementen, sofern diese aus leitfähigem Material ausgebildet ist. Die Strömungsführung vergrößert dabei die wärmeübertragende Fläche noch weiter.
  • In einer vorteilhaften Ausgestaltung liegt die Strömungsführung, insbesondere als Teil eines Gehäuseeinsatzes, dicht an dem Sicherheitskessel an. Das Kühlmedium strömt dann in dem von allen Seiten begrenzten Kanal, wodurch die Begrenzung dabei durch den Sicherheitskessel und die Strömungsführung gebildet ist. Die Strömung des Kühlmediums kann so noch exakter gesteuert werden, und das Kühlmedium strömt direkt über den zu kühlenden Sicherheitskessel, der üblicherweise aus Metall gefertigt ist und somit eine gute Wärmeleitfähigkeit aufweist. Zudem ergeben sich bei entsprechender Gestaltung der der Strömungsführung erhebliche Erleichterungen bei der Montage, insbesondere wenn die Strömungsführung Teil eines Gehäuseeinsatzes ist. Die Strömungsführung bildet zumindest im Bereich des Sicherheitskessels einen Kanal, der schraubenförmig, also mit einem Neigungswinkel und in einem gleichbleibenden Abstand zur Rotorachse, zumindest bereichsweise von oben nach unten im Gehäuse verläuft. So kann das Kühlmedium an der Außenwand des Sicherheitskessels annähernd ganzflächig vorbeiströmen. Die Effizienz der Kühlung wird dadurch weiter erhöht.
  • Insbesondere weist die Strömungsführung zumindest im Bereich um den Sicherheitskessel eine schraubenförmig verlaufende Ausbildung auf, die ein- oder mehrgängig sein kann. Die Neigung ist konstant oder nimmt zu. So wird die Strömung des Kühlmittels über eine große Strecke beruhigt. Die Geräuschemissionen der Zentrifuge werden weiter verringert.
  • Gemäß einem weiteren Aspekt der Erfindung sind die Neigung, die Oberflächenausbildung der Strömungsführung und der Querschnitt des Kanals so ausgebildet, dass sich eine laminare Strömung des Kühlmediums im Kanal einstellt. Insbesondere wird dabei der Weg des Kühlmediums verlängert und somit der Reibungswiderstand erhöht, so dass die Geschwindigkeit des Kühlmediums verringert wird. Folglich reduzieren sich die Geräuschemissionen.
  • Bei einer bevorzugten Ausführungsform bildet die Strömungsführung einen sich vergrößernden Kanalquerschnitt zumindest im Bereich des Sicherheitskessels. Auch dies dient der Verminderung von Geräuschemissionen, da der Kanalquerschnitt kontinuierlich in Richtung Austrittsöffnung zunimmt, was eine Verringerung der Strömungsgeschwindigkeit zur Folge hat.. Das wirkt sich positiv auf den Bedienkomfort der Zentrifuge aus.
  • Günstig ist es, wenn das Formteil aus Schaumstoff, wie PUR, EPP, EPE oder EPS hergestellt ist. Schaumstoff-Formteile können in exakt der gewünschten Form hergestellt werden, haben schalldämpfende Eigenschaften und sind elastisch und relativ kostengünstig.
  • Vorzugsweise beträgt der Querschnitt der Austrittsöffnung zumindest 150% der kleinsten Querschnittsfläche des Kanals. In der Praxis hat sich gezeigt, dass dadurch Strömungsgeschwindigkeit im Bereich der Austrittsöffnung reduziert und somit Geräuschemissionen vermindert werden.
  • Bei einer vorteilhaften Weiterbildung der Erfindung ist die Austrittsöffnung axial betrachtet oberhalb des tiefsten Strömungsverlaufs des Kühlmediums angeordnet. Die Strömungsführung wird dazu vom tiefsten Strömungsverlauf zur Austrittsöffnung nach oben geführt, so dass das Kühlmedium nochmals in weitestgehend axialer Richtung strömt. So wird verhindert dass die vom Motor erzeugten Geräusche ungehindert nach außen dringen können. Dadurch werden die Geräuschemissionen der Zentrifuge weiter reduziert.
  • Sehr günstig ist es weiterhin, wenn die Austrittsöffnung oberhalb eines Antriebsmotors für die Antriebswelle des Rotors angeordnet ist. Dadurch betrifft die oben erläuterte schallisolierende Wirkung auch den Antriebsmotor. Dies ermöglicht eine besonders effiziente Verringerung der Geräuschemissionen.
  • Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in Verbindung mit den in den Zeichnungen dargestellten Ausführungsbeispielen.
  • In der Beschreibung, in den Ansprüchen und in der Zeichnung werden die in der unten aufgeführten Liste der Bezugszeichen verwendeten Begriffe und zugeordneten Bezugszeichen verwendet. In der Zeichnung bedeutet:
  • Fig. 1
    eine seitliche Schnittansicht einer erfindungsgemäßen Zentrifuge;
    Fig. 2
    eine Schnittansicht der in Fig. 1 dargestellten Zentrifuge von vorne;
    Fig. 3
    eine perspektivische seitliche Teilschnittansicht der in den vorangehenden Figuren dargestellten Zentrifuge;
    Fig. 4
    eine Perspektivansicht eines Formteils in geteilter Ausführung, und
    Fig. 5
    die in Fig. 2 gezeigte Schnittansicht der Zentrifuge von vorne mit einer schematischen Darstellung der Luftströmung innerhalb der Zentrifuge.
  • Fig. 1 zeigt eine erfindungsgemäße Zentrifuge 10 in einer seitlichen Schnittansicht, wobei eine Vorderseite VS der Zentrifuge 10 vom Betrachter aus gesehen zur linken Seite weist und eine Rückseite RS zur rechten Seite. Die Figuren 2 und 3 zeigen die Zentrifuge 10 aus unterschiedlichen Perspektiven.
  • Die Zentrifuge 10 ist mit einem Gehäuse 12 versehen. Das Gehäuse 12, auf dessen Oberseite ein Deckel 16 vorgesehen ist, begrenzt einen Innenraum 24 der Zentrifuge 10. In dem Innenraum 24 ist ein Antriebsmotor 36 angeordnet, der über eine Antriebswelle 37 einen auf der Antriebswelle 37 gelagerten, drehfest mit dieser verbundenen und oberhalb des Antriebsmotors 36 gelagerten Rotor 32 antreibt. Der Rotor 32 ist von einem rotationssysmetrischen Sicherheitskessel 26 umgeben, um im Falle eines Crashs oder eines Gefäßbruchs das Risiko von Beschädigung der Zentrifuge 10 sowie von Kontamination des Innenraums 24 und der Umgebung möglichst gering zu halten.
  • Der Sicherheitskessel 26 ist auf einem den Antriebsmotor 36 umgebenden Motorgehäuse 36a gelagert. Rotor 32, Sicherheitskessel 26, Antriebswelle 37 und Antriebsmotor 36 sind konzentrisch zu einer Rotorachse R angeordnet.
  • Zwischen Sicherheitskessel 26 und Motorgehäuse 36a ist ein Faltenbalg 34 zur Entkopplung von im Betrieb auftretenden Vibrationen vorgesehen. Zudem dient der Faltenbalg 34 der Abdichtung einer im Sicherheitskessel 26 vorgesehenen Ausnehmung 27, durch die die Antriebswelle 37 von unten in den Sicherheitskessel 26 eingreift.
  • Im Innenraum 24 der Zentrifuge 10 ist ein Formteil 38 vorgesehen, das zu allen Seiten zumindest bereichsweise am Gehäuse 12 anliegt. Im Bereich des Sicherheitskessels 26 ist der Innendurchmesser des Formteils 38 im Wesentlichen so bemessen, dass das Formteil 38 an der Kesselwandung anliegt, wobei jedoch ein bezogen auf die Rotorachse R schraubenförmig um den Sicherheitskessel 26 verlaufender Kanal 41 eingebracht ist, der von der Führung 40 des Formteils 38 bereichsweise begrenzt ist. Im Querschnitt betrachtet ist die Führung 40 u-förmig ausgebildet. Der Kanal 41 wird somit radial nach außen sowie axial von der Führung 40 des Formteils 38 begrenzt und radial nach innen von der Kesselwandung 28. Das Formteil 38 erstreckt sich von der Unterseite des oberen Wandungsbreichs 12a des Gehäuses 12, auf dem der Deckel 16 im geschlossenen Zustand angeordnet ist, bis zum Boden 12b des Gehäuses. Das Formteil 38 umgreift den Sicherheitskessel 26 vollständig und ist aus üblicherweise aus zwei Teilen aufgebaut, die einfach in das Gehäuse 12 gesteckt sind und mit dem Sicherheitskessel 26 eine Klemmverbindung eingehen. Der Sicherheitskessel 26 wird dabei nur noch von dem Formteil 38 gehalten. Dadurch ist auch der Kanal 41 seitlich an dem Sicherheitskessel 26 abgedichtet.
  • Die in das Formteil 38 eingearbeitete Führung 40 und somit der Kanal 41 umläuft den Sicherheitskessel 26. Unterhalb des Sicherheitskessels 26 verringert sich der radiale Querschnitt graduell, bis die Führung 40 schließlich in eine einheitlich zylinderförmige Innenkontur 39 des Formteils 38 übergeht. Der Durchmesser der Innenkontur 39 entspricht annähernd dem Durchmesser des Sicherheitskessels 26, wobei das Formteil 38 vom Motorgehäuse 36a und vom Sicherheitskessel 26 beabstandet ist.
  • In die Innenkontur 39 ist eine zur Rückseite RS der Zentrifuge weisende Öffnung 42 eingebracht, an die sich ein Austrittskanal 44 anschließt. Der Austrittskanal 44 verläuft von der Öffnung 42 ausgehend zunächst in einem ersten Teilstück 44a orthogonal zur Rotorachse R hin zur Rückseite RS und wird dann benachbart zu einer Gehäuserückwand 12a in einem zweiten Teilstück 44b bis auf Höhe des Faltenbalgs 34 parallel zur Rotorachse R geführt. Dort mündet der Austrittskanal 44 in eine Austrittsöffnung 44, die in die Gehäuserückwand 12a eingebracht ist.
  • Der Deckel 16 der Zentrifuge 10 weist eine nach außen gewölbte Deckenwandung 16a, eine Bodenwandung 16b sowie vier Seitenwandungen 16c auf. In die zur Rückseite RS der Zentrifuge 10 gewandte Seitenwandung 16c ist eine Ansaugöffnung 18 eingebracht. In der Bodenwandung 16b ist eine Einsaugöffnung 20 so angeordnet, dass sie im geschlossenen Zustand des Deckels 16 konzentrisch zur Rotorachse R ist. Ein Ansaugkanal 19 ist in den Deckel 16 eingebracht, der die Ansaugöffnung 18 und die Einsaugöffnung 20 verbindet.
  • In der dem Deckel 16 zugeordneten Oberseite 12b des Gehäuses 12 ist konzentrisch zur Rotorachse R eine Öffnung 14 vorgesehen, deren Durchmesser größer ist als der Durchmesser des Rotors 32, so dass der Rotor 32 bequem beladen und entladen werden kann und auch Wechsel und Wartung des Rotors 32 einfach durchzuführen sind.
  • In der Bodenwandung 16b des Deckels 16 ist um die Einsaugöffnung 20 herum ein Führungsbereich 22 vorgesehen, der beim Schließen des Deckels 16 in die Öffnung 14 des Gehäuses 12 eingreift. Auf der zum Ansaugkanal 19 gewandten Seite schließt der Führungsbereich 22 bündig mit der Bodenwandung 16b ab, während er auf der zum Rotor 32 gewandten Seite von der Rotorachse R ausgehend betrachtet radial schräg nach unten verläuft. An der zum Rotor 32 gewandten Seite bildet der Führungsbereich 22 eine Steuerfläche 22a aus.
  • Durch die Ansaugöffnung 18 in den Ansaugkanal 19 eingetretene Luft strömt durch die Einsaugöffnung 20 in den Innenraum 24 der Zentrifuge 10. Während ein Teil der einströmenden Luftmenge axial auf den unmittelbar unterhalb der Einsaugöffnung 20 befindlichen Rotor 32 zuströmt, strömt ein weiterer Teil der Luftmenge entlang der Steuerfläche 22a auf die Kesselwandung 28 zu, so dass sich die Luft nach dem Eintreten relativ gleichmäßig im Sicherheitskessel 26 verteilt.
  • Vergleichbar mit einem Lüfterrad erzeugt der Rotor 32 durch seine Rotation während des Betriebs einen Unterdruck im Bereich oberhalb des Rotors 32, wodurch weitere Luft aus dem Ansaugkanal 19 im Deckel 16 angesogen wird. Die durch die nachfolgende Luft aus dem Bereich oberhalb des Rotors 32 verdrängte Luft wird in eine spiralförmige Bewegung versetzt und strömt durch einen zwischen der Kesselwandung 28 und einem dem Gehäuse 12 zugeordneten Kante 22b der Steuerfläche 22a gebildeten Spalt 30 in die Führung 40. Entsprechend der gegen den Uhrzeigersinn gerichteten Drehung des Rotors 32 beschreibt die Führung 40 eine zweigängige, linksgängige Schraubenlinie mit einer konstanten Steigung von 100mm. So wird die Luft in einem homogenen Kanal ohne Luftabrisskanten geführt, und die nach dem Eintreten der Luft in die Zentrifuge 10 turbulente Strömung wird zunehmend in eine laminare Strömung überführt.
  • Unterhalb des Sicherheitskessels 26 strömt die Luft aus der Führung 40 in den von der zylinderförmigen Innenkontur 39 des Formteils 38 begrenzten Bereich des Innenraums 24, in dem der Antriebsmotor 36 angeordnet ist. Die Luft umströmt das Motorgehäuse 36a, bevor sie durch den zuvor beschriebenen Austrittskanal 44 zur Austrittsöffnung 46 gelangt, durch die sie die Zentrifuge 10 verlässt. Durch die schraubenförmige Führung 40 bleibt die Zirkulationsbewegung der Kühlluft auch im Bereich des mit der zylindrischen Innenkontur 39 des Formteils 38 begrenzten Innenraums 24 erhalten. Hierdurch wird auch das Motorgehäuse 36a in eine Umfangsrichtung des Motorgehäuses 36a umströmt und dadurch die Kühlwirkung verbessert.
  • Es ist auch denkbar, auf das zweite Teilstück 44b des Austrittskanals 44 zu verzichten, das erste Teilstück 44a bis zum Gehäuse 12 zu führen, und die Austrittsöffnung 46 dort vorzusehen und die Luft dort aus der Zentrifuge 10 abzuführen. Die Ausbildung des zweiten Teilstücks 44b sowie die relativ zum ersten Teilstück 44a nach oben versetzte Anordnung der Austrittsöffnung 46 verbessern jedoch die Schallisolation, Die Schallwellen des Motors und der durch die Drehung des Rotors 32 in Bewegung versetzten Luft in der Zentrifuge 10 werden durch diese Ausbildung und Anordnung des Austrittskanals 44 besser vom Formteil 38 absorbiert als bei einer geradlinigen Führung des Austrittskanals 44.
  • Im in den Figuren 1 bis 3 dargestellten Ausführungsbeispiel wird davon ausgegangen, dass eine vergleichsweise niedrige Kühlleistung erforderlich ist, so dass als Kühlmedium Umgebungsluft verwendet wird. Je nach Anwendungsbereich könnte diese Luft vor dem Eintritt in die Ansaugöffnung 18 noch aktiv gekühlt werden, oder es könnten als Kühlmedium beispielsweise Kohlendioxid oder Stickstoff gewählt werden.
  • Fig. 4 zeigt eine Perspektivansicht eines Formteils 38 in geteilter Ausführung mit zwei achsensymmetrisch ausgebildeten Hälften, wobei vom Betrachter aus die hintere Hälfte die Formteilhälfte 38a ist und die vordere Hälfte die Formteilhälfte 38b. Die geteilte Ausführung erleichtert das Einbringen des Formteils 38 in das Gehäuse 12 der Zentrifuge 10 und somit die Montage. Das Formteil 38 bildet somit einen Gehäuseeinsatz.
  • Das Formteil 38 ist wegen der guten schallisolierenden Eigenschaften aus PUR hergestellt. Auch weitere Schaumstoffe wie EPP, EPE und EPS sind gut geeignet.
  • Hier ist die schraubenförmige Anordnung der Führung 40 gut erkennbar.
  • Fig. 5 zeigt die in Fig. 2 wiedergegebene Schnittansicht der Zentrifuge 10 von vorne mit einer schematischen Darstellung der Luftströmung innerhalb der Zentrifuge 10.
  • Die Luft zur Kühlung tritt von außen über die aus dieser Perspektive nicht erkennbare Ansaugöffnung 18 in den im Deckel 16 angeordneten Ansaugkanal 19 ein. Über die Einsaugöffnung 20 strömt die Luft in den Sicherheitskessel 26 und verteilt sich in dem Bereich zwischen dem Rotor 32 und der an der Unterseite des Deckels 16 vorgesehenen Steuerfläche 22a. Die Luft umströmt den Rotor 32 bereichsweise, wobei sie Wärme entnimmt, und gelangt dann durch den Spalt 30 in die Führung 40.
  • In der schraubenförmig um den Sicherheitskessel 26 herum angeordneten Führung 40 wird die Luft aufgrund der gleichmäßigen Kanalform und des konstanten Neigewinkels beruhigt und zunehmen in eine laminare Strömung überführt. Dabei entnimmt die Luft aus der Kesselwandung 28 Wärme.
  • Je nachdem, an welcher Stelle bezogen auf den Umfangswinkel des Sicherheitskessels 26 die Luft in die Führung 40 eingeströmt ist, gelangt sie nach ca. 0,5 bis 2 Umrundungen des Sicherheitskessels 26 in Führung 40 in den unterhalb des Sicherheitskessels 26 liegenden Innenraum 24 der Zentrifuge 10, wo sie das Motorgehäuse 36a des Antriebsmotors 36 umströmt und ebenfalls Wärme entnimmt.
  • Die Luft gelangt schließlich in das erste Teilstück 44a des Austrittskanals 44, das wie zuvor beschrieben orthogonal zur Rotorachse R verläuft, und weiter zum aus dieser Perspektive nicht erkennbaren zweiten Teilstück 44b, das parallel zur Rotorachse R angeordnet ist. Über die ebenfalls in Fig. 5 nicht erkennbare Austrittsöffnung 46 wird die Wärme transportierende Luft aus der Zentrifuge 10 ausgeblasen.
  • Bezugszeichenliste
  • 10
    Zentrifuge
    12
    Gehäuse
    12a
    Gehäuserückwand
    14
    Öffnung
    16
    Deckel
    16a
    Deckenwandung
    16b
    Bodenwandung
    16c
    Seitenwandungen
    18
    Ansaugöffnung
    19
    Ansaugkanal
    20
    Einsaugöffnung
    22
    Führungsbereich
    22a
    Steuerfläche
    22b
    Kante
    24
    Innenraum
    26
    Sicherheitskessel
    27
    Ausnehmung
    28
    Kesselwandung
    30
    Spalt
    32
    Rotor
    34
    Faltenbalg
    36
    Antriebsmotor
    36a
    Motorgehäuse
    37
    Antriebswelle
    38
    Formteil
    38a, b
    Formteilhälften
    40
    Führung
    41
    Kanal
    42
    Ausnehmung
    44
    Austrittskanal
    44a
    erstes Teilstück
    44b
    zweites Teilstück
    46
    Austrittsöffnung
    R
    Rotorachse
    VS
    Vorderseite
    RS
    Rückseite

Claims (13)

  1. Zentrifuge (10), aufweisend ein Gehäuse (12), einen Rotor (32), einen Sicherheitskessel (26), in dem der Rotor (32) auf einer Antriebswelle (37) gelagert ist, die sich durch den Sicherheitskessel (26) hindurch erstreckt, und einen Zentrifugendeckel (16), der einen Innenraum (24) des Gehäuses (12) begrenzt, wobei in dem Innenraum (24) der Sicherheitskessel (26) vorgesehen ist, ein gasförmiges Kühlmedium über eine Einsaugöffnung (20) in den Innenraum (24) eintritt, den Innenraum (24) durchströmt, dabei über den Rotor (32), seitlich am Sicherheitskessel (26) und zumindest bereichsweise am Antriebsmotor vorbeigeleitet wird, und seitlich durch eine Austrittsöffnung (46) aus dem Innenraum (24) des Gehäuses (12) austritt, wobei für das gasförmige Kühlmedium ein Kanal (41) vorgesehen ist, der zumindest in Teilbereichen spiralförmig um den Sicherheitskessel (26) herum verläuft und zumindest eine Strömungsführung (40) bildet, die den Kanal (41) in radialer Richtung und in axialer Richtung bereichsweise begrenzt, so dass zumindest im Bereich des Sicherheitskessels (26) eine gerichtete Strömung in Richtung um den Sicherheitskessel (26) herum entsteht, dadurch gekennzeichnet, dass die Strömungsführung (40) zumindest durch ein Formteil (38) gebildet ist, der Sicherheitskessel (26) in dem Formteil (38) durch eine Klemmverbindung gelagert ist und im Wesentlichen nur das Formteil (38) den Sicherheitskessel (26) hält oder die Formteile (38) den Sicherheitskessel (26) halten.
  2. Zentrifuge nach Anspruch 1, dadurch gekennzeichnet, dass der Kanal (41) sich bis unterhalb des Sicherheitskessels (26) erstreckt.
  3. Zentrifuge nach Anspruch 1, dadurch gekennzeichnet, dass die Strömungsführung (40) mehrgängig im Bereich des Sicherheitskessels (26) ausgebildet ist, insbesondere mit einer konstanten Steigung.
  4. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsführung (40) als vom Gehäuse (12) separates Bauteil ausgebildet ist.
  5. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsführung (40) lösbar mit dem Gehäuse (12) verbunden ist.
  6. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsführung (40) im Querschnitt u-förmig, halbkreisförmig oder v-förmig ausgebildet ist.
  7. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsführung (40) auf dem Sicherheitskessel (26) aufgebracht ist, oder dass die Strömungsführung (40) an dem Sicherheitskessel (26) anliegt.
  8. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsführung (40) zumindest im Bereich der um den Sicherheitskessel (26) schraubenförmig verlaufenden Ausbildung eine konstante oder zunehmende Neigung im Hinblick auf den Strömungsverlauf aufweist.
  9. Zentrifuge nach Anspruch 8, dadurch gekennzeichnet, dass die Neigung, die Oberflächenausbildung der Strömungsführung (40) und der Querschnitt des Kanals (41) so ausgebildet sind, dass eine laminare Strömung des gasförmigen Kühlmediums durch den Kanal (41) ermöglicht wird.
  10. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsführung (40) einen sich vergrößernden Kanalquerschnitt zumindest im Bereich des Sicherheitskessels (26) bildet.
  11. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Formteil (38) aus Schaumstoff, wie PUR, EPP, EPE oder EPS hergestellt ist.
  12. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Querschnitt der Austrittsöffnung (46) zumindest 150% der kleinsten Querschnittsfläche des Kanals (41) beträgt.
  13. Zentrifuge nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Austrittsöffnung (46) axial betrachtet oberhalb des tiefsten Strömungsverlaufs des Kühlmediums angeordnet ist, oder dass die Austrittsöffnung (46) oberhalb eines Antriebsmotors (36) für die Antriebswelle (37) des Rotors (32) angeordnet ist.
EP16182783.7A 2015-08-27 2016-08-04 Zentrifuge Active EP3135381B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16182783T PL3135381T3 (pl) 2015-08-27 2016-08-04 Wirówka

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015216447.0A DE102015216447A1 (de) 2015-08-27 2015-08-27 Zentrifuge

Publications (2)

Publication Number Publication Date
EP3135381A1 EP3135381A1 (de) 2017-03-01
EP3135381B1 true EP3135381B1 (de) 2019-10-23

Family

ID=56571245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16182783.7A Active EP3135381B1 (de) 2015-08-27 2016-08-04 Zentrifuge

Country Status (6)

Country Link
US (1) US10350615B2 (de)
EP (1) EP3135381B1 (de)
JP (1) JP6378723B2 (de)
CN (1) CN106475237B (de)
DE (1) DE102015216447A1 (de)
PL (1) PL3135381T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216447A1 (de) * 2015-08-27 2017-03-02 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102017111479A1 (de) * 2017-05-24 2018-11-29 Hengst Se Verfahren zum Betreiben eines Zentrifugalabscheiders
DE102018114450A1 (de) * 2018-06-15 2019-12-19 Eppendorf Ag Temperierte Zentrifuge mit Crashschutz
JP7044685B2 (ja) * 2018-10-31 2022-03-30 エッペンドルフ・ハイマック・テクノロジーズ株式会社 遠心機
EP3725413B1 (de) * 2019-04-16 2024-07-03 Eppendorf SE Zentrifugentemperierung
CN111530644A (zh) * 2020-04-22 2020-08-14 珠海华硕医疗器械有限公司 用于医用离心机的风冷控温结构
CN113441288B (zh) * 2021-06-10 2022-11-15 青岛海特生物医疗有限公司 离心机

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2699289A (en) * 1950-09-02 1955-01-11 Custom Scient Instr Inc High-speed centrifuge
GB925665A (en) * 1959-10-22 1963-05-08 Lourdes Instr Company Improvements in or relating to a refrigerated centrifuge
US2917229A (en) * 1958-04-17 1959-12-15 Lourdes Instr Company Refrigerated centrifuge
US3148146A (en) * 1962-05-25 1964-09-08 Clay Adams Inc Centrifuge
US3339836A (en) * 1965-02-02 1967-09-05 Internat Equipment Company Centrifuges
US3860166A (en) * 1972-04-18 1975-01-14 Anderson Lab Inc Apparatus for separating moisture from solids
JPS5453772U (de) * 1977-09-24 1979-04-13
JPS54132065U (de) * 1978-03-07 1979-09-13
JPS57937Y2 (de) * 1978-03-13 1982-01-07
JPS54132065A (en) 1978-04-04 1979-10-13 Nissan Motor Co Ltd Lock-up clutch piston of lock-up torque converter
JPH02280853A (ja) * 1989-04-21 1990-11-16 Hitachi Koki Co Ltd 冷却遠心機
DE4014439C1 (en) * 1990-05-05 1991-07-04 Heraeus Sepatech Gmbh, 3360 Osterode, De Laboratory centrifuge, with no contamination risk in cooling system - has air sucked into the housing and distributed by impeller to the side-walls of aerosol tight vessel, which surrounds the rotor
US5490830A (en) * 1994-04-12 1996-02-13 Global Focus Marketing & Distribution Air-cooled biohazard centrifuge
DE19615702C1 (de) * 1996-04-22 1997-10-02 Heraeus Instr Gmbh Labor-Zentrifuge
JPH1085627A (ja) * 1996-09-18 1998-04-07 Kubota Seisakusho:Kk 空冷式遠心分離機
SE0102219D0 (sv) * 2001-06-21 2001-06-21 Alphahelix Ab Thermocycling device and rotor means therefor
SE0203413D0 (sv) * 2002-11-19 2002-11-19 Alphahelix Ab Device and rotor means therefor
DE10316897B4 (de) * 2003-04-12 2005-06-02 Kendro Laboratory Products Gmbh Zentrifuge mit luftgekühltem Motor
DE10355179B4 (de) * 2003-11-26 2007-07-12 Thermo Electron Led Gmbh Luftgekühlte Zentrifuge
US7192394B1 (en) * 2005-12-27 2007-03-20 Thermo Fisher Scientific Inc. Air-cooled centrifuge
JP2008284517A (ja) 2007-05-21 2008-11-27 Hitachi Koki Co Ltd 遠心分離機
JP2008307219A (ja) * 2007-06-14 2008-12-25 Hitachi Koki Co Ltd 遠心分離機
JP5007956B2 (ja) * 2008-03-31 2012-08-22 日立工機株式会社 遠心分離機
CN201216967Y (zh) * 2008-06-20 2009-04-08 上海力申科学仪器有限公司 离心通风降温结构
CN101455999B (zh) * 2008-12-26 2012-10-31 上海力申科学仪器有限公司 一种台式高速离心机
DE102009004748B4 (de) * 2009-01-15 2013-05-29 Thermo Electron Led Gmbh Geräuscharme Rotorkammer für eine Zentrifuge
JP5590307B2 (ja) * 2010-05-26 2014-09-17 日立工機株式会社 遠心分離機
DE102010036106A1 (de) * 2010-09-01 2012-03-01 Eppendorf Ag Schaumformschale für einen Zentrifugenkessel, Zentrifugenkessel, Verfahren zur Herstellung einer den Kessel einer Zentrifuge umgebenden thermischen Isolierung und Zentrifuge
CN202191968U (zh) * 2011-08-31 2012-04-18 大龙兴创实验仪器(北京)有限公司 一种离心机的风冷装置
DE202012008062U1 (de) * 2012-08-24 2012-10-01 Sigma Laborzentrifugen Gmbh Rotor für eine Laborzentrifuge
DE102012021986B4 (de) * 2012-11-07 2015-12-31 Thermo Electron Led Gmbh Standzentrifuge in modularer Bauweise
DE102015216447A1 (de) * 2015-08-27 2017-03-02 Andreas Hettich Gmbh & Co. Kg Zentrifuge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3135381A1 (de) 2017-03-01
US10350615B2 (en) 2019-07-16
CN106475237B (zh) 2019-08-20
JP6378723B2 (ja) 2018-08-22
PL3135381T3 (pl) 2020-05-18
JP2017051945A (ja) 2017-03-16
CN106475237A (zh) 2017-03-08
US20170056893A1 (en) 2017-03-02
DE102015216447A1 (de) 2017-03-02

Similar Documents

Publication Publication Date Title
EP3135381B1 (de) Zentrifuge
EP1703618B1 (de) Luftgekühlter Elektromotor
DE102012201712B4 (de) Gebläseeinheit
DE102011051489C5 (de) Gebläse-Luftansaugungsvorrichtung
DE10333544A1 (de) Wärmeabführeinrichtung und Gehäuse für diese
DE102009039783B4 (de) Zentrifugalgebläse
EP2566015B1 (de) Elektromotor
WO2006037737A1 (de) Gehäuse für eine elektrische maschine
DE10211548A1 (de) Zentrifugalgebläse mit Geräuschreduzierungsstruktur
DE202016105887U1 (de) Aufbau eines Motors mit Wärmeableitungsfunktion
EP2827997B1 (de) Rotor für eine laborzentrifuge
WO2017050427A1 (de) Lüftereinheit
DE102019103541A1 (de) Kühlmodul mit Axialgebläse für Fahrzeuge, insbesondere für Elektrofahrzeuge
EP2600978B1 (de) Zentrifuge mit kompressorkühlung
DE202016105605U1 (de) Aufbau eines Motors mit verbesserter Wärmeableitung
DE102015205318B4 (de) Fahrzeug mit einem Verbrennungsmotor und einer Abgasanlage, welche einen Schalldämpfer aufweist
DE202016105551U1 (de) Motor mit einem Wärmeableitungsaufbau
DE1628361A1 (de) Zentrifugalgeblaese
DE69119854T2 (de) Seitenkanalgebläse
WO2016113264A2 (de) Unterwasser-antriebs-einheit
DE3523223A1 (de) Als motorhalter ausgebildete luefterzarge
DE112016003731B4 (de) Vertikale Lagervorrichtung
DE102005026423B4 (de) Wärme ableitende Vorrichtung
EP3725413B1 (de) Zentrifugentemperierung
DE202018106698U1 (de) Radiallüfter mit integrierter Kühlfunktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170601

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1193086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007193

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007193

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200804

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1193086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210804

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230721

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240826

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240823

Year of fee payment: 9