EP3122492B1 - Semi-continuous casting of a steel ingot - Google Patents
Semi-continuous casting of a steel ingot Download PDFInfo
- Publication number
- EP3122492B1 EP3122492B1 EP15702712.9A EP15702712A EP3122492B1 EP 3122492 B1 EP3122492 B1 EP 3122492B1 EP 15702712 A EP15702712 A EP 15702712A EP 3122492 B1 EP3122492 B1 EP 3122492B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strand
- continuous casting
- cooling
- casting machine
- cooling zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000009749 continuous casting Methods 0.000 title claims description 109
- 229910000831 Steel Inorganic materials 0.000 title claims description 32
- 239000010959 steel Substances 0.000 title claims description 32
- 238000001816 cooling Methods 0.000 claims description 158
- 238000005266 casting Methods 0.000 claims description 39
- 238000009413 insulation Methods 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 24
- 238000007711 solidification Methods 0.000 claims description 22
- 230000008023 solidification Effects 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 15
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000010583 slow cooling Methods 0.000 description 10
- 230000001939 inductive effect Effects 0.000 description 6
- 239000003570 air Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/055—Cooling the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/08—Accessories for starting the casting procedure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1213—Accessories for subsequent treating or working cast stock in situ for heating or insulating strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
- B22D11/1281—Vertical removing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/20—Controlling or regulating processes or operations for removing cast stock
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/22—Controlling or regulating processes or operations for cooling cast stock or mould
- B22D11/225—Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
Definitions
- the present invention relates to a method for the semi-continuous continuous casting of a strand, preferably a billet, made of steel in a continuous casting machine and a suitable continuous casting machine.
- the continuous casting machine used is divided into three parts.
- the chilled continuous casting mold for primary cooling of the strand which is typically made of copper or a copper alloy, is followed by a strand guide for supporting and guiding the strand with a secondary cooling, typically comprising a plurality of single-material (mostly so-called water-only nozzles) and / or multi-substance nozzles (mostly so-called. airmist nozzles) to cool the partially solidified strand shell and a tertiary cooling zone to further cool the strand.
- a secondary cooling typically comprising a plurality of single-material (mostly so-called water-only nozzles) and / or multi-substance nozzles (mostly so-called. airmist nozzles) to cool the partially solidified strand shell and a tertiary cooling zone to further cool the strand.
- the continuous casting machine is designed as a vertical continuous casting machine with a vertical mold, a vertical strand guide and a vertical Tertiärkühlzone.
- liquid steel is produced (typically from a metallurgical vessel, such as a ladle or pouring spreader) into the cold-run through mold, the liquid steel having the cold strand forming a solidified strand and a semi-solid strand following it (ie, a solidified strand shell and a liquid core) formed.
- a metallurgical vessel such as a ladle or pouring spreader
- the flow from the metallurgical vessel into the continuous casting mold can be adjusted, for example, via a slide closure or a plug drive.
- the partially solidified strand is drawn out of the continuous casting mold, wherein the casting level in the mold, which is adjusted by the inflow of liquid steel into the mold and the extraction of the partially solidified strand by driven strand guide rollers, is kept approximately constant.
- the partially solidified strand is supported by the continuous casting mold in the strand guide, guided and further cooled by the secondary cooling.
- the secondary cooling has a plurality of cooling nozzles; at slow casting speeds, however, cooling by radiation may already be sufficient to form a viable strand shell.
- the cooling intensities in the primary and secondary cooling are adjusted depending on the pull-out speed so that the shell of the partially solidified strand can withstand the maximum occurring ferrostatic pressure in the continuous casting machine.
- the casting process is terminated, for example by closing the metallurgical vessel.
- a strand end of the strand which is typically not completely solidified, forms.
- the strand end is now at least as far removed from the continuous casting mold, that it comes to rest in the area of secondary cooling or tertiary cooling of the continuous casting machine.
- the secondary cooling is terminated.
- the partially solidified strand is now - compared to continuous casting - slow, controlled or regulated in the Tertiary cooling zone of the continuous casting machine cooled to complete solidification.
- the cooling takes place in a controlled manner - decreasing more in the foot area (ie in the area of the strand start) of the strand and towards the strand head, ie in the region of the strand end). This causes a bottom-up solidification front in the center area.
- a globular or dendritic microstructure appears with only extremely small segregations and porosities.
- dendritic solidification the dendrites in the strand center can not grow together, thus avoiding the thread porosity in the strand center.
- the solidified strand is discharged from the continuous casting machine.
- the cooling of the partially solidified strand in the tertiary cooling zone is either controlled or regulated.
- the setpoint value for the cooling may be the surface temperature of the strand, or preferably a microstructure composition in the center of the strand calculated in real time in a 2- or 3-dimensional model including the heat equation for the strand and optionally taking into account the processes during structural transformation be used.
- the cooling and the structure formation in the strand can be set very accurately.
- the strand is cooled primarily by thermal radiation and possibly by convection; spray cooling is typically not required.
- any necessary annealing treatments of the strand for the purpose of stress relief and further structural improvement can already be carried out in the tertiary cooling zone of the continuous casting machine.
- the cooling at the start of the strand can be set more strongly than at the end of the strand without additional energy. By targeted heating of the strand, this can be ensured with additional energy. Finally, a - possibly only locally - present - too slow cooling of the strand can be remedied by a surface cooling of the strand.
- the partially solidified strand preferably its lateral surface, in the tertiary cooling zone is heated by a, preferably inductive, heating device.
- the strand can also be heated by burners.
- a locally too slow cooling can be prevented when the partially solidified strand is cooled in the tertiary cooling zone by a, preferably movable, cooling device.
- the heating device can be moved in the extension direction of the continuous casting machine. As a result, the temperature of the strand can only be influenced by a single heating device without the need for distributed devices.
- the partially solidified strand is protected in the tertiary cooling zone by a thermal insulation against rapid cooling. It is advantageous if the heat insulation is preheated before the casting start.
- a particularly effective heat insulation which also promotes the degassing of the not yet solidified melt and also before Scaling protects, is to keep the strand in a vacuum or in an atmosphere of inert gas.
- the insulation effect is preset either statically or controlled or regulated during operation.
- the setting may e.g. done by swiveling insulation lamellae.
- the insulation lamellae can be adjusted over the length of the strand to different, but static, swivel angles.
- the swivel angle can also be adjusted dynamically depending on the production program during the cooling phase. For example. For example, the swivel angles at the bottom - i. in the area of the strand beginning - are set larger than above, whereby the strand area is cooled more slowly than the strand start area.
- the cooled continuous casting mold preferably the continuous casting mold and the secondary cooling zone
- the tertiary cooling zone for example lifted off
- the separated components transverse to the extension direction of the continuous casting machine to another casting station ie to a further Tertiärkühlzone
- another strand may be poured, during which time the previously produced strand in the tertiary cooling zone is slowly cooled.
- the strand end is heated by a heating device, in particular an inductive heating device, an electric arc furnace, a plasma heater or by the burning of exothermic covering powder.
- a heating device in particular an inductive heating device, an electric arc furnace, a plasma heater or by the burning of exothermic covering powder.
- a stirring device such as a stirring coil is advantageous. This is conveniently movable along the string axis.
- the semi-solidified strand in the tertiary cooling zone may be alternately rotated clockwise and counterclockwise about its own axis. By reversing the direction of a particularly intimate mixing is ensured inside the strand.
- the cast strand obtains a stable shell as quickly as possible and thereby the length of the secondary cooling can be kept as short as possible, it is advantageous if the strand has a round cross-section.
- a similar effect can also be achieved with a strand having a three-round, four-round, etc. cross section.
- the continuous casting machine may also have a statically presettable or dynamically (i.e., during operation) controlled or adjustable heat insulation.
- the lateral surface of the strand can be heated, whereby the cooling (and thus the microstructure formation) in the center region of the partially solidified strand in the tertiary cooling zone of the continuous casting machine can be adjusted very accurately.
- the tertiary cooling zone has a, in particular statically adjustable or dynamically controlled or regulated adjustable, heat insulation.
- the continuous casting mold, the secondary and the tertiary cooling zone are arranged in one row (so-called in-line).
- the productivity of the semi-continuous continuous casting machine is substantially increased if the continuous casting machine has a plurality of transverse cooling zones offset transversely to the drawing machine direction, wherein the machine head of the continuous casting machine, comprising the continuous casting mold and preferably the secondary cooling zone, is connectable and separable with a tertiary cooling zone and at least the Machine head is movable transversely to the extension direction.
- a single machine head can serve multiple tertiary cooling zones so that high throughput is achieved despite the slow cooling of the partially solidified strands.
- the machine head is moved to another tertiary cooling zone during which the strand is stationary.
- the controlled or controlled, slow cooling in the center region of the strand is not disturbed.
- the strand possibly with the Tertiärksselung be moved away from the machine head.
- the adjustable heat insulation at least one - advantageously several - insulation panel (also called lamella), that in the extension direction of the continuous casting machine is displaced or pivotable to the extension direction.
- the cooling rate of the partially solidified strand can be passive, i. without additional input of energy.
- Multiple strands of small size can be created simultaneously if the machine head of the continuous casting machine has a plurality of cooled continuous molds and a plurality of strand guides with secondary cooling zones arranged behind them.
- a simple and robust continuous casting machine has a strand withdrawal carriage for pulling out the strand, wherein the strand withdrawal carriage in the extension direction, for example by spindle, rack or cylinder drives, is movable.
- the strand beginning is supported by the cold strand on the strand withdrawal trolley.
- the strand withdrawal carriage is connected to the machine head, wherein the strand withdrawal carriage with the machine head is movable transversely to the extension direction.
- the cast strand after the pouring end e.g. parked on a pedestal on the hall floor and moved the machine head with the pullout trolley to another Tertiärksselung.
- the slow cooling of the parked strand may e.g. be ensured by a pulled over the strand thermal hood.
- the machine head is stationary and the cast strand is movable transversely to the extension direction.
- the cast strand is e.g. parked on a pedestal, wherein the pedestal can be moved together with the strand to another tertiary cooling zone.
- Fig. 1a is poured from a pan distributor not shown separately liquid steel via a dip tube in a cooled continuous casting mold 2, wherein the casting mold 2, the continuous casting mold 2 is closed fluid-tight by the cold strand 6 during casting start of the continuous casting machine, so that in the mold a casting M (also called meniscus) adjusts.
- a solidified strand beginning 1a is formed (see Fig. 1c ) out.
- the partially solidified strand 1b following the solidified strand beginning 1a is not solidified in the opposite direction to the drawing direction A, but has only a thin strand shell and a liquid core.
- the strand 1 is pulled out of the mold 2.
- the continuous casting machine on a Strangabzugswagen 11, the cold strand 6 itself, a threaded spindle 12, a Threaded nut 13 and a motor 14 for moving the strand extractor carriage 11 in the extension direction A includes.
- the motor 14 is connected via a gear and the threaded spindle 12 with the threaded nut 13 and has a drive-through for the threaded spindle 12.
- In 1b was the strand 1 already pulled out of the continuous mold 2, wherein the strand 1 in the mold 2 subsequent strand guide 3 is supported by a plurality of strand guide rollers 3a, guided and cooled by a plurality of cooling nozzles 4a in the secondary cooling 4.
- the strand 1 forms a stable strand shell, which can withstand the ferrostatic pressure. Thus, a breakthrough of the strand 1 is prevented.
- Fig. 1c the strand beginning 1a has already passed the secondary cooling 3 of the continuous casting machine and has entered the tertiary cooling zone 5.
- the strand 1 is further controlled slowly or cooled controlled so that in the center of the partially solidified strand 1b, the solidification takes place with an upward direction.
- the tertiary cooling zone 5 has a thermal insulation 9 and an in Fig. 1f shown heater 7.
- Fig. 1f shown heater 7.
- thermal insulation 9 for a Tertiärksselung, wherein the atmosphere between the strand 1 and the heat hood 9 by a vacuum pump (here a jet pump 15) is evacuated.
- a vacuum pump here a jet pump 15
- a pressure connection of the jet pump 15 is connected to a compressed air network and the suction connection of the jet pump 15 to the space inside the thermal insulation 9.
- This measure also prevents oxidation, ie scaling, of the strand 1;
- the not yet solidified melt in the train is degassed by the vacuum treatment.
- the heat insulation 9 has a plurality of insulation panels 9a, which are independent of each other closed (opening angle 0 °), opened (opening angle 90 °) or partially opened (90 °> opening angle> 0 °).
- Fig. 1d the casting in the continuous casting machine was finished so that a strand end 1c is formed.
- the casting mirror M is located below the pouring mirror shown in dashed lines according to the process steps 1a-1c.
- the Fig. 1e shows the situation after the strand end 1c of the strand 1 has passed the secondary cooling zone 3, the secondary cooling has ended and the strand end 1c is flush with the upper end of the tertiary cooling zone 5.
- the slow, controlled or controlled cooling of the partially solidified strand 1b is ensured by the heat insulation 9 and the heating of the strand by the movable in the extension direction A heater 7 (see Fig. 1f ).
- the strand end 1c is heated by an inductive head heater 10, so that too rapid cooling of the strand end 1c is prevented.
- FIGS. 1a ... 1f a round steel strand 1 with a diameter of 1200 mm and a length of 10 m was produced.
- the pull-out speed of the strand 1 from the continuous casting mold 2 is 0.25 m / min. Due to the thermal insulation 9 and the reheating of the strand 1 by the movable heater 7, the complete solidification of the strand 1 is reached only after 13 h.
- Fig. 2a is a first alternative embodiment of the tertiary cooling zone 5 of Fig. 1 shown.
- the space between the strand 1 and the thermal insulation 9 is evacuated by a jet pump 15, whereby a good thermal insulation and a slow cooling is achieved.
- the surface of the strand 1 is protected from scaling and degassed the residual melt.
- the jet pump is simple and wear-free; its pressure connection is connected to a compressed air connection P and its suction connection to the space to be evacuated within the tertiary cooling zone.
- the blowing off can take place against ambient pressure U.
- the inductive head heater 10 is advantageous over plasma heating, since the magnetic field also acts through the thermal insulation of the strand end 1c.
- the Fig. 2b shows a second alternative of the tertiary cooling zone 5 of Fig. 1 ,
- the insulation lamellae 9a of the thermal insulation 9 are pivotable relative to the extension direction, so that the air exchange between the ambient air and the strand 1 in the interior of the tertiary cooling zone 9 is adjustable.
- the insulation lamellae 9a on the right side of the strand 1 were closed and shown open on the left side by 10 ° to the extension direction A.
- the adjustment of the slats 9a can be done either manually or by actuators.
- the Fig. 3 schematically shows the time course of the travel s of the inductive heating device 7 for Reheating the lateral surface of the strand 1.
- the heater 7 is pulled through in the upper part of the strand 1 and shown in dashed lines in the lower area. Since the solidification front shifts during the cooling from bottom to top (ie, from strand start 1a to strand end 1c), also the travel s of the heating device 7 decreases over time.
- a plurality of heating devices eg burners
- a plurality of heating devices eg burners
- the Fig. 4 shows the temperatures in ° C of the according to Fig. 1 produced strand 1 in a sectional view 3h after casting start (part 1), 8.3h after casting start (part 2) and solidification of the strand 1, about 13h after casting start (part 3).
- the time course of the temperatures of the strand 1 at different positions on the surface and in the center of the strand are in Fig. 5 shown. It follows that the casting of the strand and thus also the primary and the secondary cooling is terminated 46 minutes after the casting start and then the strand 1 is cooled controlled only by the Tertiärkühlung 5.
- FIGS. 6a . 6b a vertical strand casting machine according to the invention is shown in two views.
- the liquid steel is poured from a pan 30 via a shadow tube in the casting manifold 31, then the melt flows through a not shown immersion tube ( SEN ) in the continuous casting mold 2 a. Due to the primary cooling in the mold 2, a partially solid strand 1 forms with a stable strand shell.
- the melt is further influenced by an optional stirring device 32.
- the strand 1 is supported in the strand guide 3, guided and further cooled in the secondary cooling zone 4.
- At least the continuous casting mold 2, the stirring coil 32, the strand guide 3 with the secondary cooling zone 4, and optionally also the tertiary cooling zone 5, are on a casting trolley 33 on the casting platform G movable.
- the strand 1 with the cold strand 6 is pulled out of the continuous casting mold 2 via the strand withdrawal carriage 11.
- the Strangabzugswagen 11 is driven by four threaded spindles 12 and guided by additional guide rails 34, wherein a motor via a gear and the threaded spindle 12 is connected to the threaded nut 13.
- the casting trolley 33 can be moved transversely to the extension direction A to a further casting station, since the casting of the partially solidified strand, ie without the Tertiärksselung the strand 1, much less time needed as the tertiary cooling of strand 1 until its solidification.
- the strand 1 is slowly cooled by the thermal insulation 9 and possibly by a heater, not shown here, so that the solidification takes place in the center of the strand with an upwardly oriented solidification front.
- FIG. 7 A more detailed representation of the machine head of the continuous casting machine from the Fig. 6a . 6b is in Fig. 7 shown.
- the 8a, 8b schematically show an embodiment for discharging the solidified strand 1 from the Tertiärksselzone.
- the strand 1 is laterally supported by two brackets 38, so that on the continuous casting machine also very different diameters (see plan of Fig. 8a ) can be shed.
- Fig. 8a the strand 1 has already been swung out with respect to the vertical and rests against the brackets 38.
- Fig. 8b the strand 1 is placed over the pivot drive 39 on a roller table 37, where it can be removed in the direction of the arrow.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs, vorzugsweise eines Vorblocks, aus Stahl in einer Stranggießmaschine und eine dazu geeignete Stranggießmaschine.The present invention relates to a method for the semi-continuous continuous casting of a strand, preferably a billet, made of steel in a continuous casting machine and a suitable continuous casting machine.
Der überwiegende Teil der heute produzierten Gesamtstahlmenge wird in kontinuierlich betriebenen Stranggießmaschinen mit hohem Durchsatz zu Strängen vergossen. Nur ca. 5% der Gesamtstahlmenge wird zu Vorblöcken (engl. ingots) vergossen. Das Vorblockgießen ist bspw. beschrieben im
Vorteile des Vorblockgießens sind:
- Hohe Flexibilität in den Produktabmessungen, günstig bei kleinen Losgrößen, einzigartig bei großen Formaten;
- Eignung für spezielle Stahlsorten (z.B. für Kaltformstähle CHQ; HSLA Stähle; hochlegierte Stähle mit ca. 5% Legierungsanteilen, wie Cr, Ni, Mo; Kettenstähle; Automatenstähle mit einem hohen Anteil von S, Pb, Bi; Lagerstähle mit ca. 1% C, 1,2% Cr, 0,25% Ni, 0,25% Mo; etc.); und
- höhere Qualität in punkto Vermeidung von Zentrumsseigerung und Porosität, insbesondere von Fadenporosität im Zentrum des Strangs.
- High flexibility in product dimensions, favorable for small batch sizes, unique for large formats;
- Suitable for special steel grades (eg for cold forming steels CHQ, HSLA steels, high-alloyed steels with about 5% alloying parts, such as Cr, Ni, Mo, chain steels, free-cutting steels with a high content of S, Pb, Bi, bearing steels with about 1% C) , 1.2% Cr, 0.25% Ni, 0.25% Mo, etc.); and
- Higher quality in terms of avoiding Zentrsesseigerung and porosity, especially of thread porosity in the center of the strand.
Nachteile des Vorblockgießens sind:
- langsame aber nur unzureichend kontrollierbare Abkühlgeschwindigkeiten in der Vorblockkokille;
- höhere Ausbringverluste durch das Abtrennen des Kopf-und Fußteils des Vorblocks;
- höhere Betriebskosten; und
- geringere Gefügesymmetrie und Reinheit.
- slow but insufficiently controllable cooling rates in the pre-block mold;
- higher application losses due to the separation of the head and foot part of the billet;
- higher operating costs; and
- less structural symmetry and purity.
Untersuchungen der Anmelderin haben ergeben, dass die höhere Qualität des Vorblockgießens in Bezug auf Zentrumsseigerung und Porosität hauptsächlich durch die langsame Erstarrungsgeschwindigkeit und die vom Stranganfang zum Strangende hin gerichtete Erstarrung im Zentrumsbereich des Vorblocks bewirkt wird. Die Erstarrung im Zentrum erfolgt globular bzw. mit einer axial ausgerichteten Erstarrungsfront, sodass eventuell auftretende Dendriten vermieden werden, welche im Zentrum Brücken bilden und das Nachsaugen der Schmelze behindern. Eine Fadenporosität im Zentrum ist somit weitgehend ausgeschlossen. Im Gegensatz dazu sind die Eigenschaften beim kontinuierlichen Stranggießen genau umgekehrt. Extrem niedrige Abkühlraten wie beim Vorblockgießen sind bei kontinuierlich betriebenen Stranggießmaschinen nicht realisierbar, da die Maschinenlänge aus wirtschaftlichen Gründen beschränkt ist. Durch die höhere Abkühlgeschwindigkeit verbunden mit der eher radial von außen nach Innen gerichteten Erstarrung beim kontinuierlichen Stranggießen wird eine dendritische Erstarrung und damit Zentrumsseigerung und Porosität verursacht. Daher werden nach dem Stand der Technik große Formate, die im Wesentlichen frei von Zentrumsseigerungen und Porositäten, insbesondere von Fadenporositäten, sein sollen, über die Ingotroute hergestellt. Die höheren Betriebskosten, geringere Ausbringung und Nachteile in der Gefügesymmetrie und Reinheit des Vorblocks werden dabei in Kauf genommen.Applicant's investigations have shown that the higher quality of pre-bloom casting in terms of center segregation and porosity is mainly due to the slow solidification rate and the solidification in the center region of the billet from strand start to strand end. The solidification in the center is globular or with an axially oriented solidification front, so that any occurring dendrites are avoided, which form bridges in the center and obstruct the suction of the melt. A yarn porosity in the center is thus largely excluded. In contrast, the properties of continuous casting are exactly the opposite. Extremely low cooling rates, as in the case of pre-block casting, can not be achieved in continuously operated continuous casting machines because the machine length is limited for economic reasons. Due to the higher cooling rate associated with the more radially directed from outside to inside solidification in continuous casting a dendritic solidification and thus Zentrumsseigerung and porosity is caused. Therefore, in the prior art, large formats that are substantially free of center segregations and porosities, particularly of filament porosities, are made via the ingot route. The higher operating costs, lower output and disadvantages in the structural symmetry and purity of the billet are accepted.
Aus der
- Gießstart der Stranggießmaschine, wobei
flüssiges Metall 6 in die Durchlaufkokille gegossen wird und das flüssige Metall einen teilerstarrten Strang ausbildet; - Ausziehen des teilerstarrten Strangs aus der Durchlaufkokille; und
- Abkühlen des teilerstarrten Strangs in der Sekundärkühlzone.
- eine geringe Zentrumsseigerung und Porosität aufweist, und
- dennoch rasch, d.h. mit hohem Durchsatz, vergossen werden kann. Dadurch soll der semi-kontinuierlich vergossene Strang einerseits ähnliche bzw. sogar bessere metallurgische Eigenschaften wie ein durch die klassische Ingotroute hergestellter Vorblock haben; andererseits soll der Strang aber mit einem ähnlich hohen Durchsatz produziert werden können wie in einer kontinuierlich betriebenen Stranggießmaschine.
- Casting start of the continuous casting machine, wherein
liquid metal 6 is poured into the continuous casting mold and the liquid metal forms a partially solidified strand; - Extracting the partially solidified strand from the continuous casting mold; and
- Cooling the partially solidified strand in the secondary cooling zone.
- has a low center segregation and porosity, and
- nonetheless can be shed quickly, ie with high throughput. As a result, the semi-continuously cast strand should on the one hand have similar or even better metallurgical properties than a bloom produced by the classical ingot route; On the other hand, however, the strand should be able to be produced with a similarly high throughput as in a continuously operated continuous casting machine.
Schließlich soll eine dafür geeignete Stranggießmaschine angegeben werden.Finally, a suitable continuous casting machine should be specified.
Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst, vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method according to
Erfindungsgemäß werden beim Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs, vorzugsweise eines Vorblocks, aus Stahl in einer Stranggießmaschine, wobei die Stranggießmaschine eine gekühlte Durchlaufkokille zur Primärkühlung des Strangs, nachfolgend eine Strangführung zum Stützen und Führen des Strangs mit einer - typischerweise mehrere Kühldüsen umfassenden - Sekundärkühlung zum Abkühlen des Strangs, und wiederum nachfolgend eine Tertiärkühlung zum weiteren Abkühlen des Strangs aufweist, folgende Verfahrensschritte durchgeführt:
- Gießstart der Stranggießmaschine, wobei flüssiger Stahl in die durch einen Kaltstrang verschlossene Durchlaufkokille gegossen wird und der flüssige Stahl mit dem Kaltstrang einen durcherstarrten Stranganfang und nachfolgend einen teilerstarrten Strang ausbildet;
- Ausziehen des teilerstarrten Strangs aus der Durchlaufkokille;
- Stützen und Führen des teilerstarrten Strangs in der Strangführung, wobei der teilerstarrte Strang durch die Sekundärkühlung abgekühlt wird;
- Gießende der Stranggießmaschine, wobei das Vergießen von flüssigem Stahl in die Durchlaufkokille beendet wird und sich ein Strangende ausbildet;
- Ausziehen des Strangendes aus der Durchlaufkokille;
- Beenden des Ausziehens, sodass das Strangende außerhalb der Durchlaufkokille (d.h. im Bereich der Sekundärkühlzone oder der Tertiärkühlzone der Stranggießmaschine) liegt;
- Beenden der Sekundärkühlung;
- gesteuertes oder geregeltes Abkühlen des teilerstarrten Strangs bis zur Durcherstarrung des Strangs in der Tertiärkühlzone der Stranggießmaschine, wobei das Abkühlen am Stranganfang stärker und zum Strangende hin abnehmend eingestellt wird;
- Ausfördern des Strangs aus der Stranggießmaschine.
- Casting start of the continuous casting machine, wherein liquid steel is poured into the sealed by a cold strand continuous casting mold and the liquid steel with the dummy strand forms a solidified Stranganfang and then a partially solidified strand;
- Extracting the partially solidified strand from the continuous casting mold;
- Supporting and guiding the partially solidified strand in the strand guide, wherein the partially solidified strand is cooled by the secondary cooling;
- Casting end of the continuous casting machine, wherein the casting of liquid steel is completed in the continuous mold and forms a strand end;
- Extracting the strand end from the continuous casting mold;
- Terminating the extraction so that the strand end is outside the continuous casting mold (ie in the area of the secondary cooling zone or the tertiary cooling zone of the continuous casting machine);
- Terminating the secondary cooling;
- Controlled or controlled cooling of the partially solidified strand until the solidification of the strand in the tertiary cooling zone of the continuous casting machine, wherein the cooling is set at the strand beginning stronger and decreasing towards the strand end;
- Extracting the strand from the continuous casting machine.
Die dabei verwendete Stranggießmaschine ist dreiteilig gegliedert. An die typischerweise aus Kupfer bzw. einer Kupferlegierung bestehende gekühlte Durchlaufkokille zur Primärkühlung des Strangs folgt eine Strangführung zum Stützen und Führen des Strangs mit einer Sekundärkühlung, typischerweise umfassend mehrere Einstoff- (meistens sog. water only Düsen) und/oder Mehrstoffdüsen (meistens sog. airmist Düsen), zum Abkühlen der teilerstarrten Strangschale, und eine Tertiärkühlzone zum weiteren Abkühlen des Strangs nach.The continuous casting machine used is divided into three parts. The chilled continuous casting mold for primary cooling of the strand, which is typically made of copper or a copper alloy, is followed by a strand guide for supporting and guiding the strand with a secondary cooling, typically comprising a plurality of single-material (mostly so-called water-only nozzles) and / or multi-substance nozzles (mostly so-called. airmist nozzles) to cool the partially solidified strand shell and a tertiary cooling zone to further cool the strand.
Um das Biegen bzw. das Rückbiegen des Strangs zu vermeiden, ist es vorteilhaft, wenn die Stranggießmaschine als eine Vertikalstranggießmaschine mit einer senkrechten Kokille, einer senkrechten Strangführung und einer senkrechten Tertiärkühlzone ausgebildet ist.In order to avoid the bending or the bending back of the strand, it is advantageous if the continuous casting machine is designed as a vertical continuous casting machine with a vertical mold, a vertical strand guide and a vertical Tertiärkühlzone.
Das erfindungsgemäße Verfahren läuft wie folgt ab: Beim Gießstart der Stranggießmaschine wird flüssiger Stahl (typischerweise von einem metallurgischen Gefäß, wie einer Pfanne oder einem Gießverteiler) in die durch einen Kaltstrang verschlossene Durchlaufkokille vergossen, wobei der flüssige Stahl mit dem Kaltstrang einen durcherstarrten Stranganfang und einen dem Stranganfang nachfolgenden teilerstarrten Strang (d.h. eine erstarrte Strangschale und einen flüssigen Kern) ausbildet. Der Durchfluss vom metallurgischen Gefäß in die Durchlaufkokille kann bspw. über einen Schieberverschluss oder einen Stopfenantrieb eingestellt werden. Anschließend wird der teilerstarrte Strang aus der Durchlaufkokille ausgezogen, wobei der Gießspiegel in der Kokille, der sich durch den Zufluss von flüssigem Stahl in die Kokille und das Ausziehen des teilerstarrten Strangs durch angetriebene Strangführungsrollen einstellt, in etwa konstant gehalten wird. Der teilerstarrte Strang wird nach der Durchlaufkokille in der Strangführung gestützt, geführt und durch die Sekundärkühlung weiter abgekühlt. Insbesondere bei höheren Gießgeschwindigkeiten ist es vorteilhaft, wenn die Sekundärkühlung mehrere Kühldüsen aufweist; bei langsamen Gießgeschwindigkeiten kann jedoch die Kühlung durch Strahlung bereits ausreichen, eine tragfähige Strangschale zu bilden. Die Kühlintensitäten in der Primär- und Sekundärkühlung werden je nach Auszugsgeschwindigkeit so eingestellt, dass die Schale des teilerstarrten Strangs dem maximal auftretenden ferrostatischen Druck in der Stranggießmaschine standhält. Wenn der Strang die gewünschte Länge bzw. das gewünschte Gewicht erreicht hat, wird der Gießvorgang beendet, bspw. durch das Verschließen des metallurgischen Gefäßes. Dadurch bildet sich ein typischerweise nicht völlig durcherstarrtes Strangende des Strangs aus. Das Strangende wird nun zumindest soweit aus der Durchlaufkokille ausgezogen, dass es im Bereich der Sekundärkühlung oder der Tertiärkühlung der Stranggießmaschine zu liegen kommt. Spätestens wenn das Strangende die Sekundärkühlzone passiert hat, wird die Sekundärkühlung beendet. Der teilerstarrte Strang wird nun - im Vergleich zum kontinuierlichen Stranggießen - langsam, gesteuert oder geregelt in der Tertiärkühlzone der Stranggießmaschine bis zur völligen Durcherstarrung abgekühlt. Dabei erfolgt die Abkühlung kontrolliert - stärker im Fußbereich (d.h. im Bereich des Stranganfangs) des Stranges und zum Strangkopf d.h. im Bereich des Strangendes) hin abnehmend. Damit wird im Zentrumsbereich eine von unten nach oben gerichtete Erstarrungsfront bewirkt. Im Zentrum des teilerstarrten Strangs stellt sich so entweder ein globulares oder dendritisches Gefüge mit nur äußerst geringen Seigerungen und Porositäten ein. Bei dendritischer Erstarrung können die Dendriten im Strangzentrum nicht zusammenwachsen, wodurch die Fadenporosität im Strangzentrum vermieden wird. Schließlich wird der durcherstarrte Strang aus der Stranggießmaschine ausgefördert.The process according to the invention proceeds as follows: During the casting start of the continuous casting machine, liquid steel is produced (typically from a metallurgical vessel, such as a ladle or pouring spreader) into the cold-run through mold, the liquid steel having the cold strand forming a solidified strand and a semi-solid strand following it (ie, a solidified strand shell and a liquid core) formed. The flow from the metallurgical vessel into the continuous casting mold can be adjusted, for example, via a slide closure or a plug drive. Subsequently, the partially solidified strand is drawn out of the continuous casting mold, wherein the casting level in the mold, which is adjusted by the inflow of liquid steel into the mold and the extraction of the partially solidified strand by driven strand guide rollers, is kept approximately constant. The partially solidified strand is supported by the continuous casting mold in the strand guide, guided and further cooled by the secondary cooling. Especially at higher casting speeds, it is advantageous if the secondary cooling has a plurality of cooling nozzles; at slow casting speeds, however, cooling by radiation may already be sufficient to form a viable strand shell. The cooling intensities in the primary and secondary cooling are adjusted depending on the pull-out speed so that the shell of the partially solidified strand can withstand the maximum occurring ferrostatic pressure in the continuous casting machine. When the strand has reached the desired length or weight, the casting process is terminated, for example by closing the metallurgical vessel. As a result, a strand end of the strand, which is typically not completely solidified, forms. The strand end is now at least as far removed from the continuous casting mold, that it comes to rest in the area of secondary cooling or tertiary cooling of the continuous casting machine. At the latest when the strand end has passed the secondary cooling zone, the secondary cooling is terminated. The partially solidified strand is now - compared to continuous casting - slow, controlled or regulated in the Tertiary cooling zone of the continuous casting machine cooled to complete solidification. The cooling takes place in a controlled manner - decreasing more in the foot area (ie in the area of the strand start) of the strand and towards the strand head, ie in the region of the strand end). This causes a bottom-up solidification front in the center area. In the center of the partially solidified strand, either a globular or dendritic microstructure appears with only extremely small segregations and porosities. In dendritic solidification, the dendrites in the strand center can not grow together, thus avoiding the thread porosity in the strand center. Finally, the solidified strand is discharged from the continuous casting machine.
Das Abkühlen des teilerstarrten Strangs in der Tertiärkühlzone erfolgt entweder gesteuert oder geregelt. Als Soll-Wert für die Abkühlung kann die Oberflächentemperatur des Strangs, oder bevorzugt eine - in einem 2- oder 3-dimensionalen Modell beinhaltend die Wärmeleitungsgleichung für den Strang und gegebenenfalls unter Berücksichtigung der Vorgänge bei der Gefügeumwandlung - in Echtzeit berechnete Gefügezusammensetzung im Zentrum des Strangs herangezogen werden. Dadurch kann die Abkühlung und die Gefügeausbildung im Strang sehr genau eingestellt werden. In der Tertiärkühlung wird der Strang primär durch Wärmestrahlung und ggf. durch Konvektion abgekühlt; eine Spritzkühlung ist typischerweise nicht erforderlich.The cooling of the partially solidified strand in the tertiary cooling zone is either controlled or regulated. The setpoint value for the cooling may be the surface temperature of the strand, or preferably a microstructure composition in the center of the strand calculated in real time in a 2- or 3-dimensional model including the heat equation for the strand and optionally taking into account the processes during structural transformation be used. As a result, the cooling and the structure formation in the strand can be set very accurately. In tertiary cooling, the strand is cooled primarily by thermal radiation and possibly by convection; spray cooling is typically not required.
Durch die langsame Abkühlung des Strangs können eventuell notwendige Glühbehandlungen des Strangs zwecks Spannungsabbau und weiterer Strukturverbesserung bereits in der Tertiärkühlzone der Stranggießmaschine durchgeführt werden.Due to the slow cooling of the strand, any necessary annealing treatments of the strand for the purpose of stress relief and further structural improvement can already be carried out in the tertiary cooling zone of the continuous casting machine.
Vorteilhafterweise wird das langsame, geregelte oder gesteuerte, Abkühlen des Strangs durch zumindest eine der folgenden Maßnahmen beeinflusst:
- a) Beeinflussung der Wärmeisolation des Strangs,
- b) Heizung des Strangs,
- c) Oberflächenkühlung des Strangs.
- a) influencing the heat insulation of the strand,
- b) heating the strand,
- c) surface cooling of the strand.
Durch die gezielte Beeinflussung der Wärmeisolation kann ohne zusätzliche Energie die Abkühlung am Stranganfang stärker als am Strangende eingestellt werden. Durch eine gezielte Heizung des Strangs kann dies mit zusätzlicher Energie sichergestellt werden. Schließlich kann eine - ggf. nur lokal - vorliegende - zu langsame Abkühlung des Strangs durch eine Oberflächenkühlung des Strangs behoben werden.By deliberately influencing the heat insulation, the cooling at the start of the strand can be set more strongly than at the end of the strand without additional energy. By targeted heating of the strand, this can be ensured with additional energy. Finally, a - possibly only locally - present - too slow cooling of the strand can be remedied by a surface cooling of the strand.
Um ein zu rasches Abkühlen des teilerstarrten Strangs in der Tertiärkühlzone zu verhindern, ist es vorteilhaft, wenn der teilerstarrte Strang, vorzugsweise dessen Mantelfläche, in der Tertiärkühlzone durch eine, bevorzugt induktive, Heizvorrichtung aufgeheizt wird. Alternativ kann der Strang aber auch durch Brenner aufgeheizt werden.In order to prevent too rapid cooling of the partially solidified strand in the tertiary cooling zone, it is advantageous if the partially solidified strand, preferably its lateral surface, in the tertiary cooling zone is heated by a, preferably inductive, heating device. Alternatively, the strand can also be heated by burners.
Obwohl ein zu langsames Abkühlen des teilerstarrten Strangs gemäß der Erfindung nicht auftreten sollte, kann ein lokal zu langsames Abkühlen verhindert werden, wenn der teilerstarrte Strang in der Tertiärkühlzone durch eine, bevorzugt verfahrbare, Kühlvorrichtung abgekühlt wird.Although too slow a cooling of the partially solidified strand according to the invention should not occur, a locally too slow cooling can be prevented when the partially solidified strand is cooled in the tertiary cooling zone by a, preferably movable, cooling device.
Besonders vorteilhaft ist es, wenn die Heizvorrichtung in Auszugsrichtung der Stranggießmaschine verfahrbar ist. Dadurch kann die Temperatur des Strangs nur durch eine einzige Heizvorrichtung beeinflusst werden, ohne dass hierzu verteilt angeordnete Vorrichtungen benötigt werden.It is particularly advantageous if the heating device can be moved in the extension direction of the continuous casting machine. As a result, the temperature of the strand can only be influenced by a single heating device without the need for distributed devices.
Für die Einstellung der Erstarrung ist es besonders vorteilhaft, wenn der teilerstarrte Strang in der Tertiärkühlzone durch eine Wärmeisolation vor zu rascher Abkühlung geschützt wird. Vorteilhaft ist es, wenn die Wärmeisolation vor dem Gießstart vorgeheizt wird. Eine besonders effektive Wärmeisolation die zudem die Entgasung der noch nicht erstarrten Schmelze fördert und außerdem vor Verzunderung schützt, besteht darin, den Strang in einem Vakuum oder in einer Atmosphäre aus Schutzgas zu halten.For setting the solidification, it is particularly advantageous if the partially solidified strand is protected in the tertiary cooling zone by a thermal insulation against rapid cooling. It is advantageous if the heat insulation is preheated before the casting start. A particularly effective heat insulation which also promotes the degassing of the not yet solidified melt and also before Scaling protects, is to keep the strand in a vacuum or in an atmosphere of inert gas.
Bei der Wärmeisolation ist es vorteilhaft, wenn die Isolationswirkung entweder statisch voreingestellt wird oder während des Betriebs gesteuert oder geregelt eingestellt wird ist. Die Einstellung kann z.B. durch schwenkbare Isolationslamellen erfolgen. Die Isolationslamellen können während der Tertiärkühlphase über die Stranglänge auf verschiedene, jedoch statisch gleichbleibende, Schwenkwinkel eingestellt werden. Die Schwenkwinkel können aber auch je nach Produktionsprogramm während der Abkühlphase dynamisch verstellt werden. Bspw. können die Schwenkwinkel unten - d.h. im Bereich des Stranganfangs - größer als oben eingestellt werden, wodurch der Strangendbereich langsamer als der Stranganfangsbereich abgekühlt wird.In the case of thermal insulation, it is advantageous if the insulation effect is preset either statically or controlled or regulated during operation. The setting may e.g. done by swiveling insulation lamellae. During the tertiary cooling phase, the insulation lamellae can be adjusted over the length of the strand to different, but static, swivel angles. The swivel angle can also be adjusted dynamically depending on the production program during the cooling phase. For example. For example, the swivel angles at the bottom - i. in the area of the strand beginning - are set larger than above, whereby the strand area is cooled more slowly than the strand start area.
Um den Durchsatz im semi-kontinuierlichen Gießbetrieb zu erhöhen, ist es äußerst vorteilhaft, wenn nachdem das Strangende die Sekundärkühlung passiert hat, die gekühlte Durchlaufkokille, bevorzugt die Durchlaufkokille und die Sekundärkühlzone, von der Tertiärkühlzone getrennt (bspw. abgehoben) werden und die abgetrennten Bauteile quer zur Auszugsrichtung der Stranggießmaschine zu einer anderen Gießstation, d.h. zu einer weiteren Tertiärkühlzone, verfahren werden. Bei der weiteren Tertiärkühlzone kann ein weiterer Strang gegossen werden, währenddessen der zuvor erzeugte Strang in der Tertiärkühlzone langsam abgekühlt wird. Durch diese Maßnahmen wird die hohe Qualität des Vorblockgießens mit der hohen Produktivität des kontinuierlichen Stranggießens vereint.In order to increase the throughput in the semi-continuous casting operation, it is extremely advantageous if, after the strand end has passed the secondary cooling, the cooled continuous casting mold, preferably the continuous casting mold and the secondary cooling zone, are separated from the tertiary cooling zone (for example lifted off) and the separated components transverse to the extension direction of the continuous casting machine to another casting station, ie to a further Tertiärkühlzone be moved. At the further tertiary cooling zone, another strand may be poured, during which time the previously produced strand in the tertiary cooling zone is slowly cooled. These measures combine the high quality of pre-block casting with the high productivity of continuous casting.
Nach dem Trennen der gekühlten Durchlaufkokille, bzw. der Durchlaufkokille mit der Sekundärkühlzone, von der Tertiärkühlzone ist es vorteilhaft, wenn das Strangende durch eine Wärmeisolation vor zu rascher Abkühlung geschützt wird.After separating the cooled Durchlaufkokille, or the continuous mold with the secondary cooling zone, from the tertiary cooling zone, it is advantageous if the strand end is protected by a thermal insulation against rapid cooling.
Weiters ist es vorteilhaft, wenn das Strangende durch eine Heizeinrichtung, insbesondere eine induktive Heizeinrichtung, einen Lichtbogenofen, eine Plasmaheizung oder durch das Abbrennen von exothermem Abdeckpulver, erwärmt wird.Furthermore, it is advantageous if the strand end is heated by a heating device, in particular an inductive heating device, an electric arc furnace, a plasma heater or by the burning of exothermic covering powder.
Durch das Isolieren und das Erwärmen des Strangendes wird der obere Bereich des Strangs bis zum Durcherstarrungsende mit flüssigem Sumpf gehalten und das Nachsaugen der Schmelze in das Strangzentrum sichergestellt. Durch diese Maßnahmen wird eine hohe Qualität erzielt und eine zu große Trichterbildung im Strangende vermieden. Ähnliche Maßnahmen sind aber auch im unteren Bereich des Strangs möglich. Durch diese Maßnahmen werden die Ausbringverluste reduziert, da nur ein kürzerer Abschnitt vom Stranganfang und -ende abgetrennt werden muss.By isolating and heating the strand end of the upper portion of the strand is held until the solidification end with liquid sump and the suction of the melt ensured in the strand center. By these measures, a high quality is achieved and a too large funnel formation avoided in the strand end. Similar measures are also possible in the lower part of the strand. Through these measures, the Ausbringverluste be reduced, since only a shorter section from Stranganfang and end must be separated.
Zur Erzielung einer gleichmäßigen Innenstruktur ist eine Rühreinrichtung wie eine Rührspule vorteilhaft. Diese ist günstigerweise entlang der Strangachse verfahrbar. Alternativ dazu kann der teilerstarrte Strang in der Tertiärkühlzone um seine eigene Achse abwechselnd im Uhrzeigersinn und gegen den Uhrzeigersinn gedreht werden. Durch die Richtungsumkehr wird eine besonders innige Vermischung im Inneren des Strangs sichergestellt.To achieve a uniform internal structure, a stirring device such as a stirring coil is advantageous. This is conveniently movable along the string axis. Alternatively, the semi-solidified strand in the tertiary cooling zone may be alternately rotated clockwise and counterclockwise about its own axis. By reversing the direction of a particularly intimate mixing is ensured inside the strand.
Damit der gegossene Strang möglichst schnell eine tragfähige Schale erhält und dadurch die Länge der Sekundärkühlung möglichst kurz gehalten werden kann, ist es vorteilhaft, wenn der Strang einen runden Querschnitt hat. Ein ähnlicher Effekt kann auch bei einem Strang mit einem dreirunden, vierrunden etc. Querschnitt erzielt werden.So that the cast strand obtains a stable shell as quickly as possible and thereby the length of the secondary cooling can be kept as short as possible, it is advantageous if the strand has a round cross-section. A similar effect can also be achieved with a strand having a three-round, four-round, etc. cross section.
Die erfindungsgemäße Aufgabe wird ebenfalls durch eine Vorrichtung nach Anspruch 10 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.The object of the invention is also achieved by a device according to
Die erfindungsgemäße Stranggießmaschine umfasst
- eine Einrichtung zum Ausziehen eines Strangs aus einer Durchlaufkokille und eine Einrichtung zum Ausfördern des Strangs aus der Stranggießmaschine,
- die gekühlte Durchlaufkokille zur Primärkühlung des Strangs, nachfolgend
- eine Strangführung zum Stützen und Führen des Strangs mit einer Sekundärkühlzone, typischerweise umfassend mehrere Kühldüsen, zum Abkühlen des Strangs, und wiederum nachfolgend
- eine Tertiärkühlzone zum weiteren Abkühlen des Strangs, dadurch gekennzeichnet,
- a device for extracting a strand from a continuous casting mold and a device for conveying the strand from the continuous casting machine,
- the cooled through mold for the primary cooling of the strand, below
- a strand guide for supporting and guiding the strand with a secondary cooling zone, typically comprising a plurality of cooling nozzles, for cooling the strand, and again subsequently
- a tertiary cooling zone for further cooling of the strand, characterized
Anstelle der in der Tertiärkühlzone verfahrbaren Heizvorrichtung kann die erfindungsgemäße Stranggießmaschine auch eine statisch voreinstellbare oder eine dynamisch (d.h. während des Betriebs) gesteuert oder geregelt einstellbare Wärmeisolation aufweisen.Instead of the heating device movable in the tertiary cooling zone, the continuous casting machine according to the invention may also have a statically presettable or dynamically (i.e., during operation) controlled or adjustable heat insulation.
Durch die Heizvorrichtung kann die Mantelfläche des Strangs aufgeheizt werden, wodurch die Abkühlung (und dadurch die Gefügeausbildung) im Zentrumsbereich des teilerstarrten Strangs in der Tertiärkühlzone der Stranggießmaschine sehr genau eingestellt werden kann.By the heater, the lateral surface of the strand can be heated, whereby the cooling (and thus the microstructure formation) in the center region of the partially solidified strand in the tertiary cooling zone of the continuous casting machine can be adjusted very accurately.
Um die langsame Abkühlung des teilerstarrten Strangs bei einem niedrigen Energieverbrauch für die Heizvorrichtung zu ermöglichen, ist es vorteilhaft, wenn die Tertiärkühlzone eine, insbesondere statisch einstellbare oder eine dynamisch gesteuert oder geregelt einstellbare, Wärmeisolation aufweist.In order to enable the slow cooling of the partially solidified strand with a low energy consumption for the heating device, it is advantageous if the tertiary cooling zone has a, in particular statically adjustable or dynamically controlled or regulated adjustable, heat insulation.
Zweckmäßig ist es, wenn die Durchlaufkokille, die Sekundär-und die Tertiärkühlzone in einer Reihe (sog. in-line) angeordnet sind.It is expedient if the continuous casting mold, the secondary and the tertiary cooling zone are arranged in one row (so-called in-line).
Die Produktivität der semi-kontinuierlichen Stranggießmaschine wird wesentlich erhöht, wenn die Stranggießmaschine mehrere, quer zur Auszugsrichtung der Stranggießmaschine, versetzte Tertiärkühlzonen aufweist, wobei der Maschinenkopf der Stranggießmaschine, umfassend die Durchlaufkokille und vorzugsweise die Sekundärkühlzone, mit einer Tertiärkühlzone verbindbar und trennbar sind und zumindest der Maschinenkopf quer zur Auszugsrichtung verfahrbar ist. Wie oben beschrieben, kann ein einziger Maschinenkopf mehrere Tertiärkühlzonen bedienen, sodass ein hoher Durchsatz trotz der langsamen Abkühlung der teilerstarrten Stränge erreicht wird.The productivity of the semi-continuous continuous casting machine is substantially increased if the continuous casting machine has a plurality of transverse cooling zones offset transversely to the drawing machine direction, wherein the machine head of the continuous casting machine, comprising the continuous casting mold and preferably the secondary cooling zone, is connectable and separable with a tertiary cooling zone and at least the Machine head is movable transversely to the extension direction. As described above, a single machine head can serve multiple tertiary cooling zones so that high throughput is achieved despite the slow cooling of the partially solidified strands.
Vorzugsweise wird der Maschinenkopf zu einer weiteren Tertiärkühlzone verfahren, währenddessen der Strang stationär ist. Dadurch wird die gesteuert oder geregelte, langsame Abkühlung im Zentrumsbereich des Strangs nicht gestört. Alternativ dazu kann aber auch der Strang, ggf. mit der Tertiärkühlung, vom Maschinenkopf weggefahren werden.Preferably, the machine head is moved to another tertiary cooling zone during which the strand is stationary. As a result, the controlled or controlled, slow cooling in the center region of the strand is not disturbed. Alternatively, but also the strand, possibly with the Tertiärkühlung be moved away from the machine head.
Bei der Verstellung der Wärmeisolation ist es vorteilhaft, wenn die verstellbare Wärmeisolation zumindest ein - vorteilhafterweise mehrere - Isolationspanel (auch Lamelle genannt) aufweist, dass in der Auszugsrichtung der Stranggießmaschine verlagerbar oder zur Auszugsrichtung schwenkbar ist. Dadurch kann die Abkühlgeschwindigkeit des teilerstarrten Strangs passiv, d.h. ohne zusätzlichen Energieeintrag, eingestellt werden.When adjusting the heat insulation, it is advantageous if the adjustable heat insulation at least one - advantageously several - insulation panel (also called lamella), that in the extension direction of the continuous casting machine is displaced or pivotable to the extension direction. As a result, the cooling rate of the partially solidified strand can be passive, i. without additional input of energy.
Mehrere Stränge mit kleinem Format können gleichzeitig erzeugt werden, wenn der Maschinenkopf der Stranggießmaschine mehrere gekühlte Durchlaufkokillen und mehrere dahinter angeordnete Strangführungen mit Sekundärkühlzonen aufweist.Multiple strands of small size can be created simultaneously if the machine head of the continuous casting machine has a plurality of cooled continuous molds and a plurality of strand guides with secondary cooling zones arranged behind them.
Eine einfache und robuste Stranggießmaschine weist einen Strangabzugswagen zum Ausziehen des Strangs auf, wobei der Strangabzugswagen in Auszugsrichtung, beispielsweise durch Spindel-, Zahnstangen- oder Zylinderantriebe, verfahrbar ist.A simple and robust continuous casting machine has a strand withdrawal carriage for pulling out the strand, wherein the strand withdrawal carriage in the extension direction, for example by spindle, rack or cylinder drives, is movable.
Dabei stützt sich der Stranganfang über den Kaltstrang auf dem Strangabzugswagen ab.The strand beginning is supported by the cold strand on the strand withdrawal trolley.
Bei einer Ausführungsform der erfindungsgemäßen Stranggießmaschine ist der Strangabzugswagen mit dem Maschinenkopf verbunden, wobei der Strangabzugswagen mit dem Maschinenkopf quer zur Auszugsrichtung verfahrbar ist. Dabei wird der gegossene Strang nach dem Gießende z.B. auf einem Podest auf dem Hallenboden abgestellt und der Maschinenkopf mit dem Strangabzugswagen zur einer anderen Tertiärkühlung verfahren. Die langsame Abkühlung des abgestellten Strangs kann z.B. durch eine über den Strang gestülpte Thermohaube sichergestellt werden.In one embodiment of the continuous casting machine according to the invention the strand withdrawal carriage is connected to the machine head, wherein the strand withdrawal carriage with the machine head is movable transversely to the extension direction. In this case, the cast strand after the pouring end, e.g. parked on a pedestal on the hall floor and moved the machine head with the pullout trolley to another Tertiärkühlung. The slow cooling of the parked strand may e.g. be ensured by a pulled over the strand thermal hood.
Alternativ dazu wäre es auch möglich, dass der Maschinenkopf stationär ist und der gegossene Strang quer zur Auszugsrichtung verfahrbar ist. Hier wird der gegossene Strang z.B. auf einem Podest abgestellt, wobei das Podest samt dem Strang zu einer weiteren Tertiärkühlzone verfahren werden kann.Alternatively, it would also be possible that the machine head is stationary and the cast strand is movable transversely to the extension direction. Here the cast strand is e.g. parked on a pedestal, wherein the pedestal can be moved together with the strand to another tertiary cooling zone.
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht einschränkender Ausführungsbeispiele, wobei die Figuren zeigen:
-
Fig 1 mit den Teilfiguren 1a...1f zeigen schematisch die Verfahrensschritte beim semi-kontinuierlichen Stranggießen eines Vorblocks aus Stahl. -
Fig 2a und 2b zeigen zwei alternative Ausführungsformen einer Tertiärkühlung für das semi-kontinuierlichen Stranggießen eines Vorblocks aus Stahl. -
Fig 3 zeigt den zeitlichen Verlauf eines Heizaggregats zum Erwärmen eines Vorblocks in einer Tertiärkühlung. -
Fig 4 zeigt die Temperaturen bei der Abkühlung des Strangs 1 inder Tertiärkühlzone 5. -
Fig 5 zeigt die Temperaturverläufe über der Zeit zuFig 4 . -
Fig 6a und6b zeigen eine erfindungsgemäße Stranggießmaschine in einem Auf- und einem Kreuzriss. -
Fig 7 zeigt einen Maschinenkopf einer erfindungsgemäßen Stranggießmaschine in zwei Rissen. -
Fig 8a, 8b zeigen schematisch das Ausfördern eines durcherstarrten Strangs aus einer Tertiärkühlzone.
-
Fig. 1 with thesubfigures 1a ... 1f show schematically the process steps in semi-continuous continuous casting of a billet made of steel. -
FIGS. 2a and 2b show two alternative embodiments of tertiary cooling for the semi-continuous casting of a billet of steel. -
Fig. 3 shows the time course of a heating unit for heating a billet in a tertiary cooling. -
Fig. 4 shows the temperatures during the cooling of thestrand 1 in the tertiary cooling zone. 5 -
Fig. 5 shows the temperature curves over timeFig. 4 , -
Fig. 6a and6b show a continuous casting machine according to the invention in an up and a cross crack. -
Fig. 7 shows a machine head of a continuous casting machine according to the invention in two cracks. -
8a, 8b schematically show the discharge of a solidified strand from a Tertiärkühlzone.
In den
In
In
In
In
Die
Gemäß den
In der
Die
Die
Die
In den
Eine detailliertere Darstellung des Maschinenkopfes der Stranggießmaschine aus den
Die
Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples, and other variations may occur to those skilled in the art be derived therefrom without departing from the scope of the invention.
- 11
- Strangstrand
- 1a1a
- Stranganfangtrain early
- 1b1b
- teilerstarrter Strangpartially solid strand
- 1c1c
- Strangendestrand end
- 22
- Durchlaufkokille, PrimärkühlungContinuous casting mold, primary cooling
- 33
- Strangführungstrand guide
- 3a3a
- StrangführungsrollenStrand guide rolls
- 44
- Sekundärkühlung, SekundärkühlzoneSecondary cooling, secondary cooling zone
- 4a4a
- Kühldüsecooling nozzle
- 55
- Tertiärkühlung, TertiärkühlzoneTertiary cooling, tertiary cooling zone
- 66
- Kaltstrangdummy bar
- 77
- Heizvorrichtungheater
- 99
- Wärmeisolationthermal insulation
- 9a9a
- Isolationspanelinsulation panel
- 1010
- KopfheizungHeating head
- 1111
- StrangabzugswagenStrand pulling carriage
- 1212
- Gewindespindelscrew
- 1313
- Gewindemutterthreaded nut
- 1414
- Motorengine
- 1515
- Strahlpumpejet pump
- 30, 30'30, 30 '
- Pfannepan
- 3131
- Gießverteilerdistribution trough
- 3232
- Rührspulestirring coil
- 3333
- Gießwagenladle
- 3434
- Führungsschieneguide rail
- 3535
- Oszilliereinrichtungoscillating
- 3636
- Wasserabstreiferwater wiper
- 3737
- Rollgangroller table
- 3838
- Bügelhanger
- 3939
- SchwenkantriebRotary actuator
- 4040
- Ambossanvil
- AA
- Auszugsrichtungextraction direction
- GG
- Gießbühnecasting platform
- MM
- Gießspiegelmeniscus
- PP
- Druck in einem DruckluftnetzPressure in a compressed air network
- ss
- Verfahrwegtraverse
- UU
- Umgebungsdruckambient pressure
Claims (17)
- Method for the semi-continuous casting of a strand (1) made of steel in a continuous casting machine, wherein the continuous casting machine has- a cooled open-ended mold (2) for the primary cooling of the strand (1), followed by- a strand guide (3) for supporting and guiding the strand (1), having secondary cooling (4) for cooling the strand (1), followed in turn by- tertiary cooling (5) for cooling the strand (1) further,comprising the method steps:- start of casting in the continuous casting machine, wherein liquid steel is poured into the open-ended mold (2) closed off by a dummy bar (6) and the liquid steel forms with the dummy bar a fully solidified strand start (1a) and then a partially solidified strand (1b);- extracting the partially solidified strand (1b) from the open-ended mold (2);- supporting and guiding the partially solidified strand (1b) in the strand guide (3), wherein the partially solidified strand (1b) is cooled by the secondary cooling (4);- end of casting in the continuous casting machine, wherein the pouring of liquid steel into the open-ended mold (2) is ended and a strand end (1c) forms;- extracting the strand end (1c) from the open-ended mold (2);- ending extraction, such that the strand end (1c) is located outside the open-ended mold (2);- ending secondary cooling (4);- controlled or regulated cooling of the partially solidified strand (1b) until full solidification of the strand (1) in the tertiary cooling zone (5) of the continuous casting machine, wherein the cooling takes place more strongly at the strand start (1a) and in a decreasing manner toward the strand end (1c);- discharging the strand (1) from the continuous casting machine.
- Method according to Claim 1, characterized in that the cooling of the partially solidified strand (1b) in the tertiary cooling zone (5) is set by influencing at least one from the group of:- thermal insulation of the strand (1, 1b),- heating of the strand (1, 1b),- surface cooling of the strand (1, 1b).
- Method according to Claim 2, characterized in that the partially solidified strand (1b) is heated in the tertiary cooling zone (5) by a heating device (7).
- Method according to Claim 3, characterized in that the heating device (7) is displaceable in the extraction direction (A) of the continuous casting machine.
- Method according to one of Claims 2 to 4, characterized in that the partially solidified strand (1b) is protected from cooling too rapidly in the tertiary cooling zone (5) by thermal insulation (9).
- Method according to Claim 5, characterized in that the insulating effect of the thermal insulation (9) is set.
- Method according to one of Claims 2 to 6, characterized in that the strand end (1c) is heated by head heating (10).
- Method according to one of Claims 2 to 7, characterized in that the surface of the partially solidified strand (1b) is cooled by a cooling device (4a) in the tertiary cooling zone (5).
- Method according to one of the preceding claims, characterized in that the partially solidified strand (1b) is stirred in the tertiary cooling zone (5) by a stirring coil (32) that is stationary or displaceable in the extraction direction (A), or the partially solidified strand (1b) is rotated about its own axis alternately in the clockwise direction and the counterclockwise direction in the tertiary cooling zone (5).
- Continuous casting machine for carrying out the method according to one of Claims 1 to 9, having- a device for extracting a strand (1) from an open-ended mold (2) and a device (37, 38, 39) for discharging the strand (1) from the continuous casting machine,- the cooled open-ended mold (2) for the primary cooling of the strand (1), followed by- a strand guide (3) for supporting and guiding the strand (1), having a secondary cooling zone (4) for cooling the strand (1), followed in turn by- a tertiary cooling zone (5) for cooling the strand (1) further, characterizedin that the tertiary cooling zone (5) has a heating device (8) for the controlled or regulated cooling of the partially solidified strand (1b).
- Continuous casting machine according to Claim 10, characterized in that the tertiary cooling zone (5) has thermal insulation (9) that is statically settable or settable in a controlled or regulated manner.
- Continuous casting machine according to either of Claims 10 and 11, characterized by a plurality of tertiary cooling zones (5) that are offset transversely to the extraction direction (A) of the continuous casting machine, wherein the machine head of the continuous casting machine, comprising the open-ended mold (2) and the secondary cooling zone (4) is connectable to and separable from a tertiary cooling zone (5).
- Continuous casting machine according to Claim 12, characterized in that a plurality of tertiary cooling zones (5) are arranged one after another in an arcuate or linear manner.
- Continuous casting machine according to one of Claims 11 to 13, characterized in that the adjustable thermal insulation (9) has at least one insulation panel (9a) which is displaceable in the extraction direction (A) or pivotable with respect to the extraction direction (A).
- Continuous casting machine according to one of Claims 11 to 14, characterized in that the continuous casting machine has a strand extraction carriage (11) for extracting the strand (1), wherein the strand extraction carriage (11) is displaceable in the extraction direction (A).
- Continuous casting machine according to Claims 11 and 15, characterized in that the strand extraction carriage (11) is connected to the machine head and both are displaceable transversely to the extraction direction (A).
- Continuous casting machine according to one of Claims 11 to 15, characterized in that the machine head is stationary and the strand (1) is displaceable transversely to the extraction direction (A).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17173954.3A EP3251773B1 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous strand casting of a steel bar |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14162061 | 2014-03-27 | ||
PCT/EP2015/051619 WO2015079071A2 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous casting of a steel strip |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17173954.3A Division EP3251773B1 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous strand casting of a steel bar |
EP17173954.3A Division-Into EP3251773B1 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous strand casting of a steel bar |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3122492A2 EP3122492A2 (en) | 2017-02-01 |
EP3122492B1 true EP3122492B1 (en) | 2017-07-05 |
EP3122492B2 EP3122492B2 (en) | 2020-06-10 |
Family
ID=50389887
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17173954.3A Active EP3251773B1 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous strand casting of a steel bar |
EP15702712.9A Not-in-force EP3122492B2 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous casting of a steel ingot |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17173954.3A Active EP3251773B1 (en) | 2014-03-27 | 2015-01-27 | Semi-continuous strand casting of a steel bar |
Country Status (6)
Country | Link |
---|---|
US (1) | US10307819B2 (en) |
EP (2) | EP3251773B1 (en) |
CN (1) | CN106457371B (en) |
AT (3) | AT515731B1 (en) |
RU (1) | RU2675880C2 (en) |
WO (1) | WO2015079071A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3437757A1 (en) * | 2017-08-04 | 2019-02-06 | Primetals Technologies Austria GmbH | Continuous casting of a metallic strand |
EP3437756A1 (en) * | 2017-08-04 | 2019-02-06 | Primetals Technologies Austria GmbH | Continuous casting of a metallic strand |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20159776A1 (en) | 2015-12-30 | 2017-06-30 | Ergolines Lab S R L | PLANT FOR THE PRODUCTION OF METAL BARS, CASTING MACHINE, CASTING PROCESS AND METHOD OF CONTROL OF ELECTROMAGNETIC DEVICES FOR MIXED METAL AGITATION |
EP3600721B1 (en) | 2017-03-21 | 2021-05-05 | Primetals Technologies Austria GmbH | Installation and method for the semi-continuous casting of slabs |
DE102017108394A1 (en) * | 2017-04-20 | 2018-10-25 | Inteco Melting And Casting Technologies Gmbh | Method and device for producing cast blocks from metal |
EP3437759B1 (en) | 2017-08-04 | 2022-10-12 | Primetals Technologies Austria GmbH | Continuous casting of a metallic strand |
CN108620563A (en) * | 2018-07-06 | 2018-10-09 | 广东坚美铝型材厂(集团)有限公司 | A kind of casting rod machine |
KR102563855B1 (en) * | 2018-11-28 | 2023-08-03 | 프리메탈스 테크놀로지스 오스트리아 게엠베하 | Continuous casting of a metallic strand |
KR102586739B1 (en) * | 2018-11-28 | 2023-10-06 | 프리메탈스 테크놀로지스 오스트리아 게엠베하 | Continuous casting of a metallic strand |
CN110369686A (en) * | 2019-07-03 | 2019-10-25 | 西安理工大学 | A kind of cast iron horizontal continuous caster sprays device for cooling three times |
BR112022010172A2 (en) | 2019-12-20 | 2022-08-09 | Novelis Inc | FINAL SIZE OF REDUCED GRAIN OF NON-CRYSTALLIZED FORGED MATERIAL PRODUCED THROUGH THE DIRECT COOLING PATH (DC) |
EP3885060A1 (en) * | 2020-03-25 | 2021-09-29 | Primetals Technologies Austria GmbH | Continuous casting plant and method of operating the continuous casting plant |
WO2021231124A1 (en) * | 2020-05-13 | 2021-11-18 | Corning Incorporated | Glass molding apparatus including adjustable cooling nozzles and methods of using the same |
CN111468691B (en) * | 2020-06-12 | 2021-08-20 | 江苏隆达超合金股份有限公司 | Copper-nickel alloy semi-continuous round ingot casting dummy ingot head |
AT525111A1 (en) * | 2021-06-08 | 2022-12-15 | Primetals Technologies Austria GmbH | Stirring cast blooms with an oscillating strand stirrer |
CN113695545B (en) * | 2021-08-18 | 2023-03-24 | 中天钢铁集团有限公司 | Continuous casting method of small square billet meeting production requirement of large-specification wire rod cold heading steel |
CN114309510B (en) * | 2021-11-24 | 2022-09-09 | 武汉西赛冶金工程有限责任公司 | Mechanically-stirred metal continuous casting process and mechanically-stirred device |
CN114905016B (en) * | 2022-06-13 | 2024-01-12 | 武汉大西洋连铸设备工程有限责任公司 | Mechanical rotary stirring device applied to casting blank solidification process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2042546A1 (en) | 1970-08-27 | 1972-03-02 | Zentralnyj nautschno lssledowatelskij Institut tschernoj metallurgn lmenti I P Bardina, Moskau | Reduction of cooling of continuous castings - in secondary cooling zo |
DE3542518A1 (en) | 1985-12-02 | 1987-06-04 | Mannesmann Ag | FURNITURE FOR VERTICAL, DISCONTINUOUS CONTINUOUS CASTING OF METALS, ESPECIALLY STEEL |
DE3621234A1 (en) | 1986-06-25 | 1988-01-21 | Thyssen Edelstahlwerke Ag | Vertical casting plant for part-length strands |
WO2013174512A2 (en) | 2012-05-24 | 2013-11-28 | Ergolines Lab S.R.L. | Electromagnetic stirring device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU261660A1 (en) * | 1967-12-25 | 1977-12-05 | Центральный научно-исследовательский институт черной металлургии им. И.П.Бардина | Device for regulating heat dissipation from continuous crystallizing ingot |
JPS57127505A (en) * | 1981-01-22 | 1982-08-07 | Nippon Steel Corp | Direct rolling manufacturing device for steel |
SU980935A1 (en) * | 1981-02-13 | 1982-12-15 | Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина | Method of continuous casting of metal |
AT374709B (en) | 1982-03-23 | 1984-05-25 | Uralsky Politekhn Inst | SEMI-CONTINUOUS CONTINUOUS CASTING METHOD |
JPS5945068A (en) | 1982-09-06 | 1984-03-13 | Kawasaki Steel Corp | Cooling method in ingot making device with semi- continuous casting mold |
JPH0667541B2 (en) | 1986-02-21 | 1994-08-31 | 株式会社神戸製鋼所 | Semi-continuous casting method |
SU1675033A1 (en) * | 1988-04-04 | 1991-09-07 | Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения им.А.И.Целикова | Method of electromagnetic stirring of liquid phase of a continuously cast ingot |
FI86694C (en) * | 1990-03-19 | 1992-10-12 | Outokumpu Oy | GJUTMASKIN |
JPH10216911A (en) * | 1997-02-06 | 1998-08-18 | Daido Steel Co Ltd | Continuous casting apparatus |
RU2187408C2 (en) * | 2000-05-30 | 2002-08-20 | Федеральное государственное унитарное предприятие Центральный научно-исследовательский институт черной металлургии им. И.П.Бардина | Method for continuous casting of ingots for making railway road rails |
JP3696844B2 (en) * | 2002-07-08 | 2005-09-21 | 九州三井アルミニウム工業株式会社 | Aluminum alloy with excellent semi-melt formability |
EP1940571B1 (en) | 2005-10-28 | 2016-02-24 | Novelis, Inc. | Homogenization and heat-treatment of cast aluminium alloy |
KR101053975B1 (en) * | 2009-01-21 | 2011-08-04 | 주식회사 포스코 | Vertical semicontinuous casting device and casting method using the same |
AT512214B1 (en) | 2011-12-05 | 2015-04-15 | Siemens Vai Metals Tech Gmbh | PROCESS ENGINEERING MEASURES IN A CONTINUOUS CASTING MACHINE AT THE CASTING STAGE, AT THE CASTING END AND AT THE PRODUCTION OF A TRANSITION PIECE |
CN202606822U (en) | 2012-03-06 | 2012-12-19 | 金川集团股份有限公司 | Vertical continuous ingot casting device of copper and copper alloy ingots |
CN102773427B (en) | 2012-06-12 | 2015-04-22 | 中冶京诚工程技术有限公司 | Continuous casting device and method for large-section round billet |
CN103706769B (en) | 2014-01-22 | 2015-09-30 | 上海星祥电气有限公司 | Vertical continuous casting devices and methods therefor |
-
2015
- 2015-01-27 CN CN201580016900.8A patent/CN106457371B/en active Active
- 2015-01-27 AT ATA50052/2015A patent/AT515731B1/en not_active IP Right Cessation
- 2015-01-27 AT ATGM50216/2016U patent/AT15223U1/en unknown
- 2015-01-27 EP EP17173954.3A patent/EP3251773B1/en active Active
- 2015-01-27 EP EP15702712.9A patent/EP3122492B2/en not_active Not-in-force
- 2015-01-27 RU RU2016141648A patent/RU2675880C2/en active
- 2015-01-27 AT ATGM50179/2016U patent/AT15215U1/en not_active IP Right Cessation
- 2015-01-27 US US15/129,576 patent/US10307819B2/en not_active Expired - Fee Related
- 2015-01-27 WO PCT/EP2015/051619 patent/WO2015079071A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2042546A1 (en) | 1970-08-27 | 1972-03-02 | Zentralnyj nautschno lssledowatelskij Institut tschernoj metallurgn lmenti I P Bardina, Moskau | Reduction of cooling of continuous castings - in secondary cooling zo |
DE3542518A1 (en) | 1985-12-02 | 1987-06-04 | Mannesmann Ag | FURNITURE FOR VERTICAL, DISCONTINUOUS CONTINUOUS CASTING OF METALS, ESPECIALLY STEEL |
DE3621234A1 (en) | 1986-06-25 | 1988-01-21 | Thyssen Edelstahlwerke Ag | Vertical casting plant for part-length strands |
WO2013174512A2 (en) | 2012-05-24 | 2013-11-28 | Ergolines Lab S.R.L. | Electromagnetic stirring device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3437757A1 (en) * | 2017-08-04 | 2019-02-06 | Primetals Technologies Austria GmbH | Continuous casting of a metallic strand |
EP3437756A1 (en) * | 2017-08-04 | 2019-02-06 | Primetals Technologies Austria GmbH | Continuous casting of a metallic strand |
Also Published As
Publication number | Publication date |
---|---|
CN106457371B (en) | 2019-05-07 |
AT515731B1 (en) | 2018-08-15 |
AT15223U1 (en) | 2017-03-15 |
EP3251773B1 (en) | 2020-05-06 |
WO2015079071A3 (en) | 2015-07-30 |
EP3251773A1 (en) | 2017-12-06 |
EP3122492A2 (en) | 2017-02-01 |
RU2675880C2 (en) | 2018-12-25 |
AT515731A3 (en) | 2017-01-15 |
RU2016141648A3 (en) | 2018-06-29 |
US10307819B2 (en) | 2019-06-04 |
RU2016141648A (en) | 2018-04-27 |
AT515731A2 (en) | 2015-11-15 |
EP3122492B2 (en) | 2020-06-10 |
WO2015079071A2 (en) | 2015-06-04 |
CN106457371A (en) | 2017-02-22 |
US20170216908A1 (en) | 2017-08-03 |
AT15215U1 (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3122492B1 (en) | Semi-continuous casting of a steel ingot | |
EP3266537B1 (en) | Method and plant for the production of long ingots having a large cross-section | |
EP2462248B1 (en) | Method and device for producing a microalloyed steel, in particular a pipe steel | |
DE69429900T2 (en) | Process for continuous casting and process for continuous casting / rolling of steel | |
WO2012049135A1 (en) | Method and plant for the energy-efficient production of hot steel strip | |
EP3558563B1 (en) | Method for the endless manufacture of a coiled hot rolled sheet in a combined casting and rolling installation, and a combined casting and rolling installation | |
CH661673A5 (en) | CONTINUOUS METHOD FOR METALS AND DEVICE FOR IMPLEMENTING IT. | |
EP3259084A2 (en) | Method and installation for producing steel strands | |
EP3016762B1 (en) | Cast-rolling installation and method for producing metallic rolled stock | |
EP3993921B1 (en) | Melt supply for strip casting systems | |
EP3705202B1 (en) | Conversion of a continuous casting plant for billet or bloom strands | |
EP3600721B1 (en) | Installation and method for the semi-continuous casting of slabs | |
EP3027330B1 (en) | Continuous casting and rolling installation for producing metal strips | |
EP3291933B1 (en) | Casting and rolling assembly and method for operating the same | |
EP3437759B1 (en) | Continuous casting of a metallic strand | |
EP3229992B1 (en) | Device and method for producing ingots | |
EP3223979B1 (en) | Continuous casting installation for thin slabs | |
EP0224695A2 (en) | Installation for vertical intermittent continuous casting of metals, especially of steel | |
EP3427863A1 (en) | Method and system for the production of cast blocks from metal | |
EP3015192B1 (en) | Method and device for the continuous casting of a light metal alloy | |
DE2024747C3 (en) | Process for semicontinuous continuous casting, in particular of steel, and device for carrying out the process * | |
AT378140B (en) | DISCONTINUOUS CONTINUOUS CASTING SYSTEM | |
DE1292793C2 (en) | Device for pulling a steel strand from a strand mold | |
EP3703883A1 (en) | Continuous casting line having individual roller engagement | |
CH695669A5 (en) | Method for operating a strip casting plant with a two-roll strip casting machine. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160720 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
DAX | Request for extension of the european patent (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20170301 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 906237 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015001386 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171005 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171005 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171006 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502015001386 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
26 | Opposition filed |
Opponent name: SMS CONCAST AG Effective date: 20180328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180127 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180928 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AELC |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
27A | Patent maintained in amended form |
Effective date: 20200610 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502015001386 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150127 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170705 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 906237 Country of ref document: AT Kind code of ref document: T Effective date: 20200127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220119 Year of fee payment: 8 Ref country code: CH Payment date: 20220119 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220120 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015001386 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230801 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230127 |