EP3733323A1 - Method and continuous casting plant for casting a cast strand - Google Patents
Method and continuous casting plant for casting a cast strand Download PDFInfo
- Publication number
- EP3733323A1 EP3733323A1 EP20172396.2A EP20172396A EP3733323A1 EP 3733323 A1 EP3733323 A1 EP 3733323A1 EP 20172396 A EP20172396 A EP 20172396A EP 3733323 A1 EP3733323 A1 EP 3733323A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- software
- strand
- cast strand
- cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005266 casting Methods 0.000 title claims abstract description 224
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000009749 continuous casting Methods 0.000 title claims abstract description 30
- 230000009467 reduction Effects 0.000 claims abstract description 19
- 238000012937 correction Methods 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 41
- 238000001816 cooling Methods 0.000 claims description 39
- 238000004364 calculation method Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 238000007711 solidification Methods 0.000 claims description 9
- 230000008023 solidification Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000004088 simulation Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 9
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000005499 meniscus Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1206—Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/188—Controlling or regulating processes or operations for pouring responsive to thickness of solidified shell
Definitions
- the invention relates to a method for casting a cast strand according to the preamble of claim 1, and a continuous casting plant according to the preamble of claim 12.
- the operation of the secondary cooling of a continuous casting plant is usually realized with spray or cooling water, whereby the amount of water that is applied to the surfaces of the cast strand is set by specifying setpoint temperature curves.
- the course of these target temperature curves can vary depending on the material of the material to be potted, and z. B. vary depending on certain cooling zones of the supporting strand guide and / or the casting speed.
- a target temperature curve determines the target values for the surface temperature to be achieved that the strand reaches within the supporting strand guide, e.g. B. at the end of individual cooling zones that are part of this supporting strand guide.
- the amount of splash water from the secondary cooling is regulated in such a way that these target values are achieved.
- position control is advantageous.
- secondary cooling and the casting speed can be used as manipulated variables.
- the secondary cooling water manipulated variable to influence the position of the sump tip of the cast strand in order to keep the sump tip in a defined area of the supporting strand guide.
- the effectiveness of the secondary cooling decreases with increasing slab thickness. The thicker the strand shell of the cast strand, the greater the energy to be dissipated so that the strand shell grows. At the same time, this means that the strand surface temperature is lowered. With the same sump tip position, but with a different cooling intensity, different temperature profiles are then established over the strand thickness.
- a position control in relation to the sump tip of a casting strand by means of secondary cooling is associated with the disadvantage that with a major change in the casting temperature it is necessary either to reduce the amount of water very much or to increase it very much. If the amount of water is greatly reduced, there is a risk of bulging. On the other hand, there is a risk of surface cracks with a large increase or increase in the amount of water, because the surface of the cast strand is (too) cooled down.
- Another disadvantage, due to the high temperatures and long dwell times, is the heavy build-up of scale, which affects the surface temperature of the cast strand. This can falsify a measurement of the surface temperature of the cast strand.
- EP 2 346 631 B1 a method and a device for controlling the solidification of a cast strand in a continuous caster when starting the casting process are known.
- a continuous caster is equipped with a process computer on which a first software and a second software are installed.
- the first software calculates in real time and regulates, in a known way, the casting process that is carried out with the continuous caster.
- the second software for which a higher calculation speed is set compared to the first software, during the initial phase of a new casting process or when the parameters of the currently running casting process are changed on the basis of processing of currently obtained data from the running casting process and / or on Correction factors are initially generated on the basis of data stored in a database, the second software then generating corrected target data for the casting process using these correction factors and transferring them to the first software.
- the second software is used primarily to determine a casting speed or corrected setpoint data for this purpose, so that after this data is mirrored to the first software and a corresponding control by the first software, the position of the sump tip of the cast strand is transferred to the target or The target position is placed.
- the corrected soldiers calculated by the second software are taken over directly by the first software and are thus immediately taken into account in the control carried out by the first software.
- such an operating mode of the second software only takes place at the point in time from which the casting process is completely represented with the data calculated in real time, so that the first software then regulates the casting process exclusively with this data.
- the invention is based on the object of creating a technology for the continuous casting of metals with which the position of the sump tip of a cast strand, in particular with a large cast thickness, can be held more reliably at a certain target position or in a certain target range of the supporting strand guide and a thickness of the produced cast strand with simple and inexpensive means is set and the soft reduction can take place in a certain area
- a method according to the present invention is used to cast a cast strand in a continuous casting plant equipped with a process computer with at least one casting machine.
- the process computer includes at least a first piece of software that calculates in real time and regulates the casting process.
- the process computer includes a second additional software that calculates faster than in real time and thus has a calculation speed greater than the first software.
- the position for a sump tip of the cast strand is calculated the specific casting length along a supporting strand guide of the continuous caster would currently be available.
- the second software compares this calculated sump tip position with a target position or a target range for the sump tip and continuously calculates a casting speed correction value on the basis of this.
- a solid fraction or a strand shell spacing can also be used.
- the casting speed correction value calculated by the second software is transferred to the first software, with the first software regulating the sump position with the aid of the casting speed in real time and only the casting speed correction value calculated by the second software in association with the specific casting length taken into account with a delay resulting from a distance between the target position or the target area for the sump tip and the last in Real time set casting speed results.
- a sump tip position of the cast strand in the ongoing casting process is always found within a predetermined or selected area along the supporting strand guide or the sump tip of the cast strand is kept in this predetermined area.
- the invention and the associated method are based on the essential knowledge that the second software runs continuously or makes calculations during the course of the casting process.
- the second software runs permanently in parallel with the actual speed control, which is carried out by means of the first software.
- effects of disturbance variables such as casting temperature, heat dissipation in the mold and / or changes in the water inlet temperatures (e.g. in the secondary cooling or the primary or mold cooling) can be separately taken into account by the second software and corresponding casting speed correction values can be calculated in this regard which are then transferred to the first software.
- it is important that the calculation speed for the second software is selected to be greater than for the first software.
- the first software can determine the sump length (i.e. the position of the sump tip of the cast strand) with the aid of the casting speed, which is used as a manipulated variable, and taking into account the casting speed calculated by the first software. Regulate or adjust correction values.
- Another "whistle" for the method according to the invention is that the casting speed correction values calculated by the second software, after they have been transferred or sent to the first software, are then not immediately delayed by the first software, but rather only delayed, ie with a time delay must be taken into account, which is dependent on the currently set casting speed and the target position or the target range for the sump tip of the cast strand.
- Exactly this delayed consideration of the Casting speed correction values calculated by the second software and by the first software make it possible to bring or keep the position of the sump tip in the predetermined or selected area of the supporting strand guide, ie in the target area.
- the sump tip is preferably used as the controlled variable.
- a defined solidification fraction in the center of the strand which has a solid fraction fraction of ⁇ 1, can be used as a controlled variable for the method according to the invention.
- the strand shell spacing can also be used as a controlled variable for the method according to the invention.
- the method according to the invention makes it possible to “look into the future” with regard to the casting process and its further course.
- the first software which controls the casting process in real time
- the second software e.g. B.
- the same sequence of the casting process can be performed in a much shorter time using the second software, e.g. B. can be simulated or calculated in just 30 seconds. Accordingly, by means of the calculation of the second software, compared to the calculation by means of the first software, it is possible at a significantly earlier point in time to gain knowledge about the further course of the casting process.
- the feature “obtained” can be a setting or a measurement.
- “obtained” process parameters in the context of the present invention are those that have either been set in a targeted manner (possibly on the basis of a previous calculation) or have been obtained as the result of a measurement.
- a temperature field is determined, preferably calculated, for the cast strand along its conveying direction within the supporting strand guide, so that the associated temperature is known for each calculated node of the cast strand, namely at a specific point of the cast strand or the system length, in particular within the supporting strand guide and its cooling segments. An exact position of the sump tip for the cast strand can then be determined from this.
- At least one process parameter of the casting process is selected from the group of chemical composition of the material of the cast strand, current casting temperature, current casting speed, water supply temperature for secondary cooling, or water supply temperature for the mold primary cooling and / or the set casting length is taken into account.
- the casting speed correction value is calculated by means of the second software on the basis of process parameters stored in the database and is used by the first software at the beginning of the casting process as a manipulated variable to control it. This is particularly advantageous when starting the casting process at the beginning of a production process or after an interruption in operation.
- the casting speed correction value is calculated by means of the second software as a function of currently obtained process parameters from the ongoing casting process. This casting speed correction value is then used by the first software to regulate the casting speed of the casting process if there are deviations between the target and actual values in relation to the temperature of the cast strand in the course of the casting process.
- the second software as already explained, is permanently "running" or switched on during the ongoing casting process. This ensures that the casting speed correction values calculated by the second software, which are then transferred from the second software to the first software to control the real casting process, can be responded to appropriately to possible deviations that may occur during the ongoing casting process.
- a reference position along the supporting strand guide between the bath level and the target position or the target area for the sump tip is selected.
- all target speeds calculated by the second software are used one after the other.
- the reference position can expediently lie at a point on the supporting strand guide which is between 40% and 70% of the distance between the bath level and the desired position of the sump tip.
- This reference position can preferably be located at at least 60% of the distance between the bath level and the target position of the sump tip.
- the calculation of the casting speed correction value by means of the second software is based on the fact that the current target speed is averaged from all positions along the casting length up to the position of the sump tip. This means that all casting length positions that are currently in the supporting strand guide have been successively assigned a target speed by the second software in the course of time or the calculations.
- Such an assignment can be understood to mean that the calculated values of the second software, i.e. the casting speed correction values calculated by means of the second software from the previous period are used for the current definition of the target casting speed in the first software in order to control the position of the sump tip of the cast strand in the future period.
- the present invention also provides a continuous caster for casting a cast strand.
- a continuous casting plant comprises a mold with a lower opening which is formed on an underside of the mold, a supporting strand guide which is connected to the lower opening of the mold, the cast strand being movable along the supporting strand guide.
- adjustable support rollers or pairs of rollers are arranged along the supporting strand guide, with which a thickness reduction for the cast strand takes place.
- the supporting strand guide has a selected area in which a sump tip of the cast strand is to lie, with support rollers or pairs of rollers that allow a soft reduction adjustment have, are arranged exclusively in the selected area of the strand guide.
- the "whistle" of the above-mentioned continuous caster is that the support rollers or pairs of rollers that can be adjusted for soft reduction and are provided for the supporting strand guide are arranged exclusively in the selected area in which the sump tip of the cast strand should also be located.
- this continuous caster when this continuous caster is in operation, it is provided that the target position for the sump tip of the cast strand comes to lie in said selected area of the supporting strand guide. In this way it is possible to carry out a targeted soft reduction for the cast strand by means of the adjustable support rollers or roller pairs of the selected area of the supporting strand guide.
- All other support rollers or pairs of rollers which - viewed in the conveying direction of the cast strand - are usually upstream of the selected area, can thus be of conventional design, namely without a soft-reduction adjustment function. With these conventional support rollers, only the thermal shrinkage of the cast strand 100 is followed.
- the support rollers or pairs of rollers are combined to form roller segments. This facilitates both the assembly and disassembly of the individual support rollers when they are installed or removed in or from the continuous caster, as well as a possible common control for the purpose of performing a desired soft reduction for the cast strand.
- the above-mentioned method according to the invention is also suitable for operating a continuous caster according to the present invention, in the sense that it brings the position of the sump tip of the cast strand specifically into the selected area of the supporting strand guide or - in the event of changes in the casting process - is also held therein .
- the present invention is expediently used in the production of cast strands which - in the case of the production of slabs or similar products - have a casting thickness of at least 250 mm, more preferably even greater casting thicknesses (e.g. 300 mm, preferably 350 mm, or 400 mm, or more).
- Such products are also known under the name "thick slabs". Because the inventive control or regulation of the casting process by changing or setting the casting speed has a direct effect on all sections of the cast strand along the supporting strand guide, this means that the invention is also suitable for such "thick slabs" or comparable products.
- the cast strand has a cast thickness or a diameter of at least 150 mm.
- FIG. 10 shows a side view of the continuous caster 110 according to the invention in a simplified, principally simplified manner.
- cast strand and metal strand are optionally used as synonyms for the following description.
- the continuous caster 110 after Fig. 1 comprises a mold 112, which has a lower opening 113 and thereby a vertical exit downwards.
- Liquid metal for example steel or a steel alloy, is poured into the mold 112 up to a casting level or bath level 114.
- the continuous caster 110 comprises a supporting strand guide 116, which adjoins the lower opening 113 of the mold.
- the supporting strand guide 116 is arranged immediately downstream of the mold 112 or downstream thereof.
- a cast or metal strand 100 emerges downward from the lower opening 113 of the mold 112 and is then moved or transported along the supporting strand guide 116 in a conveying direction F.
- the secondary cooling 130 comprises along the supporting strand guide 116 (unspecified) individual cooling segments through which the application of a cooling medium, in particular in the form of water e.g. is ensured by spray nozzles on both sides of the metal strand 100 to cool the metal strand 100 in a targeted manner.
- These cooling segments are each fed with cooling liquid via lines (not shown) and are each equipped with spray nozzles. Accordingly, it is possible to apply cooling liquid to the surfaces of the metal strand 100 through the spray nozzles of the individual cooling segments, namely on its upper side and / or lower side.
- the continuous caster 110 is a thick slab system with which a cast strand 100 with a thickness of preferably 250 mm, or possibly even greater cast thicknesses, can be produced.
- the continuous caster 110 comprises, for example, a total of one hundred and twenty pairs of support rollers, which are divided into twenty physical segments or cooling segments 1-20.
- the crack-critical straightening area is located within the supporting strand guide 116 in the cooling or straightening segments with the numbers 8 and 9, which can be equipped with their own control circuits for the coolant supply so that the specified target temperatures can be achieved.
- the continuous casting plant 110 comprises a control or regulation unit 122, which is connected to the cooling segments of the supporting strand guide 116 for signaling purposes via a signal path 124.
- This signal path 124 can be wired or wireless, for example by a radio path or the like.
- the control or regulation unit 122 comprises a process computer 123 on which a first software I and a second additional software II are set up. The meaning and function of these two software packages I, II are explained separately below.
- the control or regulation unit 122 is connected to a data memory 126 in which the required process data for the continuous casting plant 110 are stored. To this extent, this data memory 126 forms a database. Via an interface (not shown) it is possible to input or read individual process data PD into the data memory 126. This input option is in the Fig. 1 symbolized by an arrow with "PD".
- the continuous caster 110 is equipped with at least one (unspecified) temperature sensor, or a plurality of such sensors, which is or are arranged adjacent to the supporting strand guide 116.
- the temperature of the metal strand 100 can be determined by means of such a sensor or a plurality of such sensors in order, for example, to compare the previously calculated temperature of the metal strand 100 with the measurement.
- the temperature data from the sensor or sensors are first fed to a data acquisition system 128 and from there sent to the control or regulation unit 122 via the signal path 124.
- Values or parameters are stored in the data memory 126, on the basis of which setpoint temperatures can be set or determined for the individual cooling segments along the supporting strand guide 116. These variables may include a first target temperature, a second target temperature and a predetermined distance from the mold level 114. These variables are dependent on a specific material or a specific group of materials from which the metal strand 100 is produced, and in any case independent of a specific continuous casting plant.
- the control and regulation unit 122 can be used for the individual cooling segments along the strand guide 116 in the area of the secondary cooling 130 of a specific continuous casting plant, for example the continuous casting plant 110 from Fig. 1 .
- Target temperatures can be set or determined.
- the continuous casting installation 110 comprises a selected or predetermined area 120 for the supporting strand guide 116 or along it, which area corresponds, for example, to the segments no. 17 and no.
- adjustable support rollers 118 are arranged in this selected area 120, each of which is present in pairs in the form of an upper support roller R1 and a lower support roller R2 opposite thereto.
- each of the segments No. 17 and No. 18 consists of three such pairs of rollers R1, R2, and the associated support rollers 118 can be adjusted individually, i.e. in the direction of the cast strand 100 passed through between the support rollers 118. A soft reduction is carried out for the cast strand 100 by adjusting these support rollers.
- a so-called soft reduction is possible for the cast strand 100 by means of the individual support rollers R1, R2 and their adjustment in the direction of the cast strand 100 passed through between the support rollers 118.
- both the upper support roller R1 and the lower support roller R2 are expediently employed, so that a reduction in thickness is achieved for the cast strand 100, both on its upper side and on its lower side.
- This is particularly true for a metal strand 100 in the form of a slab with a comparatively large size Casting thickness, ie ⁇ 250mm particularly advantageous.
- the internal quality of the cast strand 100 can be improved by reducing the top and bottom sides.
- a stronger construction of the adjustable support rollers 118 enables larger individual removals for a metal strand 100 and / or the service life of the soft reduction unit (i.e. segments no. 17 and no. 18) can be extended. Furthermore, the acceptance steps can be graded individually.
- the supporting rollers which have a soft-reduction adjustment function, are arranged solely in segments No. 17 and No. 18, i.e. in accordance with the selected area 120. This means that with the support rollers 118 which are arranged in the selected area 120, a soft reduction can be carried out for the cast strand 100.
- the remaining support roller segments No. 1-16, and No. 19-20 are of conventional design and have no such soft-reduction adjustment function. Instead, they can only be used to the extent that the reduction in thickness caused by thermal shrinkage is followed. This allows the continuous caster 110 to be built more cost-effectively.
- the selected or predetermined area 120 of the supporting strand guide 116 is to be seen in the context that the sump tip of the cast strand 100 should lie or be positioned therein during operation of the continuous caster 110.
- a target position or a target area for the sump tip of the cast strand 100 is located within this selected area 120. It is then possible to perform a targeted soft reduction for the cast strand 100 within the selected area 120 of the supporting strand guide 116 , finally through the explained adjustment of the support rollers 118.
- FIG. 11 shows a flow chart to illustrate the "architecture" of the control or regulation unit 122.
- the process computer 123 (cf. Fig. 1 ) of this control or regulation unit 122 a first software I (also referred to as a simulation model “regulation”) and a second software II (also referred to as a simulation model “precontrol”).
- a first software I also referred to as a simulation model “regulation”
- a second software II also referred to as a simulation model “precontrol”.
- control or regulation unit 122 is shown placed in the middle, and here also provided with the designation "communication simulation models and casting process". This expresses the fact that the control or regulation unit 122 is set up or has corresponding means to enable data exchange between the second software II and the first software I.
- these process parameters PD can be entered into the data memory 126 via an interface and from there can be sent to the processor of the control or regulation unit 122 via the signal path 124. Subsequently, these process data are then forwarded by the control or regulation unit 122 both to the first software I (simulation model “precontrol”) and to the second software II (simulation model “regulation”).
- the second software II also receives information from the control and regulation unit 122 with regard to the respective process parameters for the current casting process.
- the second software II runs permanently in the background.
- the second software II calculates much faster than in real time, at least faster than the first software I.
- the calculation speed for the second software II is set higher than that for the first software I.
- a method according to the present invention now works as follows: With the second software II, on the one hand, in association with a specific casting length ("x") and, on the other hand, depending on currently obtained process parameters from the ongoing casting process, in particular in the area of the mold 112 and / or from at least one process parameter stored in the database 126, is calculated or Simulates which position would currently be present for a sump tip of the cast strand 100 according to the determined casting length along the supporting strand guide 116 of the continuous caster 110.
- the second software II calculates the position of the solidification or of a defined solidification fraction either in the center of the strand or at a predetermined distance between the strand shells much faster than in real time of the cast strand 100 on the loose and fixed side, with the control variable casting speed.
- the second software II compares this calculated sump tip position with the selected area 120, or with the target position for the sump tip, and on the basis of this a casting speed correction value (in Fig. 2 also referred to as "optimal speed for the casting length x").
- This casting speed correction value corresponds to a target casting speed and is assigned to a certain casting length of the cast strand 100, based on the current process parameters of the casting process, such as casting temperature, chemical composition of the cast metal, heat dissipation in the mold and changes in the water supply temperatures (secondary cooling, primary or mold cooling).
- the actual regulation of the casting process is carried out by the first software I (simulation model "regulation") in real time.
- the first software I receives the necessary information relating to the individual process parameters from the control or regulation unit 122.
- the first software I also receives the casting speed correction values calculated by the second software II via the control or regulation unit 122, i. Values for the target casting speed that each belong to a relevant casting length.
- the value for an associated target speed (meaning: target casting speed) is then sent back to the control or regulating unit 122 by means of the first software I and output from there to the relevant components of the continuous casting plant 110.
- the first software I regulates the sump position with the aid of the casting speed for the casting process carried out with the continuous caster 110 in real time and in this case the casting speed correction value calculated by the second software II in association with the determined Casting length only considered with a delay.
- This delay is determined from a distance between the selected area 120 or a target position for the sump tip and the casting speed last set in real time.
- the result is that a sump tip position of the cast strand 100 during the ongoing casting process is always located within the selected area 120 along the supporting strand guide 116 or the sump tip of the cast strand 100 is held in this predetermined area 120.
- a casting operation is shown for the continuous casting plant 110 according to FIG Fig. 1 set in such a way that the position of the sump tip of the cast strand 100 should come to lie within the selected region 120. If the casting speed is set accordingly and the cooling (primary and secondary cooling) of the cast strand 100 is adapted to it, its sump tip is then located within the selected region 120.
- the target position for the sump tip of the casting strand 100 is at a distance from the meniscus 114 of 20 meters, the casting speed set being 1 m / min
- the casting temperature in the area of the mold 112 or the casting level 114 is around 10 ° increases. Such a rise in temperature can be induced by using a new pan. According to a further assumption, this temperature increase takes place in the region of the mold 112 at a point in time t n . At this point in time t n , a casting length of N meters has already been cast, so that the new piece of the cast strand 100 is designated with the casting length "N".
- the cast strand 100 Due to the higher casting temperature, the cast strand 100 has more heat, so that the calculated sump tip increases by approx. 1 meter. If the other process parameters, in particular the cooling of the cast strand 100 in the area of the secondary cooling 130, remained unchanged during the above-mentioned temperature increase and only the first software I for controlling the casting process were available, this would result in the position of the sump tip taking into account the
- the increase in length of about 1 meter mentioned - viewed in the conveying direction F of the cast strand 100 - is downstream (ie in the illustration of FIG Fig. 1 from left to right) and thereby "run out" of the selected area 120.
- a corresponding casting speed correction value is calculated by means of the second software II.
- the second software II calculates much faster than in real time, the new strand piece with the casting length "N" reaches the position of the previous solidification, i.e. in the simulation model "precontrol".
- the simulation time with the first software I which calculates in real time, would have already increased or advanced by 20 minutes.
- the casting speed correction value calculated by the second software II - initially in the model and theoretically - is used for the casting speed correction value 100 resulting casting speed can be reduced in the present numerical example in such a way that the position of the sump tip for the casting length "N" is again within the selected area 120 and thus reaches its target position.
- the first software I stores the casting speed correction value calculated by the second software II upon receipt.
- An essential feature for the method according to the invention is that the first software I does not reduce the real casting speed by the casting speed correction value immediately, but only after a time delay.
- the current casting speed is determined by the first software I. already reduced by the casting speed correction value calculated by the second software II.
- a position of e.g. B. 5 meters from the current or last sump position of z. B. corresponds to 20 meters - at a casting speed of 1 m / min, a period of 15 minutes that the new piece of the cast strand 100 with the casting length "N" has covered by then.
- the real sump length of the cast strand 100 also increases by approximately 1 meter.
- the casting speed is used by the second software II, which is approximately half the distance between the bath level 114 and the target position for the sump tip (this corresponds to FIG Fig. 6 the casting length L).
- the first software I can, using the casting speed correction value calculated by the second software II and taking into account the said delay, reduce the real casting speed for the casting process in such a way that the sump length of the cast strand 100 continues to be within the selected Area 120 is or remains therein.
- the first software I and the second software II always receive the same process values or process parameters of the ongoing casting process.
- the mentioned reduction in the real casting speed is related to the assumption that a temperature increase is assumed in the region of the mold 112. If, in deviation from this example, the melting temperature in a ladle should drop, this would mean that the first software I would then increase the real casting speed of the casting process using a casting speed correction value calculated accordingly by the second software II, also in compliance with the explained time delay.
- FIG. 3 - 5 The mode of operation of the present invention or of an associated method is further illustrated by the illustrations in FIG Fig. 3 - 5 explained as an example:
- the representation of Fig. 3 shows an example of a possible combination of second software II and first software I for the purpose of regulating the casting speed in order to achieve a target sump length or a target position for the tip of the sump of the cast strand 100.
- Fig. 3 two diagrams in which the casting speed (with a solid line) and the position of the sump length (with a dashed line) are plotted as a function of time.
- the upper diagram relates to the second software II (or the simulation model "feedforward control”).
- the lower diagram relates to the first software I (or the simulation model "control").
- a sump peak control would only register a rise in the casting temperature when the first strand cross-section with the higher temperature has reached the solidification point.
- the resulting overshooting of the target position leads to a falling speed ramp through the PI control.
- the drop in the casting speed has had its full effect on the shortening of the sump length, another strand must have covered the path from the meniscus 114 to the sump tip. If the regulation is set too strong, undesirable overshoots occur. If it is set weaker, the correction will take longer.
- the control can determine very promptly from the values of the feedforward which setpoint speed would be suitable for which strand length. Since this target speed is usually not the same for all strand positions, an algorithm is used to calculate which casting speed provides the smallest deviations from the target value overall. This is done either by selecting a reference position for which the target speed is determined, or the current target speed is averaged from all positions up to the top of the sump (which is also done in Fig. 6 is shown, with three exemplary casting lengths K, L and M).
- the averaged target speed (ie an average value derived from the target casting speeds determined by the second software II for various Casting lengths is formed) can then be taken over directly by the first software I as the target speed, taking into account the time delay explained above.
- a PI control can also be used to superimpose the current deviation of the sump length from the target position in order to take into account the actual process history of all strand cross-sections separately.
- FIG. 4 a dash-dotted horizontal line which marks the target value for the position of the sump tip of the cast strand 100.
- the diagram of Fig. 4 shows that when the casting temperature changes by up to 20 ° C., the casting speed is regulated in such a way that the calculated sump length agrees well with the target value for the position of the sump tip of the cast strand 100.
- Fig. 5 shows two diagrams, namely in the upper diagram a course of the casting temperature as a function of time, and in the lower diagram the resulting position of the sump tip as a function of time.
- the timelines in the upper and lower diagrams of FIG Fig. 5 are chosen accordingly. This means that the course of the sump tip (shown in the lower diagram) results in each case as a reaction to the change in the casting temperature (shown in the upper diagram).
- the lower diagram of Fig. 5 shows that - if there are significant fluctuations in the casting temperature - then the resulting position of the sump tip, which is established with the aid of the method according to the invention, has smaller deflections compared to the conventional curve shape and is significantly closer to the target value (indicated by an arrow to the left of the ordinate made) for the sump tip of the cast strand 100 is.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Die Erfindung betrifft eine Stranggießanlage (110) und ein Verfahren zum Gießen eines Gießstrangs (100). Hierzu umfasst die Stranggießanlage (110) eine Kokille (112) mit einer unteren Öffnung (113), die an einer Unterseite der Kokille (112) ausgebildet ist, und eine stützende Strangführung (116), die sich an der unteren Öffnung (113) der Kokille (112) anschließt, wobei der Gießstrang (100) entlang der stützenden Strangführung (116) bewegbar ist. Entlang der stützenden Strangführung (116) sind anstellbare Stützrollen oder Rollenpaare (118) angeordnet, mit denen eine Dickenreduzierung für den Gießstrang (100) erfolgt. Die stützende Strangführung (116) umfasst einen ausgewählten Bereich (120) für eine Sumpfspitze des Gießstrangs (100), wobei die anstellbaren Stützrollen oder Rollenpaare (118) ausschließlich in dem ausgewählten Bereich (120) der Strangführung (116) angeordnet sind.The invention relates to a continuous casting plant (110) and a method for casting a cast strand (100). For this purpose, the continuous caster (110) comprises a mold (112) with a lower opening (113) which is formed on an underside of the mold (112), and a supporting strand guide (116) which is located at the lower opening (113) of the The mold (112) is connected, the cast strand (100) being movable along the supporting strand guide (116). Adjustable support rollers or pairs of rollers (118) are arranged along the supporting strand guide (116), with which a thickness reduction for the cast strand (100) takes place. The supporting strand guide (116) comprises a selected area (120) for a sump tip of the cast strand (100), the adjustable support rollers or roller pairs (118) being arranged exclusively in the selected area (120) of the strand guide (116).
Description
Die Erfindung betrifft ein Verfahren zum Gießen eines Gießstrangs nach dem Oberbegriff von Anspruch 1, und eine Stranggießanlage nach dem Oberbegriff von Anspruch 12.The invention relates to a method for casting a cast strand according to the preamble of
Beim Betrieb von Stranggießanlagen entspricht es dem Stand der Technik, den Gießstrang nach dem Austreten aus der Kokille in der sogenannten Sekundärkühlung einer stützenden Strangführung solcher Anlagen abzukühlen, bis eine vollständige Erstarrung des Gießstrangs erreicht ist. Dieser Abkühlvorgang spielt eine wichtige Rolle für die resultierende Qualität des Gießstrangs und der daraus erzeugten Produkte. Die vollständige Erstarrung des Gießstrangs sollte innerhalb der stützenden Strangführung liegen, die den Gießstrang mit noch flüssigem Kern stützen, erreicht werden.When operating continuous casting plants, it corresponds to the state of the art to cool the cast strand after exiting the mold in the so-called secondary cooling of a supporting strand guide of such plants until the cast strand has completely solidified. This cooling process plays an important role in the resulting quality of the cast strand and the products made from it. The complete solidification of the cast strand should lie within the supporting strand guides, which support the cast strand with a still liquid core.
Der Betrieb der Sekundärkühlung einer Stranggießanlage wird in der Regel mit Sprüh- bzw. Kühlwasser realisiert, wobei die Wassermenge, die auf die Oberflächen des Gießstrangs ausgebracht wird, unter Vorgabe von Solltemperaturkurven eingestellt wird. Der Verlauf dieser Solltemperaturkurven kann je nach Werkstoff des zu vergießenden Materials, und z. B. in Abhängigkeit von bestimmten Kühlzonen der stützenden Strangführung und/oder der Gießgeschwindigkeit variieren. Je nach Werkstoff und gewählter Gießgeschwindigkeit wird dann von einer Bedienperson der Stranggießanlage eine Solltemperaturkurve ausgewählt und damit die Sekundärkühlung zum Ausbringen des Sprüh- bzw. Kühlwassers auf die Oberflächen des zu kühlenden Gießstrangs eingestellt. Beispielsweise können bei niedrigen Gießgeschwindigkeiten höhere (= wärmere) Solltemperaturkurven gefahren werden. Im Umkehrschluss sollten bei höheren Gießgeschwindigkeiten in der Regel niedrigere (= kältere) Solltemperaturkurven gefahren werden, zwecks Erreichung einer stärkeren Kühlung des Gießstrangs, damit dieser noch innerhalb der stützenden Strangführung durcherstarrt.The operation of the secondary cooling of a continuous casting plant is usually realized with spray or cooling water, whereby the amount of water that is applied to the surfaces of the cast strand is set by specifying setpoint temperature curves. The course of these target temperature curves can vary depending on the material of the material to be potted, and z. B. vary depending on certain cooling zones of the supporting strand guide and / or the casting speed. Depending on the material and the selected casting speed, an operator of the continuous caster then selects a target temperature curve and thus sets the secondary cooling for applying the spray or cooling water to the surfaces of the cast strand to be cooled. For example, higher (= warmer) target temperature curves can be used at low casting speeds. Conversely, lower (= colder) target temperature curves should generally be used at higher casting speeds in order to achieve a stronger cooling of the cast strand so that it still solidifies within the supporting strand guide.
Beim Stranggießen bestimmt eine Solltemperaturkurve die Sollwerte für die zu erreichende Oberflächentemperatur, die der Strang innerhalb der stützenden Strangführung erreicht, z. B. am Ende von einzelnen Kühlzonen, die Teil dieser stützenden Strangführung sind. Die Spritzwassermengen der Sekundärkühlung werden dabei so geregelt, dass diese Zielwerte erreicht werden.In continuous casting, a target temperature curve determines the target values for the surface temperature to be achieved that the strand reaches within the supporting strand guide, e.g. B. at the end of individual cooling zones that are part of this supporting strand guide. The amount of splash water from the secondary cooling is regulated in such a way that these target values are achieved.
Wie vorstehend bereits erläutert, ist es beim Betrieb einer Stranggießanlage von großer Bedeutung, dass der Gießstrang vollständig innerhalb der stützenden Strangführung erstarrt, und nicht etwa mit seiner Sumpfspitze aus dieser stützenden Strangführung herausläuft. Aus diesem Grund ist für die stützende Strangführung ein ausgewählter Bereich vorgesehen, in dem die Sumpfspitze des gegossenen Gießstrangs liegen soll.As already explained above, when operating a continuous caster it is of great importance that the cast strand solidifies completely within the supporting strand guide and does not run out of this supporting strand guide with its sump tip. For this reason, a selected area is provided for the supporting strand guidance, in which the sump tip of the cast strand should lie.
Während des Gießens von Brammen, Vorblöcken, Knüppeln etc. kann es ständig zu Änderungen von Parametern wie Gießtemperatur, Wasservorlauftemperatur, Wärmeabfuhr in der Kokille kommen, was den Gießprozess beeinflusst und somit eine Temperatur- und Positionsregelung erforderlich macht, da keine stationären Verhältnisse vorliegen.During the casting of slabs, blooms, billets, etc. there can be constant changes in parameters such as casting temperature, water supply temperature, heat dissipation in the mold, which influences the casting process and thus makes temperature and position control necessary, as there are no stationary conditions.
Mit zunehmender Brammendicke vergrößert sich der Bereich der Mittenseigerung, wobei die Anzahl von Poren steigt, so dass deren Beseitigung durch eine Soft- oder Hartreduktion besondere Aufmerksamkeit verlangt.With increasing slab thickness, the area of the central segregation increases, with the number of pores increasing, so that their removal by soft or hard reduction requires special attention.
Um eine maximale Produktion oder eine verbesserte Innenqualität durch Softreduktion zu erreichen, ist eine Positionsregelung von Vorteil. Für eine Positionsregelung beim Stranggießen bieten sich als Stellgröße die Sekundärkühlung und die Gießgeschwindigkeit an.In order to achieve maximum production or improved internal quality through soft reduction, position control is advantageous. For position control in continuous casting, secondary cooling and the casting speed can be used as manipulated variables.
Beim Stranggießen von großen Brammendicken ist es jedoch problematisch, mit der Stellgröße Sekundärkühlwasser die Lage der Sumpfspitze des Gießstrangs zu beeinflussen, um damit die Sumpfspitze in einem definierten Bereich der stützenden Strangführung zu halten. Die Wirksamkeit der Sekundärkühlung nimmt mit zunehmender Brammendicke ab. Je dicker die Strangschale des Gießstrangs wird, desto größer wird dann auch die abzuführende Energie, damit die Strangschale wächst. Dies bedeutet gleichzeitig, dass die Strangoberflächentemperatur abgesenkt wird. So stellen sich dann bei gleicher Sumpfspitzenposition, aber anderer Kühlintensität, unterschiedliche Temperaturverläufe über die Strangdicke ein.In the continuous casting of large slab thicknesses, however, it is problematic to use the secondary cooling water manipulated variable to influence the position of the sump tip of the cast strand in order to keep the sump tip in a defined area of the supporting strand guide. The effectiveness of the secondary cooling decreases with increasing slab thickness. The thicker the strand shell of the cast strand, the greater the energy to be dissipated so that the strand shell grows. At the same time, this means that the strand surface temperature is lowered. With the same sump tip position, but with a different cooling intensity, different temperature profiles are then established over the strand thickness.
Nach dem Stand der Technik ist weiterhin bekannt, dass Brammen mit einer Dicke von 400 mm oder mehr mit einer Gießgeschwindigkeit von bis zu 6 m/min vergossen werden.According to the prior art, it is also known that slabs with a thickness of 400 mm or more are cast at a casting speed of up to 6 m / min.
Eine Positionsregelung in Bezug auf die Sumpfspitze eines Gießstrangs mittels der Sekundärkühlung ist mit dem Nachteil verbunden, dass es bei einer größeren Änderung der Gießtemperatur erforderlich ist, entweder die Wassermengen sehr zu reduzieren oder sehr zu steigern. Bei einer starken Reduzierung der Wassermenge besteht die Gefahr von Bulging. Demgegenüber besteht bei einer großen Steigerung bzw. Zunahme der Wassermenge die Gefahr von Oberflächenrissen, weil die Oberfläche des Gießstrangs (zu) stark abgekühlt wird. Ein weiterer Nachteil besteht infolge der hohen Temperaturen und langen Verweilzeiten in der entstehenden starken Zunderbildung, wodurch die Oberflächentemperatur des Gießstrangs beeinflusst wird. Hierdurch kann eine Messung der Oberflächentemperatur des Gießstrangs verfälscht werden.A position control in relation to the sump tip of a casting strand by means of secondary cooling is associated with the disadvantage that with a major change in the casting temperature it is necessary either to reduce the amount of water very much or to increase it very much. If the amount of water is greatly reduced, there is a risk of bulging. On the other hand, there is a risk of surface cracks with a large increase or increase in the amount of water, because the surface of the cast strand is (too) cooled down. Another disadvantage, due to the high temperatures and long dwell times, is the heavy build-up of scale, which affects the surface temperature of the cast strand. This can falsify a measurement of the surface temperature of the cast strand.
Aus
Bei der vorstehend genannten Technologie gemäß
Der Erfindung liegt die Aufgabe zugrunde, eine Technologie zum Stranggießen von Metallen zu schaffen, mit der die Position der Sumpfspitze eines Gießstrangs insbesondere mit großer Gießdicke zuverlässiger an einer bestimmten Sollposition oder in einem bestimmten Soll-Bereich der stützenden Strangführung gehalten werden kann und eine Dicke des hergestellten Gießstrangs mit einfachen und preiswerten Mitteln eingestellt wird und die Softreduktion in einem bestimmten Bereich erfolgen kannThe invention is based on the object of creating a technology for the continuous casting of metals with which the position of the sump tip of a cast strand, in particular with a large cast thickness, can be held more reliably at a certain target position or in a certain target range of the supporting strand guide and a thickness of the produced cast strand with simple and inexpensive means is set and the soft reduction can take place in a certain area
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1 und durch eine Vorrichtung mit den Merkmalen von Anspruch 12 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.This object is achieved by a method with the features of
Ein Verfahren nach der vorliegenden Erfindung dient zum Gießen eines Gießstrangs in einer mit einem Prozessrechner ausgestatteten Stranggießanlage mit mindestens einer Gießmaschine. Hierbei umfasst der Prozessrechner zumindest eine erste Software, die in Echtzeit rechnet und den Gießprozess regelt. Zusätzlich hierzu umfasst der Prozessrechner eine zweite zusätzliche Software, die schneller als in Echtzeit rechnet und damit eine Berechnungsgeschwindigkeit größer als die erste Software aufweist. Mit der zweiten Software wird einerseits in Zuordnung zu einer bestimmten Gießlänge und andererseits in Abhängigkeit von aktuell gewonnenen Prozessparametern aus dem laufenden Gießprozess insbesondere im Bereich der Kokille und/oder aus zumindest einem in einer Datenbank gespeicherten Prozessparameter berechnet, welche Position für eine Sumpfspitze des Gießstrangs gemäß der bestimmten Gießlänge entlang einer stützenden Strangführung der Stranggießanlage aktuell vorläge. Hierbei vergleicht die zweite Software diese berechnete Sumpfspitzenposition mit einer Soll-Position oder einem Soll-Bereich für die Sumpfspitze und berechnet auf Grundlage dessen fortwährend einen Gießgeschwindigkeits-Korrekturwert. Anstatt der Sumpfspitze kann auch auf einen Erstarrungsanteil (Solid Fraction) oder auf einen Strangschalenabstand geregelt werden. Im Anschluss hieran wird der von der zweiten Software berechnete Gießgeschwindigkeits-Korrekturwert an die erste Software übergeben, wobei die erste Software die Sumpfposition mit Hilfe der Gießgeschwindigkeit in Echtzeit regelt und hierbei den von der zweiten Software berechneten Gießgeschwindigkeits-Korrekturwert in Zuordnung zu der bestimmten Gießlänge erst mit einer Verzögerung berücksichtigt, die sich aus einem Abstand der Soll-Position oder des Soll-Bereichs für die Sumpfspitze und der zuletzt in Echtzeit eingestellten Gießgeschwindigkeit ergibt. In Folge dessen findet sich eine Sumpfspitzenposition des Gießstrangs im laufenden Gießprozess stets innerhalb eines vorbestimmten bzw. ausgewählten Bereichs entlang der stützenden Strangführung bzw. wird die Sumpfspitze des Gießstrangs in diesem vorbestimmten Bereich gehalten.A method according to the present invention is used to cast a cast strand in a continuous casting plant equipped with a process computer with at least one casting machine. Here, the process computer includes at least a first piece of software that calculates in real time and regulates the casting process. In addition to this, the process computer includes a second additional software that calculates faster than in real time and thus has a calculation speed greater than the first software. With the second software, on the one hand, in association with a specific casting length and, on the other hand, depending on the currently obtained process parameters from the ongoing casting process, in particular in the area of the mold and / or from at least one process parameter stored in a database, the position for a sump tip of the cast strand is calculated the specific casting length along a supporting strand guide of the continuous caster would currently be available. The second software compares this calculated sump tip position with a target position or a target range for the sump tip and continuously calculates a casting speed correction value on the basis of this. Instead of the sump tip, a solid fraction or a strand shell spacing can also be used. Following this, the casting speed correction value calculated by the second software is transferred to the first software, with the first software regulating the sump position with the aid of the casting speed in real time and only the casting speed correction value calculated by the second software in association with the specific casting length taken into account with a delay resulting from a distance between the target position or the target area for the sump tip and the last in Real time set casting speed results. As a result, a sump tip position of the cast strand in the ongoing casting process is always found within a predetermined or selected area along the supporting strand guide or the sump tip of the cast strand is kept in this predetermined area.
Der Erfindung und dem zugehörigen Verfahren liegt die wesentliche Erkenntnis zugrunde, dass die zweite Software im Verlauf des Gießprozesses permanent läuft bzw. Berechnungen anstellt. Anders ausgedrückt, läuft die zweite Software permanent parallel zu der eigentlichen Geschwindigkeitsregelung, die mittels der ersten Software durchgeführt wird. In dieser Weise können von der zweiten Software Auswirkungen von Störgrößen wie Gießtemperatur, Wärmeabfuhr in der Kokille und/oder Änderungen der Wasservorlauftemperaturen (z. B. in der Sekundärkühlung oder der Primär- bzw. Kokillenkühlung) separat berücksichtigt und diesbezüglich entsprechende Gießgeschwindigkeits-Korrekturwerte berechnet werden, die dann an die erste Software überspielt werden. In diesem Zusammenhang ist von Bedeutung, dass die Berechnungsgeschwindigkeit für die zweite Software größer gewählt ist als für die erste Software. Nachdem diese Gießgeschwindigkeits-Korrekturwerte von der ersten Software empfangen worden sind, kann die erste Software die Sumpflänge (d. h. die Position der Sumpfspitze des Gießstrangs) mit Hilfe der Gießgeschwindigkeit, die dabei als Stellgröße dient, und unter Berücksichtigung der von der ersten Software berechneten Gießgeschwindigkeits-Korrekturwerte regeln bzw. anpassen.The invention and the associated method are based on the essential knowledge that the second software runs continuously or makes calculations during the course of the casting process. In other words, the second software runs permanently in parallel with the actual speed control, which is carried out by means of the first software. In this way, effects of disturbance variables such as casting temperature, heat dissipation in the mold and / or changes in the water inlet temperatures (e.g. in the secondary cooling or the primary or mold cooling) can be separately taken into account by the second software and corresponding casting speed correction values can be calculated in this regard which are then transferred to the first software. In this context, it is important that the calculation speed for the second software is selected to be greater than for the first software. After these casting speed correction values have been received by the first software, the first software can determine the sump length (i.e. the position of the sump tip of the cast strand) with the aid of the casting speed, which is used as a manipulated variable, and taking into account the casting speed calculated by the first software. Regulate or adjust correction values.
Ein weiterer "Pfiff" für das erfindungsgemäße Verfahren liegt darin, dass die von der zweiten Software berechneten Gießgeschwindigkeits-Korrekturwerte, nachdem sie an die erste Software überspielt bzw. gesendet worden sind, dann von der ersten Software nicht unmittelbar, sondern erst verzögert, d. h. mit einem Zeitverzug berücksichtigt werden, welcher abhängig von der aktuell eingestellten Gießgeschwindigkeit und der Soll-Position bzw. des Soll-Bereichs für die Sumpfspitze des Gießstrangs ist. Genau diese zeitversetzte Berücksichtigung der von der zweiten Software berechneten Gießgeschwindigkeits-Korrekturwerte durch die erste Software macht es möglich, die Position der Sumpfspitze in den hierzu vorbestimmten bzw. ausgewählten Bereich der stützenden Strangführung, d.h. in den Soll-Bereich zu bringen bzw. hierin zu halten.Another "whistle" for the method according to the invention is that the casting speed correction values calculated by the second software, after they have been transferred or sent to the first software, are then not immediately delayed by the first software, but rather only delayed, ie with a time delay must be taken into account, which is dependent on the currently set casting speed and the target position or the target range for the sump tip of the cast strand. Exactly this delayed consideration of the Casting speed correction values calculated by the second software and by the first software make it possible to bring or keep the position of the sump tip in the predetermined or selected area of the supporting strand guide, ie in the target area.
Bei dem erfindungsgemäßen Verfahren wird als Regelgröße vorzugsweise die Sumpfspitze verwendet. Hierbei ist die Sumpfspitze für den Gießstrang als eine Position entlang der stützenden Strangführung zu verstehen, an der die Strangmitte des Gießstrangs durcherstarrt ist, d. h. der Festanteil (= "Solid Fraction") hat den Wert von 1 (anders ausgedrückt: Solid Fraction = 1).In the method according to the invention, the sump tip is preferably used as the controlled variable. Here the sump tip for the cast strand is to be understood as a position along the supporting strand guide at which the strand center of the cast strand has solidified, ie the solid fraction (= "Solid Fraction") has the value of 1 (in other words: Solid Fraction = 1) .
Ergänzend und/oder alternativ kann für das erfindungsgemäße Verfahren als Regelgröße ein definierter Erstarrungsanteil in Strangmitte verwendet werden, der einen Solid Fraction-Anteil < 1 aufweist.In addition and / or alternatively, a defined solidification fraction in the center of the strand, which has a solid fraction fraction of <1, can be used as a controlled variable for the method according to the invention.
Ergänzend und/oder alternativ kann für das erfindungsgemäße Verfahren als Regelgröße auch der Strangschalenabstand als Regelgröße verwendet werden.In addition and / or alternatively, the strand shell spacing can also be used as a controlled variable for the method according to the invention.
Dadurch, dass die Berechnungsgeschwindigkeit für die zweite Software größer als wie für die erste Software eingestellt ist, ist es mittels des erfindungsgemäßen Verfahrens möglich, in Bezug auf den Gießprozess und dessen weiteren Verlauf "in die Zukunft" zu blicken. Hierzu folgendes Beispiel: Wenn für die erste Software, die den Gießprozess in Echtzeit regelt, eine Berechnungsdauer beispielsweise von 20 Minuten vorliegt, kann die gleiche Sequenz des Gießprozesses mittels der zweiten Software in wesentlich kürzerer Zeit, z. B. in nur 30 Sekunden simuliert bzw. berechnet werden. Entsprechend ist es mittels der Berechnung der zweiten Software im Vergleich zur Berechnung mittels der ersten Software zu einem wesentlich früheren Zeitpunkt möglich, Erkenntnisse über den weiteren Verlauf des Gießprozesses zu gewinnen.Because the calculation speed for the second software is set higher than that for the first software, the method according to the invention makes it possible to “look into the future” with regard to the casting process and its further course. For this, the following example: If the first software, which controls the casting process in real time, has a calculation time of 20 minutes, for example, the same sequence of the casting process can be performed in a much shorter time using the second software, e.g. B. can be simulated or calculated in just 30 seconds. Accordingly, by means of the calculation of the second software, compared to the calculation by means of the first software, it is possible at a significantly earlier point in time to gain knowledge about the further course of the casting process.
An dieser Stelle wird gesondert hervorgehoben, dass es sich bei dem Merkmal "gewonnen" um eine Einstellung oder um eine Messung handeln kann. Dies bedeutet, dass "gewonnene" Prozessparameter im Sinne der vorliegenden Erfindung solche sind, die entweder gezielt eingestellt (ggf. auf Grundlage einer vorherigen Berechnung) oder als Ergebnis einer Messung erhalten worden sind.At this point it is emphasized separately that the feature “obtained” can be a setting or a measurement. This means that "obtained" process parameters in the context of the present invention are those that have either been set in a targeted manner (possibly on the basis of a previous calculation) or have been obtained as the result of a measurement.
Bei dem erfindungsgemäßen Verfahren wird für die Positionsregelung der Sumpfspitze oder eines definierten Erstarrungsanteils in Strangmitte oder eines vorbestimmten Abstandes zwischen den Strangschalen auf Los- und Festseite als Stellgröße die Gießgeschwindigkeit (= Stellgröße) verwendet, wobei die Sollwerte für die Sekundärwassermengen hieran geschwindigkeitsproportional angepasst werden. Die Sollposition für die Sumpfspitze des Gießstrangs wird in dem vorbestimmten bzw. ausgewählten Bereich der stützenden Strangführung, vorzugsweise innerhalb eng definierter Grenzen, innerhalb der stützenden Strangführung, festgelegt. Die Vorteile einer solchen Positionsregelung in Bezug auf die Sumpfspitze stellen sich u.a. wie folgt dar:
- Schnelle Auswirkung auf die Positionsänderung der Sumpfspitze bei Änderung der Gießgeschwindigkeit;
- Keine großen Änderungen der Oberflächentemperaturen, somit auch nur geringe Änderung der Oberflächentemperatur im Richtbereich;
- Bei steigender Gießgeschwindigkeit steigt die Wassermenge durch eine geschwindigkeitsproportionalen Sekundärkühlung und verringert die Gefahr von Bulging;
- Bei reduzierter Gießgeschwindigkeit sinkt die Wassermenge durch eine geschwindigkeitsproportionalen Sekundärkühlung und verringert die Gefahr von Rissen im Richtbereich.
- Rapid effect on the change in position of the sump tip when changing the casting speed;
- No major changes in surface temperatures, so only minor changes in surface temperature in the directional area;
- As the casting speed increases, the amount of water increases due to secondary cooling proportional to the speed and reduces the risk of bulging;
- When the casting speed is reduced, the amount of water decreases due to secondary cooling proportional to the speed and reduces the risk of cracks in the straightening area.
Dem ansonsten beim Stand der Technik bestehenden Nachteil, dass lange Tot- und Regelzeiten (Sollposition/Gießgeschwindigkeit) bzw. die Gefahr einer Instabilität der Regelung auftreten können, wird mit der vorliegenden Erfindung, wie vorstehend bereits erläutert, durch den permanenten Einsatz bzw. Betrieb der zweiten Software begegnet, wodurch z. B. eine lange Totzeit stark reduziert werden kann.The disadvantage that otherwise exists in the prior art that long dead and control times (target position / casting speed) or the risk of instability of the control can occur is, as already explained above, with the present invention through the permanent use or operation of the encountered second software, whereby z. B. a long dead time can be greatly reduced.
Für ein Verfahren nach der vorliegenden Erfindung ist auch von Bedeutung, dass für den Gießstrang entlang seiner Förderrichtung innerhalb der stützenden Strangführung ein Temperaturfeld bestimmt, vorzugsweise berechnet wird, so dass für jeden berechneten Knotenpunkt des Gießstrangs die zugehörige Temperatur bekannt ist, nämlich an einem bestimmten Punkt des Gießstrangs bzw. der Anlagenlänge insbesondere innerhalb der stützenden Strangführung und deren Kühlsegmente. Hieraus kann dann eine exakte Position der Sumpfspitze für den Gießstrang ermittelt werden.For a method according to the present invention, it is also important that a temperature field is determined, preferably calculated, for the cast strand along its conveying direction within the supporting strand guide, so that the associated temperature is known for each calculated node of the cast strand, namely at a specific point of the cast strand or the system length, in particular within the supporting strand guide and its cooling segments. An exact position of the sump tip for the cast strand can then be determined from this.
In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass für die Berechnung des Gießgeschwindigkeits-Korrekturwerts mittels der zweiten zusätzlichen Software zumindest ein Prozessparameter des Gießprozesses gewählt aus der Gruppe von chemischer Zusammensetzung des Werkstoffs des Gießstrangs, aktueller Gießtemperatur, aktueller Gießgeschwindigkeit, Wasservorlauftemperatur für die Sekundärkühlung, oder Wasservorlauftemperatur für die Kokillen-Primärkühlung und/oder eingestellter Gießlänge berücksichtigt wird. Hiermit wird vorteilhaft erreicht, dass aktuelle Werte bzw. Parameter des laufenden Gießprozesses und des hierbei verarbeiteten Metalltyps in die Berechnungen durch die zweite Software Einzug halten bzw. von der zweiten Software entsprechend berücksichtigt werden.In an advantageous further development of the invention it can be provided that for the calculation of the casting speed correction value by means of the second additional software at least one process parameter of the casting process is selected from the group of chemical composition of the material of the cast strand, current casting temperature, current casting speed, water supply temperature for secondary cooling, or water supply temperature for the mold primary cooling and / or the set casting length is taken into account. This advantageously means that current values or parameters of the current casting process and the type of metal processed in this connection are included in the calculations by the second software or are taken into account accordingly by the second software.
In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass der Gießgeschwindigkeits-Korrekturwert mittels der zweiten Software auf Grundlage von in der Datenbank gespeicherten Prozessparametern berechnet wird und von der ersten Software zu Beginn des Gießprozesses als Stellgröße zu dessen Regelung verwendet wird. Dies ist insbesondere vorteilhaft beim Anfahren des Gießprozesses zu Beginn eines Produktionsvorgangs, oder im Anschluss an eine Betriebsunterbrechung.In an advantageous development of the invention, it can be provided that the casting speed correction value is calculated by means of the second software on the basis of process parameters stored in the database and is used by the first software at the beginning of the casting process as a manipulated variable to control it. This is particularly advantageous when starting the casting process at the beginning of a production process or after an interruption in operation.
In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass der Gießgeschwindigkeits-Korrekturwert mittels der zweiten Software in Abhängigkeit von aktuell gewonnenen Prozessparametern aus dem laufenden Gießprozess berechnet wird. Hierbei wird dann dieser Gießgeschwindigkeits-Korrekturwert, falls es im Verlauf des Gießprozesses zu Abweichungen zwischen Soll- und Ist-Werten in Bezug auf die Temperatur des Gießstrangs kommt, von der ersten Software zur Regelung der Gießgeschwindigkeit des Gießprozesses verwendet. Von Vorteil hierbei ist, dass die zweite Software, wie bereits erläutert, während des laufenden Gießprozesses permanent "läuft" bzw. eingeschaltet ist. Hierdurch ist gewährleistet, dass auf mögliche Abweichungen, die im laufenden Gießprozess auftreten können, durch die mittels der zweiten Software berechneten Gießgeschwindigkeits-Korrekturwerte, die dann von der zweiten Software an die erste Software zur Regelung des realen Gießprozesses überspielt werden, entsprechend reagiert werden kann.In an advantageous development of the invention, it can be provided that the casting speed correction value is calculated by means of the second software as a function of currently obtained process parameters from the ongoing casting process. This casting speed correction value is then used by the first software to regulate the casting speed of the casting process if there are deviations between the target and actual values in relation to the temperature of the cast strand in the course of the casting process. The advantage here is that the second software, as already explained, is permanently "running" or switched on during the ongoing casting process. This ensures that the casting speed correction values calculated by the second software, which are then transferred from the second software to the first software to control the real casting process, can be responded to appropriately to possible deviations that may occur during the ongoing casting process.
In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass bei der Berechnung des Gießgeschwindigkeits-Korrekturwerts mittels der zweiten Software eine Referenzposition entlang der stützenden Strangführung zwischen dem Badspiegel und der Soll-Position bzw. dem Soll-Bereich für die Sumpfspitze ausgewählt wird. Im Zuge dessen kann vorgesehen sein, dass alle durch die zweite Software berechneten Zielgeschwindigkeiten nacheinander zum Einsatz kommen. Für diesen Fall kommt es hinsichtlich der Sumpflängen-Ausbildung zu einer Art Durchschnittswertbildung, da sich die Sumpflänge integrativ aus der Historie der Gießgeschwindigkeiten ergibt. Zweckmäßigerweise kann hierbei die Referenzposition an einer Stelle der stützenden Strangführung liegen, die zwischen 40% und 70% des Abstands des Badspiegels zu der Soll-Position der Sumpfspitze beträgt. Vorzugsweise kann sich diese Referenzposition bei zumindest 60%des Abstands des Badspiegels zu der Soll-Position der Sumpfspitze befinden.In an advantageous development of the invention it can be provided that when calculating the casting speed correction value by means of the second software, a reference position along the supporting strand guide between the bath level and the target position or the target area for the sump tip is selected. In the course of this, it can be provided that all target speeds calculated by the second software are used one after the other. In this case, there is a kind of average value formation with regard to the formation of the sump length, since the sump length results integratively from the history of the casting speeds. In this case, the reference position can expediently lie at a point on the supporting strand guide which is between 40% and 70% of the distance between the bath level and the desired position of the sump tip. This reference position can preferably be located at at least 60% of the distance between the bath level and the target position of the sump tip.
In vorteilhafter Weiterbildung der Erfindung kann auch vorgesehen sein, dass die Berechnung des Gießgeschwindigkeits-Korrekturwerts mittels der zweiten Software auf Grundlage dessen erfolgt, dass aus allen Positionen entlang der Gießlänge bis zur Position der Sumpfspitze die aktuelle Zielgeschwindigkeit gemittelt wird. Dies bedeutet, dass allen Gießlängen-Positionen, die sich augenblicklich in der stützenden Strangführung befinden, durch die zweite Software im Laufe der Zeit bzw. der Berechnungen sukzessive jeweils eine Zielgeschwindigkeit zugeordnet worden sind. Eine solche Zuordnung kann dahingehend verstanden werden, dass die Rechenwerte der zweiten Software, d.h. die mittels der zweiten Software berechneten Gießgeschwindigkeits-Korrekturwerte, aus dem zurückliegenden Zeitraum für die gegenwärtige Festlegung der Soll-Gießgeschwindigkeit bei der ersten Software genutzt werden, um damit die Position der Sumpfspitze des Gießstrangs im zukünftigen Zeitraum zu steuern. Da die momentane Gießgeschwindigkeit die Strangquerschnitte entlang der stützenden Strangführung an allen Positionen vom Gießspiegel bis zur Sumpfspitze beeinflusst, ist es zweckmäßig, alle diese Zielgeschwindigkeiten z. B. in Form einer Durchschnittswertbildung für die Festlegung der aktuellen Sollgeschwindigkeit zu berücksichtigen. Werte, die am häufigsten vertreten sind - egal welcher Position sie zugeordnet sind - werden durch den Durchschnittswert stärker repräsentiert als Werte, die selten (z. B. Ausreißer) vorkommen.In an advantageous development of the invention, it can also be provided that the calculation of the casting speed correction value by means of the second software is based on the fact that the current target speed is averaged from all positions along the casting length up to the position of the sump tip. This means that all casting length positions that are currently in the supporting strand guide have been successively assigned a target speed by the second software in the course of time or the calculations. Such an assignment can be understood to mean that the calculated values of the second software, i.e. the casting speed correction values calculated by means of the second software from the previous period are used for the current definition of the target casting speed in the first software in order to control the position of the sump tip of the cast strand in the future period. Since the current casting speed affects the strand cross-sections along the supporting strand guide at all positions from the meniscus to the sump tip, it is useful to use all these target speeds z. B. to be taken into account in the form of an average value for determining the current target speed. Values that are most frequently represented - regardless of which position they are assigned to - are represented more strongly by the average value than values that rarely occur (e.g. outliers).
Die vorliegende Erfindung sieht auch eine Stranggießanlage zum Gießen eines Gießstrangs vor. Eine solche Stranggießanlage umfasst eine Kokille mit einer unteren Öffnung, die an einer Unterseite der Kokille ausgebildet ist, eine stützende Strangführung, die sich an der unteren Öffnung der Kokille anschließt, wobei der Gießstrang entlang der stützenden Strangführung bewegbar ist. Des Weiteren sind bei der erfindungsgemäßen Stranggießanlage entlang der stützenden Strangführung anstellbare Stützrollen oder Rollenpaare angeordnet, mit denen eine Dickenreduzierung für den Gießstrang erfolgt. Die stützende Strangführung weist einen ausgewählten Bereich auf, in dem eine Sumpfspitze des Gießstrangs liegen soll, wobei Stützrollen oder Rollenpaare, die eine Softreduktion-Anstellbarkeit aufweisen, ausschließlich in dem ausgewählten Bereich der Strangführung angeordnet sind.The present invention also provides a continuous caster for casting a cast strand. Such a continuous casting plant comprises a mold with a lower opening which is formed on an underside of the mold, a supporting strand guide which is connected to the lower opening of the mold, the cast strand being movable along the supporting strand guide. Furthermore, in the continuous caster according to the invention, adjustable support rollers or pairs of rollers are arranged along the supporting strand guide, with which a thickness reduction for the cast strand takes place. The supporting strand guide has a selected area in which a sump tip of the cast strand is to lie, with support rollers or pairs of rollers that allow a soft reduction adjustment have, are arranged exclusively in the selected area of the strand guide.
Der "Pfiff" der vorstehend genannten Stranggießanlage besteht darin, dass die für die Softreduktion anstellbaren Stützrollen oder Rollenpaare, die für die stützende Strangführung vorgesehen sind, ausschließlich in deren ausgewählten Bereich angeordnet sind, in dem auch die Sumpfspitze des Gießstrangs liegen soll. Anders ausgedrückt, ist bei einem Betrieb dieser Stranggießanlage vorgesehen, dass die Sollposition für die Sumpfspitze des Gießstrangs in dem besagten ausgewählten Bereich der stützenden Strangführung zu liegen kommt bzw. sich darin befindet. In dieser Weise ist es möglich, durch die anstellbaren Stützrollen bzw. Rollenpaare des ausgewählten Bereichs der stützenden Strangführung für den Gießstrang gezielt eine Softreduktion durchzuführen. Alle übrigen Stützrollen bzw. Rollenpaare, die sich - in Förderrichtung des Gießstrangs gesehen - in der Regel stromaufwärts des ausgewählten Bereichs befinden, können somit herkömmlich ausgebildet sein, nämlich ohne eine Softreduktion-Anstellfunktion. Mit diesen herkömmlichen Stützrollen wird lediglich der thermische Schrumpf des Gießstrangs 100 nachgefahren.The "whistle" of the above-mentioned continuous caster is that the support rollers or pairs of rollers that can be adjusted for soft reduction and are provided for the supporting strand guide are arranged exclusively in the selected area in which the sump tip of the cast strand should also be located. In other words, when this continuous caster is in operation, it is provided that the target position for the sump tip of the cast strand comes to lie in said selected area of the supporting strand guide. In this way it is possible to carry out a targeted soft reduction for the cast strand by means of the adjustable support rollers or roller pairs of the selected area of the supporting strand guide. All other support rollers or pairs of rollers, which - viewed in the conveying direction of the cast strand - are usually upstream of the selected area, can thus be of conventional design, namely without a soft-reduction adjustment function. With these conventional support rollers, only the thermal shrinkage of the
In vorteilhafter Weiterbildung der erfindungsgemäßen Stranggießanlage kann vorgesehen sein, dass die Stützrollen oder Rollenpaare zu Rollen-Segmenten zusammengefasst sind. Dies erleichtert sowohl eine Montage bzw. Demontage der einzelnen Stützrollen bei deren Einbau oder Ausbau in bzw. aus der Stranggießanlage, als auch eine mögliche gemeinsame Ansteuerung zwecks Durchführung einer gewünschten Softreduktion für den Gießstrang.In an advantageous further development of the continuous casting plant according to the invention, it can be provided that the support rollers or pairs of rollers are combined to form roller segments. This facilitates both the assembly and disassembly of the individual support rollers when they are installed or removed in or from the continuous caster, as well as a possible common control for the purpose of performing a desired soft reduction for the cast strand.
Das vorstehend genannte erfindungsgemäße Verfahren eignet sich auch zum Betrieb einer Stranggießanlage nach der vorliegenden Erfindung, in dem Sinne, dass dadurch die Position der Sumpfspitze des Gießstrangs gezielt in den ausgewählten Bereich der stützenden Strangführung gebracht bzw. - bei Veränderungen des Gießprozesses - auch darin gehalten wird.The above-mentioned method according to the invention is also suitable for operating a continuous caster according to the present invention, in the sense that it brings the position of the sump tip of the cast strand specifically into the selected area of the supporting strand guide or - in the event of changes in the casting process - is also held therein .
Die vorliegende Erfindung kommt zweckmäßigerweise bei der Herstellung von Gießsträngen zum Einsatz, die - im Falle der Herstellung von Brammen oder ähnlichen Produkten - eine Gießdicke von zumindest 250 mm, weiter vorzugsweise auch noch größere Gießdicken (z. B. 300 mm, vorzugsweise 350 mm, oder auch 400 mm, oder mehr) aufweisen. Solche Produkte sind auch unter der Bezeichnung "Dickbrammen" geläufig. Weil sich die erfindungsgemäße Steuerung bzw. Regelung des Gießprozesses durch die Veränderung bzw. Einstellung der Gießgeschwindigkeit unmittelbar auf alle Abschnitte des Gießstrangs entlang der stützenden Strangführung auswirkt, führt dies dazu, dass sich die Erfindung eben auch für solche "Dickbrammen" oder vergleichbare Produkte eignet.The present invention is expediently used in the production of cast strands which - in the case of the production of slabs or similar products - have a casting thickness of at least 250 mm, more preferably even greater casting thicknesses (e.g. 300 mm, preferably 350 mm, or 400 mm, or more). Such products are also known under the name "thick slabs". Because the inventive control or regulation of the casting process by changing or setting the casting speed has a direct effect on all sections of the cast strand along the supporting strand guide, this means that the invention is also suitable for such "thick slabs" or comparable products.
Falls mit dem erfindungsgemäßen Verfahren Langprodukte (z. B. Knüppel oder Vorblöcke) hergestellt werden, weist der Gießstrang eine Gießdicke bzw. einen Durchmesser von zumindest 150 mm auf.If long products (for example billets or blooms) are produced using the method according to the invention, the cast strand has a cast thickness or a diameter of at least 150 mm.
Nachstehend sind Ausführungsbeispiele der Erfindung anhand einer schematisch vereinfachten Zeichnung im Detail beschrieben.Exemplary embodiments of the invention are described in detail below with reference to a schematically simplified drawing.
Es zeigen:
- Fig. 1
- eine schematisch vereinfachte Seitenansicht einer erfindungsgemäßen Stranggießanlage, mit der auch ein Verfahren nach der vorliegenden Erfindung durchführbar ist,
- Fig. 2
- ein Flussdiagramm zur Veranschaulichung einer Schrittabfolge eines Verfahrens nach der vorliegenden Erfindung,
- Fig. 3
- ein Diagramm für eine Gießgeschwindigkeit und für die Position einer Sumpflänge als Funktion der Zeit, die mit einem erfindungsgemäßen Verfahren erzielt werden,
- Fig. 4, 5
- jeweils ein Diagramm zur Darstellung der Wechselbeziehung zwischen einer Änderung der dies Temperatur und einer daraus resultierenden Position der Sumpfspitze eines Gießstrangs, auch unter Berücksichtigung eines erfindungsgemäßen Verfahrens, und
- Fig. 6
- eine schematisch vereinfachte Seitenansicht einer erfindungsgemäßen Stranggießanlage analog zu
Fig. 1 , für die beispielhafte Gießlängen für den erzeugten Gießstrang symbolisch gezeigt sind.
- Fig. 1
- a schematically simplified side view of a continuous caster according to the invention, with which a method according to the present invention can also be carried out,
- Fig. 2
- a flowchart to illustrate a sequence of steps of a method according to the present invention,
- Fig. 3
- a diagram for a casting speed and for the position of a sump length as a function of time, which are achieved with a method according to the invention,
- Fig. 4, 5
- each a diagram to illustrate the interrelationship between a change in this temperature and a position of the sump tip of a cast strand resulting therefrom, also taking into account a method according to the invention, and
- Fig. 6
- a schematically simplified side view of a continuous caster according to the invention analogous to FIG
Fig. 1 , for which exemplary casting lengths for the cast strand produced are shown symbolically.
Nachstehend sind unter Bezugnahme auf die
An dieser Stelle wird gesondert darauf hingewiesen, dass für die nachfolgende Beschreibung die Begriffe Gießstrang und Metallstrang wahlweise als Synonym verwendet werden.At this point it is pointed out separately that the terms cast strand and metal strand are optionally used as synonyms for the following description.
Die Stranggießanlage 110 nach
Die Stranggießanlage 110 umfasst im Bereich einer Sekundärkühlung 130 eine stützende Strangführung 116, die sich an die untere Öffnung 113 der Kokille anschließt. Somit ist die stützende Strangführung 116 der Kokille 112 unmittelbar nachgelagert bzw. stromabwärts hiervon angeordnet. Im Betrieb der Stranggießanlage 110 und bei Durchführung eines entsprechenden erfindungsgemäßen Verfahrens tritt ein Gieß- bzw. Metallstrang 100 nach unten aus der unteren Öffnung 113 der Kokille 112 aus und wird anschließend entlang der stützenden Strangführung 116 in einer Förderrichtung F bewegt bzw. transportiert.In the area of a
Die Sekundärkühlung 130 umfasst entlang der stützenden Strangführung 116 (nicht näher bezeichnete) einzelne Kühlsegmente, durch die das Aufbringen eines Kühlmediums, insbesondere in Form von Wasser z.B. durch Spritzdüsen, auf beide Seiten des Metallstranges 100 gewährleistet ist, um den Metallstrang 100 gezielt zu kühlen. Diese Kühlsegmente werden jeweils über (nicht gezeigte) Leitungen mit Kühlflüssigkeit gespeist und sind jeweils mit Spritzdüsen ausgestattet. Entsprechend ist es möglich, durch die Spritzdüsen der einzelnen Kühlsegmente Kühlflüssigkeit auf die Oberflächen des Metallstranges 100 auszubringen, nämlich an dessen Oberseite und/oder Unterseite.The
Bei der Stranggießanlage 110 handelt es sich um eine Dickbrammenanlage, mit der ein Gießstrang 100 mit einer Dicke von vorzugsweise 250 mm, oder ggf. noch größeren Gießdicken, hergestellt werden kann. Die Stranggießanlage 110 umfasst beispielhaft insgesamt einhundertzwanzig Stützrollenpaare, die in zwanzig physikalische Segmente bzw. Kühlsegmente 1-20 unterteilt sind. Hierbei befindet sich der risskritische Richtbereich innerhalb der stützenden Strangführung 116 in den Kühl- bzw. Richtsegmenten mit den Nr. 8 und 9, die mit eigenen Regelkreisen für die Kühlmittelzufuhr ausgestattet sein können, so dass damit die vorgegebenen Solltemperaturen erreicht werden können.The
Die Stranggießanlage 110 umfasst eine Steuer- oder Regelungseinheit 122, die über eine Signalstrecke 124 signaltechnisch u.a. mit den Kühlsegmenten der stützenden Strangführung 116 in Verbindung steht. Diese Signalstrecke 124 kann kabelgebunden oder drahtlos, z.B. durch eine Funkstrecke oder dergleichen, ausgeführt sein.The
Die Steuer- oder Regelungseinheit 122 umfasst einen Prozessrechner 123, auf dem eine erste Software I und eine zweite zusätzliche Software II eingerichtet sind. Die Bedeutung und Funktionsweise dieser beiden Software-Pakete I, II ist nachfolgend noch gesondert erläutert.The control or
Die Steuer- oder Regelungseinheit 122 ist mit einem Datenspeicher 126 verbunden, in dem erforderliche Prozessdaten für die Stranggießanlage 110 gespeichert sind. Insoweit bildet dieser Datenspeicher 126 eine Datenbank. Über eine (nicht gezeigte) Schnittstelle ist es möglich, einzelne Prozessdaten PD in den Datenspeicher 126 einzugeben bzw. darin einzulesen. Diese Eingabemöglichkeit ist in der
Die Stranggießanlage 110 ist mit zumindest einem (nicht näher bezeichneten) Temperatursensor, oder einer Mehrzahl von solchen Sensoren, ausgestattet, der bzw. die angrenzend an die stützende Strangführung 116 angeordnet ist bzw. sind. Mittels eines solchen Sensors oder einer Mehrzahl solcher Sensoren kann die Temperatur des Metallstranges 100 bestimmt werden, um damit beispielsweise die zuvor berechnete Temperatur des Metallstranges 100 mit der Messung abzugleichen. Die Temperaturdaten des Sensors bzw. der Sensoren werden zunächst einer Datenerfassung 128 zugeführt, und von dort an die Steuer- oder Regelungseinheit 122 über die Signalstrecke 124 gesendet.The
In dem Datenspeicher 126 sind Größen bzw. Parameter gespeichert, auf Grundlage derer für die einzelnen Kühlsegmente entlang der stützenden Strangführung 116 Solltemperaturen eingestellt bzw. festgelegt werden können. Zu diesen Größen können eine erste Solltemperatur, eine zweite Solltemperatur und ein vorbestimmter Abstand zum Gießspiegel 114 gehören. Diese Größen sind abhängig von einem bestimmten Werkstoff bzw. einer bestimmten Werkstoffgruppe, aus dem bzw. der der Metallstrang 100 hergestellt wird, und jedenfalls unabhängig von einer konkreten Stranggießanlage.Values or parameters are stored in the
Anhand der vorstehend genannten Parameter, die in dem Datenspeicher 126 abgelegt sind, können mittels der Steuer- und Regelungseinheit 122 für die einzelnen Kühlsegmente entlang der Strangführung 116 im Bereich der Sekundärkühlung 130 einer konkreten Stranggießanlage, z.B. die Stranggießanlage 110 von
Die Stranggießanlage 110 umfasst für die stützende Strangführung 116 bzw. entlang davon einen ausgewählten bzw. vorbestimmten Bereich 120, der beispielsweise mit den Segmenten Nr. 17 und Nr. 18 übereinstimmt. Jedenfalls sind in diesem ausgewählten Bereich 120 anstellbare Stützrollen 118 angeordnet, die jeweils paarweise in Form einer oberen Stützrolle R1 und einer hierzu gegenüberliegenden unteren Stützrolle R2 vorliegen.The
In der Darstellung von
In der gezeigten Ausführungsform besteht jedes der Segmente Nr. 17 und Nr. 18 aus je drei solcher Rollenpaare R1, R2, wobei die zugehörigen Stützrollen 118 einzeln angestellt werden können, d.h. in Richtung des zwischen den Stützrollen 118 hindurchgeführten Gießstrangs 100. Mittels einer Anstellung dieser Stützrollen wird für den Gießstrang 100 eine Softreduktion durchgeführt.In the embodiment shown, each of the segments No. 17 and No. 18 consists of three such pairs of rollers R1, R2, and the associated
Mittels der einzelnen Stützrollen R1, R2 und deren Anstellung in Richtung des zwischen den Stützrollen 118 in durchgeführten Gießstrangs 100 ist für den Gießstrang 100 eine sogenannte Softreduktion möglich. Zweckmäßigerweise werden hierbei sowohl die obere Stützrolle R1 als auch die untere Stützrolle R2 angestellt, so dass damit für den Gießstrang 100 eine Dickenreduktion sowohl an dessen Oberseite als auch an dessen Unterseite erzielt wird. Dies ist insbesondere für einen Metallstrang 100 in Form einer Bramme mit vergleichsweise großer Gießdicke, d.h. ≥ 250mm besonders vorteilhaft. Durch die Abnahme an Ober- und Unterseite kann die Innenqualität des Gießstrangs 100 verbessert werden.A so-called soft reduction is possible for the
Durch eine kräftigere Bauweise der anstellbaren Stützrollen 118 sind größere Einzelabnahmen für einen Metallstrang 100 möglich und/oder die Standzeit der Softreduktion-Einheit (d. h. der Segmente Nr. 17 und Nr. 18) können verlängert werden. Weiterhin können die Abnahme-Schritte individuell abgestuft werden.A stronger construction of the
An dieser Stelle wird gesondert hervorgehoben, dass entlang der stützenden Strangführung 116 die Stützrollen, die eine Softreduktion-Anstellfunktion aufweisen, allein in den Segmenten Nr. 17 und Nr. 18 angeordnet sind, d.h. in Übereinstimmung mit dem ausgewählten Bereich 120. Dies bedeutet, dass mit den Stützrollen 118, die in dem ausgewählten Bereich 120 angeordnet sind, für den Gießstrang 100 eine Softreduktion durchgeführt werden kann.At this point it is emphasized separately that along the supporting
Die übrigen Stützrollen-Segmente Nr. 1-16, und Nr. 19-20, sind herkömmlich ausgestaltet und haben keine solche Softreduktion-Anstellfunktion. Stattdessen können sie nur insoweit angestellt werden, dass der durch den thermischen Schrumpf entstandenen Dickenreduktion gefolgt wird. Hierdurch kann die Stranggießanlage 110 kostengünstiger gebaut werden.The remaining support roller segments No. 1-16, and No. 19-20, are of conventional design and have no such soft-reduction adjustment function. Instead, they can only be used to the extent that the reduction in thickness caused by thermal shrinkage is followed. This allows the
Der ausgewählte bzw. vorbestimmte Bereich 120 der stützenden Strangführung 116 ist in dem Zusammenhang zu sehen, dass darin im Betrieb der Stranggießanlage 110 die Sumpfspitze des Gießstrangs 100 liegen bzw. positioniert sein soll. Anders ausgedrückt, befindet sich eine Soll-Position bzw. ein Soll-Bereich für die Sumpfspitze des Gießstrangs 100 innerhalb dieses ausgewählten Bereichs 120. Damit ist es dann möglich, für den Gießstrang 100 innerhalb des ausgewählten Bereichs 120 der stützenden Strangführung 116 gezielt eine Softreduktion durchzuführen, endlich durch die erläuterte Anstellung der Stützrollen 118.The selected or predetermined
In dem Diagramm von
Die Steuer- oder Regelungseinheit 122 erhält die Prozessdaten bzw. Prozessparameter des jeweils aktuellen Gießprozesses von der Stranggießanlage 110, was durch einen entsprechenden Pfeil kenntlich gemacht ist, der von der Stranggießanlage 110 in Richtung der Steuer- oder Regelungseinheit 122 weist. Zu diesen Prozessparametern gehören u. a.:
- Werkstoff
- Gießtemperatur
- IST-Wert der Gießgeschwindigkeit
- Sekundärkühlwasser (d.h. Menge und Temperatur)
- Gießlänge.
- material
- Casting temperature
- ACTUAL value of the casting speed
- Secondary cooling water (i.e. quantity and temperature)
- Casting length.
Wie erläutert, können diese Prozessparameter PD über eine Schnittstelle in den Datenspeicher 126 eingegeben werden und von dort über die Signalstrecke 124 an den Prozessor der Steuer- oder Regelungseinheit 122 gelangen. Im Anschluss daran werden diese Prozessdaten dann von der Steuer- oder Regelungseinheit 122 sowohl an die erste Software I (Simulation- Modell "Vorsteuerung") als auch an die zweite Software II (Simulation- Modell "Regelung") weitergeleitet.As explained, these process parameters PD can be entered into the
Wie durch den Pfeil für "Prozessparameter", der auf das Symbol für die zweite Software II gerichtet ist, kenntlich gemacht, empfängt die zweite Software II von der Steuer- und Regelungseinheit 122 ebenfalls Informationen bezüglich der jeweiligen Prozessparameter für den aktuellen Gießprozess.As indicated by the arrow for “process parameters”, which is directed to the symbol for the second software II, the second software II also receives information from the control and
Währenddessen der Gießbetrieb läuft und durch die erste Software I geregelt wird, läuft die zweite Software II permanent im Hintergrund. Diesbezüglich wird gesondert hervorgehoben, dass die zweite Software II viel schneller als in Echtzeit rechnet, jedenfalls schneller als die erste Software I. Anders ausgedrückt, ist die Berechnungsgeschwindigkeit für die zweite Software II größer eingestellt als wie für die erste Software I.While the casting operation is running and is controlled by the first software I, the second software II runs permanently in the background. In this regard, it is emphasized separately that the second software II calculates much faster than in real time, at least faster than the first software I. In other words, the calculation speed for the second software II is set higher than that for the first software I.
In Bezug auf die in der
Ein Verfahren nach der vorliegenden Erfindung funktioniert nun wie folgt:
Mit der zweiten Software II wird einerseits in Zuordnung zu einer bestimmten Gießlänge ("x") und andererseits in Abhängigkeit von aktuell gewonnenen Prozessparametern aus dem laufenden Gießprozess insbesondere im Bereich der Kokille 112 und/oder aus zumindest einem in der Datenbank 126 gespeicherten Prozessparameter berechnet bzw. simuliert, welche Position für eine Sumpfspitze des Gießstrangs 100 gemäß der bestimmten Gießlänge entlang der stützenden Strangführung 116 der Stranggießanlage 110 aktuell vorläge.A method according to the present invention now works as follows:
With the second software II, on the one hand, in association with a specific casting length ("x") and, on the other hand, depending on currently obtained process parameters from the ongoing casting process, in particular in the area of the
Anders ausgedrückt, berechnet die zweite Software II viel schneller als in Echtzeit die Position der Erstarrung oder eines definierten Erstarrungsanteils entweder in Strangmitte oder eines vorbestimmten Abstandes zwischen den Strangschalen des Gießstrangs 100 auf Los- und Festseite, mit der Stellgröße Gießgeschwindigkeit.In other words, the second software II calculates the position of the solidification or of a defined solidification fraction either in the center of the strand or at a predetermined distance between the strand shells much faster than in real time of the
Sodann wird von der zweiten Software II diese berechnete Sumpfspitzenposition mit dem ausgewählten Bereich 120, bzw. mit der Soll-Position für die für die Sumpfspitze verglichen, und auf Grundlage dessen dann fortwährend ein Gießgeschwindigkeits-Korrekturwert (in
Die eigentliche Regelung des Gießprozesses erfolgt durch die erste Software I (Simulation-Modell "Regelung") in Echtzeit. Hierzu empfängt die erste Software I von der Steuer- oder Regelungseinheit 122 die notwendigen Informationen bezüglich der einzelnen Prozessparameter. Des Weiteren empfängt die erste Software I über die Steuer- oder Regelungseinheit 122 auch die von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwerte, d.h. Werte für die Ziel-Gießgeschwindigkeit, die jeweils zu einer relevanten Gießlänge gehören. Auf Grundlage dessen wird dann mittels der ersten Software I der Wert für eine zugehörige Soll-Geschwindigkeit (gemeint ist: Soll-Gießgeschwindigkeit) zurück an die Steuer- oder Regelungseinheit 122 gesendet und von dort an die relevanten Komponenten der Stranggießanlage 110 ausgegeben.The actual regulation of the casting process is carried out by the first software I (simulation model "regulation") in real time. For this purpose, the first software I receives the necessary information relating to the individual process parameters from the control or
Dies bedeutet, dass die erste Software I die Sumpfposition mit Hilfe der Gießgeschwindigkeit für den mit der Stranggießanlage 110 durchgeführten Gießprozess in Echtzeit regelt und hierbei den von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwert in Zuordnung zu der bestimmten Gießlänge erst mit einer Verzögerung berücksichtigt. Diese Verzögerung bestimmt sich aus einem Abstand des ausgewählten Bereichs 120 bzw. einer Soll-Position für die Sumpfspitze und der zuletzt in Echtzeit eingestellten Gießgeschwindigkeit. In Folge dessen wird damit erreicht, dass dadurch eine Sumpfspitzenposition des Gießstrangs 100 im laufenden Gießprozess sich stets innerhalb des ausgewählten Bereichs 120 entlang der stützenden Strangführung 116 befindet bzw. die Sumpfspitze des Gießstrangs 100 in diesem vorbestimmten Bereich 120 gehalten wird.This means that the first software I regulates the sump position with the aid of the casting speed for the casting process carried out with the
Die erfindungsgemäße Regelung kann beispielsweise mit einem PI-Regler oder einem Regler mit ähnlichen Eigenschaften erfolgen. Hierbei ist es möglich, Algorithmen zur Nullstellensuche einzusetzen (PositionSoll - PositionIST = 0). Welcher Regler bzw. Algorithmen zur Nullstellensuche angewählt wird kann parametriert werden.The regulation according to the invention can take place, for example, with a PI controller or a controller with similar properties. It is possible to use algorithms to search for the zero point ( target position - ACTUAL position = 0). Which controller or algorithm is selected for the zero point search can be parameterized.
Die soeben erläuterte Funktionsweise der vorliegenden Erfindung bzw. eines zugehörigen Verfahrens sei nachfolgend zunächst anhand eines Zahlenbeispiels erläutert:
Ein Gießbetrieb ist für die Stranggießanlage 110 gemäß
A casting operation is shown for the
Für das vorliegende Zahlenbeispiel wird angenommen, dass die Soll-Position für die Sumpfspitze des Gießstrangs 100 einen Abstand zum Gießspiegel 114 von 20 Metern hat, wobei die eingestellte Gießgeschwindigkeit 1 m/min beträgtFor the present numerical example, it is assumed that the target position for the sump tip of the
Für das vorliegende Zahlenbeispiel wird weiterhin angenommen, dass die Gießtemperatur im Bereich der Kokille 112 bzw. des Gießspiegels 114 um 10° ansteigt. Ein solcher Temperaturanstieg kann durch den Einsatz einer neuen Pfanne induziert sein. Nach einer weiteren Annahme findet dieser Temperaturanstieg im Bereich der Kokille 112 zu einem Zeitpunkt tn statt. Zu diesem Zeitpunkt tn ist bereits eine Gießlänge mit N Metern vergossen worden, so dass das neue Stück des Gießstrangs 100 mit der Gießlänge "N" bezeichnet wird.For the present numerical example, it is further assumed that the casting temperature in the area of the
Durch die höhere Gießtemperatur hat der Gießstrang 100 mehr Wärme, so dass die berechnete Sumpfspitze um ca. 1 Meter anwächst. Falls bei dem vorstehend genannten Temperaturanstieg die übrigen Prozessparameter wie insbesondere die Kühlung des Gießstrangs 100 im Bereich der Sekundärkühlung 130 unverändert blieben und lediglich die erste Software I zur Regelung des Gießprozesses zur Verfügung stünde, hätte dies zur Folge, dass die Position der Sumpfspitze in Anbetracht der genannten Längenzunahme von ca. 1 Meter sich - in der Förderrichtung F des Gießstrangs 100 gesehen - stromabwärts (d.h. in der Darstellung von
Zur Kompensation des besagten Temperaturanstiegs um 10 °C im Bereich der Kokille 112 wird mittels der zweiten Software II ein entsprechender Gießgeschwindigkeits-Korrekturwert berechnet. Unter Berücksichtigung dessen, dass die zweite Software II wesentlich schneller als in Echtzeit berechnet, erreicht dort - also in dem Simulation- Modell "Vorsteuerung" - das neue Strangstück mit der Gießlänge "N" die Position der vormaligen Durcherstarrung, d.h. 20 Meter gerechnet ab dem Gießspiegel 114, beispielsweise bereits nach 30 Sekunden. Im Vergleich hierzu wäre bei den genannten Parametern (Gießgeschwindigkeit = 1 m/min; Sumpfposition = 20 Meter gerechnet ab Gießspiegel 114) die Simulationszeit mit der ersten Software I, die in Echtzeit rechnet, bereits um 20 Minuten angestiegen bzw. fortgeschritten.To compensate for the said temperature increase by 10 ° C. in the region of the
Jedenfalls wird mit dem von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwert - zunächst im Modell und theoretisch - die für den Gießstrang 100 resultierende Gießgeschwindigkeit im vorliegenden Zahlenbeispiel derart reduziert werden, so dass damit die Position der Sumpfspitze für die Gießlänge "N" wieder innerhalb des ausgewählten Bereichs 120 liegt und damit ihre Soll-Position erreicht.In any case, the casting speed correction value calculated by the second software II - initially in the model and theoretically - is used for the casting
Damit liefert die zweite Software II - in Anbetracht des vorstehend genannten Temperaturanstiegs im Bereich der Kokille 112 - zu jedem Zeitpunkt eine Information an die erste Software I, um welchen Faktor (= Gießgeschwindigkeits-Korrekturwert) die reale Gießgeschwindigkeit des mit der Stranggießanlage 110 durchgeführten Gießprozesses im Vergleich zu der bis dato eingestellten Gießgeschwindigkeit zu verändern ist, damit die Sumpfspitze des Gießstrangs 100 mit der erläuterten Längenzunahme nicht aus dem ausgewählten Bereich 120 herausläuft.The second software II - in view of the above-mentioned temperature rise in the area of the mold 112 - thus provides information to the first software I at any time about the factor (= casting speed correction value) by which the real casting speed of the casting process carried out with the
Für die Funktionsweise der ersten Software I ist im vorliegenden Zahlenbeispiel von Bedeutung, dass die erste Software I den von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwert nach Empfang abspeichert. Ein wesentliches Merkmal für das erfindungsgemäße Verfahren besteht nun darin, dass die erste Software I die reale Gießgeschwindigkeit um den besagten Gießgeschwindigkeits-Korrekturwert nicht sofort, sondern erst mit einer zeitlichen Verzögerung vermindert.In the present numerical example, it is important for the functioning of the first software I that the first software I stores the casting speed correction value calculated by the second software II upon receipt. An essential feature for the method according to the invention is that the first software I does not reduce the real casting speed by the casting speed correction value immediately, but only after a time delay.
Wenn nun das neue Stück des Gießstrangs 100 mit der Gießlänge "N" eine Position (z. B. 5 Meter) vor der aktuellen Sumpfposition (= 20 Meter, gerechnet ab dem Gießspiegel 114) erreicht, wird die aktuelle Gießgeschwindigkeit von der ersten Software I bereits um den von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwert reduziert. Eine Position von z. B. 5 Meter vor der aktuellen bzw. zuletzt vorliegenden Sumpfposition von z. B. 20 Metern entspricht - bei einer Gießgeschwindigkeit von 1 m/min, einer Zeitdauer von 15 Minuten, die das neue Stück des Gießstrangs 100 mit der Gießlänge "N" bis dahin zurückgelegt hat. Damit beläuft sich dann für dieses Beispiel die zeitliche Verzögerung, mit der die erste Software I unter Berücksichtigung des von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwert die reale Gießgeschwindigkeit anpasst bzw. reduziert, auf 15 Minuten. Infolgedessen vermindert sich die Sumpflänge bis zum Eintreffen des wärmeren Strangstücks, d.h. des neuen Stücks des Gießstrangs 100 mit der Gießlänge "N", um die Hälfte des Wertes, wie sie in der Simulation der zweiten Software II angestiegen war, also nur um 0,5 m.If the new piece of the
Wenn nun das Strangstück mit der höheren Gießtemperatur (= Gießlänge "N") durcherstarrt, wächst die echte Sumpflänge des Gießstrangs 100 auch um ca. 1 Meter an. Hierzu wird die Annahme getroffen, dass die Referenzposition für die Gießlänge bei 50% liegt. Dies bedeutet, dass von der zweiten Software II die Gießgeschwindigkeit verwendet wird, welche etwa bei der Hälfte der Strecke zwischen Badspiegel 114 und der Sollposition für die Sumpfspitze liegt (dies entspricht in der Darstellung von
Kurzum: Für das genannte Zahlenbeispiel kann die erste Software I unter Verwendung des von der zweiten Software II berechneten Gießgeschwindigkeits-Korrekturwerts und unter Berücksichtigung der besagten Verzögerung die reale Gießgeschwindigkeit für den Gießprozess regelungstechnisch derart vermindern, dass die Sumpflänge des Gießstrangs 100 sich weiterhin innerhalb des ausgewählten Bereichs 120 befindet bzw. darin verbleibt.In short: For the numerical example mentioned, the first software I can, using the casting speed correction value calculated by the second software II and taking into account the said delay, reduce the real casting speed for the casting process in such a way that the sump length of the
Für das vorstehend genannte Zahlenbeispiel sei ergänzend darauf hingewiesen, dass die erste Software I und die zweite Software II jederzeit den gleichen Prozesswerte bzw. Prozessparameter des laufenden Gießprozesses erhalten.For the numerical example mentioned above, it should also be pointed out that the first software I and the second software II always receive the same process values or process parameters of the ongoing casting process.
Zur Klarstellung des soeben erläuterten Zahlenbeispiel sei darauf hingewiesen, dass die genannte Verminderung der realen Gießgeschwindigkeit im Zusammenhang damit steht, dass im Bereich der Kokille 112 ein Temperaturanstieg angenommen wird. Falls es abweichend von diesem Beispiel zu einem Absinken der Schmelztemperatur in einer Pfanne kommen sollte, hätte dies zur Folge, dass dann die erste Software I, unter Verwendung eines von der zweiten Software II entsprechend berechneten Gießgeschwindigkeits-Korrekturwerts, die reale Gießgeschwindigkeit des Gießprozesses erhöht, ebenfalls unter Einhaltung der erläuterten zeitlichen Verzögerung.To clarify the numerical example just explained, it should be pointed out that the mentioned reduction in the real casting speed is related to the assumption that a temperature increase is assumed in the region of the
Die Funktionsweise der vorliegenden Erfindung bzw. eines zugehörigen Verfahrens ist des Weiteren anhand der Darstellungen in den
Die Darstellung von
The representation of
Im Einzelnen enthält die
Sowohl in dem oberen Diagramm als auch in dem unteren Diagramm von
Am oberen Rand des oberen Diagramms von
Das untere Diagramm von
Eine Zusammenschau der beiden Diagramme von
Ohne Signale durch die Vorsteuerung würde eine Sumpfspitzenregelung einen Anstieg der Gießtemperatur erst registrieren, wenn der erste Strangquerschnitt mit der höheren Temperatur am Erstarrungspunkt angekommen ist. Die dann resultierende Überschreitung der Soll-Position führt zu einer abfallenden Geschwindigkeitsrampe durch die PI-Regelung. Bis sich der Abfall der Gießgeschwindigkeit voll in der Sumpflängenverkürzung ausgewirkt hat, muss wieder ein Strangstück den Weg vom Gießspiegel 114 bis zur Sumpfspitze zurückgelegt haben. Wenn die Regelung zu stark eingestellt ist, kommt es dabei zu unerwünschten Überschwingern. Wenn sie schwächer eingestellt wird, dauert die Korrektur entsprechend länger.Without signals from the pilot control, a sump peak control would only register a rise in the casting temperature when the first strand cross-section with the higher temperature has reached the solidification point. The resulting overshooting of the target position leads to a falling speed ramp through the PI control. By the time the drop in the casting speed has had its full effect on the shortening of the sump length, another strand must have covered the path from the
Aus den Werten der Vorsteuerung kann die Regelung dagegen sehr zeitnah ermitteln, welche Soll-Geschwindigkeit für welche Stranglänge passend wäre. Da diese Soll-Geschwindigkeit in der Regel nicht für alle Strangposition gleich ist, wird durch einen Algorithmus berechnet, welche Gießgeschwindigkeit insgesamt die geringsten Abweichungen vom Sollwert liefert. Dies geschieht entweder durch die Auswahl einer Referenzposition, für die die Zielgeschwindigkeit ermittelt wird, oder es wird aus allen Positionen bis zur Sumpfspitze die aktuelle Zielgeschwindigkeit gemittelt (was auch in
Nach einer weiteren (nicht gezeigten) Ausführungsform kann vorgesehen sein, dass die die gemittelte Zielgeschwindigkeit (d.h. ein Mittelwert, der aus den von der zweiten Software II bestimmten Ziel-Gießgeschwindigkeiten für verschiedene Gießlängen gebildet wird) dann von der ersten Software I direkt als Sollgeschwindigkeit übernommen werden, unter Berücksichtigung der vorstehend erläuterten zeitlichen Verzögerung. Ergänzend und/oder alternativ kann auch eine Überlagerung durch eine PI-Regelung auf die aktuelle Abweichung der Sumpflänge von der Sollposition erfolgen, um die tatsächliche Prozesshistorie aller Strangquerschnitte gesondert zu berücksichtigen.According to a further embodiment (not shown) it can be provided that the averaged target speed (ie an average value derived from the target casting speeds determined by the second software II for various Casting lengths is formed) can then be taken over directly by the first software I as the target speed, taking into account the time delay explained above. In addition and / or as an alternative, a PI control can also be used to superimpose the current deviation of the sump length from the target position in order to take into account the actual process history of all strand cross-sections separately.
Das Diagramm von
Des Weiteren findet sich im Diagramm von
Das Diagramm von
Die Darstellung von
Für das untere Diagramm von
Das untere Diagramm von
- 1-201-20
- Stützrollensegmente (der stützenden Strangführung 116)Support roller segments (of the supporting strand guide 116)
- 100100
- Gießstrang /MetallstrangCast strand / metal strand
- 110110
- StranggießanlageContinuous caster
- 112112
- KokilleMold
- 113113
- untere Öffnung (der Kokille 112)lower opening (of the mold 112)
- 114114
- Badspiegel/GießspiegelBath mirror / pouring mirror
- 116116
- stützende Strangführungsupporting strand guide
- 118118
- Stützrollen/RollenpaareSupport rollers / pairs of rollers
- 120120
- vorbestimmter bzw. ausgewählter Bereich (der Strangführung 116)predetermined or selected area (of strand guide 116)
- 122122
- Steuer- oder RegelungseinheitControl or regulation unit
- 123123
- ProzessrechnerProcess computer
- 124124
- Signalstrecke bzw. SignalverbindungSignal path or signal connection
- 126126
- Datenbank bzw. DatenspeicherDatabase or data storage
- 128128
- DatenerfassungData acquisition
- 130130
- Sekundärkühlung (der Stranggießanlage 114)Secondary cooling (of the continuous caster 114)
- II.
- erste Software (Simulation-Modell "Regelung")first software (simulation model "control")
- IIII
- zweite Software (Simulation-Modell "Vorsteuerung")second software (simulation model "pre-control")
- FF.
- Förderrichtung (für den Gießstrang 100)Direction of conveyance (for the cast strand 100)
- K, L, M, NK, L, M, N
- Gießlänge(n)Casting length (n)
- PDPD
- ProzessdatenProcess data
- R1R1
- obere Stützrolleupper support roller
- R2R2
- untere Stützrollelower support roller
Claims (17)
dass die zweite Software (II) einerseits in Zuordnung zu einer bestimmten Gießlänge (K; L; M) und andererseits in Abhängigkeit von aktuell gewonnenen Prozessparametern aus dem laufenden Gießprozess insbesondere im Bereich der Kokille (112) und/oder aus zumindest einem in einer Datenbank gespeicherten Prozessparameter berechnet, welche Position für eine Sumpfspitze des Gießstrangs (100) gemäß der bestimmten Gießlänge (K; L; M) entlang einer stützenden Strangführung (116) der Stranggießanlage (110) aktuell vorläge, wobei die zweite Software (II) diese berechnete Sumpfspitzenposition mit einer Soll-Position oder einem Soll-Bereich (120) für die Sumpfspitze vergleicht und auf Grundlage dessen fortwährend einen Gießgeschwindigkeits-Korrekturwert berechnet, und
dass der von der zweiten Software (II) berechnete Gießgeschwindigkeits-Korrekturwert an die erste Software (I) übergeben wird, wobei die erste Software (I) die Sumpfposition mit Hilfe der Gießgeschwindigkeit in Echtzeit regelt und hierbei den von der zweiten Software (II) berechneten Gießgeschwindigkeits-Korrekturwert in Zuordnung zu der bestimmten Gießlänge erst mit einer Verzögerung berücksichtigt, die sich aus einem Abstand der Soll-Position oder des Soll-Bereichs (120) für die Sumpfspitze und der zuletzt in Echtzeit eingestellten Gießgeschwindigkeit ergibt, so dass dadurch eine Sumpfspitzenposition des Gießstrangs (100) im laufenden Gießprozess sich stets innerhalb eines vorbestimmten bzw. ausgewählten Bereichs (120) entlang der stützenden Strangführung (116) befindet bzw. die Sumpfspitze des Gießstrangs (100) in diesem vorbestimmten bzw. ausgewählten Bereich (120) gehalten wird.A method for casting a cast strand (100) in a continuous casting plant (110) equipped with a process computer (123) and having at least one casting machine, the process computer (123) comprising at least one first software (I) that calculates in real time and regulates the casting process, wherein the process computer (123) comprises a second additional software (II) which calculates faster than in real time, so that the calculation speed for the second software (II) is greater than for the first software (I),
that the second software (II) is assigned on the one hand to a specific casting length (K; L; M) and on the other hand as a function of currently obtained process parameters from the ongoing casting process, in particular in the area of the mold (112) and / or from at least one in a database The stored process parameters calculate which position would currently be present for a sump tip of the cast strand (100) according to the determined casting length (K; L; M) along a supporting strand guide (116) of the continuous caster (110), the second software (II) having this calculated sump tip position compares with a target position or target range (120) for the sump tip and continuously calculates a casting speed correction value on the basis thereof, and
that the casting speed correction value calculated by the second software (II) is transferred to the first software (I), the first software (I) regulating the sump position with the aid of the casting speed in real time and the one calculated by the second software (II) The casting speed correction value in association with the specific casting length is only taken into account with a delay, which results from a distance between the target position or the target area (120) for the sump tip and the casting speed last set in real time, so that a sump tip position of the Cast strand (100) in the running The casting process is always located within a predetermined or selected area (120) along the supporting strand guide (116) or the sump tip of the cast strand (100) is kept in this predetermined or selected area (120).
wobei die stützende Strangführung (116) einen ausgewählten Bereich (120) aufweist, in dem eine Sumpfspitze des Gießstrangs (100) liegen soll,
dadurch gekennzeichnet,
dass die Stützrollen oder Rollenpaare (118), die eine Softreduktion-Anstellbarkeit aufweisen, ausschließlich in dem ausgewählten Bereich (120) der Strangführung (116) angeordnet sind.A continuous casting plant (110) for casting a cast strand (100), comprising
wherein the supporting strand guide (116) has a selected area (120) in which a sump tip of the cast strand (100) is to lie,
characterized,
that the support rollers or roller pairs (118), which have a soft-reduction adjustability, are arranged exclusively in the selected area (120) of the strand guide (116).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019206264.4A DE102019206264A1 (en) | 2019-05-02 | 2019-05-02 | Method and continuous caster for casting a cast strand |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3733323A1 true EP3733323A1 (en) | 2020-11-04 |
EP3733323B1 EP3733323B1 (en) | 2024-04-17 |
Family
ID=70482377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20172396.2A Active EP3733323B1 (en) | 2019-05-02 | 2020-04-30 | Method and continuous casting plant for casting a cast strand |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3733323B1 (en) |
DE (1) | DE102019206264A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114160767A (en) * | 2021-11-19 | 2022-03-11 | 上海二十冶建设有限公司 | Arrangement method for confirming installation datum line of continuous casting equipment by adopting traversal method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4124400A1 (en) * | 2021-07-28 | 2023-02-01 | Primetals Technologies Austria GmbH | Method for determining a defect probability of a cast product section |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004048016A2 (en) * | 2002-11-23 | 2004-06-10 | Sms Demag Aktiengesellschaft | Method and device for continuously casting slab bars, thin slab bars, blooms, pre-profiled billets, billets, and similar made of liquid metal, particularly steel material |
EP2346631B1 (en) | 2008-11-04 | 2015-07-22 | SMS Siemag Aktiengesellschaft | Method and device for controlling the solidification of a cast strand in a continuous casting plant at startup of the casting process |
-
2019
- 2019-05-02 DE DE102019206264.4A patent/DE102019206264A1/en active Pending
-
2020
- 2020-04-30 EP EP20172396.2A patent/EP3733323B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004048016A2 (en) * | 2002-11-23 | 2004-06-10 | Sms Demag Aktiengesellschaft | Method and device for continuously casting slab bars, thin slab bars, blooms, pre-profiled billets, billets, and similar made of liquid metal, particularly steel material |
EP2346631B1 (en) | 2008-11-04 | 2015-07-22 | SMS Siemag Aktiengesellschaft | Method and device for controlling the solidification of a cast strand in a continuous casting plant at startup of the casting process |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114160767A (en) * | 2021-11-19 | 2022-03-11 | 上海二十冶建设有限公司 | Arrangement method for confirming installation datum line of continuous casting equipment by adopting traversal method |
CN114160767B (en) * | 2021-11-19 | 2023-08-22 | 上海二十冶建设有限公司 | Arrangement method for confirming installation datum line of continuous casting equipment by adopting traversal method |
Also Published As
Publication number | Publication date |
---|---|
DE102019206264A1 (en) | 2020-11-05 |
EP3733323B1 (en) | 2024-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19963186B4 (en) | Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device | |
EP3184202B1 (en) | Method for continuously casting a metal strand | |
AT408197B (en) | METHOD FOR CONTINUOUSLY casting a METAL STRAND | |
EP2346631B1 (en) | Method and device for controlling the solidification of a cast strand in a continuous casting plant at startup of the casting process | |
EP2222426A1 (en) | Device for controlling or regulating a temperature | |
EP1200216B1 (en) | Method and device for making a metal strand | |
EP3733323B1 (en) | Method and continuous casting plant for casting a cast strand | |
EP3554744A1 (en) | Method and device for regulating a strand casting system | |
EP2767600A1 (en) | Method, especially for the production of long steel products and device for implementing the method | |
EP2025432B1 (en) | Method for creating steel long products through strand casting and rolling | |
DE102019208736A1 (en) | Method for casting a cast strand in a continuous caster | |
DE102020209794A1 (en) | Process for controlling or regulating the temperature of a cast strand in a continuous casting plant | |
EP2906369B1 (en) | Width-altering system for strip-shaped rolled material | |
EP0732979B1 (en) | Continuous casting and rolling plant for steel strip, and a control system for such a plant | |
EP3173166B1 (en) | Method and device for setting the width of a continuously cast metal strand | |
EP3849729B1 (en) | Method for open-loop or closed-loop control of the temperature of a casting strand in a continuous casting machine | |
EP1827735B1 (en) | Method and device for continuous casting of metals | |
EP3944910A1 (en) | Method for producing a cast strand in a continuous casting machine | |
DE102005049151A1 (en) | Extruding liquid metals, especially steel, comprises controlling the temperature to the solidification point before the tip region | |
AT403351B (en) | METHOD FOR CONTINUOUSLY casting a METAL STRAND | |
WO2020127925A1 (en) | Producing a metal strip having an austenite-martensite mixed microstructure | |
DE102017219464A1 (en) | Continuous casting plant with single roll adjustment | |
WO2022079027A1 (en) | Device and method for producing hot-rolled metal strips | |
DE2344438B1 (en) | Method for controlling the cooling of a strand emerging from a continuous casting mold and device for carrying out this method | |
WO2002083340A2 (en) | Increase in format thickness for thin slab continuous casting systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20200430 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230707 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231201 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020007664 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240417 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SMS GROUP GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240819 |