EP3437759B1 - Continuous casting of a metallic strand - Google Patents

Continuous casting of a metallic strand Download PDF

Info

Publication number
EP3437759B1
EP3437759B1 EP17184936.7A EP17184936A EP3437759B1 EP 3437759 B1 EP3437759 B1 EP 3437759B1 EP 17184936 A EP17184936 A EP 17184936A EP 3437759 B1 EP3437759 B1 EP 3437759B1
Authority
EP
European Patent Office
Prior art keywords
strand
cooling
mould
continuous casting
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17184936.7A
Other languages
German (de)
French (fr)
Other versions
EP3437759A1 (en
Inventor
Franz Wimmer
Susanne Hahn
Heinrich Thoene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority to EP17184936.7A priority Critical patent/EP3437759B1/en
Publication of EP3437759A1 publication Critical patent/EP3437759A1/en
Application granted granted Critical
Publication of EP3437759B1 publication Critical patent/EP3437759B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/161Controlling or regulating processes or operations for automatic starting the casting process

Definitions

  • the present invention relates to continuous casting, preferably semi-continuous continuous casting, of a metal strand in a continuous casting machine.
  • the generic method and a suitable system are from WO 2015/079071 known. Thanks to the tertiary cooling zone with adjustable insulation panels, the cooling speed of the strand can be finely adjusted from bottom to top. This prevents the formation of cavities in the strand, so that liquid steel melt can compensate for volume jumps between the solid and liquid phase caused by solidification. This significantly improves the internal quality of the strand.
  • the disadvantage of this is that continuous casting takes a very long time until it has completely solidified. The document does not reveal how continuous casting can be accelerated without adversely affecting the internal quality of the strand.
  • the object of the invention is to change known continuous casting processes in such a way that a strand is cast quickly and the formation of cavities or cracks in the strand is nevertheless prevented. This is intended to increase profitability and improve the internal quality of the cast strand.
  • This measure produces a strand, typically a steel strand or a strand made from a so-called superalloy (see https://de.wikipedia.org/wiki/Superalloy, e.g. a nickel-based alloy), with a pronounced V-shaped formation of the strand shells.
  • the thickness of the strand shells increases rapidly in the casting direction, so that the strand shell is significantly thicker at the lower end of the strand than at the upper end.
  • liquid molten metal can immediately fill up any cavities caused by the solidification, which improves the internal quality of the strand.
  • Increasing the casting speed also has an advantageous effect on the economics of the continuous casting process.
  • the extraction speed v is increased as a function of time or the strand length. Limiting the extraction speed v upwards with v max ensures that the strand shell has a minimum thickness at the upper end of the strand. This can prevent escaping.
  • the extension speed v is gradually increased, preferably continuously differentiable at least once.
  • the extension speed v can also be increased discontinuously, e.g. in discrete steps.
  • the extraction speed of the dummy bar from the mold can be set, for example, in such a way that the actual position corresponds as closely as possible to a time-dependent target position of the sump tip.
  • the intensity of the cooling capacity of the cooling nozzles in the secondary cooling decreases over time or over the strand length s and/or the strand in the tertiary cooling zone is thermally insulated by insulation, with a heat transfer coefficient U of the insulation increasing in the casting direction .
  • the lower end of the strand i.e. the strand head
  • the upper end of the strand i.e. the strand foot.
  • a further improvement in the internal quality of the strand can be achieved if the continuous casting machine includes a strand stirrer that can be moved in the casting direction, with the strand stirrer electromagnetically stirring the region of the sump tip of the strand during the extraction and after the extraction of the dummy bar from the mold.
  • the continuous casting machine is designed as a vertical system and has as its main components a water-cooled mold 2, a strand guide 3 comprising several strand guide rollers 3a that can be set against the strand 1 and a secondary cooling system 4 with several cooling nozzles 4a, as well as a tertiary cooling zone 5 with thermal insulation 9 and several insulation panels 9a on.
  • the machine head of the continuous casting machine comprising the mold 2 and the strand guide 3, can be moved relative to the tertiary cooling zone 5, so that a single machine head can supply strands to several tertiary cooling zones.
  • the strand guide rollers 3a do not necessarily have to be adjustable against the strand 1 via an actuator. It is sufficient if these can be adjusted mechanically, e.g. using washers or so-called shims.
  • Figure 1a shows the situation before casting on the continuous casting machine.
  • a dummy bar 6 was introduced into the mold 2 so that the stationary dummy bar 6 seals the mold in the casting direction G in a fluid-tight manner.
  • FIG 1b the casting of the continuous casting machine is shown.
  • Superalloy is either directly or in the mold 2 supplied via a tundish, so that a meniscus M forms in the mold 2 and a strand 1 forms due to the primary cooling of the mold 2 .
  • the dummy bar 6 is started to be pulled out of the mold 2 .
  • the extraction takes place relatively slowly with a first extraction speed v 1 of 0.12 m/min (see Figure 3a ).
  • the extraction speed v is increased according to the invention (see Figure 3a ), so that a strand 1 is formed with a pronounced V-shape of the strand shells (see Figure 2b ).
  • the strand 1 in continuous casting according to the prior art does not have a pronounced V-shape, which leads to poor internal quality (such as cracks, cavities, etc.). Due to the pronounced V-shape of the strand shells 11 of strand 1 (see Figure 2b ) during cooling in the tertiary cooling zone 5, the strand 1 can suck in liquid melt from the upper region of the partially solidified strand 1b, so that any cavities or cracks caused by the solidification are refilled with melt. A thin strand shell 11 at the upper strand end 1c facilitates this significantly.
  • the mold 2 is oscillated in the vertical direction by an unillustrated oscillator. A stirring coil, also not shown, below the mold 2 stirs the partially solidified strand. Both details are customary and eg from the WO 2015/079071 known.
  • FIG 1d shows the point in time during continuous casting at which the feeding of molten steel into the mold has just stopped.
  • the extraction speed v corresponds to second extraction speed v 2 of 0.36 m/min. This extraction speed of strand 1 is maintained until the end of the extraction process (see Figure 3a ).
  • the strand 1 has a strand length L of typically 6 to 12 m.
  • the diameter of the strand 1 is 600 mm.
  • the Fig 1f shows the situation after the strand end 1c has passed the strand guide 3 and the secondary cooling 4 has been switched off.
  • the partially solidified strand 1b is then in the tertiary cooling zone 5 and is slowly cooled there in a controlled or regulated manner.
  • the machine head can serve several tertiary cooling zones 5 and can be moved, for example, in a horizontal direction to a further tertiary cooling zone 5 .
  • the strand end 1c can be heated by a head heater 13 instead of the secondary cooling 4.
  • the head heating 13 can take place, for example, inductively or by means of an exothermic powder (the process is referred to as "hot topping"), with the powder generating heat energy with the liquid molten steel. Since the partially solidified strand 1b is particularly prone to form cracks or cavities in the region of the sump tip, it is advantageous if a strand stirrer 14 stirs this region in particular electromagnetically.
  • the Figure 2a shows a continuously cast, partially solidified billet 1b according to the prior art.
  • the strand end is almost completely solidified, so that any cavities or Cracks in the strand can no longer be filled with liquid melt 12.
  • FIG. 2b shows Figure 2b a strand according to the invention.
  • the strand end 1c is still largely liquid, so that any cavities or cracks in the strand can be filled with liquid melt 12. As a result, the strand has a better internal quality.
  • Extraction speed v over time t The diagram shows that the extension speed v does not necessarily have to be increased linearly, but also, for example, under- or over-linearly (see dashed lines). An increase in discrete steps (not shown) would also be conceivable and could be useful.
  • the Figure 3b shows another diagram for the extraction speed v, where v does not depend on the time t but on the strand length s. This ensures that the beginning of the strand 1a is cooled more than the end of the strand 1c, regardless of any interruptions in the casting process.
  • the internal quality of the strand can also be adjusted by adjusting the intensity of the secondary cooling 4 depending on the time or the strand length s (see Figure 1c ) take place. In both cases, this means that the beginning of the strand 1a is cooled more in the secondary cooling system 4 than the end of the strand 1c. This measure can be taken in addition to increasing the extraction speed v of the dummy bar 6 from the mold 2 or instead of it.
  • the intensity of the secondary cooling 4 is varied depending on the time t or the strand length s.
  • the time-dependent change in the intensity of the secondary cooling due to a change in the flow rate Q through the cooling nozzles 4a of the secondary cooling 4 is in Figure 4a shown.
  • the decrease in the flow rate Q or the intensity of the secondary cooling 4 can be linear (continuous line) but also less than or more than linear (see dashed lines).
  • the intensity of the secondary cooling can also be varied depending on the strand length s (see Figure 4b ). In this case, the strand length s is recorded or calculated during casting and the intensity of the secondary cooling 4 according to the characteristic of Figure 4b set.
  • the strand 1 pulled out of the mold 2 is cooled in the secondary cooling zone 4 with variable intensity either as a function of time or strand length, so that the beginning of the strand 1a is cooled more than the end of the strand 1c.
  • FIG 5 is a schematic of the amounts of coolant accumulated in the different areas of a partially solidified strand 1b when the intensity of the secondary cooling is adjusted as a function of time or strand length (see Fig Figure 4a or 4b ) shown.
  • the intensity of the secondary cooling is changed so that the beginning of the strand is cooled more than the end of the strand.
  • the thermal insulation 9 in the tertiary cooling zone 5 is adjusted as a function of the strand length L, with a heat transfer coefficient U of the thermal insulation 9 in the casting direction G increasing.
  • the start of the strand 1a is cooled more in the tertiary cooling system 5 than the end of the strand 1c.
  • This measure can be taken either in addition to or instead of increasing the extraction speed v of the dummy bar 6 from the mold 2 .
  • the thermal insulation 9 in the tertiary cooling zone 5 to be changed in addition to or instead of adjusting the intensity of the secondary cooling 4 .
  • the change in the heat transfer coefficient U of the thermal insulation 9 is in figure 6 represented by a variable thickness of insulation.
  • FIG 7a the strand length-dependent change in the thermal insulation 9 in the tertiary cooling zone 5 is shown by insulation panels 9a.
  • the pivotable flaps of the insulation panels are set differently, with the upper flaps being largely closed and the lower flaps being largely open.
  • a heat transfer coefficient U of the thermal insulation 9 in the casting direction G increases.
  • the change in the opening angle of the flaps can either be preset statically or dynamically, for example via pivoting drives for pivoting the flaps, during the cooling in the tertiary cooling zone 5 .
  • the Figure 7b shows an alternative to Figure 7a , the degree of coverage of the insulating flaps 9a of the strand being higher at the end of the strand 1c than at the beginning of the strand. Also because of that the heat transfer coefficient U of the heat insulation 9 in the casting direction G increases.
  • FIG 8a a non-inventive continuous casting machine with a control or regulating device 10 for controlling or regulating the extension speed v is shown.
  • the control or regulating device 10 calculates the temperature field and the sump tip in the cast strand 1, taking into account the chemical composition 15 of the metal melt, the primary cooling 2a in the mold 2, the secondary cooling 4 and the strand length s, and sets the extraction speed of the motor 16 as a function of the swamp peak on.
  • the Figure 8b shows a continuous casting machine not according to the invention with a control or regulating device 10 for controlling or regulating the intensity of the secondary cooling 4 depending on the strand length s.
  • the control or regulating device 10 calculates taking into account the chemical composition 15 of the molten metal and the primary cooling 2a in the mold and the strand length s the temperature field and the sump peak in the cast strand 1 and adjusts the intensity of the secondary cooling 4 depending on the sump peak.
  • the sump tip is calculated in real time in a thermal calculation model.
  • the Figure 8c also shows a continuous casting machine not according to the invention with a control or regulating device 10 for controlling or regulating a heat transfer coefficient U of the heat insulation 9 in the tertiary cooling zone 5.
  • the control or regulating device 10 calculates taking into account the chemical composition 15 of the molten metal and the primary cooling 2a in the Mold the temperature field and the sump tip in the cast strand 1 and sets the opening angle of the insulating panels 9a depending on the sump tip.
  • the Sump tip is calculated in real time in a thermal calculation model.
  • FIGs 9a to 9e an alternative continuous casting machine for carrying out the method according to the invention is shown.
  • Figure 9a we cast a strand 1 in the mold 2 and pulled out of the mold with a variable extraction speed v.
  • the strand 1 is supported and guided in the strand guide 3 and cooled by the secondary cooling.
  • Figure 9b the casting in the mold has ended and the strand 1 is in a radiation area 17 where it can radiate heat to the environment for a certain time.
  • the strand passes through a stirring coil 14 and is stirred electromagnetically by it, see FIG Figure 9c .
  • the strand is then introduced into the tertiary cooling zone 5, where it is cooled in a controlled or regulated manner by the thermal insulation 9. Since the strand end 1c in particular is particularly sensitive, it is again particularly thermally insulated by a cover, see Figures 9d and 9e .
  • a head insulation 18 of a strand 1 is shown schematically.
  • the head insulation has thermal insulation 9 for the strand end 1c of the strand 1, so that the strand end 1c remains liquid longer.
  • an exothermic powder 19 can be applied to the liquid strand end 1c, which additionally heats the strand 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Gebiet der Technikfield of technology

Die vorliegende Erfindung betrifft das Stranggießen, vorzugsweise das semi-kontinuierliche Stranggießen, eines metallischen Strangs in einer Stranggießmaschine.The present invention relates to continuous casting, preferably semi-continuous continuous casting, of a metal strand in a continuous casting machine.

Konkret betrifft die Erfindung ein Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs in einer Stranggießmaschine, wobei die Stranggießmaschine eine Kokille mit einer Primärkühlung, in Gießrichtung nachfolgend eine Strangführung mit mehreren, vorzugsweise an den Strang anstellbaren, Strangführungsrollen zum Führen und einer Sekundärkühlung zum Abkühlen des Strangs, und wiederum nachfolgend eine Tertiärkühlzone zum gesteuerten oder geregelten Abkühlen des Strangs aufweist, umfassend die Verfahrensschritte:

  • Einführen eines Kaltstrangs in die Kokille;
  • Halten des Kaltstrangs in der Kokille, sodass ein Kopf des Kaltstrangs die Kokille fluiddicht verschließt;
  • Angießen der Stranggießmaschine, wobei Metallschmelze in die Kokille gegossen wird und sich in der Kokille ein Gießspiegel und ein teilerstarrter Strang ausbildet;
  • Beginnen des Ausziehens des Kaltstrangs aus der Kokille, wobei der Kaltstrang mit einer ersten Ausziehgeschwindigkeit v1 aus der Kokille ausgezogen wird;
  • Stützen und Führen des teilerstarrten Strangs in der Strangführung, wobei der teilerstarrte Strang durch die Strangführungsrollen gestützt, geführt und durch Kühldüsen der Sekundärkühlung abgekühlt wird; und
  • gesteuertes oder geregeltes Abkühlen des teilerstarrten Strangs bis zur Durcherstarrung des Strangs in der Tertiärkühlzone.
Specifically, the invention relates to a method for the semi-continuous continuous casting of a strand in a continuous casting machine, wherein the continuous casting machine has a mold with a primary cooling system, downstream in the casting direction a strand guide with a plurality of strand guide rollers, preferably adjustable against the strand, for guiding and secondary cooling for cooling the strand , and in turn subsequently has a tertiary cooling zone for the controlled or regulated cooling of the strand, comprising the process steps:
  • Inserting a dummy bar into the mold;
  • Holding the dummy bar in the mold so that a head of the dummy bar closes the mold in a fluid-tight manner;
  • Casting on the continuous casting machine, with molten metal being poured into the mold and a meniscus and a partially solidified strand forming in the mold;
  • beginning the extraction of the dummy bar from the mold, the dummy bar being extracted from the mold at a first extraction speed v 1 ;
  • supporting and guiding the partially solidified strand in the strand guide, wherein the partially solidified strand is supported by the strand guide rollers, guided and cooled by cooling nozzles of the secondary cooling; and
  • Controlled or regulated cooling of the partially solidified strand until solidification of the strand in the tertiary cooling zone.

Stand der TechnikState of the art

Das gattungsgemäße Verfahren sowie eine geeignete Anlage sind aus der WO 2015/079071 bekannt. Durch die Tertiärkühlzone mit einstellbaren Isolationspanelen kann die Abkühlgeschwindigkeit des Strangs von unten nach oben fein eingestellt werden. Dadurch wird die Ausbildung von Hohlräumen im Strang unterbunden, sodass flüssige Stahlschmelze durch die Erstarrung bedingte Volumensprünge zwischen der festen und flüssigen Phase ausgleichen kann. Die Innenqualität des Strangs wird dadurch wesentlich verbessert. Nachteilig daran ist, dass das Stranggießen bis zur vollständigen Durcherstarrung sehr lange dauert. Wie das Stranggießen beschleunigt werden kann, ohne die Innenqualität des Strangs negativ zu beeinflussen, geht aus der Schrift nicht hervor.The generic method and a suitable system are from WO 2015/079071 known. Thanks to the tertiary cooling zone with adjustable insulation panels, the cooling speed of the strand can be finely adjusted from bottom to top. This prevents the formation of cavities in the strand, so that liquid steel melt can compensate for volume jumps between the solid and liquid phase caused by solidification. This significantly improves the internal quality of the strand. The disadvantage of this is that continuous casting takes a very long time until it has completely solidified. The document does not reveal how continuous casting can be accelerated without adversely affecting the internal quality of the strand.

Aus der DE 3937752 A1 und der US 2004/172153 A1 ist es bekannt, beim Start des kontinuierlichen Stranggießens mit einer relativ geringen Ausziehgeschwindigkeit zu beginnen und anschließend die Geschwindigkeit kontinuierlich zu steigern.From the DE 3937752 A1 and the U.S. 2004/172153 A1 it is known to begin with a relatively low extraction speed at the start of continuous casting and then to continuously increase the speed.

Aus der Veröffentlichung Y. Zhang et al. / Control Engineering Practice 14 (2006) 1357-1375 ist auch eine stufenförmige Erhöhung der Ausziehgeschwindigkeit bekannt.From the publication Y.Zhang et al. / Control Engineering Practice 14 (2006) 1357-1375 a gradual increase in the extraction speed is also known.

Zusammenfassung der ErfindungSummary of the Invention

Die Aufgabe der Erfindung besteht darin, bekannte Stranggießverfahren so zu verändern, dass ein Strang rasch vergossen und dennoch die Ausbildung von Hohlräumen bzw. Rissen im Strang verhindert wird. Dadurch soll die Wirtschaftlichkeit erhöht und die Innenqualität des vergossenen Strangs gesteigert werden.The object of the invention is to change known continuous casting processes in such a way that a strand is cast quickly and the formation of cavities or cracks in the strand is nevertheless prevented. This is intended to increase profitability and improve the internal quality of the cast strand.

Die erfindungsgemäße Ausgabe wird durch den Gegenstand von Anspruch 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.The output according to the invention is solved by the subject-matter of claim 1. Advantageous embodiments are the subject matter of the dependent claims.

Konkret erfolgt die Lösung durch ein gattungsgemäßes Verfahren, wobei nach dem Beginnen des Ausziehens die Ausziehgeschwindigkeit v des Kaltstrangs aus der Kokille auf eine zweite Ausziehgeschwindigkeit v2 erhöht wird, wobei gilt v2 > v1, und ein thermisches Rechenmodell während des Stranggießens in Abhängigkeit

  • einer chemischen Zusammensetzung der Metallschmelze,
  • der Primärkühlung in der Kokille,
  • der Sekundärkühlung des Strangs in der Strangführung, ständig das Ist-Temperaturfeld des Strangs einschließlich der Ist-Phasengrenzen zwischen den festen, teigigen und flüssigen Phasen im Strang berechnet, wobei die Ausziehgeschwindigkeit v des Kaltstrangs aus der Kokille in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, eingestellt wird.
Specifically, the solution is provided by a generic method, wherein after the start of the extraction, the extraction speed v of the dummy bar from the mold is increased to a second extraction speed v 2 , where v 2 > v 1 , and a thermal calculation model during continuous casting as a function
  • a chemical composition of the molten metal,
  • the primary cooling in the mold,
  • the secondary cooling of the strand in the strand guide, constantly calculates the actual temperature field of the strand including the actual phase boundaries between the solid, pasty and liquid phases in the strand, with the extraction speed v of the cold strand from the mold depending on the actual temperature field and/or the actual phase boundaries, in particular the actual position of the sump tip, is set.

Durch diese Maßnahme wird ein Strang, typischerweise ein Stahlstrang oder ein Strang aus einer sog. Superlegierung (siehe https://de.wikipedia.org/wiki/Superlegierung, z.B. einer Nickelbasislegierung), mit einer ausgeprägten V-förmigen Ausbildung der Strangschalen erzeugt. Mit anderen Worten nimmt das Dickenwachstum der Strangschalen in Gießrichtung rasch zu, sodass die Strangschale am unteren Ende des Strangs wesentlich dicker ist als am oberen Ende. Dadurch kann flüssige Metallschmelze etwaige durch die Erstarrung bedingte Hohlräume unmittelbar auffüllen, wodurch die Innenqualität des Strangs verbessert wird. Die Erhöhung der Gießgeschwindigkeit wirkt sich außerdem vorteilhaft auf die Wirtschaftlichkeit des Stranggießverfahrens aus.This measure produces a strand, typically a steel strand or a strand made from a so-called superalloy (see https://de.wikipedia.org/wiki/Superalloy, e.g. a nickel-based alloy), with a pronounced V-shaped formation of the strand shells. In other words, the thickness of the strand shells increases rapidly in the casting direction, so that the strand shell is significantly thicker at the lower end of the strand than at the upper end. As a result, liquid molten metal can immediately fill up any cavities caused by the solidification, which improves the internal quality of the strand. Increasing the casting speed also has an advantageous effect on the economics of the continuous casting process.

Um eine ausgeprägte V-Form der Strangschalen zu erreichen, ist es vorteilhaft, wenn das Erhöhen der Ausziehgeschwindigkeit v in Abhängigkeit der Zeit oder der Stranglänge erfolgt. Durch eine Beschränkung der Ausziehgeschwindigkeit v nach oben mit vmax ist sichergestellt, dass die Strangschale am oberen Ende des Strangs eine Mindestdicke aufweist. Dadurch können Ausbrücke verhindert werden.In order to achieve a pronounced V-shape of the strand shells, it is advantageous if the extraction speed v is increased as a function of time or the strand length. Limiting the extraction speed v upwards with v max ensures that the strand shell has a minimum thickness at the upper end of the strand. This can prevent escaping.

Um Stöße in der Anlage zu verhindern, ist es günstig, wenn die Ausziehgeschwindigkeit v stückweise stetig, bevorzugt zumindest einmal stetig differenzierbar, erhöht wird.In order to prevent shocks in the system, it is favorable if the extension speed v is gradually increased, preferably continuously differentiable at least once.

Alternativ dazu kann das Erhöhen der Ausziehgeschwindigkeit v auch unstetig, z.B. in diskreten Stufen, erfolgen.Alternatively, the extension speed v can also be increased discontinuously, e.g. in discrete steps.

Erfindungsgemäß berechnet ein thermisches Rechenmodell während des Stranggießens in Abhängigkeit

  • einer chemischen Zusammensetzung der Metallschmelze,
  • der Primärkühlung in der Kokille,
  • der Sekundärkühlung des Strangs in der Strangführung, ständig das Ist-Temperaturfeld des Strangs einschließlich der Ist-Phasengrenzen zwischen den festen, teigigen und flüssigen Phasen im Strang, wobei die Ausziehgeschwindigkeit des Kaltstrangs aus der Kokille in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, eingestellt wird.
According to the invention, a thermal calculation model calculates as a function during continuous casting
  • a chemical composition of the molten metal,
  • the primary cooling in the mold,
  • the secondary cooling of the strand in the strand guide, constantly the actual temperature field of the strand including the actual phase boundaries between the solid, pasty and liquid phases in the strand, with the extraction speed of the dummy bar from the mold depending on the actual temperature field and/or the actual -Phase boundaries, in particular the actual position of the sump tip, is set.

Die Berechnung des Ist-Temperaturfelds ist z.B. aus der WO 2009/141205 A1 bekannt. Details dazu werden in diese Anmeldung per Referenz mitaufgenommen. Durch die erfindungsgemäße Ausführungsform kann die Ausziehgeschwindigkeit des Kaltstrangs aus der Kokille z.B. so eingestellt werden, dass die Ist-Position einer zeitlich abhängigen Soll-Position der Sumpfspitze möglichst entspricht.The calculation of the actual temperature field is, for example, from the WO 2009/141205 A1 known. Details are incorporated into this application by reference. Due to the embodiment according to the invention, the extraction speed of the dummy bar from the mold can be set, for example, in such a way that the actual position corresponds as closely as possible to a time-dependent target position of the sump tip.

Zusätzlich zur Veränderung der Auszieh- bzw. der Gießgeschwindigkeit während des Gießprozesses ist es vorteilhaft, die Intensität der Kühlleistung der Kühldüsen in der Sekundärkühlung in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, einzustellen.In addition to changing the extraction or casting speed during the casting process, it is advantageous to adjust the intensity of the cooling capacity of the cooling nozzles in the secondary cooling as a function of the actual temperature field and/or the actual phase boundaries, in particular the actual position of the sump tip.

Außerdem ist es äußerst günstig, einen Wärmedurchgangskoeffizient U der Isolierung in der Tertiärkühlzone in Abhängigkeit des Ist-Temperaturfelds und/oder der Ist-Phasengrenzen, insbesondere der Ist-Position der Sumpfspitze, einzustellen.In addition, it is extremely favorable to have a heat transfer coefficient U of the insulation in the Set tertiary cooling zone depending on the actual temperature field and / or the actual phase boundaries, in particular the actual position of the sump tip.

Die beiden letztgenannten Maßnahmen wirken sich ebenfalls sehr positiv auf die V-förmige Ausbildung der Strangschale aus.The last two measures also have a very positive effect on the V-shaped design of the strand shell.

Im Allgemeinen ist es vorteilhaft, wenn die Intensität der Kühlleistung der Kühldüsen in der Sekundärkühlung über der Zeit bzw. über der Stranglänge s abnimmt und/oder der Strang in der Tertiärkühlzone durch eine Isolierung thermisch isoliert wird, wobei ein Wärmedurchgangskoeffizient U der Isolierung in Gießrichtung zunimmt. Dadurch wird das untere Ende des Strangs, d.h. der Strangkopf, stärker abgekühlt als das obere Ende des Strangs, d.h. der Strangfußes.In general, it is advantageous if the intensity of the cooling capacity of the cooling nozzles in the secondary cooling decreases over time or over the strand length s and/or the strand in the tertiary cooling zone is thermally insulated by insulation, with a heat transfer coefficient U of the insulation increasing in the casting direction . As a result, the lower end of the strand, i.e. the strand head, is cooled more than the upper end of the strand, i.e. the strand foot.

Eine weitere Verbesserung der Innenqualität des Strangs kann erreicht werden, wenn die Stranggießmaschine einen in Gießrichtung verfahrbaren Strangrührer umfasst, wobei der Strangrührer während des Ausziehens und nach dem Beenden des Ausziehens des Kaltstrangs aus der Kokille den Bereich der Sumpfspitze des Strangs elektromagnetisch rührt.A further improvement in the internal quality of the strand can be achieved if the continuous casting machine includes a strand stirrer that can be moved in the casting direction, with the strand stirrer electromagnetically stirring the region of the sump tip of the strand during the extraction and after the extraction of the dummy bar from the mold.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der Beschreibung nicht einschränkender Ausführungsbeispiele. Die nachfolgenden schematisch dargestellten Figuren zeigen:

  • Fig 1a bis 1h die Verfahrensschritte bei der Durchführung des Verfahrens,
  • Fig 2a ein stranggegossener Strang nach dem Stand der Technik,
  • Fig 2b ein stranggegossener Strang, der gemäß der Erfindung hergestellt wurde,
  • Fig 3a ein Verlauf einer Ausziehgeschwindigkeit eines Strangs aus einer Kokille über der Zeit t,
  • Fig 3b ein Verlauf einer Ausziehgeschwindigkeit eines Strangs aus einer Kokille über der Stranglänge s,
  • Fig 4a ein Verlauf einer Durchflussrate Q eines Kühlmittels durch eine Kühldüse über der Zeit t,
  • Fig 4b ein Verlauf einer Durchflussrate Q eines Kühlmittels durch eine Kühldüse über der Stranglänge s,
  • Fig 5 ein Darstellung einer auf einen Strang akkumulierten Kühlmittelmenge,
  • Fig 6 eine Darstellung einer variablen Isolierung in der Tertiärkühlzone,
  • Fig 7a eine Darstellung einer variablen Wärmeisolation in der Tertiärkühlzone durch verschwenkbare Isolierklappen,
  • Fig 7b eine Darstellung einer variablen Wärmeisolation in der Tertiärkühlzone durch verschiebbare Isolierklappen,
  • Fig 8a eine Darstellung einer nicht erfindungsgemäßen Stranggießmaschine mit einer Steuer- und Regeleinrichtung zur Einstellung der Auszugsgeschwindigkeit v,
  • Fig 8b eine Darstellung einer nicht erfindungsgemäßen Stranggießmaschine mit einer Steuer- und Regeleinrichtung zur Einstellung der Intensität der Sekundärkühlung,
  • Fig 8c eine Darstellung einer nicht erfindungsgemäßen Stranggießmaschine mit einer Steuer- und Regeleinrichtung zur Einstellung der Wärmeisolierung in der Tertiärkühlzone,
  • Fig 9a bis 9e eine Darstellung von Verfahrensschritten auf einer alternativen Stranggießmaschine zu den Fig la...lh,
  • Fig 10 eine Darstellung einer Kopfisolierung, und
  • Fig 11 eine Darstellung der Position der Sumpfspitze im Strang über der Zeit gemäß dem Stand der Technik und der Erfindung.
Other advantages and features of the present invention emerge from the description of non-limiting exemplary embodiments. The following diagrammatic figures show:
  • Figures 1a to 1h the procedural steps in the implementation of the procedure,
  • Figure 2a a continuously cast strand according to the prior art,
  • Figure 2b a continuously cast strand made according to the invention,
  • Figure 3a a course of a pull-out speed of a strand from a mold over time t,
  • Figure 3b a course of a withdrawal speed of a strand from a mold over the strand length s,
  • Figure 4a a course of a flow rate Q of a coolant through a cooling nozzle over time t,
  • Figure 4b a course of a flow rate Q of a coolant through a cooling nozzle over the strand length s,
  • figure 5 a representation of a quantity of coolant accumulated on a strand,
  • figure 6 a representation of a variable insulation in the tertiary cooling zone,
  • Figure 7a a representation of a variable thermal insulation in the tertiary cooling zone by pivoting insulating flaps,
  • Figure 7b a representation of a variable thermal insulation in the tertiary cooling zone by means of sliding insulating flaps,
  • Figure 8a a representation of a continuous casting machine not according to the invention with a control and regulating device for setting the extension speed v,
  • Figure 8b a representation of a continuous casting machine not according to the invention with a control and regulating device for adjusting the intensity of the secondary cooling,
  • Figure 8c a representation of a continuous casting machine not according to the invention with a control and regulating device for adjusting the thermal insulation in the tertiary cooling zone,
  • Figures 9a to 9e a representation of process steps on an alternative continuous casting machine to FIGS.
  • figure 10 an illustration of head insulation, and
  • figure 11 Figure 12 shows the position of the sump tip in the strand versus time according to the prior art and the invention.

Beschreibung der AusführungsformenDescription of the embodiments

In den Figuren la...lh ist das Stranggießen, konkret das sogenannte semi-kontinuierliche Stranggießen, eines Strangs 1 aus Stahl dargestellt. Die Stranggießmaschine ist als eine Vertikalanlage ausgebildet und weist als Hauptkomponenten eine wassergekühlte Kokille 2, eine Strangführung 3 umfassend mehrere, an den Strang 1 anstellbare, Strangführungsrollen 3a und eine Sekundärkühlung 4 mit mehreren Kühldüsen 4a, sowie eine Tertiärkühlzone 5 mit einer Wärmeisolierung 9 und mehreren Isolationspanelen 9a auf. Der Maschinenkopf der Stranggießmaschine, umfassend die Kokille 2 und die Strangführung 3, sind gegenüber der Tertiärkühlzone 5 verfahrbar, sodass ein einziger Maschinenkopf mehrere Tertiärkühlzonen mit Strängen versorgen kann. Die Strangführungsrollen 3a müssen nicht notwendigerweise über einen Aktuator an den Strang 1 anstellbar sein. Es genügt, wenn diese mechanisch, z.B. über Beilagscheiben oder sog. shims, anstellbar sind.In the figures la...lh the continuous casting, specifically the so-called semi-continuous continuous casting, of a strand 1 made of steel is shown. The continuous casting machine is designed as a vertical system and has as its main components a water-cooled mold 2, a strand guide 3 comprising several strand guide rollers 3a that can be set against the strand 1 and a secondary cooling system 4 with several cooling nozzles 4a, as well as a tertiary cooling zone 5 with thermal insulation 9 and several insulation panels 9a on. The machine head of the continuous casting machine, comprising the mold 2 and the strand guide 3, can be moved relative to the tertiary cooling zone 5, so that a single machine head can supply strands to several tertiary cooling zones. The strand guide rollers 3a do not necessarily have to be adjustable against the strand 1 via an actuator. It is sufficient if these can be adjusted mechanically, e.g. using washers or so-called shims.

In Fig 1a ist die Situation vor dem Angießen der Stranggießmaschine dargestellt. Ein Kaltstrang 6 wurde in die Kokille 2 eingeführt, sodass der stationäre Kaltstrang 6 die Kokille in Gießrichtung G fluiddicht abdichtet.In Figure 1a shows the situation before casting on the continuous casting machine. A dummy bar 6 was introduced into the mold 2 so that the stationary dummy bar 6 seals the mold in the casting direction G in a fluid-tight manner.

In Fig 1b ist das Angießen der Stranggießmaschine dargestellt. Eine Stahlschmelze oder eine Schmelze einer sog. Superlegierung wird in die Kokille 2 entweder direkt oder über ein Verteilergefäß zugeführt, sodass sich in der Kokille 2 ein Gießspiegel M und aufgrund der Primärkühlung der Kokille 2 ein Strang 1 ausbildet. Nachdem sich ein etwas konstanter Gießspiegel M eingestellt hat, wird mit dem Ausziehen des Kaltstrangs 6 aus der Kokille 2 begonnen. Anfangs erfolgt das Ausziehen relativ langsam mit einer ersten Ausziehgeschwindigkeit v1 von 0,12 m/min (siehe Fig 3a). Die Ausziehgeschwindigkeit v wird gemäß der Erfindung gesteigert (siehe Fig 3a), sodass sich ein Strang 1 mit einer ausgeprägten V-Form der Strangschalen ausbildet (siehe Fig 2b). Im Gegensatz dazu weist der Strang 1 bei Stranggießverfahren nach dem Stand der Technik (siehe Fig 2a) keine ausgeprägte V-Form auf, was zu einer schlechten Innenqualität (wie Risse, Hohlräume etc.) führt. Durch die ausgeprägte V-Form der Strangschalen 11 des Strangs 1 (siehe Fig 2b) kann der Strang 1 während der Abkühlung in der Tertiärkühlzone 5 flüssig Schmelze aus dem oberen Bereich des teilerstarrten Strangs 1b nachsaugen, sodass etwaige durch die Erstarrung bedingte Hohlräume oder Risse durch Schmelze wiederaufgefüllt werden. Eine dünne Strangschale 11 am oberen Strangende 1c erleichtert dies entscheidend. Die Kokille 2 wird durch einen nicht dargestellten Oszillierer in vertikaler Richtung oszilliert. Eine ebenfalls nicht dargestellte Rührspule unterhalb der Kokille 2 rührt den teilerstarrten Strang. Beide Details sind fachüblich und z.B. aus der WO 2015/079071 bekannt.In Figure 1b the casting of the continuous casting machine is shown. A steel melt or a melt of a so-called. Superalloy is either directly or in the mold 2 supplied via a tundish, so that a meniscus M forms in the mold 2 and a strand 1 forms due to the primary cooling of the mold 2 . After a somewhat constant liquid level M has been established, the dummy bar 6 is started to be pulled out of the mold 2 . Initially, the extraction takes place relatively slowly with a first extraction speed v 1 of 0.12 m/min (see Figure 3a ). The extraction speed v is increased according to the invention (see Figure 3a ), so that a strand 1 is formed with a pronounced V-shape of the strand shells (see Figure 2b ). In contrast, the strand 1 in continuous casting according to the prior art (see Figure 2a ) does not have a pronounced V-shape, which leads to poor internal quality (such as cracks, cavities, etc.). Due to the pronounced V-shape of the strand shells 11 of strand 1 (see Figure 2b ) during cooling in the tertiary cooling zone 5, the strand 1 can suck in liquid melt from the upper region of the partially solidified strand 1b, so that any cavities or cracks caused by the solidification are refilled with melt. A thin strand shell 11 at the upper strand end 1c facilitates this significantly. The mold 2 is oscillated in the vertical direction by an unillustrated oscillator. A stirring coil, also not shown, below the mold 2 stirs the partially solidified strand. Both details are customary and eg from the WO 2015/079071 known.

In Fig 1c ist das Stranggießen weiter fortgeschritten, wobei der Strang 1 in der Strangführung 3 durch die Strangführungsrollen 3a gestützt und geführt sowie durch die Kühldüsen 4a der Sekundärkühlung 4 weiter abgekühlt wird. Gemäß der durchgezogenen Linie von Fig 3a beträgt die Ausziehgeschwindigkeit zum Zeitpunkt von Fig 1c in etwa 0,2 m/min.In Figure 1c When the continuous casting has progressed further, the strand 1 is supported and guided in the strand guide 3 by the strand guide rollers 3a and further cooled by the cooling nozzles 4a of the secondary cooling system 4. According to the solid line of Figure 3a is the extraction speed at the time of Figure 1c at about 0.2 m/min.

In Fig 1d ist der Zeitpunkt beim Stranggießen dargestellt, bei dem die Zufuhr von Stahlschmelze in die Kokille gerade gestoppt wurde. Die Ausziehgeschwindigkeit v entspricht der zweiten Ausziehgeschwindigkeit v2 von 0,36 m/min. Diese Ausziehgeschwindigkeit des Strangs 1 wird bis zum Ende des Ausziehvorgangs beibehalten (siehe Fig 3a).In Figure 1d shows the point in time during continuous casting at which the feeding of molten steel into the mold has just stopped. The extraction speed v corresponds to second extraction speed v 2 of 0.36 m/min. This extraction speed of strand 1 is maintained until the end of the extraction process (see Figure 3a ).

Nachdem die Zufuhr von Stahlschmelze gestoppt wurde, sinkt der Gießspiegel G in der Kokille 2 ab (siehe Fig 1e). Zu diesem Zeitpunkt weist der Strang 1 eine Stranglänge L von typischerweise 6 bis 12m auf. Der Durchmesser des Strangs 1 beträgt 600 mm.After the supply of molten steel has stopped, the liquid level G in mold 2 drops (see Fig Fig. 1e ). At this point in time, the strand 1 has a strand length L of typically 6 to 12 m. The diameter of the strand 1 is 600 mm.

Die Fig 1f zeigt die Situation nachdem das Strangende 1c die Strangführung 3 passiert hat und die Sekundärkühlung 4 abgeschaltet wurde. Der teilerstarrte Strang 1b befindet sich sodann in der Tertiärkühlzone 5 und wird dort langsam gesteuert oder geregelt abgekühlt.the Fig 1f shows the situation after the strand end 1c has passed the strand guide 3 and the secondary cooling 4 has been switched off. The partially solidified strand 1b is then in the tertiary cooling zone 5 and is slowly cooled there in a controlled or regulated manner.

In den Fig 1g und 1h ist das Abkühlen des teilerstarrten Strangs 1b in der Tertiärkühlzone 5 dargestellt, wobei der Zeitpunkt der Fig 1g vor dem Zeitpunkt der Fig 1h ist. Wie oben bereits angedeutet, kann der Maschinenkopf mehrere Tertiärkühlzonen 5 bedienen und z.B. in horizontaler Richtung zu einer weiteren Tertiärkühlzone 5 verfahren werden. Um die Erstarrung des Strangendes 1c weiter zu verzögern, kann anstelle der Sekundärkühlung 4 das Strangende 1c durch eine Kopfheizung 13 aufgeheizt werden. Die Kopfheizung 13 kann z.B. induktiv oder auch durch ein exothermes Pulver (das Verfahren wird als engl. "hot topping" bezeichnet) erfolgen, wobei das Pulver mit der flüssigen Stahlschmelze Wärmeenergie erzeugt. Da der teilerstarrte Strang 1b im Bereich der Sumpfspitze besonders anfällig dafür ist, Risse bzw. Hohlräume zu bilden, ist es vorteilhaft, wenn ein Strangrührer 14 insbesondere diesen Bereich elektromagnetisch rührt.In the Figures 1g and 1h is the cooling of the partially solidified strand 1b shown in the tertiary cooling zone 5, the time of Fig. 1g before the time of Fig 1h is. As already indicated above, the machine head can serve several tertiary cooling zones 5 and can be moved, for example, in a horizontal direction to a further tertiary cooling zone 5 . In order to further delay the solidification of the strand end 1c, the strand end 1c can be heated by a head heater 13 instead of the secondary cooling 4. The head heating 13 can take place, for example, inductively or by means of an exothermic powder (the process is referred to as "hot topping"), with the powder generating heat energy with the liquid molten steel. Since the partially solidified strand 1b is particularly prone to form cracks or cavities in the region of the sump tip, it is advantageous if a strand stirrer 14 stirs this region in particular electromagnetically.

Die Fig 2a zeigt einen stranggegossenen teilerstarrten Strang 1b nach dem Stand der Technik. Das Strangende ist beinahe vollständig durcherstarrt, sodass etwaige Hohlräume oder Risse im Strang nicht mehr durch flüssige Schmelze 12 aufgefüllt werden können.the Figure 2a shows a continuously cast, partially solidified billet 1b according to the prior art. The strand end is almost completely solidified, so that any cavities or Cracks in the strand can no longer be filled with liquid melt 12.

Im Gegensatz dazu zeigt Fig 2b einen erfindungsgemäßen Strang. Das Strangende 1c ist noch weitgehend flüssig, sodass etwaige Hohlräume oder Risse im Strang durch flüssige Schmelze 12 aufgefüllt werden können. Dadurch weist der Strang eine bessere Innenqualität auf.In contrast, shows Figure 2b a strand according to the invention. The strand end 1c is still largely liquid, so that any cavities or cracks in the strand can be filled with liquid melt 12. As a result, the strand has a better internal quality.

Wie oben angeführt, zeigt die Fig 3a dieAs stated above, the Figure 3a the

Ausziehgeschwindigkeit v über der Zeit t. Aus dem Diagramm geht hervor, dass die Ausziehgeschwindigkeit v nicht notwendigerweise linear gesteigert werden muss, sondern bspw. auch unter- oder überlinear (siehe strichlierte Linien). Auch eine nicht dargestellte Steigerung in diskreten Stufen wäre denkbar und könnte sinnvoll sein.Extraction speed v over time t. The diagram shows that the extension speed v does not necessarily have to be increased linearly, but also, for example, under- or over-linearly (see dashed lines). An increase in discrete steps (not shown) would also be conceivable and could be useful.

Die Fig 3b zeigt ein weiteres Diagramm für die Ausziehgeschwindigkeit v, wobei v nicht von der Zeit t sondern von der Stranglänge s abhängt. Dadurch wird sichergestellt, dass der Stranganfang 1a stärker gekühlt wird als das Strangende 1c, und zwar unabhängig von etwaigen Unterbrechungen im Gießprozess.the Figure 3b shows another diagram for the extraction speed v, where v does not depend on the time t but on the strand length s. This ensures that the beginning of the strand 1a is cooled more than the end of the strand 1c, regardless of any interruptions in the casting process.

In beiden Fällen wird durch die Erhöhung der Ausziehgeschwindigkeit v nicht nur die Innenqualität des Strangs 1 erhöht, sondern auch die Wirtschaftlichkeit des Stranggießverfahrens verbessert, da mehr Stränge innerhalb derselben Zeit vergossen werden können.In both cases, increasing the extraction speed v not only increases the internal quality of the strand 1, but also improves the economics of the continuous casting process, since more strands can be cast within the same time.

Die Innenqualität des Strangs kann auch durch eine Einstellung der Intensität der Sekundärkühlung 4 in Abhängigkeit der Zeit oder der Stranglänge s (siehe Fig 1c) erfolgen. In beiden Fällen bedeutet dies, dass der Stranganfang 1a stärker in der Sekundärkühlung 4 abgekühlt wird als das Strangende 1c. Diese Maßnahme kann zusätzlich zur Steigerung der Ausziehgeschwindigkeit v des Kaltstrangs 6 aus der Kokille 2 oder auch anstelle davon erfolgen.The internal quality of the strand can also be adjusted by adjusting the intensity of the secondary cooling 4 depending on the time or the strand length s (see Figure 1c ) take place. In both cases, this means that the beginning of the strand 1a is cooled more in the secondary cooling system 4 than the end of the strand 1c. This measure can be taken in addition to increasing the extraction speed v of the dummy bar 6 from the mold 2 or instead of it.

Für den Fall, dass die Einstellung der Intensität der Sekundärkühlung 4 zusätzlich zur Änderung der Ausziehgeschwindigkeit v erfolgt, ist die Beschreibung der Figuren 1a-1h weiterhin voll gültig. Zusätzlich dazu wird die Intensität der Sekundärkühlung in Abhängigkeit der Zeit t oder der Stranglänge s variiert. Die zeitabhängige Änderung der Intensität der Sekundärkühlung durch eine Änderung der Durchflussrate Q durch die Kühldüsen 4a der Sekundärkühlung 4 ist in Fig 4a dargestellt. Die Abnahme der Durchflussrate Q bzw. der Intensität der Sekundärkühlung 4 kann linear (durchgezogene Linie) aber auch unter- oder überlinear (siehe strichlierte Linien) erfolgen. Alternativ dazu kann die Intensität der Sekundärkühlung auch in Abhängigkeit der Stranglänge s variiert werden (siehe Fig 4b). In diesem Fall wird die Stranglänge s während des Gießens erfasst bzw. berechnet und die Intensität der Sekundärkühlung 4 gemäß der Kennlinie von Fig 4b eingestellt.In the event that the intensity of the secondary cooling 4 is adjusted in addition to changing the extraction speed v, the description of FIG Figures 1a-1h still fully valid. In addition, the intensity of the secondary cooling is varied depending on the time t or the strand length s. The time-dependent change in the intensity of the secondary cooling due to a change in the flow rate Q through the cooling nozzles 4a of the secondary cooling 4 is in Figure 4a shown. The decrease in the flow rate Q or the intensity of the secondary cooling 4 can be linear (continuous line) but also less than or more than linear (see dashed lines). Alternatively, the intensity of the secondary cooling can also be varied depending on the strand length s (see Figure 4b ). In this case, the strand length s is recorded or calculated during casting and the intensity of the secondary cooling 4 according to the characteristic of Figure 4b set.

Für den Fall, dass die Einstellung der Intensität der Sekundärkühlung 4 anstelle der Änderung der Ausziehgeschwindigkeit v erfolgt, ist die Beschreibung der Figuren 1a-1h so abzuändern, dass die Ausziehgeschwindigkeit v konstant bleibt. Der aus der Kokille 2 ausgezogene Strang 1 wird in der Sekundärkühlzone 4 entweder zeit- oder stranglängenabhängig mit variabler Intensität abgekühlt, sodass der Stranganfang 1a stärker abgekühlt wird als das Strangende 1c.In the event that the intensity of the secondary cooling 4 is adjusted instead of changing the extraction speed v, the description of the Figures 1a-1h to be modified in such a way that the extension speed v remains constant. The strand 1 pulled out of the mold 2 is cooled in the secondary cooling zone 4 with variable intensity either as a function of time or strand length, so that the beginning of the strand 1a is cooled more than the end of the strand 1c.

In Fig 5 ist schematisch die auf die unterschiedlichen Bereiche eines teilerstarrten Strangs 1b akkumulierten Kühlmittelmengen bei der zeit- oder stranglängenabhängigen Einstellung der Intensität der Sekundärkühlung (siehe Fig 4a oder 4b) dargestellt. Eine hohe akkumulierte Kühlmittelmenge, wie am unteren Stranganfang 1a, wurde fein gerastert und eine niedrige akkumulierte Kühlmittelmenge, wie am oberen Strangende 1c, wurde grob gerastert dargestellt. Durch die zeit- oder stranglängenabhängige Änderung der Durchflussrate Q oder eine zeit- oder stranglängenabhängige Änderung des Drucks p des Kühlmittels wird die Intensität der Sekundärkühlung verändert, sodass der Stranganfang stärker als das Strangende abgekühlt wird.In figure 5 is a schematic of the amounts of coolant accumulated in the different areas of a partially solidified strand 1b when the intensity of the secondary cooling is adjusted as a function of time or strand length (see Fig Figure 4a or 4b ) shown. A high accumulated amount of coolant, such as at the lower end of the strand 1a, was finely rasterized and a low accumulated amount of coolant, such as at the upper end of the strand 1c, was shown as a coarse raster. By changing the flow rate as a function of time or line length Q or a change in the pressure p of the coolant that is dependent on time or strand length, the intensity of the secondary cooling is changed so that the beginning of the strand is cooled more than the end of the strand.

In Fig 6 ist eine weitere Möglichkeit zur Verbesserung der Innenqualität des Strangs gezeigt. In diesem Fall wird die Wärmeisolation 9 in der Tertiärkühlzone 5 in Abhängigkeit der Stranglänge L eingestellt, wobei ein Wärmedurchgangskoeffizient U der Wärmeisolation 9 in Gießrichtung G zunimmt. Mit anderen Worten, wird der Stranganfang 1a stärker in der Teritärkühlung 5 abgekühlt als das Strangende 1c. Diese Maßnahme kann entweder zusätzlich oder anstelle zur Steigerung der Ausziehgeschwindigkeit v des Kaltstrangs 6 aus der Kokille 2 erfolgen. Es wäre auch möglich, dass die Änderung der Wärmeisolation 9 in der Tertiärkühlzone 5 zusätzlich oder anstelle zur Einstellung der Intensität der Sekundärkühlung 4 erfolgt. Die Änderung des Wärmedurchgangskoeffizientens U der Wärmeisolation 9 ist in Fig 6 durch eine variable Dicke der Isolation dargestellt.In figure 6 another possibility for improving the internal quality of the strand is shown. In this case, the thermal insulation 9 in the tertiary cooling zone 5 is adjusted as a function of the strand length L, with a heat transfer coefficient U of the thermal insulation 9 in the casting direction G increasing. In other words, the start of the strand 1a is cooled more in the tertiary cooling system 5 than the end of the strand 1c. This measure can be taken either in addition to or instead of increasing the extraction speed v of the dummy bar 6 from the mold 2 . It would also be possible for the thermal insulation 9 in the tertiary cooling zone 5 to be changed in addition to or instead of adjusting the intensity of the secondary cooling 4 . The change in the heat transfer coefficient U of the thermal insulation 9 is in figure 6 represented by a variable thickness of insulation.

In Fig 7a ist die stranglängenabhängige Änderung der Wärmeisolation 9 in der Tertiärkühlzone 5 durch Isolationspanele 9a dargestellt. Um den Stranganfang 1a stärker als das Strangende 1c abzukühlen, sind die schwenkbaren Klappen der Isolationspanele unterschiedlich eingestellt, wobei die oberen Klappen weitgehend geschlossen und die unteren Klappen weitgehend offen sind. Dadurch nimmt ein Wärmedurchgangskoeffizient U der Wärmeisolation 9 in Gießrichtung G zu. Die Änderung des Öffnungswinkels der Klappen kann entweder statisch voreingestellt oder auch dynamisch, z.B. über Schwenkantriebe zum Schwenken der Klappen, während der Abkühlung in der Tertiärkühlzone 5 erfolgen.In Figure 7a the strand length-dependent change in the thermal insulation 9 in the tertiary cooling zone 5 is shown by insulation panels 9a. In order to cool the start of the strand 1a more than the end of the strand 1c, the pivotable flaps of the insulation panels are set differently, with the upper flaps being largely closed and the lower flaps being largely open. As a result, a heat transfer coefficient U of the thermal insulation 9 in the casting direction G increases. The change in the opening angle of the flaps can either be preset statically or dynamically, for example via pivoting drives for pivoting the flaps, during the cooling in the tertiary cooling zone 5 .

Die Fig 7b zeigt eine Alternativ zu Fig 7a, wobei der Abdeckungsgrad der Isolierklappen 9a des Strangs beim Strangende 1c höher ist als beim Stranganfang. Auch dadurch nimmt der Wärmedurchgangskoeffizient U der Wärmeisolation 9 in Gießrichtung G zu.the Figure 7b shows an alternative to Figure 7a , the degree of coverage of the insulating flaps 9a of the strand being higher at the end of the strand 1c than at the beginning of the strand. Also because of that the heat transfer coefficient U of the heat insulation 9 in the casting direction G increases.

In Fig 8a ist eine nicht erfindungsgemäße Stranggießmaschine mit einer Steuer- oder Regeleinrichtung 10 zur Steuerung bzw. Regelung der Auszugsgeschwindigkeit v gezeigt. Die Steuer- oder Regeleinrichtung 10 berechnet unter Berücksichtigung der chemischen Zusammensetzung 15 der Metallschmelze, der Primärkühlung 2a in der Kokille 2, der Sekundärkühlung 4 und der Stranglänge s das Temperaturfeld und die Sumpfspitze im gegossenen Strang 1 und stellt die Auszugsgeschwindigkeit des Motors 16 in Abhängigkeit der Sumpfspitze ein. Optional wäre es ebenfalls möglich, weitere Parameter wie die Stellung der Isolierpanele 9a in der Tertiärkühlzone zu berücksichtigen.In Figure 8a a non-inventive continuous casting machine with a control or regulating device 10 for controlling or regulating the extension speed v is shown. The control or regulating device 10 calculates the temperature field and the sump tip in the cast strand 1, taking into account the chemical composition 15 of the metal melt, the primary cooling 2a in the mold 2, the secondary cooling 4 and the strand length s, and sets the extraction speed of the motor 16 as a function of the swamp peak on. Optionally, it would also be possible to take other parameters into account, such as the position of the insulating panels 9a in the tertiary cooling zone.

Die Fig 8b zeigt eine nicht erfindungsgemäße Stranggießmaschine mit einer Steuer- oder Regeleinrichtung 10 zur Steuerung bzw. Regelung der Intensität der Sekundärkühlung 4 in Abhängigkeit der Stranglänge s. Die Steuer- oder Regeleinrichtung 10 berechnet unter Berücksichtigung der chemischen Zusammensetzung 15 der Metallschmelze und der Primärkühlung 2a in der Kokille und der Stranglänge s das Temperaturfeld und die Sumpfspitze im gegossenen Strang 1 und stellt die Intensität der Sekundärkühlung 4 in Abhängigkeit der Sumpfspitze ein. Die Sumpfspitze wird in einem thermischen Rechenmodell in Echtzeit berechnet.the Figure 8b shows a continuous casting machine not according to the invention with a control or regulating device 10 for controlling or regulating the intensity of the secondary cooling 4 depending on the strand length s. The control or regulating device 10 calculates taking into account the chemical composition 15 of the molten metal and the primary cooling 2a in the mold and the strand length s the temperature field and the sump peak in the cast strand 1 and adjusts the intensity of the secondary cooling 4 depending on the sump peak. The sump tip is calculated in real time in a thermal calculation model.

Die Fig 8c zeigt ebenfalls eine nicht erfindungsgemäße Stranggießmaschine mit einer Steuer- oder Regeleinrichtung 10 zur Steuerung bzw. Regelung eines Wärmedurchgangskoeffizientens U der Wärmeisolation 9 in der Tertiärkühlzone 5. Die Steuer- oder Regeleinrichtung 10 berechnet unter Berücksichtigung der chemischen Zusammensetzung 15 der Metallschmelze und der Primärkühlung 2a in der Kokille das Temperaturfeld und die Sumpfspitze im gegossenen Strang 1 und stellt die Öffnungswinkel der Isolierpanele 9a in Abhängigkeit der Sumpfspitze ein. Die Sumpfspitze wird in einem thermischen Rechenmodell in Echtzeit berechnet.the Figure 8c also shows a continuous casting machine not according to the invention with a control or regulating device 10 for controlling or regulating a heat transfer coefficient U of the heat insulation 9 in the tertiary cooling zone 5. The control or regulating device 10 calculates taking into account the chemical composition 15 of the molten metal and the primary cooling 2a in the Mold the temperature field and the sump tip in the cast strand 1 and sets the opening angle of the insulating panels 9a depending on the sump tip. the Sump tip is calculated in real time in a thermal calculation model.

In den Fig 9a bis 9e ist eine alternative Stranggießmaschine zur Durchführung des erfindungsgemäßen Verfahrens dargestellt. In Fig 9a wir ein Strang 1 in der Kokille 2 abgegossen und mit variabler Ausziehgeschwindigkeit v aus der Kokille ausgezogen. Der Strang 1 wird in der Strangführung 3 gestützt und geführt und durch die Sekundärkühlung abgekühlt. In Fig 9b wurde das Gießen in der Kokille beendet und der Strang 1 befindet sich in einem Strahlungsbereich 17, wo er über eine gewisse Zeit Wärme an die Umgebung abstrahlen kann. Auf dem Weg in die Tertiärkühlzone 5 passiert der Strang eine Rührspule 14 und wird durch diese elektromagnetisch gerührt, siehe Fig 9c. Sodann wird der Strang in die Tertiärkühlzone 5 eingebracht, wo er gesteuert oder geregelt durch die Wärmeisolierung 9 abgekühlt wird. Da insbesondere das Strangende 1c besonders empfindlich ist, wird dieses nochmals durch einen Deckel besonders thermisch isoliert, siehe Fig 9d und 9e.In the Figures 9a to 9e an alternative continuous casting machine for carrying out the method according to the invention is shown. In Figure 9a we cast a strand 1 in the mold 2 and pulled out of the mold with a variable extraction speed v. The strand 1 is supported and guided in the strand guide 3 and cooled by the secondary cooling. In Figure 9b the casting in the mold has ended and the strand 1 is in a radiation area 17 where it can radiate heat to the environment for a certain time. On the way to the tertiary cooling zone 5, the strand passes through a stirring coil 14 and is stirred electromagnetically by it, see FIG Figure 9c . The strand is then introduced into the tertiary cooling zone 5, where it is cooled in a controlled or regulated manner by the thermal insulation 9. Since the strand end 1c in particular is particularly sensitive, it is again particularly thermally insulated by a cover, see Figures 9d and 9e .

In Fig 10 ist schematisch eine Kopfisolierung 18 eines Strangs 1 gezeigt. Die Kopfisolierung weist eine Wärmeisolation 9 für das Strangende 1c des Strangs 1 auf, sodass das Strangende 1c länger flüssig bleibt. Zusätzlich zur Wärmeisolation 9 kann ein exothermes Pulver 19 auf das flüssige Strangende 1c aufgegeben werden, was den Strang 1 zusätzlich erwärmt.In figure 10 a head insulation 18 of a strand 1 is shown schematically. The head insulation has thermal insulation 9 for the strand end 1c of the strand 1, so that the strand end 1c remains liquid longer. In addition to the thermal insulation 9, an exothermic powder 19 can be applied to the liquid strand end 1c, which additionally heats the strand 1.

In Fig 11 ist schematisch das Ergebnis der zeit- bzw. wegabhängigen Einstellung der Ausziehgeschwindigkeit v und/oder der zeit- bzw. wegabhängigen Einstellung der Intensität der Sekundärkühlung und/oder der Einstellung eines Wärmedurchgangskoeffizientens U der Wärmeisolation 9 dargestellt. Alle diese Maßnahmen haben den Effekt, dass die Erstarrung des teilerstarrten Strangs verlangsamt wird (siehe die strichlierte Linie die die Position der Sumpfspitze im Strang über der Zeit angibt). Im Gegensatz dazu gibt die durchgezogene Linie den Vergleich mit dem Stand der Technik an. Wie oben angeführt, führen diese Maßnahmen dazu, dass der erfindungsgemäße Strang eine ausgeprägte V-Form der Strangschale aufweist (siehe Fig 11 rechts) im Gegensatz zu Strängen nach dem Stand der Technik ohne ausgeprägter V-Form der Strangschale (siehe Fig 11 links).In figure 11 the result of the time- or distance-dependent setting of the extension speed v and/or the time- or path-dependent setting of the intensity of the secondary cooling and/or the setting of a heat transfer coefficient U of the thermal insulation 9 is shown schematically. All of these measures have the effect of slowing down the solidification of the partially solidified strand (see the dashed line indicating the position of the sump tip in the strand over time). In contrast, the solid line indicates the comparison with the prior art. As stated above, these measures lead to the strand according to the invention has a pronounced V-shape of the strand shell (see figure 11 right) in contrast to strands according to the prior art without a pronounced V-shape of the strand shell (see figure 11 Left).

Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung wie in den anhängenden Ansprüchen definiert zu verlassen.Although the invention has been illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples and other variations may be derived therefrom by those skilled in the art without departing from the scope of the invention as defined in the appended claims.

BezugszeichenlisteReference List

11
Strangstrand
1a1a
Stranganfangstart of strand
1b1b
teilerstarrter Strangpartially solidified strand
1c1c
Strangendestrand end
22
Kokillemold
2a2a
Primärkühlungprimary cooling
33
Strangführungstrand guide
3a3a
Strangführungsrollenstrand guide rollers
44
Sekundärkühlung, SekundärkühlzoneSecondary cooling, secondary cooling zone
4a4a
Kühldüsecooling nozzle
55
Tertiärkühlung, TertiärkühlzoneTertiary cooling, tertiary cooling zone
66
Kaltstrangdummy leg
77
Rechenmodellcalculation model
88th
Sumpfspitzeswamp top
99
Wärmeisolationthermal insulation
9a9a
Isolationspanelinsulation panel
1010
Steuer- oder RegeleinrichtungControl or regulating device
1111
Strangschalestrand shell
1212
flüssiger Bereich des Strangsliquid section of the strand
1313
Kopfheizunghead heating
1414
Strangrührerstrand stirrer
1515
chemische Zusammensetzungchemical composition
1616
Motorengine
1717
Strahlungsbereichradiation range
1818
Kopfisolierunghead insulation
1919
exothermes Pulverexothermic powder
GG
Gießrichtungpouring direction
LL
Stranglängestrand length
MM
Gießspiegelcasting level
QQ
Durchflussrateflow rate
SS
Stranglängestrand length
tt
Zeittime
Uu
Wärmedurchgangskoeffizientheat transfer coefficient
vv
Ausziehgeschwindigkeit, Gießgeschwindigkeitextraction speed, pouring speed

Claims (10)

  1. Method for the semi-continuous casting of a strand (1) in a continuous casting machine, wherein the continuous casting machine has a mould (2) with primary cooling (2a), followed in the casting direction (G) by a strand guide (3) with multiple strand guiding rollers (3a) for guiding purposes and secondary cooling (4) for cooling the strand (1), followed in turn by a tertiary cooling zone (5) for the controlled or regulated cooling of the strand (1), said method comprising the following method steps:
    - introducing a dummy bar (6) into the mould (2);
    - holding the dummy bar (6) in the mould (2), with the result that a head of the dummy bar (6) closes the mould (2) in a fluid-tight manner;
    - beginning casting in the continuous casting machine, wherein molten metal is cast into the mould (2) and a casting level (M) and a partially solidified strand (1b) are formed in the mould (2);
    - starting the extraction of the dummy bar (6) from the mould (2), wherein the dummy bar (6) is extracted from the mould (2) at a first extraction velocity v1;
    - supporting and guiding the partially solidified strand (1b) in the strand guide (3), wherein the partially solidified strand (1b) is supported and guided by the strand guiding rollers (3a) and cooled by cooling nozzles (4a) of the secondary cooling (4);
    - performing controlled or regulated cooling of the partially solidified strand (1b) until the strand (1) has solidified right through in the tertiary cooling zone (5);
    characterized in that, after the extraction starts, the extraction velocity v at which the dummy bar (6) is extracted from the mould (2) is increased to a second extraction velocity v2, wherein v2 > v1, and
    in that, during the continuous casting, a thermal calculation model (7) continuously calculates the actual temperature distribution of the strand (1), including the actual phase boundaries between the solid, pasty and liquid phases in the strand (1), depending on
    - a chemical composition (15) of the molten metal,
    - the primary cooling (2a) in the mould (2),
    - the secondary cooling (4) of the strand (1) in the strand guide (3),
    wherein the extraction velocity v at which the dummy bar (6) is extracted from the mould (2) is set depending on the actual temperature distribution and/or the actual phase boundaries, in particular the actual position of the liquidus tip (8).
  2. Method according to Claim 1, characterized in that the extraction velocity v is increased depending on the time t or the strand length s.
  3. Method according to Claim 2, characterized in that the extraction velocity v is increased continuously in some parts, preferably at least once in a continuously differentiable manner.
  4. Method according to Claim 2, characterized in that the extraction velocity v is increased discontinuously, e.g. in discrete stages.
  5. Method according to Claim 1, characterized in that the extraction velocity v of the dummy bar (6) is set in such a way that the actual position corresponds as far as possible to a temporally dependent setpoint position of the liquidus tip (8) .
  6. Method according to Claim 1 or 5, characterized in that the intensity of the secondary cooling (4) is set depending on the actual temperature distribution and/or the actual phase boundaries, in particular the actual position of the liquidus tip (8).
  7. Method according to one of Claims 1, 5 and 6, wherein the strand (1) is thermally insulated in the tertiary cooling zone (5) by heat insulation (9), characterized in that a heat transfer coefficient U of the heat insulation (9) is set depending on the actual temperature distribution and/or the actual phase boundaries, in particular the actual position of the liquidus tip (8).
  8. Method according to one of the preceding claims, characterized in that the intensity of the secondary cooling (4) decreases over the time t or the strand length s.
  9. Method according to one of the preceding claims, characterized in that the strand (1) is thermally insulated in the tertiary cooling zone (5) by heat insulation (9), wherein a heat transfer coefficient U of the heat insulation (9) increases in the casting direction (G).
  10. Method according to one of the preceding claims, wherein the continuous casting machine comprises a strand stirrer (14) that is displaceable in the casting direction (G), characterized in that the strand stirrer (14) electromagnetically stirs the region of the liquidus tip (8) of the strand (1) while the dummy bar (6) is being extracted from the mould (2) and after said extraction has ended.
EP17184936.7A 2017-08-04 2017-08-04 Continuous casting of a metallic strand Active EP3437759B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17184936.7A EP3437759B1 (en) 2017-08-04 2017-08-04 Continuous casting of a metallic strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17184936.7A EP3437759B1 (en) 2017-08-04 2017-08-04 Continuous casting of a metallic strand

Publications (2)

Publication Number Publication Date
EP3437759A1 EP3437759A1 (en) 2019-02-06
EP3437759B1 true EP3437759B1 (en) 2022-10-12

Family

ID=59558281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17184936.7A Active EP3437759B1 (en) 2017-08-04 2017-08-04 Continuous casting of a metallic strand

Country Status (1)

Country Link
EP (1) EP3437759B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522265B1 (en) * 2019-03-06 2021-12-15 Primetals Technologies Austria GmbH MODIFICATION OF A CONTINUOUS CASTING PLANT FOR BILLETS OR BLOCKS
AT525563B1 (en) * 2022-02-18 2023-05-15 Primetals Technologies Austria GmbH DRY CASTING IN A COMBINED CASTING-ROLLING PLANT

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE743450A (en) * 1968-12-31 1970-06-19
CH552424A (en) * 1972-09-06 1974-08-15 Concast Ag METHOD FOR CONTROLLING THE COOLING OF A STRAND EMITTING FROM A FLOW-THROUGH COOLING AND DEVICE FOR CARRYING OUT THIS METHOD.
MX170682B (en) * 1988-11-22 1993-09-07 Hitachi Zosen Corpuration METHOD FOR THE AUTOMATIC STARTING OF A CONTINUOUS CASTING DEVICE
CA2414167A1 (en) * 2002-12-12 2004-06-12 Dofasco Inc. Method and online system for monitoring continuous caster start-up operation and predicting start cast breakouts
AT506847B1 (en) 2008-05-21 2011-07-15 Siemens Vai Metals Tech Gmbh METHOD FOR CONTINUOUSLY GASING A METAL STRUCTURE
JP5686062B2 (en) * 2011-07-20 2015-03-18 新日鐵住金株式会社 Steel continuous casting method
AT512214B1 (en) * 2011-12-05 2015-04-15 Siemens Vai Metals Tech Gmbh PROCESS ENGINEERING MEASURES IN A CONTINUOUS CASTING MACHINE AT THE CASTING STAGE, AT THE CASTING END AND AT THE PRODUCTION OF A TRANSITION PIECE
CN106457371B (en) * 2014-03-27 2019-05-07 首要金属科技奥地利有限责任公司 The semi-continuous casting of steel band
DE102015223788A1 (en) * 2015-11-30 2017-06-01 Sms Group Gmbh Method of continuous casting of a metal strand and cast strand obtained by this method

Also Published As

Publication number Publication date
EP3437759A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
EP3122492B2 (en) Semi-continuous casting of a steel ingot
EP3437759B1 (en) Continuous casting of a metallic strand
EP2788133B1 (en) Process engineering measures in a strand casting machine at the beginning of casting, at the end of casting, and during the manufacturing of a transition piece
WO2010051981A1 (en) Method and device for controlling the solidification of a cast strand in a strand casting plant in startup of the injection process
EP2025432B1 (en) Method for creating steel long products through strand casting and rolling
DE102006060673A1 (en) Method and control device for controlling the heat dissipation of a side plate of a mold
EP3437756B1 (en) Continuous casting of a metallic strand
AT411822B (en) METHOD AND DEVICE FOR STARTING A CASTING PROCESS
EP3705202B1 (en) Conversion of a continuous casting plant for billet or bloom strands
EP1077782A1 (en) Method and device for casting metal close to final dimensions
EP3733323A1 (en) Method and continuous casting plant for casting a cast strand
EP0301170B1 (en) Process for the production of thin band
EP1550523A1 (en) Diversified regulation of the secondary cooling of a continuous casting machine
EP3437757A1 (en) Continuous casting of a metallic strand
DE3440235C2 (en) Method and device for continuous strip casting of metals, in particular steel
DD141276A5 (en) METHOD AND APPARATUS FOR THE CONTINUOUS CASTING OF ROUGHFUL PRODUCTS
DE102016110679B4 (en) Method and apparatus for producing a semi-solid metal material
DE3247002C1 (en) Method and device for casting thin steel strands during continuous casting
DE69000282T2 (en) METHOD AND DEVICE FOR THE PRODUCTION OF THICK METAL PRODUCTS BY MEANS OF CONTINUOUS CASTING.
WO2011036060A1 (en) Method and device for casting metal melt in a continuous casting machine
EP3519124B1 (en) Method for multiple casting of metal strengths
WO2009068232A1 (en) Method and device for equalizing the solidification process of a fusible metal, particularly produced by means of strand or strip casting
EP3015192B1 (en) Method and device for the continuous casting of a light metal alloy
CH718935B1 (en) Process for continuous casting and software product for carrying out the process.
EP3703883A1 (en) Continuous casting line having individual roller engagement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190806

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200610

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013926

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1523851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013926

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

26N No opposition filed

Effective date: 20230713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230803

Year of fee payment: 7

Ref country code: IT

Payment date: 20230825

Year of fee payment: 7

Ref country code: AT

Payment date: 20230822

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 8