EP3437759B1 - Continuous casting of a metallic strand - Google Patents
Continuous casting of a metallic strand Download PDFInfo
- Publication number
- EP3437759B1 EP3437759B1 EP17184936.7A EP17184936A EP3437759B1 EP 3437759 B1 EP3437759 B1 EP 3437759B1 EP 17184936 A EP17184936 A EP 17184936A EP 3437759 B1 EP3437759 B1 EP 3437759B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strand
- cooling
- mould
- continuous casting
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009749 continuous casting Methods 0.000 title claims description 40
- 238000001816 cooling Methods 0.000 claims description 101
- 238000000605 extraction Methods 0.000 claims description 44
- 238000009413 insulation Methods 0.000 claims description 35
- 238000005266 casting Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 230000001105 regulatory effect Effects 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000012071 phase Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 230000001419 dependent effect Effects 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 235000011837 pasties Nutrition 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 12
- 239000002826 coolant Substances 0.000 description 7
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000161 steel melt Substances 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 108091060210 Heavy strand Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/161—Controlling or regulating processes or operations for automatic starting the casting process
Definitions
- the present invention relates to continuous casting, preferably semi-continuous continuous casting, of a metal strand in a continuous casting machine.
- the generic method and a suitable system are from WO 2015/079071 known. Thanks to the tertiary cooling zone with adjustable insulation panels, the cooling speed of the strand can be finely adjusted from bottom to top. This prevents the formation of cavities in the strand, so that liquid steel melt can compensate for volume jumps between the solid and liquid phase caused by solidification. This significantly improves the internal quality of the strand.
- the disadvantage of this is that continuous casting takes a very long time until it has completely solidified. The document does not reveal how continuous casting can be accelerated without adversely affecting the internal quality of the strand.
- the object of the invention is to change known continuous casting processes in such a way that a strand is cast quickly and the formation of cavities or cracks in the strand is nevertheless prevented. This is intended to increase profitability and improve the internal quality of the cast strand.
- This measure produces a strand, typically a steel strand or a strand made from a so-called superalloy (see https://de.wikipedia.org/wiki/Superalloy, e.g. a nickel-based alloy), with a pronounced V-shaped formation of the strand shells.
- the thickness of the strand shells increases rapidly in the casting direction, so that the strand shell is significantly thicker at the lower end of the strand than at the upper end.
- liquid molten metal can immediately fill up any cavities caused by the solidification, which improves the internal quality of the strand.
- Increasing the casting speed also has an advantageous effect on the economics of the continuous casting process.
- the extraction speed v is increased as a function of time or the strand length. Limiting the extraction speed v upwards with v max ensures that the strand shell has a minimum thickness at the upper end of the strand. This can prevent escaping.
- the extension speed v is gradually increased, preferably continuously differentiable at least once.
- the extension speed v can also be increased discontinuously, e.g. in discrete steps.
- the extraction speed of the dummy bar from the mold can be set, for example, in such a way that the actual position corresponds as closely as possible to a time-dependent target position of the sump tip.
- the intensity of the cooling capacity of the cooling nozzles in the secondary cooling decreases over time or over the strand length s and/or the strand in the tertiary cooling zone is thermally insulated by insulation, with a heat transfer coefficient U of the insulation increasing in the casting direction .
- the lower end of the strand i.e. the strand head
- the upper end of the strand i.e. the strand foot.
- a further improvement in the internal quality of the strand can be achieved if the continuous casting machine includes a strand stirrer that can be moved in the casting direction, with the strand stirrer electromagnetically stirring the region of the sump tip of the strand during the extraction and after the extraction of the dummy bar from the mold.
- the continuous casting machine is designed as a vertical system and has as its main components a water-cooled mold 2, a strand guide 3 comprising several strand guide rollers 3a that can be set against the strand 1 and a secondary cooling system 4 with several cooling nozzles 4a, as well as a tertiary cooling zone 5 with thermal insulation 9 and several insulation panels 9a on.
- the machine head of the continuous casting machine comprising the mold 2 and the strand guide 3, can be moved relative to the tertiary cooling zone 5, so that a single machine head can supply strands to several tertiary cooling zones.
- the strand guide rollers 3a do not necessarily have to be adjustable against the strand 1 via an actuator. It is sufficient if these can be adjusted mechanically, e.g. using washers or so-called shims.
- Figure 1a shows the situation before casting on the continuous casting machine.
- a dummy bar 6 was introduced into the mold 2 so that the stationary dummy bar 6 seals the mold in the casting direction G in a fluid-tight manner.
- FIG 1b the casting of the continuous casting machine is shown.
- Superalloy is either directly or in the mold 2 supplied via a tundish, so that a meniscus M forms in the mold 2 and a strand 1 forms due to the primary cooling of the mold 2 .
- the dummy bar 6 is started to be pulled out of the mold 2 .
- the extraction takes place relatively slowly with a first extraction speed v 1 of 0.12 m/min (see Figure 3a ).
- the extraction speed v is increased according to the invention (see Figure 3a ), so that a strand 1 is formed with a pronounced V-shape of the strand shells (see Figure 2b ).
- the strand 1 in continuous casting according to the prior art does not have a pronounced V-shape, which leads to poor internal quality (such as cracks, cavities, etc.). Due to the pronounced V-shape of the strand shells 11 of strand 1 (see Figure 2b ) during cooling in the tertiary cooling zone 5, the strand 1 can suck in liquid melt from the upper region of the partially solidified strand 1b, so that any cavities or cracks caused by the solidification are refilled with melt. A thin strand shell 11 at the upper strand end 1c facilitates this significantly.
- the mold 2 is oscillated in the vertical direction by an unillustrated oscillator. A stirring coil, also not shown, below the mold 2 stirs the partially solidified strand. Both details are customary and eg from the WO 2015/079071 known.
- FIG 1d shows the point in time during continuous casting at which the feeding of molten steel into the mold has just stopped.
- the extraction speed v corresponds to second extraction speed v 2 of 0.36 m/min. This extraction speed of strand 1 is maintained until the end of the extraction process (see Figure 3a ).
- the strand 1 has a strand length L of typically 6 to 12 m.
- the diameter of the strand 1 is 600 mm.
- the Fig 1f shows the situation after the strand end 1c has passed the strand guide 3 and the secondary cooling 4 has been switched off.
- the partially solidified strand 1b is then in the tertiary cooling zone 5 and is slowly cooled there in a controlled or regulated manner.
- the machine head can serve several tertiary cooling zones 5 and can be moved, for example, in a horizontal direction to a further tertiary cooling zone 5 .
- the strand end 1c can be heated by a head heater 13 instead of the secondary cooling 4.
- the head heating 13 can take place, for example, inductively or by means of an exothermic powder (the process is referred to as "hot topping"), with the powder generating heat energy with the liquid molten steel. Since the partially solidified strand 1b is particularly prone to form cracks or cavities in the region of the sump tip, it is advantageous if a strand stirrer 14 stirs this region in particular electromagnetically.
- the Figure 2a shows a continuously cast, partially solidified billet 1b according to the prior art.
- the strand end is almost completely solidified, so that any cavities or Cracks in the strand can no longer be filled with liquid melt 12.
- FIG. 2b shows Figure 2b a strand according to the invention.
- the strand end 1c is still largely liquid, so that any cavities or cracks in the strand can be filled with liquid melt 12. As a result, the strand has a better internal quality.
- Extraction speed v over time t The diagram shows that the extension speed v does not necessarily have to be increased linearly, but also, for example, under- or over-linearly (see dashed lines). An increase in discrete steps (not shown) would also be conceivable and could be useful.
- the Figure 3b shows another diagram for the extraction speed v, where v does not depend on the time t but on the strand length s. This ensures that the beginning of the strand 1a is cooled more than the end of the strand 1c, regardless of any interruptions in the casting process.
- the internal quality of the strand can also be adjusted by adjusting the intensity of the secondary cooling 4 depending on the time or the strand length s (see Figure 1c ) take place. In both cases, this means that the beginning of the strand 1a is cooled more in the secondary cooling system 4 than the end of the strand 1c. This measure can be taken in addition to increasing the extraction speed v of the dummy bar 6 from the mold 2 or instead of it.
- the intensity of the secondary cooling 4 is varied depending on the time t or the strand length s.
- the time-dependent change in the intensity of the secondary cooling due to a change in the flow rate Q through the cooling nozzles 4a of the secondary cooling 4 is in Figure 4a shown.
- the decrease in the flow rate Q or the intensity of the secondary cooling 4 can be linear (continuous line) but also less than or more than linear (see dashed lines).
- the intensity of the secondary cooling can also be varied depending on the strand length s (see Figure 4b ). In this case, the strand length s is recorded or calculated during casting and the intensity of the secondary cooling 4 according to the characteristic of Figure 4b set.
- the strand 1 pulled out of the mold 2 is cooled in the secondary cooling zone 4 with variable intensity either as a function of time or strand length, so that the beginning of the strand 1a is cooled more than the end of the strand 1c.
- FIG 5 is a schematic of the amounts of coolant accumulated in the different areas of a partially solidified strand 1b when the intensity of the secondary cooling is adjusted as a function of time or strand length (see Fig Figure 4a or 4b ) shown.
- the intensity of the secondary cooling is changed so that the beginning of the strand is cooled more than the end of the strand.
- the thermal insulation 9 in the tertiary cooling zone 5 is adjusted as a function of the strand length L, with a heat transfer coefficient U of the thermal insulation 9 in the casting direction G increasing.
- the start of the strand 1a is cooled more in the tertiary cooling system 5 than the end of the strand 1c.
- This measure can be taken either in addition to or instead of increasing the extraction speed v of the dummy bar 6 from the mold 2 .
- the thermal insulation 9 in the tertiary cooling zone 5 to be changed in addition to or instead of adjusting the intensity of the secondary cooling 4 .
- the change in the heat transfer coefficient U of the thermal insulation 9 is in figure 6 represented by a variable thickness of insulation.
- FIG 7a the strand length-dependent change in the thermal insulation 9 in the tertiary cooling zone 5 is shown by insulation panels 9a.
- the pivotable flaps of the insulation panels are set differently, with the upper flaps being largely closed and the lower flaps being largely open.
- a heat transfer coefficient U of the thermal insulation 9 in the casting direction G increases.
- the change in the opening angle of the flaps can either be preset statically or dynamically, for example via pivoting drives for pivoting the flaps, during the cooling in the tertiary cooling zone 5 .
- the Figure 7b shows an alternative to Figure 7a , the degree of coverage of the insulating flaps 9a of the strand being higher at the end of the strand 1c than at the beginning of the strand. Also because of that the heat transfer coefficient U of the heat insulation 9 in the casting direction G increases.
- FIG 8a a non-inventive continuous casting machine with a control or regulating device 10 for controlling or regulating the extension speed v is shown.
- the control or regulating device 10 calculates the temperature field and the sump tip in the cast strand 1, taking into account the chemical composition 15 of the metal melt, the primary cooling 2a in the mold 2, the secondary cooling 4 and the strand length s, and sets the extraction speed of the motor 16 as a function of the swamp peak on.
- the Figure 8b shows a continuous casting machine not according to the invention with a control or regulating device 10 for controlling or regulating the intensity of the secondary cooling 4 depending on the strand length s.
- the control or regulating device 10 calculates taking into account the chemical composition 15 of the molten metal and the primary cooling 2a in the mold and the strand length s the temperature field and the sump peak in the cast strand 1 and adjusts the intensity of the secondary cooling 4 depending on the sump peak.
- the sump tip is calculated in real time in a thermal calculation model.
- the Figure 8c also shows a continuous casting machine not according to the invention with a control or regulating device 10 for controlling or regulating a heat transfer coefficient U of the heat insulation 9 in the tertiary cooling zone 5.
- the control or regulating device 10 calculates taking into account the chemical composition 15 of the molten metal and the primary cooling 2a in the Mold the temperature field and the sump tip in the cast strand 1 and sets the opening angle of the insulating panels 9a depending on the sump tip.
- the Sump tip is calculated in real time in a thermal calculation model.
- FIGs 9a to 9e an alternative continuous casting machine for carrying out the method according to the invention is shown.
- Figure 9a we cast a strand 1 in the mold 2 and pulled out of the mold with a variable extraction speed v.
- the strand 1 is supported and guided in the strand guide 3 and cooled by the secondary cooling.
- Figure 9b the casting in the mold has ended and the strand 1 is in a radiation area 17 where it can radiate heat to the environment for a certain time.
- the strand passes through a stirring coil 14 and is stirred electromagnetically by it, see FIG Figure 9c .
- the strand is then introduced into the tertiary cooling zone 5, where it is cooled in a controlled or regulated manner by the thermal insulation 9. Since the strand end 1c in particular is particularly sensitive, it is again particularly thermally insulated by a cover, see Figures 9d and 9e .
- a head insulation 18 of a strand 1 is shown schematically.
- the head insulation has thermal insulation 9 for the strand end 1c of the strand 1, so that the strand end 1c remains liquid longer.
- an exothermic powder 19 can be applied to the liquid strand end 1c, which additionally heats the strand 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
Die vorliegende Erfindung betrifft das Stranggießen, vorzugsweise das semi-kontinuierliche Stranggießen, eines metallischen Strangs in einer Stranggießmaschine.The present invention relates to continuous casting, preferably semi-continuous continuous casting, of a metal strand in a continuous casting machine.
Konkret betrifft die Erfindung ein Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs in einer Stranggießmaschine, wobei die Stranggießmaschine eine Kokille mit einer Primärkühlung, in Gießrichtung nachfolgend eine Strangführung mit mehreren, vorzugsweise an den Strang anstellbaren, Strangführungsrollen zum Führen und einer Sekundärkühlung zum Abkühlen des Strangs, und wiederum nachfolgend eine Tertiärkühlzone zum gesteuerten oder geregelten Abkühlen des Strangs aufweist, umfassend die Verfahrensschritte:
- Einführen eines Kaltstrangs in die Kokille;
- Halten des Kaltstrangs in der Kokille, sodass ein Kopf des Kaltstrangs die Kokille fluiddicht verschließt;
- Angießen der Stranggießmaschine, wobei Metallschmelze in die Kokille gegossen wird und sich in der Kokille ein Gießspiegel und ein teilerstarrter Strang ausbildet;
- Beginnen des Ausziehens des Kaltstrangs aus der Kokille, wobei der Kaltstrang mit einer ersten Ausziehgeschwindigkeit v1 aus der Kokille ausgezogen wird;
- Stützen und Führen des teilerstarrten Strangs in der Strangführung, wobei der teilerstarrte Strang durch die Strangführungsrollen gestützt, geführt und durch Kühldüsen der Sekundärkühlung abgekühlt wird; und
- gesteuertes oder geregeltes Abkühlen des teilerstarrten Strangs bis zur Durcherstarrung des Strangs in der Tertiärkühlzone.
- Inserting a dummy bar into the mold;
- Holding the dummy bar in the mold so that a head of the dummy bar closes the mold in a fluid-tight manner;
- Casting on the continuous casting machine, with molten metal being poured into the mold and a meniscus and a partially solidified strand forming in the mold;
- beginning the extraction of the dummy bar from the mold, the dummy bar being extracted from the mold at a first extraction speed v 1 ;
- supporting and guiding the partially solidified strand in the strand guide, wherein the partially solidified strand is supported by the strand guide rollers, guided and cooled by cooling nozzles of the secondary cooling; and
- Controlled or regulated cooling of the partially solidified strand until solidification of the strand in the tertiary cooling zone.
Das gattungsgemäße Verfahren sowie eine geeignete Anlage sind aus der
Aus der
Aus der Veröffentlichung
Die Aufgabe der Erfindung besteht darin, bekannte Stranggießverfahren so zu verändern, dass ein Strang rasch vergossen und dennoch die Ausbildung von Hohlräumen bzw. Rissen im Strang verhindert wird. Dadurch soll die Wirtschaftlichkeit erhöht und die Innenqualität des vergossenen Strangs gesteigert werden.The object of the invention is to change known continuous casting processes in such a way that a strand is cast quickly and the formation of cavities or cracks in the strand is nevertheless prevented. This is intended to increase profitability and improve the internal quality of the cast strand.
Die erfindungsgemäße Ausgabe wird durch den Gegenstand von Anspruch 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.The output according to the invention is solved by the subject-matter of
Konkret erfolgt die Lösung durch ein gattungsgemäßes Verfahren, wobei nach dem Beginnen des Ausziehens die Ausziehgeschwindigkeit v des Kaltstrangs aus der Kokille auf eine zweite Ausziehgeschwindigkeit v2 erhöht wird, wobei gilt v2 > v1, und ein thermisches Rechenmodell während des Stranggießens in Abhängigkeit
- einer chemischen Zusammensetzung der Metallschmelze,
- der Primärkühlung in der Kokille,
- der Sekundärkühlung des Strangs in der Strangführung, ständig das Ist-Temperaturfeld des Strangs einschließlich der Ist-Phasengrenzen zwischen den festen, teigigen und flüssigen Phasen im Strang berechnet, wobei die Ausziehgeschwindigkeit v des Kaltstrangs aus der Kokille in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, eingestellt wird.
- a chemical composition of the molten metal,
- the primary cooling in the mold,
- the secondary cooling of the strand in the strand guide, constantly calculates the actual temperature field of the strand including the actual phase boundaries between the solid, pasty and liquid phases in the strand, with the extraction speed v of the cold strand from the mold depending on the actual temperature field and/or the actual phase boundaries, in particular the actual position of the sump tip, is set.
Durch diese Maßnahme wird ein Strang, typischerweise ein Stahlstrang oder ein Strang aus einer sog. Superlegierung (siehe https://de.wikipedia.org/wiki/Superlegierung, z.B. einer Nickelbasislegierung), mit einer ausgeprägten V-förmigen Ausbildung der Strangschalen erzeugt. Mit anderen Worten nimmt das Dickenwachstum der Strangschalen in Gießrichtung rasch zu, sodass die Strangschale am unteren Ende des Strangs wesentlich dicker ist als am oberen Ende. Dadurch kann flüssige Metallschmelze etwaige durch die Erstarrung bedingte Hohlräume unmittelbar auffüllen, wodurch die Innenqualität des Strangs verbessert wird. Die Erhöhung der Gießgeschwindigkeit wirkt sich außerdem vorteilhaft auf die Wirtschaftlichkeit des Stranggießverfahrens aus.This measure produces a strand, typically a steel strand or a strand made from a so-called superalloy (see https://de.wikipedia.org/wiki/Superalloy, e.g. a nickel-based alloy), with a pronounced V-shaped formation of the strand shells. In other words, the thickness of the strand shells increases rapidly in the casting direction, so that the strand shell is significantly thicker at the lower end of the strand than at the upper end. As a result, liquid molten metal can immediately fill up any cavities caused by the solidification, which improves the internal quality of the strand. Increasing the casting speed also has an advantageous effect on the economics of the continuous casting process.
Um eine ausgeprägte V-Form der Strangschalen zu erreichen, ist es vorteilhaft, wenn das Erhöhen der Ausziehgeschwindigkeit v in Abhängigkeit der Zeit oder der Stranglänge erfolgt. Durch eine Beschränkung der Ausziehgeschwindigkeit v nach oben mit vmax ist sichergestellt, dass die Strangschale am oberen Ende des Strangs eine Mindestdicke aufweist. Dadurch können Ausbrücke verhindert werden.In order to achieve a pronounced V-shape of the strand shells, it is advantageous if the extraction speed v is increased as a function of time or the strand length. Limiting the extraction speed v upwards with v max ensures that the strand shell has a minimum thickness at the upper end of the strand. This can prevent escaping.
Um Stöße in der Anlage zu verhindern, ist es günstig, wenn die Ausziehgeschwindigkeit v stückweise stetig, bevorzugt zumindest einmal stetig differenzierbar, erhöht wird.In order to prevent shocks in the system, it is favorable if the extension speed v is gradually increased, preferably continuously differentiable at least once.
Alternativ dazu kann das Erhöhen der Ausziehgeschwindigkeit v auch unstetig, z.B. in diskreten Stufen, erfolgen.Alternatively, the extension speed v can also be increased discontinuously, e.g. in discrete steps.
Erfindungsgemäß berechnet ein thermisches Rechenmodell während des Stranggießens in Abhängigkeit
- einer chemischen Zusammensetzung der Metallschmelze,
- der Primärkühlung in der Kokille,
- der Sekundärkühlung des Strangs in der Strangführung, ständig das Ist-Temperaturfeld des Strangs einschließlich der Ist-Phasengrenzen zwischen den festen, teigigen und flüssigen Phasen im Strang, wobei die Ausziehgeschwindigkeit des Kaltstrangs aus der Kokille in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, eingestellt wird.
- a chemical composition of the molten metal,
- the primary cooling in the mold,
- the secondary cooling of the strand in the strand guide, constantly the actual temperature field of the strand including the actual phase boundaries between the solid, pasty and liquid phases in the strand, with the extraction speed of the dummy bar from the mold depending on the actual temperature field and/or the actual -Phase boundaries, in particular the actual position of the sump tip, is set.
Die Berechnung des Ist-Temperaturfelds ist z.B. aus der
Zusätzlich zur Veränderung der Auszieh- bzw. der Gießgeschwindigkeit während des Gießprozesses ist es vorteilhaft, die Intensität der Kühlleistung der Kühldüsen in der Sekundärkühlung in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, einzustellen.In addition to changing the extraction or casting speed during the casting process, it is advantageous to adjust the intensity of the cooling capacity of the cooling nozzles in the secondary cooling as a function of the actual temperature field and/or the actual phase boundaries, in particular the actual position of the sump tip.
Außerdem ist es äußerst günstig, einen Wärmedurchgangskoeffizient U der Isolierung in der Tertiärkühlzone in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, einzustellen.In addition, it is extremely favorable to have a heat transfer coefficient U of the insulation in the Set tertiary cooling zone depending on the actual temperature field and / or the actual phase boundaries, in particular the actual position of the sump tip.
Die beiden letztgenannten Maßnahmen wirken sich ebenfalls sehr positiv auf die V-förmige Ausbildung der Strangschale aus.The last two measures also have a very positive effect on the V-shaped design of the strand shell.
Im Allgemeinen ist es vorteilhaft, wenn die Intensität der Kühlleistung der Kühldüsen in der Sekundärkühlung über der Zeit bzw. über der Stranglänge s abnimmt und/oder der Strang in der Tertiärkühlzone durch eine Isolierung thermisch isoliert wird, wobei ein Wärmedurchgangskoeffizient U der Isolierung in Gießrichtung zunimmt. Dadurch wird das untere Ende des Strangs, d.h. der Strangkopf, stärker abgekühlt als das obere Ende des Strangs, d.h. der Strangfußes.In general, it is advantageous if the intensity of the cooling capacity of the cooling nozzles in the secondary cooling decreases over time or over the strand length s and/or the strand in the tertiary cooling zone is thermally insulated by insulation, with a heat transfer coefficient U of the insulation increasing in the casting direction . As a result, the lower end of the strand, i.e. the strand head, is cooled more than the upper end of the strand, i.e. the strand foot.
Eine weitere Verbesserung der Innenqualität des Strangs kann erreicht werden, wenn die Stranggießmaschine einen in Gießrichtung verfahrbaren Strangrührer umfasst, wobei der Strangrührer während des Ausziehens und nach dem Beenden des Ausziehens des Kaltstrangs aus der Kokille den Bereich der Sumpfspitze des Strangs elektromagnetisch rührt.A further improvement in the internal quality of the strand can be achieved if the continuous casting machine includes a strand stirrer that can be moved in the casting direction, with the strand stirrer electromagnetically stirring the region of the sump tip of the strand during the extraction and after the extraction of the dummy bar from the mold.
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der Beschreibung nicht einschränkender Ausführungsbeispiele. Die nachfolgenden schematisch dargestellten Figuren zeigen:
-
Fig 1a bis 1h die Verfahrensschritte bei der Durchführung des Verfahrens, -
Fig 2a ein stranggegossener Strang nach dem Stand der Technik, -
Fig 2b ein stranggegossener Strang, der gemäß der Erfindung hergestellt wurde, -
Fig 3a ein Verlauf einer Ausziehgeschwindigkeit eines Strangs aus einer Kokille über der Zeit t, -
Fig 3b ein Verlauf einer Ausziehgeschwindigkeit eines Strangs aus einer Kokille über der Stranglänge s, -
Fig 4a ein Verlauf einer Durchflussrate Q eines Kühlmittels durch eine Kühldüse über der Zeit t, -
Fig 4b ein Verlauf einer Durchflussrate Q eines Kühlmittels durch eine Kühldüse über der Stranglänge s, -
Fig 5 ein Darstellung einer auf einen Strang akkumulierten Kühlmittelmenge, -
Fig 6 eine Darstellung einer variablen Isolierung in der Tertiärkühlzone, -
Fig 7a eine Darstellung einer variablen Wärmeisolation in der Tertiärkühlzone durch verschwenkbare Isolierklappen, -
Fig 7b eine Darstellung einer variablen Wärmeisolation in der Tertiärkühlzone durch verschiebbare Isolierklappen, -
Fig 8a eine Darstellung einer nicht erfindungsgemäßen Stranggießmaschine mit einer Steuer- und Regeleinrichtung zur Einstellung der Auszugsgeschwindigkeit v, -
Fig 8b eine Darstellung einer nicht erfindungsgemäßen Stranggießmaschine mit einer Steuer- und Regeleinrichtung zur Einstellung der Intensität der Sekundärkühlung, -
Fig 8c eine Darstellung einer nicht erfindungsgemäßen Stranggießmaschine mit einer Steuer- und Regeleinrichtung zur Einstellung der Wärmeisolierung in der Tertiärkühlzone, -
Fig 9a bis 9e eine Darstellung von Verfahrensschritten auf einer alternativen Stranggießmaschine zu den Fig la...lh, -
Fig 10 eine Darstellung einer Kopfisolierung, und -
Fig 11 eine Darstellung der Position der Sumpfspitze im Strang über der Zeit gemäß dem Stand der Technik und der Erfindung.
-
Figures 1a to 1h the procedural steps in the implementation of the procedure, -
Figure 2a a continuously cast strand according to the prior art, -
Figure 2b a continuously cast strand made according to the invention, -
Figure 3a a course of a pull-out speed of a strand from a mold over time t, -
Figure 3b a course of a withdrawal speed of a strand from a mold over the strand length s, -
Figure 4a a course of a flow rate Q of a coolant through a cooling nozzle over time t, -
Figure 4b a course of a flow rate Q of a coolant through a cooling nozzle over the strand length s, -
figure 5 a representation of a quantity of coolant accumulated on a strand, -
figure 6 a representation of a variable insulation in the tertiary cooling zone, -
Figure 7a a representation of a variable thermal insulation in the tertiary cooling zone by pivoting insulating flaps, -
Figure 7b a representation of a variable thermal insulation in the tertiary cooling zone by means of sliding insulating flaps, -
Figure 8a a representation of a continuous casting machine not according to the invention with a control and regulating device for setting the extension speed v, -
Figure 8b a representation of a continuous casting machine not according to the invention with a control and regulating device for adjusting the intensity of the secondary cooling, -
Figure 8c a representation of a continuous casting machine not according to the invention with a control and regulating device for adjusting the thermal insulation in the tertiary cooling zone, -
Figures 9a to 9e a representation of process steps on an alternative continuous casting machine to FIGS. -
figure 10 an illustration of head insulation, and -
figure 11 Figure 12 shows the position of the sump tip in the strand versus time according to the prior art and the invention.
In den Figuren la...lh ist das Stranggießen, konkret das sogenannte semi-kontinuierliche Stranggießen, eines Strangs 1 aus Stahl dargestellt. Die Stranggießmaschine ist als eine Vertikalanlage ausgebildet und weist als Hauptkomponenten eine wassergekühlte Kokille 2, eine Strangführung 3 umfassend mehrere, an den Strang 1 anstellbare, Strangführungsrollen 3a und eine Sekundärkühlung 4 mit mehreren Kühldüsen 4a, sowie eine Tertiärkühlzone 5 mit einer Wärmeisolierung 9 und mehreren Isolationspanelen 9a auf. Der Maschinenkopf der Stranggießmaschine, umfassend die Kokille 2 und die Strangführung 3, sind gegenüber der Tertiärkühlzone 5 verfahrbar, sodass ein einziger Maschinenkopf mehrere Tertiärkühlzonen mit Strängen versorgen kann. Die Strangführungsrollen 3a müssen nicht notwendigerweise über einen Aktuator an den Strang 1 anstellbar sein. Es genügt, wenn diese mechanisch, z.B. über Beilagscheiben oder sog. shims, anstellbar sind.In the figures la...lh the continuous casting, specifically the so-called semi-continuous continuous casting, of a
In
In
In
In
Nachdem die Zufuhr von Stahlschmelze gestoppt wurde, sinkt der Gießspiegel G in der Kokille 2 ab (siehe
Die
In den
Die
Im Gegensatz dazu zeigt
Wie oben angeführt, zeigt die
Ausziehgeschwindigkeit v über der Zeit t. Aus dem Diagramm geht hervor, dass die Ausziehgeschwindigkeit v nicht notwendigerweise linear gesteigert werden muss, sondern bspw. auch unter- oder überlinear (siehe strichlierte Linien). Auch eine nicht dargestellte Steigerung in diskreten Stufen wäre denkbar und könnte sinnvoll sein.Extraction speed v over time t. The diagram shows that the extension speed v does not necessarily have to be increased linearly, but also, for example, under- or over-linearly (see dashed lines). An increase in discrete steps (not shown) would also be conceivable and could be useful.
Die
In beiden Fällen wird durch die Erhöhung der Ausziehgeschwindigkeit v nicht nur die Innenqualität des Strangs 1 erhöht, sondern auch die Wirtschaftlichkeit des Stranggießverfahrens verbessert, da mehr Stränge innerhalb derselben Zeit vergossen werden können.In both cases, increasing the extraction speed v not only increases the internal quality of the
Die Innenqualität des Strangs kann auch durch eine Einstellung der Intensität der Sekundärkühlung 4 in Abhängigkeit der Zeit oder der Stranglänge s (siehe
Für den Fall, dass die Einstellung der Intensität der Sekundärkühlung 4 zusätzlich zur Änderung der Ausziehgeschwindigkeit v erfolgt, ist die Beschreibung der
Für den Fall, dass die Einstellung der Intensität der Sekundärkühlung 4 anstelle der Änderung der Ausziehgeschwindigkeit v erfolgt, ist die Beschreibung der
In
In
In
Die
In
Die
Die
In den
In
In
Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung wie in den anhängenden Ansprüchen definiert zu verlassen.Although the invention has been illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples and other variations may be derived therefrom by those skilled in the art without departing from the scope of the invention as defined in the appended claims.
- 11
- Strangstrand
- 1a1a
- Stranganfangstart of strand
- 1b1b
- teilerstarrter Strangpartially solidified strand
- 1c1c
- Strangendestrand end
- 22
- Kokillemold
- 2a2a
- Primärkühlungprimary cooling
- 33
- Strangführungstrand guide
- 3a3a
- Strangführungsrollenstrand guide rollers
- 44
- Sekundärkühlung, SekundärkühlzoneSecondary cooling, secondary cooling zone
- 4a4a
- Kühldüsecooling nozzle
- 55
- Tertiärkühlung, TertiärkühlzoneTertiary cooling, tertiary cooling zone
- 66
- Kaltstrangdummy leg
- 77
- Rechenmodellcalculation model
- 88th
- Sumpfspitzeswamp top
- 99
- Wärmeisolationthermal insulation
- 9a9a
- Isolationspanelinsulation panel
- 1010
- Steuer- oder RegeleinrichtungControl or regulating device
- 1111
- Strangschalestrand shell
- 1212
- flüssiger Bereich des Strangsliquid section of the strand
- 1313
- Kopfheizunghead heating
- 1414
- Strangrührerstrand stirrer
- 1515
- chemische Zusammensetzungchemical composition
- 1616
- Motorengine
- 1717
- Strahlungsbereichradiation range
- 1818
- Kopfisolierunghead insulation
- 1919
- exothermes Pulverexothermic powder
- GG
- Gießrichtungpouring direction
- LL
- Stranglängestrand length
- MM
- Gießspiegelcasting level
- Durchflussrateflow rate
- SS
- Stranglängestrand length
- tt
- Zeittime
- Uu
- Wärmedurchgangskoeffizientheat transfer coefficient
- vv
- Ausziehgeschwindigkeit, Gießgeschwindigkeitextraction speed, pouring speed
Claims (10)
- Method for the semi-continuous casting of a strand (1) in a continuous casting machine, wherein the continuous casting machine has a mould (2) with primary cooling (2a), followed in the casting direction (G) by a strand guide (3) with multiple strand guiding rollers (3a) for guiding purposes and secondary cooling (4) for cooling the strand (1), followed in turn by a tertiary cooling zone (5) for the controlled or regulated cooling of the strand (1), said method comprising the following method steps:- introducing a dummy bar (6) into the mould (2);- holding the dummy bar (6) in the mould (2), with the result that a head of the dummy bar (6) closes the mould (2) in a fluid-tight manner;- beginning casting in the continuous casting machine, wherein molten metal is cast into the mould (2) and a casting level (M) and a partially solidified strand (1b) are formed in the mould (2);- starting the extraction of the dummy bar (6) from the mould (2), wherein the dummy bar (6) is extracted from the mould (2) at a first extraction velocity v1;- supporting and guiding the partially solidified strand (1b) in the strand guide (3), wherein the partially solidified strand (1b) is supported and guided by the strand guiding rollers (3a) and cooled by cooling nozzles (4a) of the secondary cooling (4);- performing controlled or regulated cooling of the partially solidified strand (1b) until the strand (1) has solidified right through in the tertiary cooling zone (5);characterized in that, after the extraction starts, the extraction velocity v at which the dummy bar (6) is extracted from the mould (2) is increased to a second extraction velocity v2, wherein v2 > v1, andin that, during the continuous casting, a thermal calculation model (7) continuously calculates the actual temperature distribution of the strand (1), including the actual phase boundaries between the solid, pasty and liquid phases in the strand (1), depending on- a chemical composition (15) of the molten metal,- the primary cooling (2a) in the mould (2),- the secondary cooling (4) of the strand (1) in the strand guide (3),
wherein the extraction velocity v at which the dummy bar (6) is extracted from the mould (2) is set depending on the actual temperature distribution and/or the actual phase boundaries, in particular the actual position of the liquidus tip (8). - Method according to Claim 1, characterized in that the extraction velocity v is increased depending on the time t or the strand length s.
- Method according to Claim 2, characterized in that the extraction velocity v is increased continuously in some parts, preferably at least once in a continuously differentiable manner.
- Method according to Claim 2, characterized in that the extraction velocity v is increased discontinuously, e.g. in discrete stages.
- Method according to Claim 1, characterized in that the extraction velocity v of the dummy bar (6) is set in such a way that the actual position corresponds as far as possible to a temporally dependent setpoint position of the liquidus tip (8) .
- Method according to Claim 1 or 5, characterized in that the intensity of the secondary cooling (4) is set depending on the actual temperature distribution and/or the actual phase boundaries, in particular the actual position of the liquidus tip (8).
- Method according to one of Claims 1, 5 and 6, wherein the strand (1) is thermally insulated in the tertiary cooling zone (5) by heat insulation (9), characterized in that a heat transfer coefficient U of the heat insulation (9) is set depending on the actual temperature distribution and/or the actual phase boundaries, in particular the actual position of the liquidus tip (8).
- Method according to one of the preceding claims, characterized in that the intensity of the secondary cooling (4) decreases over the time t or the strand length s.
- Method according to one of the preceding claims, characterized in that the strand (1) is thermally insulated in the tertiary cooling zone (5) by heat insulation (9), wherein a heat transfer coefficient U of the heat insulation (9) increases in the casting direction (G).
- Method according to one of the preceding claims, wherein the continuous casting machine comprises a strand stirrer (14) that is displaceable in the casting direction (G), characterized in that the strand stirrer (14) electromagnetically stirs the region of the liquidus tip (8) of the strand (1) while the dummy bar (6) is being extracted from the mould (2) and after said extraction has ended.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17184936.7A EP3437759B1 (en) | 2017-08-04 | 2017-08-04 | Continuous casting of a metallic strand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17184936.7A EP3437759B1 (en) | 2017-08-04 | 2017-08-04 | Continuous casting of a metallic strand |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3437759A1 EP3437759A1 (en) | 2019-02-06 |
EP3437759B1 true EP3437759B1 (en) | 2022-10-12 |
Family
ID=59558281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17184936.7A Active EP3437759B1 (en) | 2017-08-04 | 2017-08-04 | Continuous casting of a metallic strand |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3437759B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT522265B1 (en) * | 2019-03-06 | 2021-12-15 | Primetals Technologies Austria GmbH | MODIFICATION OF A CONTINUOUS CASTING PLANT FOR BILLETS OR BLOCKS |
AT525563B1 (en) * | 2022-02-18 | 2023-05-15 | Primetals Technologies Austria GmbH | DRY CASTING IN A COMBINED CASTING-ROLLING PLANT |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE743450A (en) * | 1968-12-31 | 1970-06-19 | ||
CH552424A (en) * | 1972-09-06 | 1974-08-15 | Concast Ag | METHOD FOR CONTROLLING THE COOLING OF A STRAND EMITTING FROM A FLOW-THROUGH COOLING AND DEVICE FOR CARRYING OUT THIS METHOD. |
MX170682B (en) * | 1988-11-22 | 1993-09-07 | Hitachi Zosen Corpuration | METHOD FOR THE AUTOMATIC STARTING OF A CONTINUOUS CASTING DEVICE |
CA2414167A1 (en) * | 2002-12-12 | 2004-06-12 | Dofasco Inc. | Method and online system for monitoring continuous caster start-up operation and predicting start cast breakouts |
AT506847B1 (en) | 2008-05-21 | 2011-07-15 | Siemens Vai Metals Tech Gmbh | METHOD FOR CONTINUOUSLY GASING A METAL STRUCTURE |
JP5686062B2 (en) * | 2011-07-20 | 2015-03-18 | 新日鐵住金株式会社 | Steel continuous casting method |
AT512214B1 (en) * | 2011-12-05 | 2015-04-15 | Siemens Vai Metals Tech Gmbh | PROCESS ENGINEERING MEASURES IN A CONTINUOUS CASTING MACHINE AT THE CASTING STAGE, AT THE CASTING END AND AT THE PRODUCTION OF A TRANSITION PIECE |
CN106457371B (en) * | 2014-03-27 | 2019-05-07 | 首要金属科技奥地利有限责任公司 | The semi-continuous casting of steel band |
DE102015223788A1 (en) * | 2015-11-30 | 2017-06-01 | Sms Group Gmbh | Method of continuous casting of a metal strand and cast strand obtained by this method |
-
2017
- 2017-08-04 EP EP17184936.7A patent/EP3437759B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3437759A1 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3122492B2 (en) | Semi-continuous casting of a steel ingot | |
EP3437759B1 (en) | Continuous casting of a metallic strand | |
EP2788133B1 (en) | Process engineering measures in a strand casting machine at the beginning of casting, at the end of casting, and during the manufacturing of a transition piece | |
WO2010051981A1 (en) | Method and device for controlling the solidification of a cast strand in a strand casting plant in startup of the injection process | |
EP2025432B1 (en) | Method for creating steel long products through strand casting and rolling | |
DE102006060673A1 (en) | Method and control device for controlling the heat dissipation of a side plate of a mold | |
EP3437756B1 (en) | Continuous casting of a metallic strand | |
AT411822B (en) | METHOD AND DEVICE FOR STARTING A CASTING PROCESS | |
EP3705202B1 (en) | Conversion of a continuous casting plant for billet or bloom strands | |
EP1077782A1 (en) | Method and device for casting metal close to final dimensions | |
EP3733323A1 (en) | Method and continuous casting plant for casting a cast strand | |
EP0301170B1 (en) | Process for the production of thin band | |
EP1550523A1 (en) | Diversified regulation of the secondary cooling of a continuous casting machine | |
EP3437757A1 (en) | Continuous casting of a metallic strand | |
DE3440235C2 (en) | Method and device for continuous strip casting of metals, in particular steel | |
DD141276A5 (en) | METHOD AND APPARATUS FOR THE CONTINUOUS CASTING OF ROUGHFUL PRODUCTS | |
DE102016110679B4 (en) | Method and apparatus for producing a semi-solid metal material | |
DE3247002C1 (en) | Method and device for casting thin steel strands during continuous casting | |
DE69000282T2 (en) | METHOD AND DEVICE FOR THE PRODUCTION OF THICK METAL PRODUCTS BY MEANS OF CONTINUOUS CASTING. | |
WO2011036060A1 (en) | Method and device for casting metal melt in a continuous casting machine | |
EP3519124B1 (en) | Method for multiple casting of metal strengths | |
WO2009068232A1 (en) | Method and device for equalizing the solidification process of a fusible metal, particularly produced by means of strand or strip casting | |
EP3015192B1 (en) | Method and device for the continuous casting of a light metal alloy | |
CH718935B1 (en) | Process for continuous casting and software product for carrying out the process. | |
EP3703883A1 (en) | Continuous casting line having individual roller engagement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190806 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200610 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220530 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017013926 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1523851 Country of ref document: AT Kind code of ref document: T Effective date: 20221115 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230112 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230212 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017013926 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
26N | No opposition filed |
Effective date: 20230713 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230803 Year of fee payment: 7 Ref country code: IT Payment date: 20230825 Year of fee payment: 7 Ref country code: AT Payment date: 20230822 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 8 |