EP3127992A1 - Additive zur verminderung der metallaufnahme in brennstoffen - Google Patents
Additive zur verminderung der metallaufnahme in brennstoffen Download PDFInfo
- Publication number
- EP3127992A1 EP3127992A1 EP16185196.9A EP16185196A EP3127992A1 EP 3127992 A1 EP3127992 A1 EP 3127992A1 EP 16185196 A EP16185196 A EP 16185196A EP 3127992 A1 EP3127992 A1 EP 3127992A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- additive
- substituted
- hydrocarbon
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 152
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 59
- 239000002184 metal Substances 0.000 title claims abstract description 59
- 239000000654 additive Substances 0.000 title claims description 118
- 239000000203 mixture Substances 0.000 claims abstract description 156
- 238000000034 method Methods 0.000 claims abstract description 70
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 64
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 62
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 60
- 239000002816 fuel additive Substances 0.000 claims abstract description 43
- 239000002253 acid Substances 0.000 claims abstract description 29
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 23
- 150000008064 anhydrides Chemical class 0.000 claims abstract description 18
- 150000007513 acids Chemical class 0.000 claims abstract description 15
- 230000000996 additive effect Effects 0.000 claims description 75
- 239000003795 chemical substances by application Substances 0.000 claims description 59
- 150000002430 hydrocarbons Chemical class 0.000 claims description 51
- 239000002270 dispersing agent Substances 0.000 claims description 31
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 22
- 239000011701 zinc Substances 0.000 claims description 22
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 21
- 150000002739 metals Chemical class 0.000 claims description 21
- 230000001590 oxidative effect Effects 0.000 claims description 21
- 229910052725 zinc Inorganic materials 0.000 claims description 21
- 229920002367 Polyisobutene Polymers 0.000 claims description 18
- 239000002283 diesel fuel Substances 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 15
- 150000001412 amines Chemical class 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 11
- 229960002317 succinimide Drugs 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000003599 detergent Substances 0.000 claims description 9
- 150000003839 salts Chemical group 0.000 claims description 9
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 6
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000003225 biodiesel Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 abstract description 12
- 150000001336 alkenes Chemical class 0.000 description 24
- -1 ethylene, propylene, 1-butene Chemical class 0.000 description 22
- 239000004711 α-olefin Substances 0.000 description 21
- 229920000098 polyolefin Polymers 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 16
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000012141 concentrate Substances 0.000 description 12
- 125000001302 tertiary amino group Chemical group 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000007795 chemical reaction product Substances 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 8
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 7
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000539 dimer Substances 0.000 description 7
- 239000003502 gasoline Substances 0.000 description 7
- 150000005673 monoalkenes Chemical class 0.000 description 7
- 229940014800 succinic anhydride Drugs 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000005864 Sulphur Substances 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 239000002551 biofuel Substances 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 238000006683 Mannich reaction Methods 0.000 description 3
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 150000004702 methyl esters Chemical class 0.000 description 3
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920001083 polybutene Polymers 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- SPURMHFLEKVAAS-UHFFFAOYSA-N 1-docosene Chemical compound CCCCCCCCCCCCCCCCCCCCC=C SPURMHFLEKVAAS-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- ADOBXTDBFNCOBN-UHFFFAOYSA-N 1-heptadecene Chemical compound CCCCCCCCCCCCCCCC=C ADOBXTDBFNCOBN-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- PJLHTVIBELQURV-UHFFFAOYSA-N 1-pentadecene Chemical compound CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- NHLUYCJZUXOUBX-UHFFFAOYSA-N nonadec-1-ene Chemical compound CCCCCCCCCCCCCCCCCC=C NHLUYCJZUXOUBX-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- ZDLBWMYNYNATIW-UHFFFAOYSA-N tetracos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCC=C ZDLBWMYNYNATIW-UHFFFAOYSA-N 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- AZZDBAMLOMKUQR-UHFFFAOYSA-N 1-(diethylamino)butan-1-ol Chemical compound CCCC(O)N(CC)CC AZZDBAMLOMKUQR-UHFFFAOYSA-N 0.000 description 1
- VKKTUDKKYOOLGG-UHFFFAOYSA-N 1-(diethylamino)propan-1-ol Chemical compound CCC(O)N(CC)CC VKKTUDKKYOOLGG-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- CJNRGSHEMCMUOE-UHFFFAOYSA-N 2-piperidin-1-ylethanamine Chemical compound NCCN1CCCCC1 CJNRGSHEMCMUOE-UHFFFAOYSA-N 0.000 description 1
- PYSGFFTXMUWEOT-UHFFFAOYSA-N 3-(dimethylamino)propan-1-ol Chemical compound CN(C)CCCO PYSGFFTXMUWEOT-UHFFFAOYSA-N 0.000 description 1
- KDHWOCLBMVSZPG-UHFFFAOYSA-N 3-imidazol-1-ylpropan-1-amine Chemical compound NCCCN1C=CN=C1 KDHWOCLBMVSZPG-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229920002368 Glissopal ® Polymers 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MRNZSTMRDWRNNR-UHFFFAOYSA-N bis(hexamethylene)triamine Chemical compound NCCCCCCNCCCCCCN MRNZSTMRDWRNNR-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 150000008050 dialkyl sulfates Chemical group 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- JTOGFHAZQVDOAO-UHFFFAOYSA-N henicos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCC=C JTOGFHAZQVDOAO-UHFFFAOYSA-N 0.000 description 1
- IZKZIDXHCDIZKY-UHFFFAOYSA-N heptane-1,1-diamine Chemical class CCCCCCC(N)N IZKZIDXHCDIZKY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical class CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 1
- 125000000743 hydrocarbylene group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000003949 imides Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- NYIODHFKZFKMSU-UHFFFAOYSA-N n,n-bis(methylamino)ethanamine Chemical compound CCN(NC)NC NYIODHFKZFKMSU-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- KJOMYNHMBRNCNY-UHFFFAOYSA-N pentane-1,1-diamine Chemical class CCCCC(N)N KJOMYNHMBRNCNY-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical class NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- ZZYXNRREDYWPLN-UHFFFAOYSA-N pyridine-2,3-diamine Chemical class NC1=CC=CN=C1N ZZYXNRREDYWPLN-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/1881—Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
- C10L1/1883—Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
Definitions
- the present invention relates to fuel additives, fuel additive compositions and fuel compositions as well as a method for fueling an internal combustion engine, providing reduced oxidative metal pick-up in fuels.
- Trace metals like these can enter the fuel distribution system through contamination, or through the pick-up (dissolution) of metal, by the fuel, from metals parts that make up part of the fuel distribution system with which the fuel comes into contact.
- diesel fuel may pick up zinc from galvanized steel surfaces in fuel tanks, resulting in elevated zinc levels in fuels, which may lead to the accelerated injector fouling, discussed above.
- Zinc, and other metals may also be picked up by the fuel by contacting such metal-containing surfaces in the vehicle fuel injection system.
- Fuel additives, fuel additive compositions and fuel compositions have been discovered which reduce the amount of metal pick-up seen in fuel compositions.
- the present invention provides for such compositions as well as a method of reducing contaminant metal pick-up, such as zinc pick-up, in fuel compositions.
- an additive comprising a hydrocarbon substituted with at least two carboxy functionalities in the form of acids or at least one carboxy functionality in the form an anhydride, to a fuel composition results in the reduction of the amount of oxidative metals pick-up in the fuel composition.
- the substituted hydrocarbon additive is a hydrocarbyl substituted acylating agent with at least two carboxy functionalities in the form of acids or anhydrides.
- the substituted hydrocarbon additive and/or hydrocarbyl substituted acylating agent has di-acid functionality.
- the additive is a succinic acylating agent.
- the hydrocarbyl group of the additive is derived from polyisobutylene.
- the metal, for which pick-up is being reduced include group IV transition metals.
- the metal is V, Cr, Mn, Fe, Co, Ni, Cu, Zn, or combinations thereof.
- the metal may be selected from the group consisting of copper, zinc, iron, or combinations thereof.
- the oxidative metal is zinc.
- the oxidative metal, for which the tendency of fuel composition to pick up is being reduced may be any of the metals, or groups of metals, described above except iron.
- the substituted hydrocarbon additive may be: (a) a hydrocarbyl substituted succinic anhydride; (b) a hydrolyzed hydrocarbyl substituted succinic anhydride; or (c) combinations thereof.
- the fuel being treated in the method is susceptible to pick up of oxidative metals to a level greater than 0.5 ppm when left in contact for an extended period of time with solid materials containing said metal.
- the method of the present invention may also result in the reduction of injector deposits in an engine in which the fuel composition of the method is applied.
- the present invention also provides a fuel composition comprising: (a) a fuel; (b) an additive comprising the substituted hydrocarbon additive describe herein; and (c) optional additional performance additives.
- the present invention also provides a fuel additive composition comprising: (a) an optional solvent; (b) the substituted hydrocarbon additive described herein; and (c) optional additional performance additives.
- the present invention involves a fuel additive, a fuel additive composition, a fuel composition and a method for fueling an internal combustion engine.
- the invention provides a method of reducing metal-pick, and in some embodiments zinc pick-up, in a fuel composition, in some embodiment during the operation of an internal combustion engine.
- composition of the present invention may be used in fuel compositions to reduce their tendency to pick-up metals from surfaces with which they come into contact.
- the additive compositions of the present invention may also provide comparable and/or improved detergency, specifically improved engine deposit control when they are used in fuel compositions. These characteristics allow for improved engine performance, including but not limited to reductions in injector fouling, reduced deposit-caused engine power losses, reduced deposit-caused fuel economy losses and reduced deposit-caused engine emissions.
- the substituted hydrocarbon additive of the present invention comprises a hydrocarbon substituted with at least two carboxy functionalities in the form of acids or at least one carboxy functionality in the form an anhydride.
- the additive is a hydrocarbon substituted with at least two carboxy functionalities in the form of acids or anhydrides.
- the additive is a hydrocarbyl-substituted succinic acylating agent.
- the substituted hydrocarbon additive is a dimer acid compound.
- the substituted hydrocarbon additive of the present invention includes a combination of two or more of the additives described in this section.
- substituted hydrocarbon additives of the present invention when used in the compositions and method described herein, reduce the tendency of fuel compositions in which they are used to pick up metals.
- the substituted hydrocarbon additives include dimer acids.
- Dimer acids are a type of di-acid polymer derived from fatty acids and/or polyolefins, including the ployalkenes described herein, which contain acid functionality.
- the dimer acid used in the present invention is derived from C10 to C20 polyolefins, C12 to C18 polyolefins, and/or C16 to C18 polyolfines.
- the substituted hydrocarbon additives include succinic acids, halides, anhydrides and combination thereof.
- the agents are acids or anhydrides, and in other embodiments the agents are anhydrides, and in still other embodiments the agents are hydrolyzed anhydrides.
- the hydrocarbon of the substituted hydrocarbon additive and/or the primary hydrocarbyl group of the hydrocarbyl-substituted succinic acylating agent generally contains an average of at least about 8, or about 30, or about 35 up to about 350, or to about 200, or to about 100 carbon atoms.
- the hydrocarbyl group is derived from a polyalkene.
- the polyalkene may be characterized by a Mn (number average molecular weight) of at least about 300.
- Mn number average molecular weight
- the polyalkene is characterized by an Mn of about 500, or about 700, or about 800, or even about 900 up to about 5000, or to about 2500, or to about 2000, or even to about 1500.
- n varies between about 300, or about 500, or about 700 up to about 1200 or to about 1300.
- the polyalkenes include homopolymers and interpolymers of polymerizable olefin monomers of 2 to about 16 or to about 6, or to about 4 carbon atoms.
- the olefins may be monoolefins such as ethylene, propylene, 1-butene, isobutene, and 1-octene; or a polyolefinic monomer, such as diolefinic monomer, such 1,3-butadiene and isoprene.
- the interpolymer is a homopolymer.
- An example of a polymer is a polybutene. In one instance about 50% of the polybutene is derived from isobutylene.
- the polyalkenes are prepared by conventional procedures.
- the hydrocarbyl groups are derived from polyalkenes having an n of at least about 1300, or about 1500, or about 1600 up to about 5000, or to about 3000, or to about 2500, or to about 2000, or to about 1800, and the Mw/Mn is from about 1.5 or about 1.8, or about 2, or to about 2.5 to about 3.6, or to about 3.2.
- the polyalkene is polyisobutylene with a molecular weight of 800 to 1200.
- the substituted hydrocarbon and/or succinic acylating agents are prepared by reacting the above described polyalkene with an excess of maleic anhydride to provide substituted succinic acylating agents wherein the number of succinic groups for each equivalent weight of substituent group is at least 1.3, or to about 1.5, or to about 1.7, or to about 1.8. The maximum number generally will not exceed 4.5, or to about 2.5, or to about 2.1, or to about 2.0.
- the polyalkene here may be any of those described above.
- the hydrocarbon and/or hydrocarbyl group contains an average from about 8, or about 10, or about 12 up to about 40, or to about 30, or to about 24, or to about 20 carbon atoms. In one embodiment, the hydrocarbyl group contains an average from about 16 to about 18 carbon atoms. In another embodiment, the hydrocarbyl group is tetrapropenyl group. In one embodiment, the hydrocarbyl group is an alkenyl group.
- the hydrocarbon and/or hydrocarbyl group may be derived from one or more olefins having from about 2 to about 40 carbon atoms or oligomers thereof. These olefins are preferably alpha-olefins (sometimes referred to as mono-1-olefins) or isomerized alpha-olefins.
- alpha-olefins examples include ethylene, propylene, butylene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 1-henicosene, 1-docosene, 1-tetracosene, etc.
- alpha-olefin fractions that may be used include the C 15-18 alpha-olefins, C 12-16 alpha-olefins, C 14-16 alpha-olefins, C 14-18 alpha-olefins, C 16-18 alpha-olefins, C 16-20 alpha-olefins, C 22-28 alpha-olefins, etc.
- the olefins are C 16 and C 16-18 alpha-olefins.
- C 30 + alpha-olefin fractions such as those available from Gulf Oil Company under the name Gulftene can be used.
- the olefin monomers include ethylene, propylene and 1-butene.
- Isomerized alpha-olefins are alpha-olefins that have been converted to internal olefins.
- the isomerized alpha-olefins suitable for use herein are usually in the form of mixtures of internal olefins with some alpha-olefins present.
- the procedures for isomerizing alpha-olefins are well known to those in the art. Briefly these procedures involve contacting alpha-olefin with a cation exchange resin at a temperature in a range of about 80° to about 130°C until the desired degree of isomerization is achieved. These procedures are described for example in U.S. 4,108,889 which is incorporated herein by reference.
- the mono-olefins may be derived from the cracking of paraffin wax.
- the wax cracking process yields both even and odd number C 6-20 liquid olefins of which 85% to 90% are straight chain 1-olefins.
- the balance of the cracked wax olefins is made up of internal olefins, branched olefins, diolefins, aromatics and impurities. Distillation of the C 6-20 liquid olefins, obtained from the wax cracking process, yields fractions (e.g., C 15-18 alpha-olefins) which are useful in preparing the succinic acylating agents.
- mono-olefins can be derived from the ethylene chain growth process. This process yields even numbered straight-chain 1-olefins from a controlled Ziegler polymerization.
- Other methods for preparing the mono-olefins include chlorination-dehydrochlorination of paraffin and catalytic dehydrogenation of paraffins.
- Succinic acylating agents are prepared by reacting the above-described olefins, isomerized olefins or oligomers thereof with unsaturated carboxylic acylating agents, such as itaconic, citraconic, or maleic acylating agents at a temperature of about 160°, or about 185°C up to about 240°C, or to about 210°C.
- unsaturated carboxylic acylating agents such as itaconic, citraconic, or maleic acylating agents at a temperature of about 160°, or about 185°C up to about 240°C, or to about 210°C.
- Maleic acylating agents are the preferred unsaturated acylating agent.
- the procedures for preparing the acylating agents are well known to those skilled in the art and have been described for example in U.S. Patent 3,412,111 ; and Ben et al, "The Ene Reaction of Maleic Anhydride With Alkenes", J
- the alkenyl group is derived from oligomers of lower olefins, i.e., olefins containing from 2 to about 6, or about 4 carbon atoms. Examples of these olefins include ethylene, propylene and butylene.
- the olefin, olefin oligomer, or polyalkene may be reacted with the carboxylic reagent such that there is at least one mole of carboxylic reagent for each mole of olefin, olefin oligomer, or polyalkene that reacts.
- an excess of carboxylic reagent is used. In one embodiment, this excess is between about 5% to about 25%. In another embodiment, the excess is greater than 40%, or greater than 50%, and even greater than 70%.
- substituted hydrocarbon additives and/or hydrocarbyl substituted succinic acylating agents suitable for use in the present invention contain di-acid functionality.
- the hydrocarbyl group of the hydrocarbyl substituted succinic acylating agent is derived from polyisobutylene and the di-acid functionality of the agent is derived from carboxylic acid groups, such as hydrocarbyl substituted succinic acid.
- the hydrocarbyl substituted acylating agent comprises one or more hydrocarbyl substituted succinic anhydride groups. In some embodiments the hydrocarbyl substituted acylating agent comprises one or more hydrolyzed hydrocarbyl substituted succinic anhydride groups.
- hydrocarbyl substituents of the acylating agents described above are derived from homopolymers and/or copolymers containing 2 to 10 carbon atoms. In some embodiments the hydrocarbyl substituents of any of the acylating agents described above are derived from polyisobutylene.
- the fuel additives of the present invention can be solids, semi-solids, or liquids (oils) depending on the particular alcohol(s) and/or amine(s) used in preparing them.
- the fuel additives are advantageously soluble and/or stably dispersible in such oleaginous compositions.
- compositions intended for use in fuels are typically fuel-soluble and/or stably dispersible in a fuel in which they are to be used.
- fuel-soluble as used in this specification and appended claims does not necessarily mean that all the compositions in question are miscible or soluble in all proportions in all fuels.
- composition is soluble in a fuel (hydrocarbon, non-hydrocarbon, mixtures, etc) in which it is intended to function to an extent which permits the solution to exhibit one or more of the desired properties.
- a fuel hydrocarbon, non-hydrocarbon, mixtures, etc
- solutions it is not necessary that such "solutions" be true solutions in the strict physical or chemical sense. They may instead be micro-emulsions or colloidal dispersions which, for the purpose of this invention, exhibit properties sufficiently close to those of true solutions to be, for practical purposes, interchangeable with them within the context of this invention.
- the anti-metal pick-up additives of this invention are useful as additives for fuels, in which they may also function as detergents.
- the fuel additives of the present invention can be present in fuel compositions at 1 to 10,000 ppm (where ppm is calculated on a weight:weight basis).
- the fuel additive is present in fuel compositions in ranges with lower limits of 1, 3, 5, 10, 50, 100, 150 and 200 ppm and upper limits of 10,000, 7,500, 5,000, and 2,500 where any upper limit may be combined with any lower limit to provide a range for the fuel additive present in the fuel compositions.
- the additives of the present invention may form salts or other complexes and/or derivatives, when interacting with other components of the compositions in which they are used. Such forms of these additives are also part of the present invention and are include in the embodiment described herein.
- Some of the succinic acylating agents of the present invention and the processes for making them are disclosed in U.S. Pat. Nos. 5,739,356 ; 5,777,142 ; 5,786,490 ; 5,856,524 ; 6,020,500 ; and 6,114,547 which are hereby incorporated by reference.
- Other methods of making the hydrocarbyl substituted acylating agent can be found in U.S. Pat. Nos.
- succinic acylating agents of the present invention are prepared by the thermal process and/or chlorine free process only, as described in EP0355895 hereby incorporated by reference.
- the fuel additive composition of the present invention comprises the fuel additive described above and further comprises a solvent and/or one or more additional performance additives.
- additive compositions also known as additive concentrates and/or concentrates, may be used to prepare fuel compositions by adding the additive composition to an non-additized fuel.
- the solvents suitable for use in the present invention include hydrocarbon solvents that provide for the additive composition's compatibility and/or homogeneity and to facilitate their handling and transfer and may include a fuel as described below.
- the solvent can be an aliphatic hydrocarbon, an aromatic hydrocarbon, an oxygen-containing composition, or a mixture thereof.
- the flash point of the solvent is generally about 25°C or higher.
- the hydrocarbon solvent is an aromatic naphtha having a flash point above 62°C or an aromatic naphtha having a flash point of 40°C or a kerosene with a 16% aromatic content having a flash point above 62°C.
- Aliphatic hydrocarbons include various naphtha and kerosene boiling point fractions that have a majority of aliphatic components.
- Aromatic hydrocarbons include benzene, toluene, xylenes and various naphtha and kerosene boiling point fractions that have a majority of aromatic components.
- Alcohols are usually aliphatic alcohols having about 2 to 10 carbon atoms and include ethanol, 1-propanol, isopropyl alcohol, 1-butanol, isobutyl alcohol, amyl alcohol, and 2-methyl-1-butanol.
- the oxygen containing composition can include an alcohol, a ketone, an ester of a carboxylic acid, a glycol and/or a polyglycol, or a mixture thereof.
- the solvent in an embodiment of the invention will be substantially free of to free of sulphur having a sulphur content in several instances that is below 50 ppm, 25 ppm, below 18 ppm, below 10 ppm, below 8 ppm, below 4 ppm, or below 2 ppm.
- the solvent can be present in the additive concentrate composition at 0 to 99 percent by weight, and in other instances at 3 to 80 percent by weight, or 10 to 70 percent by weight.
- the friction modifier of the present invention and the additional performance additives taken separately or in combination can be present in the additive concentrate composition at 0.01 to 100 percent by weight, and in other instances can be present at 0.01 to 95 percent by weight, at 0.01 to 90 percent by weight, or at 0.1 to 80 percent by weight.
- the additive concentrate may comprise the fuel additive of the present invention and be substantially free of any additional solvent.
- the additive concentrate containing the fuel additive of the present invention is neat, in that it does not contain any additional solvent added to improve the material handling characteristics of the concentrate, such as its viscosity.
- the fuel composition, fuel additive concentrate, and/or the fuel additive itself are substantially free of or free of at least one member selected from the group consisting of sulphur, phosphorus, sulfated ash, and combinations thereof, and in other embodiments the fuel composition contains less than 50 ppm, 20 ppm, less than 15 ppm, less than 10 ppm, or less than 1 ppm of any one or all of these members.
- the additive concentrate composition, or a fuel composition containing the fuel additive of the present invention may be prepared by admixing or mixing the components of the composition at ambient to elevated temperatures usually up to 60°C until the composition is homogeneous.
- the fuel composition of the present invention comprises the fuel additive described above and a liquid fuel, and is useful in fueling an internal combustion engine.
- a fuel may also be a component of the additive compositions described above.
- the fuels suitable for use in the present invention include any commercially available fuels, and in some embodiments any commercially available diesel fuels and/or biofuels. In other embodiments, the fuels suitable for use in the present invention include any commercially available fuels which are susceptible to metal pick up, and in some embodiments any commercially available diesel fuels and/or biofuels susceptible to metal pick up.
- the fuels suitable for use in the present invention are any fuels, or any diesel fuels and/or biofuels, which are susceptible to pick up of oxidative metals to a level greater than 0.5 ppm when left in contact for an extended period of time with solid materials containing said metal.
- the exposure time involved is greater than 72 hours, greater than 48 hours, or greater than 24 hours.
- the present invention includes fuel compositions and fuel additive concentrate compositions which may contain fuel.
- the fuel used in these compositions may or may not exhibit a propensity to pick up oxidative metal, and may in fact be any of the fuels described in this application or combinations thereof.
- the fuel used in these compositions need not be the same fuel to which the additive of the present invention may be added in the methods described herein. That is, the additive of the present invention may be present in a composition that also comprises a fuel. This fuel may or may not exhibit a propensity to pick up oxidative metal.
- the additive-containing composition may then be added to a fuel and/or fuel additive composition.
- the identity of the fuel present in this composition is independent of the identity of the optional fuel component in the additive containing composition.
- the oxidative metal pick-up propensity of the fuel and/or fuel additive composition may be a result of the properties of the fuel and/or the properties of one or more of the additives present in the fuel and /or additive composition.
- the addition of the additive-containing compositions, as described in the method and compositions of the present invention result in a reduction of the oxidative metal pick-up propensity of the fuel and/or fuel additive compositions.
- Fuels suitable for use in the present invention are not overly limited. Generally, suitable fuels are normally liquid at ambient conditions e.g., room temperature (20 to 30°C).
- the liquid fuel can be a hydrocarbon fuel, a non-hydrocarbon fuel, or a mixture thereof.
- the hydrocarbon fuel can be a petroleum distillate, including a gasoline as defined by ASTM specification D4814, or a diesel fuel, as defined by ASTM specification D975.
- the liquid fuel is a gasoline, and in another embodiment the liquid fuel is a non-leaded gasoline.
- the liquid fuel is a diesel fuel.
- the hydrocarbon fuel can be a hydrocarbon prepared by a gas to liquid process to include for example hydrocarbons prepared by a process such as the Fischer-Tropsch process.
- the fuel used in the present invention is a diesel fuel, a biodiesel fuel, or combinations thereof.
- the non-hydrocarbon fuel can be an oxygen containing composition, often referred to as an oxygenate, which includes an alcohol, an ether, a ketone, an ester of a carboxylic acid, a nitroalkane, or a mixture thereof.
- the non-hydrocarbon fuel can include for example methanol, ethanol, methyl t-butyl ether, methyl ethyl ketone, transesterified oils and/or fats from plants and animals such as rapeseed methyl ester and soybean methyl ester, and nitro-methane.
- hydrocarbon and non-hydrocarbon fuels can include, for example, gasoline and methanol and/or ethanol, diesel fuel and ethanol, and diesel fuel and a transesterified plant oil such as rapeseed methyl ester and other bio-derived fuels.
- the liquid fuel is an emulsion of water in a hydrocarbon fuel, a non-hydrocarbon fuel, or a mixture thereof.
- the liquid fuel can have a sulphur content on a weight basis that is 5000 ppm or less, 1000 ppm or less, 300 ppm or less, 200 ppm or less, 30 ppm or less, or 10 ppm or less.
- the liquid fuel of the invention is present in a fuel composition in a major amount that is generally greater than 95% by weight, and in other embodiments is present at greater than 97% by weight, greater than 99.5% by weight, or greater than 99.9% by weight.
- the additive compositions and fuel compositions of the present invention can further comprise one or more additional performance additives.
- Additional performance additives can be added to a fuel composition depending on several factors to include the type of internal combustion engine and the type of fuel being used in that engine, the quality of the fuel, and the service conditions under which the engine is being operated.
- the additional performance additives described herein may increase the tendency of a fuel composition to pick-up metals such as zinc.
- the use of the present invention in such situations can reduce and/or eliminate this impact of the additional additives.
- the additional performance additives can include: an antioxidant such as a hindered phenol or derivative thereof and/or a diarylamine or derivative thereof; a corrosion inhibitor; and/or a detergent/dispersant additive, other than the fuel additive of the present invention, such as a polyetheramine or nitrogen containing detergent, including but not limited to PIB amine dispersants, quaternary salt dispersants, and succinimide dispersants including derivates of succinimide dispersants such as quaternary ammonium salts thereof.
- an antioxidant such as a hindered phenol or derivative thereof and/or a diarylamine or derivative thereof
- a corrosion inhibitor such as a corrosion inhibitor
- a detergent/dispersant additive other than the fuel additive of the present invention, such as a polyetheramine or nitrogen containing detergent, including but not limited to PIB amine dispersants, quaternary salt dispersants, and succinimide dispersants including derivates of succinimide dispersants such as quaternary ammonium
- the additional performance additives may also include: a cold flow improver such as an esterified copolymer of maleic anhydride and styrene and/or a copolymer of ethylene and vinyl acetate; a foam inhibitor and/or antifoam agent such as a silicone fluid; a demulsifier such as a polyalkoxylated alcohol; a lubricity agent such as a fatty carboxylic acid; a metal deactivator such as an aromatic triazole or derivative thereof, including but not limited to benzotriazole; and/or a valve seat recession additive such as an alkali metal sulfosuccinate salt.
- a cold flow improver such as an esterified copolymer of maleic anhydride and styrene and/or a copolymer of ethylene and vinyl acetate
- a foam inhibitor and/or antifoam agent such as a silicone fluid
- a demulsifier such as a polyalkoxylated alcohol
- Suitable antifoams also include organic silicones such as polydimethyl siloxane, polyethylsiloxane, polydiethylsiloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like.
- the additional additives may also include a biocide; an antistatic agent, a deicer, a fluidizer such as a mineral oil and/or a poly(alpha-olefin) and/or a polyether, and a combustion improver such as an octane or cetane improver.
- the additional performance additives which may be present in the fuel additive compositions and fuel compositions of the present invention, also include di-ester, di-amide, ester-amide, and ester-imide friction modifiers prepared by reacting a dicarboxylic acid (such as tartaric acid) and/or a tricarboxylic acid (such as citric acid), with an amine and/or alcohol, optionally in the presence of a known esterification catalyst.
- These friction modifiers often derived from tartaric acid, citric acid, or derivatives thereof, may be derived from amines and/or alcohols that are branched so that the friction modifier itself has significant amounts of branched hydrocarbyl groups present within it structure. Examples of a suitable branched alcohols used to prepare these friction modifiers include 2-ethylhexanol, isotridecanol, Guerbet alcohols, or mixtures thereof.
- the additional performance additives may comprise a high TBN nitrogen containing dispersant, such as a succinimide dispersant, that is the condensation product of a hydrocarbyl-substituted succinic anhydride with a poly(alkyleneamine).
- a succinimide dispersant that is the condensation product of a hydrocarbyl-substituted succinic anhydride with a poly(alkyleneamine).
- Succnimide dispersants are very well known in the art of lubricant formulation. Such molecules are commonly derived from reaction of an alkenyl acylating agent with a polyamine, and a wide variety of linkages between the two moieties is possible including a simple imide structure as well as a variety of amides and quaternary ammonium salts. Succinimide dispersants are more fully described in U.S. Patents 4,234,435 and 3,172,892 . Such materials may also contain ester linkages or ester functionality.
- Mannich bases are materials which are formed by the condensation of a higher molecular weight, alkyl substituted phenol, an alkylene polyamine, and an aldehyde such as formaldehyde. Such materials are described in more detail in U.S. Patent 3,634,515 .
- nitrogen-containing dispersants include polymeric dispersant additives, which are generally hydrocarbon-based polymers which contain nintrogen-containing polar functionality to impart dispersancy characteristics to the polymer.
- An amine is typically employed in preparing the high TBN nitrogen-containing dispersant.
- One or more poly(alkyleneamine)s may be used, and these may comprise one or more poly(ethyleneamine)s having 3 to 5 ethylene units and 4 to 6 nitrogens.
- Such materials include triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA).
- TETA triethylenetetramine
- TEPA tetraethylenepentamine
- PEHA pentaethylenehexamine
- Such materials are typically commercially available as mixtures of various isomers containing a range number of ethylene units and nitrogen atoms, as well as a variety of isomeric structures, including various cyclic structures.
- the poly(alkyleneamine) may likewise comprise relatively higher molecular weight amines known in the industry as ethylene amine still bottoms.
- the additional performance additives may comprise a quaternary salt comprising the reaction product of: (i) at least one compound selected from the group consisting of: (a) the condensation product of a hydrocarbyl-substituted acylating agent and a compound having an oxygen or nitrogen atom capable of condensing with said acylating agent and said condensation product further having a tertiary amino group; (b) a polyalkene-substituted amine having at least one tertiary amino group; and (c) a Mannich reaction product having a tertiary amino group, said Mannich reaction product being prepared from the reaction of a hydrocarbyl-subsituted phenol, an aldehyde, and an amine; and (ii) a quaternizing agent suitable for converting the tertiary amino group of compound (i) to a quaternary nitrogen, wherein the quaternizing agent is selected from the group consisting of dialkyl sulfates, benzy
- the quaternary salt comprises the reaction product of (i) at least one compound selected from the group consisting of: a polyalkene-substituted amine having at least one tertiary amino group and/or a Mannich reaction product having a tertiary amino group; and (ii) a quaternizing agent.
- the quaternary salt comprises the reaction product of (i) the reaction product of a succinic anhydride and an amine; and (ii) a quaternizing agent.
- the succinic anhydride may be derived from polyisobutylene and an anhydride, where the polyisobutylene has a number average molecular weight of about 800 to about 1600.
- the succinic anhydride is chlorine free.
- Olefin polymers for reaction with the monounsaturated carboxylic acids can include polymers comprising a major molar amount of C 2 to C 20 , e.g. C 2 to C 5 monoolefin.
- Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-1, or styrene.
- the polymers can be homopolymers such as polyisobutylene, as well as copolymers of two or more of such olefins such as copolymers of; ethylene and propylene; butylene and isobutylene; propylene and isobutylene.
- copolymers include those in which a minor molar amount of the copolymer monomers e.g., 1 to 10 mole % is a C 4 to C 18 diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene.
- a minor molar amount of the copolymer monomers e.g., 1 to 10 mole % is a C 4 to C 18 diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene.
- At least one R of formula (I) is derived from polybutene, that is, polymers of C 4 olefins, including 1-butene, 2-butene and isobutylene.
- C 4 polymers can include polyisobutylene.
- at least one R of formula (I) is derived from ethylene-alpha olefin polymers, including ethylene-propylene-diene polymers.
- Ethylene-alpha olefin copolymers and ethylene-lower olefin-diene terpolymers are described in numerous patent documents, including European patent publication EP0279863 and the following United States patents: 3,598,738 ; 4,026,809 ; 4,032,700 ; 4,137,185 ; 4,156,061 ; 4,320,019 ; 4,357,250 ; 4,658,078 ; 4,668,834 ; 4,937,299 ; 5,324,800 each of which are incorporated herein by reference for relevant disclosures of these ethylene based polymers.
- the vinylidene content of formula (I) can comprise at least about 30 mole % vinylidene groups, at least about 50 mole % vinylidene groups, or at least about 70 mole % vinylidene groups.
- Such material and methods for preparing them are described in U.S. Pat. Nos. 5,071,919 ; 5,137,978 ; 5,137,980 ; 5,286,823 , 5,408,018 , 6,562,913 , 6,683,138 , 7,037,999 and U.S. Publication Nos.
- 20040176552A1 , 20050137363 and 20060079652A1 which are expressly incorporated herein by reference, such products are commercially available by BASF, under the tradename GLISSOPAL® and by Texas Petrochemicals LP, under the tradename TPC 1105TM and TPC 595TM.
- the hydrocarbyl substituted acylating agent can be made from the reaction of at least one carboxylic reactant represented by the following formulas: (R 4 C(O)(R 5 ) n C(O))R 4 (IV) and wherein each R 4 is independently H or a hydrocarbyl group, and each R 5 is a divalent hydrocarbylene group and n is 0 or 1 with any compound containing an olefin bond as represented by formula (I).
- Compounds and the processes for making these compounds are disclosed in U.S. Pat. Nos. 5,739,356 ; 5,777,142 ; 5,786,490 ; 5,856,524 ; 6,020,500 ; and 6,114,547 which are hereby incorporated by reference.
- the compound having an oxygen or nitrogen atom capable of condensing with the acylating agent and further having a tertiary amino group can be represented by the following formulas: wherein X is a alkylene group containing about 1 to about 4 carbon atoms; and wherein each R 6 is independently a hydrocarbyl group, and R 6 can be hydrogen or a hydrocarbyl group. wherein X is a alkylene group containing about 1 to about 4 carbon atoms; and wherein each R 7 is independently a hydrocarbyl group.
- Examples of the nitrogen or oxygen contain compounds capable of condensing with the acylating agent and further having a tertiary amino group can include but are not limited to: ethylenediamine, 1,2-propylenediamine, 1,3-propylene diamine, the isomeric butylenediamines, pentanediamines, hexanediamines, heptanediamines, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, triethylenetetraamine, tetraethylenepentaamine, pentaethylenehexaamine, hexamethylenetetramine, and bis(hexamethylene) triamine, the diaminobenzenes, the diaminopyridines or mixtures thereof.
- nitrogen or oxygen contain compounds which may be alkylated to contain a tertiary amino group may also used.
- examples of the nitrogen or oxygen contain compounds capable of condensing with the acylating agent after being alkylated to having a tertiary amino group can include but are not limited to: dimethylaminopropylamine, N,N-dimethyl-aminoprapylamine, N,N-diethylaminopropylamine, N,N-dimethyl-aminoethylamine or mixtures thereof.
- the nitrogen or oxygen containing compounds capable of condensing with the acylating agent and further having a tertiary amino group can further include aminoalkyl substituted heterocyclic compounds such as 1-(3-aminopropyl)imidazole and 4-(3-aminopropyl)morpholine, 1-(2-aminoethyl)piperidine, 3,3-diamino-N-methyldipropylamine, 3'3-aminobis(N,N-dimethylpropylamine).
- aminoalkyl substituted heterocyclic compounds such as 1-(3-aminopropyl)imidazole and 4-(3-aminopropyl)morpholine, 1-(2-aminoethyl)piperidine, 3,3-diamino-N-methyldipropylamine, 3'3-aminobis(N,N-dimethylpropylamine).
- alkanolamines including but not limited to triethanolamine, N,N-dimethylaminopropanol, N,N-diethylaminopropanol, N,N-diethylaminobutanol, N,N,N-tris(hydroxyethyl)amine, or mixtures thereof.
- the additional performance additives can each be added directly to the additive and/or the fuel compositions of the present invention, but they are generally mixed with the fuel additive to form an additive composition, or concentrate, which is then mixed with fuel to result in a fuel composition.
- the additive concentrate compositions are described in more detail above.
- these additional performance additives described above may be the cause and/or a contributing factor to the propensity of a fuel to pick up oxidative metal in the fuel compositions in which they are used.
- the additives described above may have no impact on the metal pick-up properties of the fuel composition in which they are used. In either case, the additive compositions and methods of the present invention can counter the potential effect of these additives and reduce the tendency of fuel compositions to pick-up metals, whether that tendency is caused, exacerbated by, or not significantly changes by, the additional performance additives described above.
- the invention is useful for a liquid fuel and/or for the operation of an internal combustion engine, including either compression ignition engines or spark ignited engines.
- the internal combustion engine includes 2-stroke or 4-stroke engines fuelled with gasoline, diesel, a natural gas, a mixed gasoline/alcohol or any of the fuels described in the sections above.
- the compression ignition engines include both light duty and heavy duty diesel engines.
- the spark ignited engines include port and direct injection gasoline engines.
- the invention is useful in additive compositions in that the fuel additive and methods described above reduce metal pick-up in fuel compositions, thus preventing elevated levels of metals, such as zinc, in the fuel.
- the additive compositions of the present invention may be used in a lubricating composition such that the additives are present in the lubricating system of the engine.
- the additives may also enter the combustion chamber of the engine during operation of the engine by the transfer of small amounts of the additive containing lubricating composition to the combustion chamber due to a phenomenon referred to as "blow by" where the lubricating composition, and in this case the additive composition, pass around the piston heads inside the cylinder, moving from the lubricating system of the engine into the combustion chamber.
- the methods and/or compositions of the present invention provide a reduction in metal pick-up of at least 5%, at least 20% or even at least 50%. In some of these embodiments the reduction is in regards to the 7 day and/or 14 day result of the test procedure used in the examples below. In other embodiments the methods and/or compositions of the present invention ensure the metal level of a fuel composition does not rise above 10 ppm, 5 ppm, 1 ppm. 0.5 ppm, 0.3 ppm or even 0.1 ppm of metal content. In some of these embodiments the reduction is in regards to the 7 day and/or 14 day result of the test procedure used in the examples below.
- the methods and/or compositions of the present invention when evaluated at 7 days by the test described in the examples below, provide a reduction in metal levels of at least 30%, or at least 80% and/or ensure metal levels to not rise above 1 ppm. In some embodiments, the methods and/or compositions of the present invention, when evaluated at 14 days by the test described in the examples below, provide a reduction in metal levels of at least 40%, or at least 80% and/or ensure metal levels to not rise above 8 ppm, or even 1 ppm.
- the present invention includes the use of the substituted hydrocarbon and/or hydrocarbyl substituted acylating agents described herein as additives in fuel compositions, as well as the additive itself and the fuel and fuel additive compositions containing said additive.
- the additives of the present invention may be delivered to the fuel compositions and/or fuel additive compositions in any of the means known in the art and the timing of the additive is not limited.
- the additive of the present invention may be added to a fuel composition before, during, or after the production and/or blending of the fuel and/or additive composition.
- the additive of the invention may be added to fuel and/or additive composition before, during, or after the addition of other performance additives which may be used in the compositions.
- the additive of the invention may be added as a top treat to fuel and/or additive compositions or be incorporated into the production and/or distribution of the fuel and/or additive compositions in which it is used.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
- hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention
- Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
- substituents as pyridyl, furyl, thienyl and imidazolyl.
- no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- the materials described above may interact in the final formulation, so that the components of the final formulation may be different from those that are initially added.
- metal ions of, e.g., a detergent
- the acylating agents and/or substituted hydrocarbon additives of the present invention may form salts or other complexes and/or derivatives, when interacting with other components of the compositions in which they are used.
- the products formed thereby, including the products formed upon employing the composition of the present invention in its intended use, may not be susceptible of easy description. Nevertheless, all such modifications and reaction products are included within the scope of the present invention; the present invention encompasses the composition prepared by admixing the components described above.
- Example Set 1 Fuel treated with a succinimide dispersant .
- An EU certification diesel fuel known as RF-06
- RF-06 is treated with 200 ppm of a commercially available succinimide dispersant.
- Seven 500 ML graduated cylinder are prepared for testing by placing in each a 4 cm section of a Goodfellow Zn rod ZN007902, having a length of 200 mm and a diameter of 2.0 mm. The weight of each rod section is recorded and an amount of fuel is added to each cylinder so that the combined mixture of fuel composition and zinc rod is 1 % by weight zinc.
- Each cylinder is charged with a slightly different amount of fuel to ensure the zinc content of each sample is the same.
- One of the seven samples (1-1) is kept as a baseline.
- the other seven samples are each independently treated at 200 ppm with an additional additive, as shown the in the table below.
- Table 1 Additional Additives Added to Test Samples Sample Additional Additive (at 200 ppm in the Fuel) 1-1 None - Baseline 1-2 ⁇ 1000 MW Hydrolyzed PIBSA - Hydrolyzed polyisobutylene succinic anhydride wherein the polyisobutylene has a number average molecular weight of about 1000. 1-3 ⁇ 550 MW PIBSA - Polyisobutylene succinic anhydride wherein the polyisobutylene has a number average molecular weight of about 550.
- Pentasize 68F A commercially available succinic anhydride derived from C16-C18 polyolefin. 1-5 Dimer Acid (hydrogenated) - A commercially available acid product containing two carboxyl groups, purchased from Aldrich under catalog ID 432369-1L.
- polyisobutylene succinic anhydride wherein the polyisobutylene has a number average molecular weight of about 1000, which is not hydrolyzed 1-7 ⁇ 1000 MW Mono Esterified PIBSA - Esterified polyisobutylene succinic anhydride wherein the polyisobutylene has a number average molecular weight of about 1000, which is not hydrolyzed, and which is esterified with 1 equiv of n-butanol.
- Example Set 1 The containers are stored at ambient conditions in a dark test location for 14 days. Each sample is tested at the 7 day mark and the 14 day mark by Inductively Coupled Plasma (ICP) analysis to determine zinc content.
- ICP Inductively Coupled Plasma
- Example Set 2 Biodiesel .
- Example set 1 is repeated except that the succinimide dispersant treated diesel fuel is replaced with B100, a commercially available biodiesel fuel.
- each additional additive in samples 2-2 to 2-7 are present in the fuel composition at 500 ppm. Samples 2-1 to 2-7 are tested in the same manner described above and the results are summarized in the table below. Table 3 - Results from Example Set 2.
- each chemical component is presented exclusive of any solvent or diluent, which may be customarily present in the commercial material, unless otherwise indicated. It is to be understood that the upper and lower amount, range, and ratio limits set forth herein may be independently combined. Similarly, the ranges and amounts for each element of the invention can be used together with ranges or amounts for any of the other elements. As used herein, the expression “consisting essentially of' permits the inclusion of substances that do not materially affect the basic and novel characteristics of the composition under consideration.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Combustion & Propulsion (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16185196T PL3127992T3 (pl) | 2008-10-10 | 2009-10-01 | Dodatki do obniżania odbioru metalu w paliwach |
EP18211764.8A EP3486300A1 (de) | 2008-10-10 | 2009-10-01 | Additive zur verminderung der metallaufnahme in brennstoffen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10430408P | 2008-10-10 | 2008-10-10 | |
PCT/US2009/059164 WO2010042378A1 (en) | 2008-10-10 | 2009-10-01 | Additives to reduce metal pick-up in fuels |
EP09737254.4A EP2385977B2 (de) | 2008-10-10 | 2009-10-01 | Additive zur verringerung der metallaufnahme in kraftstoffen |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09737254.4A Division EP2385977B2 (de) | 2008-10-10 | 2009-10-01 | Additive zur verringerung der metallaufnahme in kraftstoffen |
EP09737254.4A Division-Into EP2385977B2 (de) | 2008-10-10 | 2009-10-01 | Additive zur verringerung der metallaufnahme in kraftstoffen |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18211764.8A Division EP3486300A1 (de) | 2008-10-10 | 2009-10-01 | Additive zur verminderung der metallaufnahme in brennstoffen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3127992A1 true EP3127992A1 (de) | 2017-02-08 |
EP3127992B1 EP3127992B1 (de) | 2018-12-12 |
Family
ID=41565924
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09737254.4A Active EP2385977B2 (de) | 2008-10-10 | 2009-10-01 | Additive zur verringerung der metallaufnahme in kraftstoffen |
EP18211764.8A Withdrawn EP3486300A1 (de) | 2008-10-10 | 2009-10-01 | Additive zur verminderung der metallaufnahme in brennstoffen |
EP16185196.9A Active EP3127992B1 (de) | 2008-10-10 | 2009-10-01 | Additive zur verminderung der metallaufnahme in brennstoffen |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09737254.4A Active EP2385977B2 (de) | 2008-10-10 | 2009-10-01 | Additive zur verringerung der metallaufnahme in kraftstoffen |
EP18211764.8A Withdrawn EP3486300A1 (de) | 2008-10-10 | 2009-10-01 | Additive zur verminderung der metallaufnahme in brennstoffen |
Country Status (12)
Country | Link |
---|---|
US (1) | US20110219674A1 (de) |
EP (3) | EP2385977B2 (de) |
JP (4) | JP6046347B2 (de) |
KR (1) | KR101722272B1 (de) |
CN (2) | CN106753620A (de) |
AU (3) | AU2009302649A1 (de) |
BR (2) | BRPI0920665B1 (de) |
CA (2) | CA3025740C (de) |
DK (2) | DK3127992T3 (de) |
PL (2) | PL2385977T5 (de) |
SG (1) | SG194415A1 (de) |
WO (1) | WO2010042378A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018178672A1 (en) * | 2017-03-30 | 2018-10-04 | Innospec Limited | Method and use to prevent deposits in engine |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2571963B1 (de) * | 2010-05-18 | 2020-04-08 | The Lubrizol Corporation | Zusammensetzungen für reinigungskraft |
US20110302827A1 (en) * | 2010-06-15 | 2011-12-15 | Champion Technologies, Inc. | Inhibiting Stress Corrosion Cracking of Metal Exposed to Moderate to High Concentrations of Ethanol |
US20130137608A1 (en) * | 2010-06-15 | 2013-05-30 | The Lubrizol Corporation | Methods of Removing Deposits of Oil and Gas Applications |
US8668749B2 (en) * | 2010-11-03 | 2014-03-11 | Afton Chemical Corporation | Diesel fuel additive |
KR102192012B1 (ko) | 2012-10-23 | 2020-12-17 | 더루우브리졸코오포레이션 | 저분자량 불이익이 없는 디젤 청정제 |
CN111218305B (zh) * | 2013-03-07 | 2023-01-03 | 路博润公司 | 耐离子腐蚀抑制剂和用于燃料的抑制剂组合 |
CA2917934A1 (en) | 2013-07-12 | 2015-01-15 | Basf Se | Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels |
MY180330A (en) | 2014-01-29 | 2020-11-28 | Basf Se | Use of polycarboxylic-acid-based additives for fuels |
WO2015184301A2 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Coupled quaternary ammonium salts |
EP3149128A1 (de) | 2014-05-30 | 2017-04-05 | The Lubrizol Corporation | Quaternäre ammoniumsalze mit verzweigtem amin |
CN106536687B (zh) | 2014-05-30 | 2021-09-21 | 路博润公司 | 低分子量含酰亚胺季铵盐 |
EP3536766B1 (de) | 2014-05-30 | 2020-12-09 | The Lubrizol Corporation | Epoxidquaternierte quaternäre ammoniumsalze |
US20170121628A1 (en) | 2014-05-30 | 2017-05-04 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
DK3149129T3 (da) | 2014-05-30 | 2019-05-13 | Lubrizol Corp | Anvendelse af imidazolholdige kvaternære ammoniumsalte |
WO2015184247A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight imide containing quaternary ammonium salts |
CN106661471B (zh) * | 2014-05-30 | 2020-04-03 | 路博润公司 | 浓缩多功能燃料添加剂包 |
US20170096610A1 (en) | 2014-05-30 | 2017-04-06 | The Lubrizol Corporation | High molecular weight amide/ester containing quaternary ammonium salts |
WO2016083090A1 (de) | 2014-11-25 | 2016-06-02 | Basf Se | Korrosionsinhibitoren für kraft- und schmierstoffe |
US11085001B2 (en) | 2015-07-16 | 2021-08-10 | Basf Se | Copolymers as additives for fuels and lubricants |
WO2017016909A1 (de) | 2015-07-24 | 2017-02-02 | Basf Se | Korrosionsinhibitoren für kraft- und schmierstoffe |
BR112018011140A2 (pt) | 2015-12-02 | 2018-11-21 | The Lubrizol Corporation | sais de amônio quaternário que contêm imida com peso molecular ultrabaixo que têm caudas de hidrocarboneto curtas |
US20180355267A1 (en) | 2015-12-02 | 2018-12-13 | The Lubrizol Corporation | Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails |
WO2018007192A1 (de) | 2016-07-05 | 2018-01-11 | Basf Se | Korrosionsinhibitoren für kraft- und schmierstoffe |
US11078418B2 (en) | 2016-07-05 | 2021-08-03 | Basf Se | Corrosion inhibitors for fuels and lubricants |
EP3516021B1 (de) | 2016-09-21 | 2022-04-06 | The Lubrizol Corporation | Polyacrylatkomponenten gegen schaumbildung mit verbesserter thermischer stabilität |
AU2018335769B2 (en) | 2017-09-21 | 2023-11-02 | The Lubrizol Corporation | Polyacrylate antifoam components for use in fuels |
EP3768805B1 (de) | 2018-03-21 | 2024-05-29 | The Lubrizol Corporation | Polyacrylamidantischaumkomponenten zur verwendung in dieselkraftstoffen |
US20230002699A1 (en) | 2019-06-24 | 2023-01-05 | The Lubrizol Corporation | Continuous acoustic mixing for performance additives and compositions including the same |
BR112022011826A2 (pt) | 2019-12-18 | 2022-08-30 | Lubrizol Corp | Composto de tensoativo polimérico |
AU2020409092A1 (en) | 2019-12-19 | 2022-07-07 | The Lubrizol Corporation | Wax anti-settling additive composition for use in diesel fuels |
WO2024030591A1 (en) | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing reaction products including quaternary ammonium salts |
WO2024163826A1 (en) | 2023-02-03 | 2024-08-08 | The Lubrizol Corporation | Processes for producing reaction products including quaternary ammonium salts |
Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087436A (en) | 1960-12-02 | 1963-04-30 | Ross Gear And Tool Company Inc | Hydraulic pump |
US3172892A (en) | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3215707A (en) | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3231587A (en) | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3272746A (en) | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3282836A (en) * | 1963-03-22 | 1966-11-01 | Shell Oil Co | Corrosion resistant liquid hydrocarbons containing mixture of alkyl succinic acid and polyamine salt thereof |
US3361673A (en) | 1959-08-24 | 1968-01-02 | Chevron Res | Lubricating oil compositions containing alkenyl succinimides of tetraethylene pentamine |
US3401118A (en) | 1967-09-15 | 1968-09-10 | Chevron Res | Preparation of mixed alkenyl succinimides |
US3412111A (en) | 1965-06-02 | 1968-11-19 | Gulf Research Development Co | Process for reacting an olefin with maleic anhydride to obtain an alkenyl succinic anhydride |
US3598738A (en) | 1966-09-23 | 1971-08-10 | Du Pont | Oil compositions containing ethylene copolymers |
US3634515A (en) | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3778371A (en) | 1972-05-19 | 1973-12-11 | Ethyl Corp | Lubricant and fuel compositions |
US3912764A (en) | 1972-09-29 | 1975-10-14 | Cooper Edwin Inc | Preparation of alkenyl succinic anhydrides |
US4026809A (en) | 1974-12-19 | 1977-05-31 | Texaco Inc. | Lubricating compositions containing methacrylate ester graft copolymers as useful viscosity index improvers |
US4032700A (en) | 1973-06-25 | 1977-06-28 | Exxon Research And Engineering Company | Process for the preparation of aminated polymers useful as additives for fuels and lubricants |
US4108889A (en) | 1976-11-19 | 1978-08-22 | The Procter & Gamble Company | Preparing alkane phosphonic acids and intermediates |
US4110349A (en) | 1976-06-11 | 1978-08-29 | The Lubrizol Corporation | Two-step method for the alkenylation of maleic anhydride and related compounds |
US4137185A (en) | 1977-07-28 | 1979-01-30 | Exxon Research & Engineering Co. | Stabilized imide graft of ethylene copolymeric additives for lubricants |
US4156061A (en) | 1974-03-06 | 1979-05-22 | Exxon Research & Engineering Co. | Epoxidized terpolymer or derivatives thereof, and oil and fuel compositions containing same |
US4171959A (en) | 1977-12-14 | 1979-10-23 | Texaco Inc. | Fuel composition containing quaternary ammonium salts of succinimides |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4253980A (en) | 1979-06-28 | 1981-03-03 | Texaco Inc. | Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same |
US4320019A (en) | 1978-04-17 | 1982-03-16 | The Lubrizol Corporation | Multi-purpose additive compositions and concentrates containing same |
US4326973A (en) | 1981-01-13 | 1982-04-27 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4338206A (en) | 1981-03-23 | 1982-07-06 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4357250A (en) | 1978-04-17 | 1982-11-02 | The Lubrizol Corporation | Nitrogen-containing terpolymer-based compositions useful as multi-purpose lubricant additives |
US4531948A (en) * | 1984-06-13 | 1985-07-30 | Ethyl Corporation | Alcohol and gasohol fuels having corrosion inhibiting properties |
US4658078A (en) | 1986-08-15 | 1987-04-14 | Shell Oil Company | Vinylidene olefin process |
US4668834A (en) | 1985-10-16 | 1987-05-26 | Uniroyal Chemical Company, Inc. | Low molecular weight ethylene-alphaolefin copolymer intermediates |
EP0279863A1 (de) | 1986-08-26 | 1988-08-31 | Mitsui Chemicals, Inc. | Katalysator zur polymerisierung von alpha-olefin und verfahren |
EP0355895A2 (de) | 1988-08-05 | 1990-02-28 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von Alkenylbernsteinsäureanhydrid-Derivaten |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US5071919A (en) | 1990-05-17 | 1991-12-10 | Ethyl Petroleum Additives, Inc. | Substituted acylating agents and their production |
US5137978A (en) | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Substituted acylating agents and their production |
US5137980A (en) | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Ashless dispersants formed from substituted acylating agents and their production and use |
US5254138A (en) | 1991-05-03 | 1993-10-19 | Uop | Fuel composition containing a quaternary ammonium salt |
US5286823A (en) | 1991-06-22 | 1994-02-15 | Basf Aktiengesellschaft | Preparation of highly reactive polyisobutenes |
US5324800A (en) | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US5739356A (en) | 1995-08-22 | 1998-04-14 | The Lubrizol Corporation | Lactones useful as intermediates for preparing lubricating oil and fuel additives |
US5777142A (en) | 1995-08-22 | 1998-07-07 | The Lubrizol Corporation | Unsaturated hydroxycarboxylic compounds useful as intermediates for preparing lubricant and fuel additives |
US5851966A (en) | 1997-06-05 | 1998-12-22 | The Lubrizol Corporation | Reaction products of substituted carboxylic acylating agents and carboxylic reactants for use in fuels and lubricants |
US5885944A (en) | 1996-05-21 | 1999-03-23 | The Lubrizol Corporation | Low chlorine polyalkylene substituted carboxylic acylating agent compositions and compounds derived therefrom |
US5912213A (en) | 1997-06-05 | 1999-06-15 | The Lubrizol Corporation | Substituted carboxylic acylating agent compositions and derivatives thereof for use in lubricants and fuels |
US6020500A (en) | 1995-08-22 | 2000-02-01 | The Lubrizol Corporation | Hydroxy-substituted monolactones useful as intermediates for preparing lubricating oil and fuel additives |
US6077909A (en) | 1997-02-13 | 2000-06-20 | The Lubrizol Corporation | Low chlorine content compositions for use in lubricants and fuels |
US6165235A (en) | 1997-08-26 | 2000-12-26 | The Lubrizol Corporation | Low chlorine content compositions for use in lubricants and fuels |
US6562913B1 (en) | 1999-09-16 | 2003-05-13 | Texas Petrochemicals Lp | Process for producing high vinylidene polyisobutylene |
US20040176552A1 (en) | 2001-03-28 | 2004-09-09 | Texas Petrochemicals Lp | Process for producing mid-range vinylidene content polyisobutylene polymer products |
WO2007062304A2 (en) * | 2005-11-23 | 2007-05-31 | Novus International, Inc. | Biodiesel fuel compositions having increased oxidative stability |
EP1884556A2 (de) * | 2006-08-04 | 2008-02-06 | Infineum International Limited | Verbesserungen bei Dieselkraftstoffzusammensetzungen |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2334158A (en) * | 1941-09-29 | 1943-11-09 | Shell Dev | Rust-preventive composition |
US2632695A (en) | 1951-09-20 | 1953-03-24 | Socony Vacuum Oil Co Inc | Rust inhibitor for light petroleum products |
US3447918A (en) | 1967-10-26 | 1969-06-03 | Standard Oil Co | Rust inhibitors |
CA1022752A (en) | 1973-03-15 | 1977-12-20 | Benjamin F. Ward | Corrosion inhibiting compositions and process for inhibiting corrosion of metals |
US3899295A (en) | 1973-11-23 | 1975-08-12 | Bio Medical Sciences Inc | Integrity indicator |
US4214876A (en) * | 1978-12-12 | 1980-07-29 | E. I. Du Pont De Nemours & Company | Corrosion inhibitor compositions |
US4521219A (en) | 1981-11-02 | 1985-06-04 | Ethyl Corporation | Alcohol based fuels containing corrosion inhibitors |
US4440545A (en) | 1981-11-02 | 1984-04-03 | Ethyl Corporation | Gasohol having corrosion inhibiting properties |
JPS6018584A (ja) | 1983-07-11 | 1985-01-30 | Sanyo Chem Ind Ltd | 燃料油の防錆添加剤 |
EP0299119A1 (de) | 1986-06-23 | 1989-01-18 | Petrolite Corporation | Korrosionsgeschützte, sauerstoffhaltige Brennstoffsysteme |
EP0280417A1 (de) | 1987-02-27 | 1988-08-31 | Petrolite Corporation | Polyalkenylbernsteinsäure enthaltender Dieselbrennstoffinjektorzusatz, denselben enthaltender Dieselbrennstoff und Verfahren zu dessen Verwendung |
JPS6436690A (en) * | 1987-07-24 | 1989-02-07 | Petrolite Corp | Alkyl or alkenyl succinate used as corrosion inhibitor for oxidized fuel |
AU668151B2 (en) * | 1992-05-06 | 1996-04-26 | Afton Chemical Corporation | Composition for control of induction system deposits |
CA2502623C (en) | 2002-09-13 | 2013-10-08 | Octel Starreon Llc | Process for the production of a fuel composition |
US7404888B2 (en) | 2004-07-07 | 2008-07-29 | Chevron U.S.A. Inc. | Reducing metal corrosion of hydrocarbons using acidic fischer-tropsch products |
EP1669433A1 (de) | 2004-12-13 | 2006-06-14 | Basf Aktiengesellschaft | Hydrocarbylbernsteinsäure und Hydrocarbylbernsteinsäurederivate, als Reibungsmodifizierungsmittel. |
EP3406692A1 (de) | 2005-06-16 | 2018-11-28 | The Lubrizol Corporation | Brennstoffzusammensetzung enthaltend eines quaternären ammoniaksalzreinigungsmittel |
WO2008012320A1 (en) | 2006-07-27 | 2008-01-31 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US20080060608A1 (en) | 2006-09-07 | 2008-03-13 | Angela Priscilla Breakspear | Method and use for the prevention of fuel injector deposits |
-
2009
- 2009-10-01 US US13/121,714 patent/US20110219674A1/en not_active Abandoned
- 2009-10-01 BR BRPI0920665-5A patent/BRPI0920665B1/pt active IP Right Grant
- 2009-10-01 CN CN201710063619.0A patent/CN106753620A/zh active Pending
- 2009-10-01 PL PL09737254T patent/PL2385977T5/pl unknown
- 2009-10-01 DK DK16185196.9T patent/DK3127992T3/en active
- 2009-10-01 BR BR122018075929-1A patent/BR122018075929B1/pt active IP Right Grant
- 2009-10-01 WO PCT/US2009/059164 patent/WO2010042378A1/en active Application Filing
- 2009-10-01 CA CA3025740A patent/CA3025740C/en active Active
- 2009-10-01 EP EP09737254.4A patent/EP2385977B2/de active Active
- 2009-10-01 PL PL16185196T patent/PL3127992T3/pl unknown
- 2009-10-01 CA CA2739432A patent/CA2739432C/en active Active
- 2009-10-01 SG SG2013075635A patent/SG194415A1/en unknown
- 2009-10-01 EP EP18211764.8A patent/EP3486300A1/de not_active Withdrawn
- 2009-10-01 EP EP16185196.9A patent/EP3127992B1/de active Active
- 2009-10-01 DK DK09737254.4T patent/DK2385977T4/da active
- 2009-10-01 AU AU2009302649A patent/AU2009302649A1/en not_active Abandoned
- 2009-10-01 JP JP2011531069A patent/JP6046347B2/ja active Active
- 2009-10-01 KR KR1020117010466A patent/KR101722272B1/ko active IP Right Grant
- 2009-10-01 CN CN2009801487036A patent/CN102239238A/zh active Pending
-
2013
- 2013-08-23 JP JP2013172919A patent/JP2013234336A/ja not_active Withdrawn
-
2015
- 2015-05-27 JP JP2015107040A patent/JP2015147942A/ja not_active Withdrawn
-
2016
- 2016-07-11 AU AU2016204848A patent/AU2016204848A1/en not_active Abandoned
-
2017
- 2017-03-03 JP JP2017040410A patent/JP2017101259A/ja active Pending
- 2017-10-25 AU AU2017251765A patent/AU2017251765B2/en active Active
Patent Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172892A (en) | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3219666A (en) | 1959-03-30 | 1965-11-23 | Derivatives of succinic acids and nitrogen compounds | |
US3361673A (en) | 1959-08-24 | 1968-01-02 | Chevron Res | Lubricating oil compositions containing alkenyl succinimides of tetraethylene pentamine |
US3215707A (en) | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3231587A (en) | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3087436A (en) | 1960-12-02 | 1963-04-30 | Ross Gear And Tool Company Inc | Hydraulic pump |
US3282836A (en) * | 1963-03-22 | 1966-11-01 | Shell Oil Co | Corrosion resistant liquid hydrocarbons containing mixture of alkyl succinic acid and polyamine salt thereof |
US3412111A (en) | 1965-06-02 | 1968-11-19 | Gulf Research Development Co | Process for reacting an olefin with maleic anhydride to obtain an alkenyl succinic anhydride |
US3272746A (en) | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3598738A (en) | 1966-09-23 | 1971-08-10 | Du Pont | Oil compositions containing ethylene copolymers |
US3401118A (en) | 1967-09-15 | 1968-09-10 | Chevron Res | Preparation of mixed alkenyl succinimides |
US3634515A (en) | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3778371A (en) | 1972-05-19 | 1973-12-11 | Ethyl Corp | Lubricant and fuel compositions |
US3912764A (en) | 1972-09-29 | 1975-10-14 | Cooper Edwin Inc | Preparation of alkenyl succinic anhydrides |
GB1440219A (en) | 1972-09-29 | 1976-06-23 | Cooper Ltd Ethyl | Preparation of alkenyl succinic anhydrides |
US4032700A (en) | 1973-06-25 | 1977-06-28 | Exxon Research And Engineering Company | Process for the preparation of aminated polymers useful as additives for fuels and lubricants |
US4156061A (en) | 1974-03-06 | 1979-05-22 | Exxon Research & Engineering Co. | Epoxidized terpolymer or derivatives thereof, and oil and fuel compositions containing same |
US4026809A (en) | 1974-12-19 | 1977-05-31 | Texaco Inc. | Lubricating compositions containing methacrylate ester graft copolymers as useful viscosity index improvers |
US4110349A (en) | 1976-06-11 | 1978-08-29 | The Lubrizol Corporation | Two-step method for the alkenylation of maleic anhydride and related compounds |
US4108889A (en) | 1976-11-19 | 1978-08-22 | The Procter & Gamble Company | Preparing alkane phosphonic acids and intermediates |
US4137185A (en) | 1977-07-28 | 1979-01-30 | Exxon Research & Engineering Co. | Stabilized imide graft of ethylene copolymeric additives for lubricants |
US4171959A (en) | 1977-12-14 | 1979-10-23 | Texaco Inc. | Fuel composition containing quaternary ammonium salts of succinimides |
US4320019A (en) | 1978-04-17 | 1982-03-16 | The Lubrizol Corporation | Multi-purpose additive compositions and concentrates containing same |
US4357250A (en) | 1978-04-17 | 1982-11-02 | The Lubrizol Corporation | Nitrogen-containing terpolymer-based compositions useful as multi-purpose lubricant additives |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4253980A (en) | 1979-06-28 | 1981-03-03 | Texaco Inc. | Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same |
US4326973A (en) | 1981-01-13 | 1982-04-27 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4338206A (en) | 1981-03-23 | 1982-07-06 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US5324800A (en) | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US4531948A (en) * | 1984-06-13 | 1985-07-30 | Ethyl Corporation | Alcohol and gasohol fuels having corrosion inhibiting properties |
US4668834A (en) | 1985-10-16 | 1987-05-26 | Uniroyal Chemical Company, Inc. | Low molecular weight ethylene-alphaolefin copolymer intermediates |
US4668834B1 (en) | 1985-10-16 | 1996-05-07 | Uniroyal Chem Co Inc | Low molecular weight ethylene-alphaolefin copolymer intermediates |
US4658078A (en) | 1986-08-15 | 1987-04-14 | Shell Oil Company | Vinylidene olefin process |
EP0279863A1 (de) | 1986-08-26 | 1988-08-31 | Mitsui Chemicals, Inc. | Katalysator zur polymerisierung von alpha-olefin und verfahren |
EP0355895A2 (de) | 1988-08-05 | 1990-02-28 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von Alkenylbernsteinsäureanhydrid-Derivaten |
US5071919A (en) | 1990-05-17 | 1991-12-10 | Ethyl Petroleum Additives, Inc. | Substituted acylating agents and their production |
US5137978A (en) | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Substituted acylating agents and their production |
US5137980A (en) | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Ashless dispersants formed from substituted acylating agents and their production and use |
US5254138A (en) | 1991-05-03 | 1993-10-19 | Uop | Fuel composition containing a quaternary ammonium salt |
US5286823A (en) | 1991-06-22 | 1994-02-15 | Basf Aktiengesellschaft | Preparation of highly reactive polyisobutenes |
US5408018A (en) | 1991-06-22 | 1995-04-18 | Basf Aktiengesellschaft | Preparation of highly reactive polyisobutenes |
US5856524A (en) | 1995-08-22 | 1999-01-05 | The Lubrizol Corporation | Process for preparing compositions useful as intermediates for preparing lubricating oil and fuel additives |
US6020500A (en) | 1995-08-22 | 2000-02-01 | The Lubrizol Corporation | Hydroxy-substituted monolactones useful as intermediates for preparing lubricating oil and fuel additives |
US5786490A (en) | 1995-08-22 | 1998-07-28 | The Lubrizol Corporation | Process for preparing compositions useful as intermediates for preparing lubricating oil and fuel additives |
US6114547A (en) | 1995-08-22 | 2000-09-05 | The Lubrizol Corporation | Hydroxy-substituted monolactones and use thereof as intermediates for preparing lubricating oil and fuel additives |
US5739356A (en) | 1995-08-22 | 1998-04-14 | The Lubrizol Corporation | Lactones useful as intermediates for preparing lubricating oil and fuel additives |
US5777142A (en) | 1995-08-22 | 1998-07-07 | The Lubrizol Corporation | Unsaturated hydroxycarboxylic compounds useful as intermediates for preparing lubricant and fuel additives |
US5885944A (en) | 1996-05-21 | 1999-03-23 | The Lubrizol Corporation | Low chlorine polyalkylene substituted carboxylic acylating agent compositions and compounds derived therefrom |
US6077909A (en) | 1997-02-13 | 2000-06-20 | The Lubrizol Corporation | Low chlorine content compositions for use in lubricants and fuels |
US5912213A (en) | 1997-06-05 | 1999-06-15 | The Lubrizol Corporation | Substituted carboxylic acylating agent compositions and derivatives thereof for use in lubricants and fuels |
US5851966A (en) | 1997-06-05 | 1998-12-22 | The Lubrizol Corporation | Reaction products of substituted carboxylic acylating agents and carboxylic reactants for use in fuels and lubricants |
US6165235A (en) | 1997-08-26 | 2000-12-26 | The Lubrizol Corporation | Low chlorine content compositions for use in lubricants and fuels |
US6562913B1 (en) | 1999-09-16 | 2003-05-13 | Texas Petrochemicals Lp | Process for producing high vinylidene polyisobutylene |
US6683138B2 (en) | 1999-09-16 | 2004-01-27 | Texas Petrochemicals Lp | Process for producing high vinylidene polyisobutylene |
US20050137363A1 (en) | 1999-10-19 | 2005-06-23 | Texas Peterochemicals Lp | Process for producing mid-range vinylidene content polyisobutylene polymer products |
US20060079652A1 (en) | 1999-10-19 | 2006-04-13 | Baxter C E Jr | Mid-range vinylidene content polyisobutylene polymer product produced by liquid phase polymerization process |
US20040176552A1 (en) | 2001-03-28 | 2004-09-09 | Texas Petrochemicals Lp | Process for producing mid-range vinylidene content polyisobutylene polymer products |
US7037999B2 (en) | 2001-03-28 | 2006-05-02 | Texas Petrochemicals Lp | Mid-range vinylidene content polyisobutylene polymer product and process for producing the same |
WO2007062304A2 (en) * | 2005-11-23 | 2007-05-31 | Novus International, Inc. | Biodiesel fuel compositions having increased oxidative stability |
EP1884556A2 (de) * | 2006-08-04 | 2008-02-06 | Infineum International Limited | Verbesserungen bei Dieselkraftstoffzusammensetzungen |
Non-Patent Citations (2)
Title |
---|
BEN ET AL.: "The Ene Reaction of Maleic Anhydride With Alkenes", J.C.S. PERKIN II, 1977, pages 535 - 537 |
KIRK; OTHMER: "Encyclopedia of Chemical Technology", 1971, INTERSCIENCE PUBLISHERS, DIV. OF JOHN WILEY AND SON, pages: 632,657 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018178672A1 (en) * | 2017-03-30 | 2018-10-04 | Innospec Limited | Method and use to prevent deposits in engine |
US11174442B2 (en) | 2017-03-30 | 2021-11-16 | Innospec Limited | Fuel compositions, methods and uses relating to quaternary ammonium salt additives for fuel used in spark ignition engines |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017251765B2 (en) | Additives to reduce metal pick-up in fuels | |
US9487719B2 (en) | Methods and compositions that provide detergency | |
AU2014226293B2 (en) | Ion tolerant corrosion inhibitors and inhibitor combinations for fuels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2385977 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170808 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180102 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180607 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10L 1/14 20060101ALI20180528BHEP Ipc: C10L 1/2383 20060101ALN20180528BHEP Ipc: C10L 1/188 20060101AFI20180528BHEP Ipc: C10L 1/198 20060101ALI20180528BHEP Ipc: C10L 10/04 20060101ALI20180528BHEP Ipc: C10L 1/222 20060101ALN20180528BHEP Ipc: C10L 10/00 20060101ALI20180528BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2385977 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1075963 Country of ref document: AT Kind code of ref document: T Effective date: 20181215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009056231 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20190311 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190312 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1075963 Country of ref document: AT Kind code of ref document: T Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190412 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009056231 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
26N | No opposition filed |
Effective date: 20190913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230926 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20231027 Year of fee payment: 15 Ref country code: IT Payment date: 20231023 Year of fee payment: 15 Ref country code: FR Payment date: 20231025 Year of fee payment: 15 Ref country code: FI Payment date: 20231025 Year of fee payment: 15 Ref country code: DK Payment date: 20231027 Year of fee payment: 15 Ref country code: DE Payment date: 20231027 Year of fee payment: 15 |