EP3121450B1 - Pumpe zum fördern eines fluids mit variierender viskosität - Google Patents

Pumpe zum fördern eines fluids mit variierender viskosität Download PDF

Info

Publication number
EP3121450B1
EP3121450B1 EP16173766.3A EP16173766A EP3121450B1 EP 3121450 B1 EP3121450 B1 EP 3121450B1 EP 16173766 A EP16173766 A EP 16173766A EP 3121450 B1 EP3121450 B1 EP 3121450B1
Authority
EP
European Patent Office
Prior art keywords
pump
relief
fluid
passage
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16173766.3A
Other languages
English (en)
French (fr)
Other versions
EP3121450A1 (de
Inventor
Thomas Felix
Simon Gassmann
Thomas Welschinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Management AG
Original Assignee
Sulzer Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Management AG filed Critical Sulzer Management AG
Publication of EP3121450A1 publication Critical patent/EP3121450A1/de
Application granted granted Critical
Publication of EP3121450B1 publication Critical patent/EP3121450B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/06Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/086Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • F04D7/045Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous with means for comminuting, mixing stirring or otherwise treating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0516Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time

Definitions

  • the invention relates to a pump for conveying a fluid with varying viscosity according to the preamble of the independent claim.
  • the rotor is dimensioned such that a narrow, annular relief gap is formed between the rotor and the stator. This is connected on the high-pressure side to the space behind the impeller or, in the case of multi-stage pumps, to the space behind the last impeller, so that a leakage flow of the pumped fluid can flow through the relief gap to the low-pressure side of the rotor. From there the fluid is then returned to the inlet of the pump. As a result of the pressure drop across the rotor, a force is generated in the axial direction, which is directed opposite to the hydraulic axial forces generated by the impeller, and thus considerably reduces the forces to be absorbed by the axial bearing.
  • the geometric dimensions are very important, in particular the diameter and the axial length of the rotor and the play between rotor and stator, which determines the width of the relief channel in the radial direction.
  • the leakage flow through the relief channel causes a loss of volume of the pumped fluid, which of course should be kept as low as possible, the leakage flow also having to be so large that the desired technical effects are achieved.
  • the fluid flow in the relief channel causes friction which can lead to a considerable and undesirable temperature increase in the relief channel.
  • the fluid flowing through the relief channel can also contribute to the stabilization or stability of the pump rotor dynamics. Due to the effect known as the Lomakin effect, the fluid flowing in the relief channel generates forces centering the shaft, which have a positive effect on both the damping and the rigidity of the shaft bearings.
  • multiphase pumps for example, fluids are conveyed that contain a mixture of several phases, for example one or more liquid phases and one or more gaseous phases.
  • Such pumps have long been well known and are made in numerous embodiments. These pumps can be used in a very wide range of applications, for example in the oil and gas industry for pumping or transporting crude oil or crude oil-natural gas mixtures.
  • the fluid properties can change over time, e.g. B. the phase composition or phase distribution of the multiphase fluid to be pumped.
  • the relative volume proportions of the liquid and the gaseous phase - for example in oil production - are subject to very large fluctuations, which is partly due to the natural source.
  • One possible solution is to provide an adjustable valve in the return line, with which the fluid flowing through the relief channel is returned from the low-pressure side of the rotor of the relief piston to the inlet of the pump, so that the return can be throttled more or less strongly .
  • a throttling in the return line can, however, lead to a considerable reduction in the axial thrust compensation generated by the relief piston, because the pressure drop across the relief piston becomes significantly smaller.
  • the documents DE 249 336 C , DE 43 13 455 A1 , WO 2009/135802 and JP H01 237394 A disclose similar arrangements for reducing axial thrust in turbo-machinery by means of relief pistons.
  • a pump for conveying a fluid with varying viscosity which has a housing with an inlet and an outlet for the fluid to be conveyed, and at least one impeller for conveying the fluid from the inlet to the outlet, which is arranged on a rotatable shaft , as well as a relief piston for axial thrust relief, wherein the relief piston comprises a rotor fixedly connected to the shaft with a high pressure side and a low pressure side, a stator stationary with respect to the housing, and a relief channel which extends between the rotor and the stator from the high pressure side to the Extends the low-pressure side of the rotor and wherein a return channel is also provided which connects the low-pressure side of the rotor to the inlet, at least one intermediate channel being provided which opens into the relief channel between the high-pressure side and the low-pressure side of the rotor, and where a Blocking member is provided for influencing the flow through the intermediate channel.
  • the length of the relief channel and thus also the effective length of the rotor of the relief piston can be changed through the intermediate channel and the blocking element. Since, as already mentioned, the diameter and the length of the rotor of the relief piston have a decisive influence both on the flow rate through the relief piston and on the temperature increase caused by friction in the relief channel, an adaptation to strong changes in the viscosity of the fluid can thus be carried out in a very simple manner through the intermediate channel. Functionally, you now have the possibility, as it were, of operating the pump with at least two different relief pistons of different lengths.
  • the intermediate channel can be shut off with the blocking element so that the leakage flow over the entire length of the relief piston is guided to the low pressure side of the rotor and discharged from there through the return duct. If there is a sharp increase in viscosity - for example, the described peak in the internal friction of the fluid, which is based on the formation of the oil-water emulsion - the blocking element and thus the intermediate channel are completely opened, so that essentially the entire leakage flow is discharged from the relief channel into the intermediate channel.
  • the pump and in particular the relief piston can be adapted in a simple manner to strong changes in the viscosity of the fluid. It is particularly advantageous that the axial thrust relief generated by the relief piston experiences at least no substantial reduction, if at all, so that no greater load has to be absorbed by the axial bearing of the shaft.
  • the relief channel preferably comprises an annular space which surrounds the shaft and into which the intermediate channel opens. This ensures that when the intermediate channel is open, the fluid can flow particularly well and evenly from the relief channel into the intermediate channel.
  • the relief channel has a constant width in the radial direction outside the annular space.
  • the relief channel is divided by the intermediate channel into a first partial channel and a second partial channel, which are arranged one behind the other in the axial direction.
  • the relief channel outside the annular space in the first partial channel or in the second partial channel - particularly preferably in both partial channels - has a constant width in the radial direction.
  • the width of the first partial channel can be the same as the width of the second channel or the first and second partial channels have different widths. Due to the different widths of the two sub-channels, the leakage rate through the relief channel can be easily increased or decreased.
  • the intermediate channel is preferably connected to the inlet so that the fluid flowing out via the intermediate channel is also returned to the inlet of the pump.
  • the intermediate channel opens into the return channel because this simplifies the structural design.
  • the blocking element is designed as an adjustable flow valve.
  • the flow in the intermediate channel can thus also be set to values between zero and the maximum flow.
  • a second blocking element is provided to influence the flow through the return channel. This means that the flow rate can also be actively influenced in the return duct.
  • the blocking element is designed as a three-way valve which is flow-connected to the inlet, to the return channel and to the intermediate channel.
  • the return channel or the intermediate channel can optionally be flow-connected to the inlet of the pump in a particularly simple manner in terms of apparatus.
  • a switching element is provided, with which the return channel can be optionally connected to the inlet of the pump or to a source for a second fluid, so that the second fluid can be fed through the return channel to the low-pressure side of the rotor. It is thus possible, for example, to supply a second fluid through the return channel, which fluid can serve as a barrier fluid, for example.
  • the blocking element can be arranged and designed in such a way that the intermediate channel can be connected to a source for a second fluid, so that the second fluid can be introduced into the relief channel through the intermediate channel.
  • the second fluid can e.g. B. be a demulsifier with which the viscosity of the fluid in the relief gap can be reduced. This is also a possibility of introducing a second fluid into the relief channel in order to reduce the viscosity of the fluid here.
  • these organs can be designed, for example, as organs which can be actuated electrically or hydraulically or electro-hydraulically and which can then be remotely controlled, for example, via a signal line or, depending on the application, wirelessly.
  • the pump according to the invention can in particular also be designed as a multi-stage pump which has at least one second impeller arranged on the shaft for conveying the fluid.
  • the pump according to the invention is also possible to configure the pump according to the invention as a multiphase pump.
  • the pump according to the invention can particularly preferably also be designed as a centrifugal pump for oil and gas production, in particular as an undersea pump for undersea oil and gas production.
  • Fig. 1 shows a schematic representation of a first exemplary embodiment of a pump according to the invention, which is designated as a whole with the reference number 1 and is designed as a centrifugal pump or centrifugal pump.
  • Fig. 1 some parts of the pump 1 are shown in breakout.
  • Fig. 2 shows some parts of the pump 1 in an enlarged sectional view.
  • the pump 1 has a housing 2 with an inlet 3 through which a fluid to be conveyed can be introduced into the pump 1, as indicated by the arrow E in Fig. 1 symbolizes. Furthermore, the housing 2 has an outlet 4, through which the fluid to be delivered leaves the pump 1, as indicated by the arrow O in FIG Fig. 1 symbolizes.
  • the pump has a rotatable shaft 5, the longitudinal axis A of which defines an axial direction. In the following, when reference is made to the axial direction, the direction of the longitudinal axis A of the shaft 5 is always meant. The radial direction then means a direction perpendicular to the axial direction.
  • At least one impeller 7 for conveying the fluid is provided on the shaft 5, from which in Fig. 2 only the upper half is shown.
  • the pump 1 according to the invention can be designed both as a single-stage pump with only one impeller 7 and as a multi-stage pump with at least two impellers 7, which are arranged axially spaced one behind the other on the shaft 5 in a manner known per se.
  • the impeller 7 in the following, either the single impeller of a single-stage pump is meant or the last impeller 7 of a multi-stage pump, which is the impeller 7 which generates the highest pressure.
  • the pump 1 according to the invention is preferably designed as a multistage centrifugal pump.
  • the pump 1 according to the invention can be designed as a single-phase pump or as a multi-phase pump.
  • Multiphase pumps are designed for the delivery of multiphase fluids, so they can deliver fluids that contain a mixture of several phases, for example one or several liquid phases, e.g. B. in the form of an emulsion, and one or more gaseous phases.
  • the pump 1 according to the invention is preferably designed as a multiphase pump.
  • the pump according to the invention is preferably a pump 1 for pumping highly viscous fluids, such as oil or petroleum.
  • highly viscous fluids mean fluids whose dynamic viscosity is at least 65 cP (centipoise), which corresponds to 0.065 Pa s (Pascal-second) in SI units.
  • the pump according to the invention is used in oil and gas production, for example as a feed pump with which the oil or oil-gas mixture is pumped from the borehole of an oil field or as a transport pump with which the oil or the oil-gas mixture is conveyed through a pipeline.
  • the pump 1 according to the invention can be designed as an underwater (subsea) pump, which is operated, for example, when extracting oil and gas under the sea on the seabed. It goes without saying, however, that the invention is not restricted to such configurations and applications.
  • the first embodiment of the inventive pump 1 (see Fig. 1 and Fig. 2 ) has a relief piston 6 for axial thrust relief.
  • a force is generated in the axial direction, which is directed opposite to the axial hydraulic force that is generated by the impellers 7 when conveying the fluid.
  • the relief piston 6 has an essentially cylindrical rotor 61, which is connected to the shaft 5 in a rotationally fixed manner, as well as a stator 62 which is stationary with respect to the housing 2.
  • the stator 62 can for example be designed as a cylindrical sleeve which is fixedly connected to the housing 2 or parts of the housing 2 itself can form the stator 62.
  • the rotor 61 has a diameter D. It has a high pressure side 65 and a low pressure side 64. The end face on the high pressure side 65 of the rotor 61 is subjected to a high pressure. This is typically done by placing the high pressure side 65 of the rotor 61 with the under pressure standing fluid behind the impeller 7 or behind the last impeller 7 is applied.
  • the high pressure side 65 is then essentially acted upon by the pressure which the fluid has at the outlet 4 of the pump 1.
  • the low-pressure side 64 is subjected to a significantly lower pressure, typically the pressure which the fluid has at the inlet 3 of the pump. This can be implemented, for example, in such a way that the low-pressure side 64 of the rotor 61 is flow-connected to the inlet 3 of the pump via a return duct 8.
  • the diameter D of the rotor 61 and the inner diameter of the cylindrical stator 62 are dimensioned such that an annular relief channel 63 is formed between the outer surface of the rotor 61 and the inner outer surface of the stator 62, which according to the invention extends between the rotor 61 and the stator 62 from the high pressure side 65 extends in the axial direction up to the low pressure side 64.
  • the width B1 or B2 of the relief channel 63 in the radial direction corresponds to the difference between the inner diameter of the stator 62 and the diameter D of the rotor.
  • the leakage flow Q through the relief channel 63 causes the following three effects, among others: First, the leakage flow Q means a volume loss of the fluid delivered by the pump. It is therefore desirable that these leakage losses do not become too great.
  • the leakage flow Q flowing through the relief channel 63 due to the Lomakin effect causes forces which center the shaft 5, stabilize it and dampen vibrations. This effect has a positive effect on the damping and the rigidity of the shaft bearing.
  • the leakage flow Q and its effects depend on a large number of parameters, on the one hand on the geometric dimensions of the relief piston 6, which for a given inner diameter of the stator 63 is mainly the diameter D of the rotor 61, which determines the width B1, B2 of the relief channel 63, and the length L of the rotor 63 in the axial direction, which determines the axial length of the relief duct 63.
  • these parameters must be specified for its later use, which often extends over an operating period of many years, and can then only be changed later by replacing the hydraulic components of the pump 1.
  • the leakage flow Q also depends on the pressure difference that drops across the rotor 61, on the speed, i.e. the speed of rotation of the pump 1, and of course the properties of the fluid to be conveyed, such as its density or viscosity.
  • the pump 1 is particularly suitable for the continuous delivery of a fluid with strongly varying viscosity
  • This measure allows the length of the relief gap 63 to be varied, which results in particularly good adaptability to variations in the viscosity of the fluid.
  • the relief channel 63 comprises an annular space 66 which surrounds the shaft 5 and into which the intermediate channel 9 opens.
  • the annular space 66 has a width in the radial direction which is greater than the width B1, B2 of the relief channel 63.
  • the relief channel 63 has a constant width B1 or B2 in the radial direction as seen over its axial length.
  • these widths B1 or B2 vary.
  • the intermediate channel is as in Fig. 1 shown connected to the inlet 3 of the pump.
  • the blocking element 10 is designed at least as an open-close valve which, in a first position, completely blocks the flow connection through the intermediate channel 9 to the inlet 3, and which in a second position completely opens the flow connection through the intermediate channel 9.
  • Fig. 2 shows the first embodiment of the pump 1 in a first operating state in which the blocking member 10 is in the first position, that is, the flow connection through the intermediate channel 9 closes while Fig. 3 the first embodiment of the pump 1 shows in a second operating state in which the blocking member 10 is in the second position, that is, the flow connection through the intermediate channel 9 opens completely.
  • the blocking element 10 is preferably designed as an adjustable flow valve 10 with which the leakage flow Q through the intermediate channel 9 can also be set to values between zero and the maximum flow.
  • Both the return channel 8 and the intermediate channel 9 are each designed, in particular with regard to their diameter, that they have at least no significant throttling effect on the leakage flow Q, ie the respective flow resistance of the return channel 8 and the intermediate channel 9 is dimensioned so that it is significantly smaller is than that Flow resistance of the relief channel 63. This makes it possible to ensure that essentially the entire pressure difference drops across the rotor 61 and that the rotor thus generates the greatest possible axial thrust relief.
  • the function of the pump 1 and in particular the adaptation to the varying viscosity of the fluid is described below using the example of skimming an oil field with the pump 1.
  • a typical value for the viscosity of the oil in this phase is, for example, 100-200 cP.
  • pump 1 is in the in Fig. 2 first operating state shown.
  • the flow connection through the intermediate channel 9 for the leakage flow Q is blocked with the blocking element 10.
  • the relief channel 63 which has the total length L in the axial direction, is now the series connection of a first sub-channel 631 of the axial length L1, which extends from the high pressure side to the beginning of the annular space 66 and has a radial width B1, as well as a second Partial channel 632 of the axial length L2, which, viewed in the flow direction, extends from the axial end of the annular space 66 to the low-pressure side 64 and has a radial width B2.
  • the effective length of the relief channel 63 is thus the sum of L1 + L2, with natural L1 + L2 being smaller than the total length L.
  • the leakage flow Q therefore flows completely from the high pressure side 65 through the relief channel 63 to the low pressure side 64 and from there through the return channel 8 back to the inlet 3 of the pump.
  • the width B1 of the first partial channel 631 in the radial direction and the width B2 of the second partial channel 632 in the radial direction are preferably each constant over the axial length L1 of the first and L2 of the second partial channel.
  • the widths B1 and B2 can be the same or different. If you design the widths B1 and B2 differently, this also results the possibility of changing the width of the relief channel, whereby one has another parameter for influencing the leakage flow Q available.
  • Different widths B1 and B2 can be implemented, for example, in that the rotor 61 has a different diameter D in the area in which it forms the first partial channel 631 than in the area in which it forms the second partial channel 632.
  • the diameter D of the rotor 61 it is also possible to make the diameter D of the rotor 61 constant over its entire axial length L and to configure the stator 62 in the area of the first sub-channel 631 with a different inner diameter than in the area of the second sub-channel 632.
  • a combination of the two measures possible, so to design both the inner diameter of the stator 62 and the diameter D of the rotor over the respective axial length L differently.
  • the natural pressure in the oil field decreases as the oil field is increasingly extracted and, for example, water begins to be pressed into the oil field in order to increase the pressure in the oil field again or to compensate for the pressure drop.
  • the formation of an emulsion from the oil and the water increases with increasing time, and this emulsion must now be conveyed by the pump 1.
  • the formation of the emulsion can be associated with a drastic increase in internal friction or viscosity, which can vary in the order of magnitude. This peak in viscosity over time when the oil field is siphoned off is known and, for example, can only occur after a few years of siphoning.
  • the blocking element 10 is now brought into the position in which it completely opens the flow connection through the intermediate channel 9 for the leakage flow Q. Since the intermediate channel 9 now represents the considerably lower resistance for the leakage flow Q than the second partial channel 632 of the relief channel 63, the predominant part of the leakage flow Q flows from the high pressure side 65 through the first partial channel 631 of length L1 into the annular space 66 and from there the intermediate channel 9 to the inlet 3 of the pump 1.
  • the effective length of the relief channel 63 is now only the length L1 of the first sub-channel 631 and thus significantly smaller than in the first operating state. In this way it can be achieved that the leakage rate is increased and the heat generated in the relief channel 63 is considerably smaller, and thus also the resulting temperature increase. If, in addition, the first sub-channel 631 is designed with a greater radial width B1 than the second sub-channel 632, the effective width of the relief channel 63 is also increased, whereby the leakage flow Q can additionally be increased.
  • the suitable choice of the ratios of the lengths L1 to L2 or L1 to L or L2 to L and the widths B1 or B2 in the radial direction depends on the particular application. Typically, before a new oil field is siphoned off, calculations are made with regard to the long-term behavior of the siphon. For example, on the basis of such calculations, a suitable value for L, L1, L2 and the widths B1, B2 of the relief duct 63 or the diameter D of the rotor 61 can then be determined with the aid of model calculations or simulations.
  • Fig. 4 shows a first variant for the embodiment of the pump 1.
  • a second blocking element 12 is provided for influencing the flow through the return channel 8.
  • the blocking element 12 can also be designed as an open-close valve 12 or as an adjustable flow valve with which the leakage flow Q through the return duct 3 can be adjusted.
  • Fig. 5 shows a second variant for the embodiment of the pump 1.
  • the intermediate channel 9 opens into the return channel 8.
  • the blocking element 10 is provided at this junction, the blocking element being designed as a three-way valve 10 which is flow-connected to the inlet 3, to the return duct 8 and to the intermediate duct 9.
  • the three-way valve 10 is switched so that it connects the return channel 8 with the inlet 3, so that the leakage flow Q can flow through the return channel 8 to the inlet 3.
  • the intermediate channel 9 is blocked so that no leakage flow Q can flow out through it.
  • Fig. 2 To implement the second operating state ( Fig.
  • the three-way valve 10 is switched so that it connects the intermediate channel 9 with the inlet 3, so that the leakage flow Q can flow from the annular space 66 through the intermediate channel 9 to the inlet 3. In this position the return channel 8 is blocked so that no leakage flow Q can flow out through it.
  • Fig. 6 illustrates a third variant of the exemplary embodiment of the pump 1.
  • a switching element 13 is provided in the return duct 8, with which the return duct 8 can be optionally connected to the inlet 3 of the pump 1 or to a source 15 for a second fluid, so that the second fluid can be fed through the return channel 8 to the low-pressure side 64 of the rotor.
  • Fig. 7 shows in one too Fig. 2 or. Fig. 3 analog representation of an operating state of the third variant Fig. 6 .
  • the switching element 13 is set in such a way that it connects the return duct 8 to the source 15 for the second fluid and the flow connection to the inlet 3 of the pump 1 is blocked.
  • the second fluid is, for example, a barrier liquid such as water or another suitable medium or a Cooling fluid, with which a counterpressure can be generated in the second partial channel 632 of the relief channel 63.
  • the flow of the second fluid is indicated with dotted lines provided with arrows.
  • the second fluid flows through the return duct 8 to the low-pressure side 64 of the rotor and from there through the second sub-duct 632 of the relief duct 63, counter to the leakage flow Q.
  • the two fluids combine in the area of the annular space 66 and are discharged together through the intermediate channel.
  • the second fluid can be used, for example, to generate a counterpressure in the relief channel 63 in order to reduce the flow rate of the leakage flow Q or to remove heat from the relief gap 63.
  • Fig. 8 shows a fourth variant of the first embodiment of the pump 1.
  • the blocking element 10 is arranged and designed such that the intermediate channel 9 can be connected to a source 16 for a second fluid, so that the second fluid flows through the intermediate channel into the relief channel 63 can be brought in.
  • the blocking element 10 is preferably designed here as a three-way valve 10, which optionally connects the intermediate channel 9 to the inlet 3 of the pump 1 or to the source for the second fluid.
  • Fig. 9 shows in one too Fig. 2 or. Fig. 3 analog representation of an operating state of the fourth variant Fig. 8 .
  • the three-way valve 10 is set such that it connects the intermediate channel 9 to the source 16 for the second fluid and the flow connection to the inlet 3 of the pump 1 is blocked.
  • the second fluid is, for example, a demulsifier with which the viscosity of the leakage flow Q can be reduced, or water to dilute the leakage flow Q, or a cooling fluid with which heat can be removed from the relief gap 63.
  • the flow of the second fluid is indicated with dotted lines provided with arrows.
  • the second fluid flows through the intermediate channel 9 into the annular space 66, where it connects with the leakage flow Q and flows together with the latter through the second sub-channel 632 of the relief channel 63 to the low-pressure side 64. From there, the leakage flow Q is discharged together with the second fluid through the return channel 8.
  • Fig. 10 shows in one to Fig. 2 analogous representation of a second exemplary embodiment of a pump 1 according to the invention.
  • the reference symbols have the same meaning as already explained in connection with the first exemplary embodiment.
  • the explanations relating to the first exemplary embodiment and all of its variants also apply in the same way or in a similar manner to the second exemplary embodiment.
  • a second intermediate channel 9 ′ is also provided, which likewise opens into the relief channel 63 between the high pressure side 65 and the low pressure side 64.
  • a further blocking element 10 ' is provided for this second intermediate channel 9', with which the leakage flow Q in the second intermediate channel 9 'can be influenced.
  • the relief channel 63 has a second annular space 66 'which surrounds the shaft and in which the second intermediate channel 9' opens.
  • the flow-related relief channel 63 corresponds to the series connection of three sub-channels, namely a first sub-channel 631 of axial length L1, which extends from the high pressure side 65 to the beginning of the annular space 66, of a second sub-channel 632 the axial length L2, which extends from the end of the annular space 66 to the beginning of the second annular space 66 'and a third sub-channel 633 of the axial length L3, which extends from the end of the second annular space 66' to the low-pressure side 64 of the rotor 61.
  • the respective width B of the sub-channels 631, 632, 633 is in Fig.
  • each sub-channel 631, 632, 633 can have a different width in the radial direction, or that the same width is selected in the radial direction for two of the sub-channels and for the remaining sub-channel 631 or 632 or 633 have a different width.
  • the same width B in the radial direction can also be selected for all three sub-channels 631, 632, 633.
  • the width B is preferably constant within a sub-channel, but can also vary.
  • the effective length of the relief channel 63 in the axial direction is L1 + L2.
  • the effective length of the relief channel 63 is only L1.
  • relief channels 63 can be implemented, all of which have different lengths in the axial direction and can also have different widths B in the radial direction.
  • intermediate channels 9, 9 'or the return channel 8 can also be used here to supply a second fluid.
  • the pump 1 it is also possible to assemble the rotor 61 and / or the stator 62 from several parts. It is therefore by no means necessary for the rotor 61 or the stator 62 to be designed in one piece. It is also possible to design the rotor 61 or the stator 62 so that the relief gap 63 does not have a constant width B1, B2, B outside of the annular spaces 66, 66 ', but tapers or widens, for example, as seen in the axial direction. It is also possible to coat or structure the jacket surface of the rotor 61 or the inner jacket surface of the stator 62.
  • one or more swirl brakes on the high pressure side 65 in the area of the entrance to the relief channel 63 and / or in the relief channel 63, for example at the entrances to the respective sub-channels 631, 632, 633, with which the fluid flows be deflected in the circumferential direction around the shaft 5 in the axial direction.
  • the blocking element 10, 10 'and the second blocking element 12 can be designed as open-close valves with which the flow through the respective channel is either completely released or completely blocked. However, it is also possible to design the blocking element 10, 10 'or the second blocking element 12 as an adjustable flow valve with which the flow in the respective channel can be set to any values between zero and a maximum value.
  • the blocking element 10, 10 'or the second blocking element 12 or the switching element 13 can be designed so that they can be operated remotely, for example in the case of submarine applications via a signal line via which a preferably electrical or hydraulic signal is passed, which is the respective blocking element or Switching element switches or regulates in the respectively desired state.
  • the remote-controlled operability can also be configured without signal lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die Erfindung betrifft ein Pumpe zum Fördern eines Fluids mit variierender Viskosität gemäss dem Oberbegriff des unabhängigen Patentanspruchs.
  • In ein- oder mehrstufigen Zentrifugalpumpen werden häufig sehr grosse hydraulische Kräfte generiert, die in axialer Richtung, also in Richtung der Längsachse der Welle der Pumpe, wirken. Diese Kräfte müssen von dem Axiallager der Welle aufgenommen werden. Da diese Axiallager jedoch aus praktischen und technischen Gründen möglichst klein gehalten werden sollen, ist es eine wohlbekannte Massnahme, auf der Welle der Pumpe einen Entlastungskolben (balance drum) zum Axialschubausgleich vorzusehen. Dieser umfasst einen drehfest mit der Welle verbundenen, typischerweise im Wesentlichen zylindrischen, Rotor und einen koaxial dazu angeordneten Stator, der bezüglich des Pumpengehäuses stationär ist. Der Stator kann dabei beispielsweise als separate Hülse ausgestaltet sein oder auch durch das Gehäuse selbst gebildet werden. Der Rotor ist so bemessen, dass sich zwischen dem Rotor und dem Stator ein enger, ringförmiger Entlastungsspalt ausbildet. Dieser wird hochdruckseitig mit dem Raum hinter dem Laufrad bzw. bei mehrstufigen Pumpen dem Raum hinter dem letzten Laufrad verbunden, sodass eine Leckageströmung des geförderten Fluids durch den Entlastungsspalt auf die Niederdruckseite des Rotors strömen kann. Von dort wird das Fluid dann zum Einlass der Pumpe zurückgeführt. Durch den Druckabfall über den Rotor wird so eine Kraft in axialer Richtung generiert, welche entgegengesetzt zu den vom Laufrad generierten hydraulischen Axialkräften gerichtet ist, und somit die vom Axiallager aufzunehmenden Kräfte erheblich reduziert.
  • Bei der Ausgestaltung der Entlastungskolben kommt den geometrischen Abmessungen eine sehr wichtige Bedeutung zu, insbesondere dem Durchmesser und der axialen Länge des Rotors und dem Spiel zwischen Rotor und Stator, welches die Breite des Entlastungskanals in radialer Richtung bestimmt.
  • Die Leckageströmung durch den Entlastungskanal verursacht einen Volumenverlust des geförderten Fluids, der natürlich möglichst gering gehalten werden soll, wobei die Leckageströmung andererseits auch so gross sein muss, dass die gewünschten technischen Effekte realisiert werden. Als weiteren Effekt - und dies trifft in besonderem Masse auf hochviskose Fluide zu - verursacht die Fluidströmung im Entlastungskanal eine Reibung, die zu einer beträchtlichen und unerwünschten Temperaturerhöhung im Entlastungskanal führen kann.
  • Zusätzlich zu der Funktion der Axialschubentlastung kann das durch den Entlastungskanal strömende Fluid auch zur Stabilisierung bzw. zur Stabilität der Pumpenrotordynamik beitragen. Durch die als Lomakin-Effekt bekannte Wirkung erzeugt das im Entlastungskanal strömende Fluid die Welle zentrierende Kräfte, welche sich positiv sowohl auf die Dämpfung als auch auf die Steifigkeit der Wellenlagerung auswirken.
  • Weitere wichtige Parameter, die bei der Ausgestaltung des Entlastungskolbens zu berücksichtigen sind, sind die Rotationsgeschwindigkeit, mit der die Pumpe betrieben wird, die generierte Druckdifferenz, die Dichte des Fluids und die innere Reibung, also die Viskosität, des geförderten Fluids.
  • Man ist beim Design der Pumpenhydraulik bestrebt, einen möglichst optimalen Kompromiss zwischen all diesen Effekten zu realisieren, wobei die Fluideigenschaften in der Regel nicht beeinflussbar und auch nicht ausreichend bekannt sind und daher nur abgeschätzt werden können.
  • Es gibt zahlreiche Anwendungen, bei denen die Eigenschaften des geförderten Fluids nicht konstant sind, sondern sich mehr oder weniger schnell ändern können.
  • Mit Multiphasenpumpen werden beispielsweise Fluide gefördert, die ein Gemisch aus mehreren Phasen enthalten, beispielsweise eine oder mehrere flüssige Phasen und eine oder mehrere gasförmige Phasen. Solche Pumpen sind seit langem wohl bekannt und werden in zahlreichen Ausführungsformen hergestellt. Der Anwendungsbereich dieser Pumpen ist sehr breit, sie werden zum Beispiel in der Öl- und Gasindustrie zum Fördern oder Transportieren von Erdöl oder Erdöl-Erdgas-Gemischen verwendet. Dabei können sich die Fluideigenschaften über die Zeit gesehen ändern, z. B. die Phasenzusammensetzung bzw. Phasenverteilung des zu fördernden Mehrphasenfluids. Die relativen Volumenanteile der flüssigen und der gasförmigen Phase - beispielsweise bei der Ölförderung - unterliegen sehr grossen Schwankungen, was unter anderem an der natürliche Quelle liegt.
  • Gerade bei der Erdöl- und der Erdgasförderung können aber auch sehr starke Änderungen in der Viskosität des Fluids auftreten, was im Folgenden anhand eines Beispiels erläutert werden soll. Bei der Ausnutzung bzw. der Abschöpfung von Ölfeldern nimmt mit der Zeit - also mit zunehmender Abschöpfung - der natürlich vorhandene Druck in einem Ölfeld ab. Es ist eine bekannte Technologie, bei abnehmenden natürlichen Druck im Ölfeld mittels sogenannter Injektionspumpen Wasser in das Ölfeld zu drücken, um so den Druck am Bohrloch zu erhöhen. Dies hat aber zur Folge, dass die Pumpe, mit welcher das Öl aus dem Bohrloch gefördert wird, über den Zeitraum der Abschöpfung mit einem Fluid variierender Viskosität bzw. innerer Reibung konfrontiert wird: Zum Beginn der Abschöpfung ist es meistens das natürliche Öl oder Öl-Gas-Gemisch, das gefördert wird. Mit zunehmendem Wassereintrag in das Ölfeld ändert sich das Fluid irgendwann zu einer Wasser-Öl-Emulsion, die eine wesentlich höhere innere Reibung aufweist, die um Grössenordnungen höher sein kann als die des anfänglich geförderten Erdöls. Mit weiterer Abschöpfung wird dann der Wasseranteil in dem geförderten Fluid so gross, dass es wieder zu einem starken Abfall der Viskosität kommt.
  • Dieses deutlich ausgeprägte Maximum, das bei der Abschöpfung eines Ölfeldes im zeitlichen Verlauf der Viskosität - meist erst nach einigen Jahren - auftritt, macht es manchmal notwendig, die Pumpen, mit denen das Öl aus dem Bohrloch gefördert oder durch Pipelines transportiert wird, oder zumindest ihre Hydraulik zu ersetzen. Dies ist natürlich für den Betreiber der Ölförderung auch aus wirtschaftlichen Gründen nicht wünschenswert, er hat das Bedürfnis, dass die zur Förderung des Erdöls/Erdgases eingesetzten Pumpen möglichst über den gesamten Zeitraum der Abschöpfung des Ölfeldes ohne Austausch der Pumpe oder Austausch der Pumpenhydraulik effizient betreibbar sind.
  • Dies trifft in besonderem Masse für solche Anwendungen zu, bei denen die Pumpen sehr schwer oder nur mit erheblichem Aufwand zugänglich sind. Als Beispiel seien hier Untersee-Anwendungen genannt. Heutzutage werden im zunehmende Masse auch Ölfelder abgeschöpft, die sich unter dem Meeresboden befinden und die mit den klassischen Bohrplattformen nicht mehr oder nicht in wirtschaftlicher Weise erreichbar sind. Daher ist man dazu übergegangen, Teile der Förderausrüstung, wie beispielsweise Pumpen, auf dem Meeresboden in der Nähe des Austritts des Bohrlochs zu platzieren. Von dort wird das geförderte Öl dann zu Verarbeitungs- oder Speichereinrichtungen transportiert, die an Land, auf einer Bohrplattform oder auf einem Schiff als FPSO (Floating Production Storage and Offloading Unit) vorgesehen sind. Gerade in solchen Fällen, in denen die Pumpe als Unterseepumpe für den Betrieb auf dem Meeresboden ausgelegt ist, ist es natürlich wünschenswert, eine Pumpe zur Verfügung zu haben, die auch Fluide mit stark veränderlicher Viskosität effizient und wirtschaftlich fördern kann, ohne dass dazu ein Austausch beispielsweise der Pumpenhydraulik notwendig ist.
  • Eine mögliche Lösung ist es, in der Rückführleitung, mit welcher das durch den Entlastungskanal strömende Fluid von der Niederdruckseite des Rotors des Entlastungskolbens zum Einlass der Pumpe zurückgeführt wird, mit einem einstellbaren Ventil zu versehen, um so die Rückführung mehr oder weniger stark drosseln zu können. Damit kann man zumindest prinzipiell auch den Fluss durch den Entlastungsspalt zwischen dem Rotor und dem Stator beeinflussen. Eine Drosselung in der Rückführleitung kann allerdings zu einer erheblichen Reduzierung des vom Entlastungskolben generierten Axialschubausgleichs führen, weil der Druckabfall über den Entlastungskolben deutlich kleiner wird. Dies bedeutet aber, dass die vom Axiallager der Welle aufzunehmenden hydraulischen Schubkräfte grösser werden, wofür dieses ausgelegt sein muss, weil ansonsten die Gefahr besteht, dass das Axiallager überlastet wird oder einem deutlich höheren Verschleiss unterliegt. Die Dokumente DE 249 336 C , DE 43 13 455 A1 , WO 2009/135802 und JP H01 237394 A offenbaren ähnliche Anordnungen zur Reduzierung des Axialschubs in Turbomaschinen durch Entlastungskolben.
  • Es ist daher eine Aufgabe der Erfindung, eine Pumpe bereitzustellen, die zum effizienten und wirtschaftlichen Fördern von Fluiden mit stark variierender Viskosität geeignet ist, ohne dass dafür ein Austausch der Pumpenhydraulik, also des Laufrads oder der Laufräder und/oder des Entlastungskolbens vorgenommen werden muss.
  • Der diese Aufgabe lösenden Gegenstand der Erfindung ist durch die Merkmale des unabhängigen Patentanspruchs gekennzeichnet.
  • Erfindungsgemäss wird also eine Pumpe zum Fördern eines Fluids mit variierender Viskosität vorgeschlagen, welche ein Gehäuse mit einem Einlass und einem Auslass für das zu fördernde Fluid aufweist, sowie mindestens ein Laufrad zum Fördern des Fluids vom Einlass zum Auslass, welches auf einer drehbaren Welle angeordnet ist, sowie einen Entlastungskolben zur Axialschubentlastung, wobei der Entlastungskolben einen drehfest mit der Welle verbundenen Rotor mit einer Hochdruckseite und mit einer Niederdruckseite umfasst, einen bezüglich des Gehäuses stationären Stator, und einen Entlastungskanal, der sich zwischen dem Rotor und dem Stator von der Hochdruckseite bis zur Niederdruckseite des Rotors erstreckt und wobei ferner ein Rückführkanal vorgesehen ist, welcher die Niederdruckseite des Rotors mit dem Einlass verbindet, wobei mindestens ein Zwischenkanal vorgesehen ist, welcher zwischen der Hochdruckseite und der Niederdruckseite des Rotors in den Entlastungskanal einmündet, und wobei ein Sperrorgan zur Beeinflussung der Strömung durch den Zwischenkanal vorgesehen ist.
  • Durch den Zwischenkanal und das Sperrorgan kann die Länge des Entlastungskanals geändert werden und damit auch die wirksame Länge des Rotors des Entlastungskolbens. Da, wie bereits erwähnt, der Durchmesser und die Länge des Rotors des Entlastungskolbens einen entscheidenden Einfluss sowohl auf die Flussrate durch den Entlastungskolben als auch auf die im Entlastungskanal durch Reibung verursachte Temperaturerhöhung hat, kann somit durch den Zwischenkanal in sehr einfacher Weise eine Anpassung an starker Änderungen in der Viskosität des Fluids vorgenommen werden. Funktionell hat man nun nämlich quasi die Möglichkeit, die Pumpe mit mindestens zwei unterschiedlichen Entlastungskolben verschiedener Länge zu betreiben. Bei vergleichsweise geringerer Viskosität des Fluids - also beispielsweise zum Beginn der Abschöpfung eines Ölfelds, wenn im Wesentlichen nur Öl bzw. ein Öl-Gas-Gemisch gefördert wird - kann man mit dem Sperrorgan den Zwischenkanal absperren, sodass die Leckageströmung über die gesamte Länge des Entlastungskolbens bis zur Niederdruckseite des Rotors geführt und von dort durch den Rückführkanal abgeführt wird. Kommt es zu einem starken Ansteigen der Viskosität - also beispielsweise zu dem beschriebenen Peak in der inneren Reibung des Fluids, der auf der Ausbildung der Öl-Wasser-Emulsion beruht - so wird das Sperrorgan und damit der Zwischenkanal vollständig geöffnet, sodass nun im Wesentlichen der gesamte Leckagestrom aus dem Entlastungskanal in den Zwischenkanal abgeführt wird. Da somit der wirksame Länge, das heisst der durchströmte Teil des Entlastungskanals verkürzt wird, reduziert sich auch deutlich die im Entlastungsspalt durch Reibung generierte Temperaturerhöhung. Diese ist proportitional zum Verhältnis aus Reibung und Leckagerate. Auf diese Weise ist die Pumpe und insbesondere der Entlastungskolben in einfacher Weise auch an starke Änderungen in der Viskosität des Fluids anpassbar. Dabei ist es besonders vorteilhaft, dass die vom Entlastungskolben generierte Axialschubentlastung, wenn überhaupt, zumindest keine wesentliche Reduzierung erfährt, sodass keine grössere Belastung von dem Axiallager der Welle aufgenommen werden muss.
  • Vorzugsweise umfasst der Entlastungskanal einen Ringraum, welcher die Welle umgibt und in welchen der Zwischenkanal einmündet. Hierdurch ist es gewährleistet, dass bei geöffnetem Zwischenkanal das Fluid besonders gut und gleichmässig aus dem Entlastungskanal in den Zwischenkanal abfliessen kann.
  • Gemäss einer bevorzugten Ausführungsform weist der Entlastungskanal ausserhalb des Ringraums eine konstante Breite in radialer Richtung auf.
  • Durch den Zwischenkanal wird der Entlastungskanal aufgeteilt in einen ersten Teilkanal und in einen zweiten Teilkanal, die in axialer Richtung hintereinander angeordnet sind. Vorzugsweise weist der Entlastungskanal ausserhalb des Ringraums in dem ersten Teilkanal oder in dem zweiten Teilkanal - besonders bevorzugt in beiden Teilkanälen - eine konstante Breite in radialer Richtung auf. Dabei kann die Breite des ersten Teilkanals gleich gross sein wie die Breite des zweiten Kanals oder der erste und der zweite Teilkanal haben unterschiedliche Breiten. Durch die unterschiedlichen Breiten der beiden Teilkanäle lässt sich die Leckagerate durch den Entlastungskanal in einfacher Weise vergrössern oder verkleinern.
  • Vorzugsweise ist der Zwischenkanal mit dem Einlass verbunden, damit auch das über den Zwischenkanal ausströmende Fluid zum Einlass der Pumpe zurückgeführt wird.
  • In einer bevorzugten Ausführungsform mündet der Zwischenkanal in den Rückführkanal ein, weil hierdurch die konstruktive Gestaltung einfacher ist.
  • Eine vorteilhafte Massnahme besteht darin, dass das Sperrorgan als einstellbares Durchflussventil ausgestaltet ist. Somit kann der Fluss in dem Zwischenkanal auch auf Werte zwischen Null und dem maximalen Fluss eingestellt werden.
  • Auch kann es je nach Anwendung vorteilhaft sein, wenn ein zweites Sperrorgan zur Beeinflussung der Strömung durch den Rückführkanal vorgesehen ist. Somit kann auch im Rückführkanal die Flussrate aktiv beeinflusst werden.
  • Gemäss einer bevorzugten Ausführungsform ist das Sperrorgan als Dreiwegeventil ausgestaltet, welches mit dem Einlass, mit dem Rückführkanal und mit dem Zwischenkanal strömungsverbunden ist. Durch diese Massnahme kann in apparativ besonders einfacher Weise wahlweise der Rückführkanal oder der Zwischenkanal mit dem Einlass der Pumpe strömungsverbunden werden.
  • Bei einer ebenfalls bevorzugten Ausgestaltung ist ein Umschaltorgan vorgesehen, mit welchem der Rückführkanal wahlweise mit dem Einlass der Pumpe oder mit einer Quelle für ein zweites Fluid verbindbar ist, sodass das zweite Fluid durch den Rückführkanal der Niederdruckseite des Rotors zuführbar ist. Somit ist es beispielsweise möglich durch den Rückführkanal ein zweites Fluid zuzuführen, das beispielsweise als Sperrflüssigkeit dienen kann.
  • Es ist natürlich auch möglich, dass das Sperrorgan derart angeordnet und ausgestaltet ist, dass der Zwischenkanal mit einer Quelle für ein zweites Fluid verbindbar ist, sodass das zweite Fluid durch den Zwischenkanal in den Entlastungskanal einbringbar ist. Das zweite Fluid kann z. B. ein Demulgator sein, mit welchem die Viskosität des Fluids im Entlastungsspalt herabgesetzt werden kann. Auch dies ist eine Möglichkeit, in den Entlastungskanal ein zweites Fluid einzubringen, um hier die Viskosität des Fluids zu reduzieren.
  • Je nach Anwendung kann es auch vorteilhaft sein, wenn mehrere Zwischenkanäle vorgesehen sind, von denen jeder zwischen der Hochdruckseite und der Niederdruckseite in den Entlastungskanal einmündet. Durch diese Massnahme lassen sich noch mehr unterschiedliche Längen des Entlastungskanals realisieren.
  • Insbesondere bei Anwendungen an schwer zugänglichen Orten - beispielsweise auf dem Meeresboden ist es eine vorteilhafte Massnahme, wenn das Sperrorgan oder das zweite Sperrorgan oder das Umschaltorgan ferngesteuert bedienbar sind. Hierzu können diese Organe beispielsweise als elektrisch oder hydraulisch oder elektrisch-hydraulisch betätigbare Organe ausgestaltet sein, die dann beispielsweise über eine Signalleitung oder je nach Anwendung auch drahtlos ferngesteuert werden können.
  • Die erfindungsgemässe Pumpe kann insbesondere auch als mehrstufige Pumpe ausgestaltet sein, die mindestens ein zweites, auf der Welle angeordnetes Laufrad zum Fördern des Fluids aufweist.
  • Auch ist es möglich die erfindungsgemässe Pumpe als Multiphasenpumpe auszugestalten.
  • Besonders bevorzugt kann die erfindungsgemässe Pumpe auch als Zentrifugalpumpe für die Öl- und Gasförderung, insbesondere als Unterseepumpe für die unterseeischen Öl- und Gasförderung ausgestaltet sein.
  • Weitere vorteilhafte Massnahmen und Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und anhand der Zeichnung näher erläutert. In der Zeichnung zeigen, teilweise im Schnitt:
  • Fig. 1:
    ein schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemässen Pumpe mit Ausbruch,
    Fig. 2:
    eine vergrösserte Schnittdarstellung des Entlastungskolbens des ersten Ausführungsbeispiels in einem ersten Betriebszustand,
    Fig. 3:
    eine vergrösserte Schnittdarstellung des Entlastungskolbens des ersten Ausführungsbeispiels in einem zweiten Betriebszustand,
    Fig. 4:
    wie Fig. 1, jedoch für eine erste Variante,
    Fig. 5:
    wie Fig. 1, jedoch für eine zweite Variante,
    Fig. 6:
    wie Fig. 1, jedoch für eine dritte Variante,
    Fig. 7:
    eine vergrösserte Schnittdarstellung des Entlastungskolbens in einem Betriebszustand der dritten Variante aus Fig. 6,
    Fig. 8:
    wie Fig. 1, jedoch für eine vierte Variante,
    Fig. 9:
    eine vergrösserte Schnittdarstellung des Entlastungskolbens in einem Betriebszustand der vierten Variante aus Fig. 8, und
    Fig. 10:
    wie Fig. 2 jedoch für ein zweites Ausführungsbeispiels einer erfindungsgemässen Pumpe.
  • Fig. 1 zeigt in einer schematischen Darstellung ein erstes Ausführungsbeispiel einer erfindungsgemässen Pumpe, die gesamthaft mit dem Bezugszeichen 1 bezeichnet ist und als Kreiselpumpe bzw. Zentrifugalpumpe ausgestaltet ist. In Fig. 1 sind einige Teile der Pumpe 1 im Ausbruch dargestellt. Fig. 2 zeigt einige Teile der Pumpe 1 in einer vergrösserten Schnittdarstellung.
  • Die Pumpe 1 hat ein Gehäuse 2 mit einem Einlass 3, durch welchen ein zu förderndes Fluid in die Pumpe 1 einbringbar ist, wie dies der Pfeil E in Fig. 1 symbolisiert. Ferner hat das Gehäuse 2 einen Auslass 4, durch welchen das zu fördernde Fluid die Pumpe 1 verlässt, wie dies der Pfeil O in Fig. 1 symbolisiert. Zudem hat die Pumpe eine drehbare Welle 5, deren Längsachse A eine axiale Richtung festlegt. Im Folgenden ist also bei Bezugnahmen auf die axiale Richtung immer die Richtung der Längsachse A der Welle 5 gemeint. Mit der radialen Richtung ist dann eine auf der axialen Richtung senkrecht stehende Richtung gemeint.
  • Auf der Welle 5 ist mindestens ein Laufrad 7 zum Fördern des Fluids vorgesehen, von welchem in Fig. 2 nur die obere Hälfte dargestellt ist. Die erfindungsgemässe Pumpe 1 kann sowohl als einstufige Pumpe mit nur einem Laufrad 7 ausgestaltet sein, als auch als mehrstufige Pumpe mit mindestens zwei Laufrädern 7, die in an sich bekannter Weise axial beabstandet hintereinander auf der Welle 5 angeordnet sind. Bei Bezugnahmen auf das Laufrad 7 ist im Folgenden entweder das einzige Laufrad einer einstufigen Pumpe gemeint oder das letzte Laufrad 7 einer mehrstufigen Pumpe, welches dasjenige Laufrad 7 ist, welches den höchsten Druck erzeugt. Vorzugsweise ist die erfindungsgemässe Pumpe 1 als mehrstufige Zentrifugalpumpe ausgestaltet.
  • Ferner kann die erfindungsgemässe Pumpe 1 als Einphasenpumpe oder als Multiphasenpumpe ausgestaltet sein. Multiphasenpumpen sind für die Förderung von Multiphasenfluiden ausgestaltet, können also Fluide fördern, die ein Gemisch aus mehreren Phasen enthalten, beispielsweise eine oder mehrere flüssige Phasen, z. B. in Form einer Emulsion, und eine oder mehrere gasförmige Phasen. Vorzugsweise ist die erfindungsgemässe Pumpe 1 als Multiphasenpumpe ausgestaltet.
  • Die erfindungsgemässe Pumpe ist bevorzugt eine Pumpe 1 zum Fördern von hochviskosen Fluiden, wie beispielsweise Öl oder Erdöl. Mit hochviskosen Fluiden sind im Rahmen dieser Anmeldung Fluide gemeint, deren dynamische Viskosität mindestens 65 cP (centipoise) beträgt, was in Sl-Einheiten 0.065 Pa s (Pascal-Sekunde) entspricht.
  • Im Folgenden wird mit beispielhaftem Charakter auf den für die Praxis wichtigen Anwendungsfall Bezug genommen, dass die erfindungsgemässe Pumpe in der Öl- und Gasförderung eingesetzt wird, beispielsweise als Förderpumpe, mit dem das Öl oder Öl-Gas-Gemisch aus dem Bohrloch eines Ölfelds gefördert wird oder als Transportpumpe, mit welchem das Öl bzw. das Öl-Gas-Gemisch durch eine Pipeline gefördert wird. Insbesondere kann die erfindungsgemässe Pumpe 1 als Untersee- (Subsea-) Pumpe ausgestaltet sein, die beispielsweise bei der unterseeischen Öl- und Gasförderung auf dem Meeresgrund betrieben wird. Es versteht sich jedoch, dass die Erfindung nicht auf solche Ausgestaltungen und Anwendungen beschränkt ist.
  • Das erste Ausführungsbeispiel der erfindungsgemässen Pumpe 1 (siehe Fig. 1 und Fig. 2) weist einen Entlastungskolben 6 zur Axialschubentlastung auf. Mit dem Entlastungskolben 6 wird eine Kraft in axialer Richtung erzeugt, welche entgegengesetzt gerichtet ist zur der axialen hydraulischen Kraft, die von den Laufrädern 7 beim Fördern des Fluids generiert wird.
  • Der Entlastungskolben 6 weist einen im wesentlichen zylindrischen Rotor 61 auf, der drehfest mit der Welle 5 verbunden ist sowie einen bezüglich des Gehäuses 2 stationären Stator 62. Der Stator 62 kann beispielsweise als eine zylindrische Hülse ausgestaltet sein, die fest mit dem Gehäuse 2 verbunden ist oder Teile des Gehäuses 2 selbst können den Stator 62 bilden . Der Rotor 61 hat einen Durchmesser D. Er weist eine Hochdruckseite 65 auf und eine Niederdruckseite 64. Die Stirnfläche auf der Hochdruckseite 65 des Rotors 61 wird mit einem Hochdruck beaufschlagt. Dies geschieht typischerweise, indem man die Hochdruckseite 65 des Rotors 61 mit dem unter Druck stehenden Fluid hinter dem Laufrad 7 bzw. hinter dem letzten Laufrad 7 beaufschlagt. Die Hochdruckseite 65 ist dann im Wesentlichen mit dem Druck beaufschlagt, welches das Fluid am Auslass 4 der Pumpe 1 aufweist. Die Niederdruckseite 64 ist mit einem deutlich geringeren Druck beaufschlagt, typischerweise mit dem Druck, den das Fluid am Einlass 3 der Pumpe aufweist. Dies kann beispielsweise so realisiert werden, dass die Niederdruckseite 64 des Rotors 61 über einen Rückführkanal 8 mit dem Einlass 3 der Pumpe strömungsverbunden ist.
  • Der Durchmesser D des Rotors 61 und der Innendurchmesser des zylindrischen Stators 62 sind so bemessen, dass zwischen der Mantelfläche des Rotors 61 und der inneren Mantelfläche des Stators 62 ein ringförmiger Entlastungskanal 63 ausgebildet ist, welcher erfindungsgemäß sich zwischen dem Rotor 61 und dem Stator 62 von der Hochdruckseite 65 in axialer Richtung bis zur Niederdruckseite 64 erstreckt. Die Breite B1 bzw. B2 des Entlastungskanals 63 in radialer Richtung entspricht dabei der Differenz aus dem Innendurchmesser des Stators 62 und dem Durchmesser D des Rotors.
  • Die Leckageströmung Q durch den Entlastungskanal 63 verursacht unter anderem die folgenden drei Wirkungen:
    Zum ersten bedeutet die Leckageströmung Q einen Volumenverlust des von der Pumpe geförderten Fluids. Es ist daher wünschenswert, dass diese Leckageverluste nicht zu gross werden.
  • Zum zweiten - und dies trifft insbesondere bei hochviskosen Fluiden zu - erzeugt das Fluid beim Durchströmen des Entlastungskanals 63 durch Anhaften bzw. durch Reiben insbesondere am Stator 62 und am Rotor 61, in erheblichem Masse Wärme, die zu deutlichen Temperaturanstiegen im Entlastungsspalt 63 bzw. den ihn umgebenden Komponenten führen kann. Diese Temperaturerhöhungen können so stark sein, bei sehr hoch viskosen Fluiden z. B. 100°C und mehr, dass die Anlage nicht mehr sicher betrieben werden kann bzw. dass sie zu Schädigungen an Komponenten der Pumpe 1 führen können.
  • Zum dritten bewirkt -neben der Axialschubentlastung- die durch den Entlastungskanal 63 stömende Leckageströmung Q aufgrund des Lomakin-Effektes Kräfte, welche die Welle 5 zentrieren, stablisieren und Schwingungen dämpfen. Dieser Effekt wirkt sich also positiv auf die Dämpfung und die Steifigkeit der Wellenlagerung aus.
  • Die Leckageströmung Q und ihre Wirkungen hängen von sehr vielen Parametern ab, zum einen von den geometrischen Abmessungen des Entlastungskolbens 6, welches bei vorgegebenem Innendurchmesser des Stators 63 hauptsächlich der Durchmesser D des Rotors 61 sind, der die Breite B1, B2 des Entlastungskanals 63 bestimmt, sowie die Länge L des Rotors 63 in axialer Richtung, der die axiale Länge des Entlastungskanals 63 bestimmt. Diese Parameter müssen bei der Auslegung der Pumpe 1 für ihren späteren Einsatz, der sich häufig über eine Betriebsdauer von vielen Jahren erstreckt, festgelegt werden und können dann später nur noch durch einen Austausch der hydraulischen Komponenten der Pumpe 1 verändert werden.
  • Die Leckageströmung Q hängt auch ab von der Druckdifferenz, die über den Rotor 61 abfällt, von der Drehzahl, d.h. der Rotationsgeschwindigkeit der Pumpe 1, und natürlich von den Eigenschaften des zu fördernden Fluids, wie seine Dichte oder seine Viskosität.
  • Man strebt daher bei der Auslegung einer Pumpe 1 danach, alle diese Effekte zu berücksichtigen und die Pumpe so auszugestalten, dass sie über viele Jahre für den jeweiligen Anwendungsfall betreibbar ist, nach Möglichkeit ohne Austausch der hydraulischen Komponenten.
  • Damit die Pumpe 1 insbesondere für die kontinuierliche Förderung eines Fluids mit stark variierender Viskosität geeignet ist, wird erfindungsgemäss vorgeschlagen, mindestens einen Zwischenkanal 9 vorzusehen, welcher zwischen der Hochdruckseite 65 und der Niederdruckseite 64 des Rotors 61 in den Entlastungskanal einmündet, sowie ein Sperrorgan 10 (siehe Fig. 1) zur Beeinflussung der Strömung durch den Zwischenkanal 9.
  • Durch diese Massnahme lässt sich die Länge des Entlastungsspalts 63 variieren, wodurch sich eine besonders gute Anpassbarkeit an Variationen in der Viskosität des Fluids ergibt.
  • Bei dem hier beschriebenen ersten Ausführungsbeispiel der Pumpe 1 umfasst der Entlastungskanal 63 einen Ringraum 66, welcher die Welle 5 umgibt, und in welchen der Zwischenkanal 9 einmündet. Der Ringraum 66 weist in radialer Richtung eine Breite auf die grösser ist als die Breite B1, B2 des Entlastungskanals 63. Ausserhalb des Ringraums 66 weist der Entlastungskanal 63 über seine axiale Länge gesehen eine konstante Breite B1 bzw. B2 in radialer Richtung auf. Es sind natürlich auch Ausgestaltungen möglich, bei denen diese Breiten B1 oder B2 variieren.
  • Der Zwischenkanal ist wie in Fig. 1 dargestellt mit dem Einlass 3 der Pumpe verbunden. Das Sperrorgan 10 ist zumindest als Auf-Zu-Ventil ausgestaltet, welches in einer ersten Stellung die Strömungsverbindung durch den Zwischenkanal 9 zum Einlass 3 komplett sperrt, und welches in einer zweiten Stellung die Stömungsverbindung durch den Zwischenkanal 9 komplett öffnet.
  • Fig. 2 zeigt das erste Ausführungsbeispiel der Pumpe 1 in einem ersten Betriebszustand, in welchem das Sperrorgan 10 in der ersten Stellung ist, also die Strömungsverbindung durch den Zwischenkanal 9 verschliesst, während Fig. 3 das erste Ausführungsbeispiel der Pumpe 1 in einem zweiten Betriebszustand zeigt, in welchem das Sperrorgan 10 in der zweiten Stellung ist, also die Strömungsverbindung durch den Zwischenkanal 9 vollständig öffnet.
  • Vorzugsweise ist das Sperrorgan 10 als ein einstellbares Durchflussventil 10 ausgestaltet, mit welchem die Leckagestömung Q durch den Zwischenkanal 9 auch auf Werte zwischen Null und dem maximalen Durchfluss einstellbar ist.
  • Sowohl der Rückführkanal 8 als auch der Zwischenkanal 9 sind jeweils so ausgestaltet, insbesondere bezüglich ihres Durchmessers, dass sie zumindest keine wesentliche Drosselwirkung auf die Leckageströmung Q haben, d. h. der jeweilige Strömungswiderstand des Rückführkanals 8 und des Zwischenkanals 9 ist so bemessen, dass er wesentlich kleiner ist als der Strömungswiderstand des Entlastungskanals 63. Dadurch lässt es sich gewährleisten, dass im wesentlichen die gesamte Druckdifferenz über den Rotor 61 abfällt und dieser somit eine grösstmögliche Axialschubentlastung generiert.
  • Im Folgenden wird die Funktion der Pumpe 1 und insbesondere die Anpassung an die variierende Viskosität des Fluids am Beispiel des Abschöpfens eines Ölfelds mit der Pumpe 1 beschrieben.
  • Zum Beginn der Abschöpfung eines Ölfelds steht dieses noch unter seinem ursprünglichen, natürlichen Druck und das Öl bzw. das Öl-Gas-Gemisch kann oft ohne zusätzliche Massnahmen mit der Pumpe 1 gefördert werden. Ein typischer Wert für die Viskosität des Öls in dieser Phase beträgt beispielsweise 100 - 200 cP.
  • In dieser Phase wird die Pumpe 1 in dem in Fig. 2 dargestellten ersten Betriebszustand betrieben. Mit dem Sperrorgan 10 wird die Strömungsverbindung durch den Zwischenkanal 9 für die Leckageströmung Q gesperrt. Der Entlastungskanal 63, der in axialer Richtung die Gesamtlänge L hat, ist jetzt strömungstechnisch gesehen die Hintereinanderschaltung eines ersten Teilkanals 631 der axialen Länge L1, welcher sich von der Hochdruckseite bis zum Beginn des Ringraums 66 erstreckt und eine radiale Breite B1 aufweist, sowie eines zweiten Teilkanals 632 der axialen Länge L2, welcher sich in Strömungsrichtung gesehen vom axialen Ende des Ringraums 66 bis zur Niederdruckseite 64 erstreckt und eine radiale Breite B2 aufweist. Die effektive Länge des Entlastungskanals 63 ist somit die Summe aus L1 + L2, wobei natürliche L1 + L2 kleiner als die Gesamtlänge L ist. Die Leckageströmung Q strömt also vollständig von der Hochdruckseite 65 durch den Entlastungskanal 63 zur Niederdruckseite 64 und von dort durch den Rückführkanal 8 zurück zum Einlass 3 der Pumpe.
  • Die Breite B1 des ersten Teilkanals 631 in radialer Richtung und die Breite B2 des zweiten Teilkanals 632 in radialer Richtung sind vorzugsweise jeweils konstant über die axiale Länge L1 des ersten bzw. L2 des zweiten Teilkanals. Dabei können die Breiten B1 und B2 gleich oder unterschiedlich sein. Gestaltet man die Breiten B1 und B2 unterschiedlich, so ergibt sich zusätzlich die Möglichkeit die Breite des Entlastungskanals zu ändern, wodurch man einen weiteren Parameter zur Beeinflussung der Leckageströmung Q zur Verfügung hat.
  • Unterschiedliche Breiten B1 und B2 lassen sich beispielsweise dadurch realisieren, dass der Rotor 61 in dem Bereich, in welchem er den ersten Teilkanal 631 bildet, einen anderen Durchmesser D aufweist als in dem Bereich, in welchem er den zweiten Teilkanal 632 bildet. Natürlich ist es auch möglich, den Durchmesser D des Rotors 61 über seine gesamte axiale Länge L konstant auszugestalten und den Stator 62 im Bereich des ersten Teilkanals 631 mit einem anderen Innendurchmesser auszugestalten als im Bereich des zweiten Teilkanals 632. Ferner ist eine Kombination der beiden Massnahmen möglich, also sowohl den Innendurchmesser des Stators 62 als auch den Durchmesser D des Rotors über die jeweilige axiale Länge L unterschiedlich auszugestalten.
  • Wie eingangs beschrieben, nimmt mit fortschreitender Abschöpfung des Ölfelds der natürliche Druck im Ölfeld ab und man beginnt beispielsweise Wasser in das Ölfeld zu drücken, um dadurch den Druck im Ölfeld wieder zu erhöhen, bzw. den Druckabfall zu kompensieren. Durch diese Wassereinspritzung kommt es mit zunehmender Zeit immer stärker zur Ausbildung einer Emulsion aus dem Öl und dem Wasser und diese Emulsion muss nun von der Pumpe 1 gefördert werden. Das Ausbilden der Emulsion kann mit einem drastischen Anstieg der inneren Reibung bzw. der Viskosität verbunden sein, der sich im Bereich von Grössenordnungen bewegen kann. Dieser Peak in der Viskosität im zeitlichen Verlauf bei der Abschöpfung des Ölfelds ist bekannt und er kann beispielsweise erst nach einigen Jahren der Abschöpfung auftreten.
  • Wenn nun die Viskosität des Fluids stark ansteigt, so verringert dies zum einen die Leckageströmung Q führt aber zum anderen zu einem drastischen Anstieg der im Entlastungsspalt 63 generierten Wärme und damit zu einem deutlichen Temperaturanstieg. Um insbesondere diesen Temperaturanstieg zu vermeiden, wird die Pumpe nun in den zweiten Betriebszustand geschaltet, der in Fig. 3 dargestellt ist.
  • Das Sperrorgan 10 wird nun in die Stellung gebracht, in welcher es die Strömungsverbindung durch den Zwischenkanal 9 für die Leckageströmung Q komplett öffnet. Da der Zwischenkanal 9 nun für die Leckageströmung Q den erheblich geringeren Widerstand darstellt als der zweite Teilkanal 632 des Entlastungskanals 63, strömt der überwiegende Anteil der Leckageströmung Q von der Hochdruckseite 65 durch den ersten Teilkanal 631 der Länge L1 in den Ringraum 66 und von dort durch den Zwischenkanal 9 zum Einlass 3 der Pumpe 1. Somit ist die effektive Länge des Entlastungskanals 63 nun nur noch die Länge L1 des ersten Teilkanals 631 und somit deutlich kleiner als im ersten Betriebszustand. Hiermit lässt es sich erreichen, dass die Leckagerate erhöht und die im Entlastungskanal 63 generierte Wärme erheblich kleiner wird und somit auch die resultierende Temperaturerhöhung. Falls zusätzlich der erste Teilkanal 631 mit einer grösseren radialen Breite B1 ausgestaltet ist, als der zweite Teilkanal 632, so vergrössert sich auch die effektive Breite des Entlastungskanals 63, wodurch sich die Leckageströmung Q zusätzlich verstärken lässt.
  • Beim weiteren Abschöpfen des Ölfelds wird der Wasseranteil im geförderten Fluid immer grösser, wodurch die Viskosität nach Durchlaufen des durch die Emulsionsbildung bedingten Maximums wieder drastisch abfällt. Nun kann die Pumpe 1 durch Schliessen des Sperrorgans 10 wieder in den ersten Betriebszustand gebracht werden, der in Fig. 2 dargestellt ist.
  • Die geeignete Wahl der Verhältnisse der Längen L1 zu L2 bzw. L1 zu L oder L2 zu L sowie der Breiten B1 bzw. B2 in radialer Richtung hängt vom jeweiligen Anwendungsfall ab. Typischerweise werden vordem Abschöpfen eines neuen Ölfelds Kalkulationen bezüglich des Langzeitverhaltens der Abschöpfung erstellt. Beispielsweise anhand solcher Kalkulationen kann dann mithilfe von Modellrechnungen oder Simulationen ein geeigneter Wert für L, L1, L2 sowie die Breiten B1, B2 des Entlastungskanals 63 bzw. den Durchmesser D des Rotors 61 bestimmt werden.
  • Es versteht sich, dass abweichend von der Darstellung in Fig. 1 auch Ausgestaltungen möglich sind, bei welchen der Zwischenkanal 9 stromabwärts des Sperrorgans 10 in den Rückführkanal 8 einmündet.
  • Fig. 4 zeigt eine erste Variante für das Ausführungsbeispiel der Pumpe 1. Bei dieser Variante ist ein zweites Sperrorgan 12 zur Beeinflussung der Strömung durch den Rückführkanal 8 vorgesehen. Das Sperrorgan 12 kann auch als Auf-Zu-Ventil 12 oder als einstellbares Durchflussventil ausgestaltet sein, mit welchem die Leckageströmung Q durch den Rückführkanal 3 einstellbar ist.
  • Fig. 5 zeigt eine zweite Variante für das Ausführungsbeispiel der Pumpe 1. Bei dieser zweiten Variante mündet der Zwischenkanal 9 in den Rückführkanal 8 ein. An dieser Einmündung ist das Sperrorgan 10 vorgesehen, wobei das Sperrorgan als Dreiwegeventil 10 ausgestaltet ist, welches mit dem Einlass 3, mit dem Rückführkanal 8 und mit dem Zwischenkanal 9 strömungsverbunden ist. Zur Realisierung des ersten Betriebszustands (Fig. 2) wird das Dreiwegeventil 10 so geschaltet, dass es den Rückführkanal 8 mit dem Einlass 3 verbindet, sodass die Leckageströmung Q durch den Rückführkanal 8 zum Einlass 3 strömen kann. In dieser Stellung ist der Zwischenkanal 9 gesperrt, sodass durch ihn keine Leckageströmung Q abströmen kann. Zur Realisierung des zweiten Betriebszustands (Fig. 3) wird das Dreiwegeventil 10 so geschaltet, dass es den Zwischenkanal 9 mit dem Einlass 3 verbindet, sodass die Leckageströmung Q aus dem Ringraum 66 durch den Zwischenkanal 9 zum Einlass 3 strömen kann. In dieser Stellung ist der Rückführkanal 8 gesperrt, sodass durch ihn keine Leckageströmung Q abströmen kann.
  • Fig. 6 veranschaulicht eine dritte Variante des Ausführungsbeispiels der Pumpe 1. Bei dieser dritten Variante ist in dem Rückführkanal 8 ein Umschaltorgan 13 vorgesehen, mit welchem der Rückführkanal 8 wahlweise mit dem Einlass 3 der Pumpe 1 oder mit einer Quelle 15 für ein zweites Fluid verbindbar ist, sodass das zweite Fluid durch den Rückführkanal 8 der Niederdruckseite 64 des Rotors zuführbar ist.
  • Fig. 7 zeigt in einer zu Fig. 2 bzw. Fig. 3 analogen Darstellung einen Betriebszustand der dritten Variante aus Fig. 6. In diesem Betriebszustand ist das Umschaltorgan 13 so eingestellt, dass es den Rückführkanal 8 mit der Quelle 15 für das zweite Fluid verbindet und die Strömungsverbindung zum Einlass 3 der Pumpe 1 gesperrt ist. Das zweite Fluid ist beispielsweise eine Sperrflüssigkeit wie Wasser oder ein anderes geeignetes Medium oder ein Kühlfluid, mit welcher im zweiten Teilkanal 632 des Entlastungskanals 63 ein Gegendruck erzeugt werden kann. In Fig. 7 ist der Fluss des zweiten Fluids mit gepunkteten, mit Pfeilen versehenen Linien angedeutet. Das zweite Fluid strömt durch den Rückführkanal 8 zur Niederdruckseite 64 des Rotors und von dort durch den zweiten Teilkanal 632 des Entlastungskanals 63 der Leckageströmung Q entgegen. Im Bereich des Ringraums 66 vereinigen sich die beiden Fluide und werden gemeinsam durch den Zwischenkanal abgeführt. Das zweite Fluid kann beispielsweise dazu genutzt werden, im Entlastungskanal 63 einen Gegendruck zu erzeugen, um die Flussrate der Leckageströmung Q zu reduzieren oder um Wärme aus dem Entlastungsspalt 63 abzuführen.
  • Fig. 8 zeigt eine vierte Variante des ersten Ausführungsbeispiels der Pumpe 1. Bei dieser vierten Variante ist das Sperrorgan 10 so angeordnet und ausgestaltet, dass der Zwischenkanal 9 mit einer Quelle 16 für ein zweites Fluid verbindbar ist, sodass das zweite Fluid durch den Zwischenkanal in den Entlastungskanal 63 einbringbar ist. Vorzugsweise ist das Sperrorgan 10 hier als Dreiwegeventil 10 ausgestaltet, welches den Zwischenkanal 9 wahlweise mit dem Einlass 3 der Pumpe 1 oder mit der Quelle für das zweite Fluid verbindet.
  • Fig. 9 zeigt in einer zu Fig. 2 bzw. Fig. 3 analogen Darstellung einen Betriebszustand der vierten Variante aus Fig. 8. In diesem Betriebszustand ist das Dreiwegeventil 10 so eingestellt, dass es den Zwischenkanal 9 mit der Quelle 16 für das zweite Fluid verbindet und die Strömungsverbindung zum Einlass 3 der Pumpe 1 gesperrt ist. Das zweite Fluid ist beispielsweise eine Demulgator, mit welchem die Viskosität der Leckageströmung Q herabgesetzt werden kann, oder Wasser zum Verdünnen der Leckageströmung Q, oder ein Kühlfluid, mit welchem Wärme aus dem Entlastungsspalt 63 abgeführt werden kann. In Fig. 9 ist der Fluss des zweiten Fluids mit gepunkteten, mit Pfeilen versehenen Linien angedeutet. Das zweite Fluid strömt durch den Zwischenkanal 9 in den Ringraum 66, wo es sich mit der Leckageströmung Q verbindet und mit dieser gemeinsam durch den zweiten Teilkanal 632 des Entlastungskanals 63 zur Niederdruckseite 64 strömt. Von dort wird die Leckageströmung Q gemeinsam mit dem zweiten Fluid durch den Rückführkanal 8 abgeführt.
  • Es versteht sich, dass die hier beschriebenen vier Varianten bzw. die erläuterten Massnahmen in beliebiger Weise miteinander kombinierbar sind.
  • Fig. 10 zeigt in eienr zu Fig. 2 analogen Darstellung ein zweites Ausführungsbeispiel einer erfindungsgemässen Pumpe 1. Im Folgenden wird nur auf die Unterschiede zum ersten Ausführungsbeispiel eingegangen. Die Bezugszeichen haben die gleiche Bedeutung, wie sie bereits im Zusammenhang mit dem ersaten Ausführungsbeispiel erläutert wurden. Die Erklärungen bezüglich des ersten Ausführungsbeispiels und aller seiner Varianten gelten in gleicher oder sinngemäss gleiche Weise auch für das zweite Ausführungsbeispiel.
  • Bei dem zweiten Ausführungsbeispiel der erfindungsgemässen Pumpe 1 ist noch ein zweiter Zwischenkanal 9' vorgesehen, der ebenfalls zwischen der Hochdruckseite 65 und der Niederdruckseite 64 in den Entlastungskanal 63 einmündet. Für diesen zweiten Zwischenkanal 9' ist ein weiteres Sperrorgan 10' vorgesehen, mit welchem die Leckageströmung Q in dem zweiten Zwischenkanal 9' beeinflussbar ist. Insbesondere kann der zweite Zwischenkanal 9' mittels des weiteren Sperrorgans 10' gesperrt werden, sodass keine Leckageströmung Q durch ihn hindurch strömen kann und der zweite Zwischenkanal 9' kann mittels des weiteren Sperrorgans 10' mit dem Einlass 3 der Pumpe 1 strömungsverbunden werden, sodass die Leckageströmung Q durch den zweiten Zwischenkanal 9' zum Einlass der Pumpe 1 abfliessen kann.
  • Ferner weist der Entlastungskanal 63 einen zweiten Ringraum 66' auf welcher die Welle umgibt und in welchen der zweite Zwischenkanal 9' einmündet.
  • Bei dieser Ausgestaltung mit den beiden Zwischenkanälen 9, 9' entspricht der Entlastungskanal 63 strömungstechnisch der Hintereinanderschaltung von drei Teilkanälen, nämlich eines ersten Teilkanals 631 der axialen Länge L1, der sich von der Hochdruckseite 65 bis zum Beginn des Ringraums 66 erstreckt, eines zweiten Teilkanals 632 der axialen Länge L2, der sich vom Ende des Ringraums 66 bis zum Beginn des zweiten Ringraums 66' erstreckt und eines dritten Teilkanals 633 der axialen Länge L3, der sich vom Ende des zweiten Ringraums 66' bis zur Niederdruckseite 64 des Rotor 61 erstreckt. Die jeweilige Breite B der Teilkanäle 631, 632, 633 ist in Fig. 10 der besseren Übersicht wegen zusammenfassend nur mit B bezeichnet. Es versteht sich aber, dass in sinngemäss gleicher Weise wie bei dem ersten Ausführungsbeispiel jeder Teilkanal 631, 632, 633 eine unterschiedliche Breite in radialer Richtung aufweisen kann, oder dass für zwei der Teilkanäle die gleiche Breite in radialer Richtung gewählt wird und für den verbleibenden Teilkanal 631 oder 632 oder 633 eine davon verschiedene Breite. Natürlich kann auch für alle drei Teilkanäle 631, 632, 633 die gleiche Breite B in radialer Richtung geählt werden. Innerhalb eines Teilkanals ist die Breite B vorzugsweise konstant, kann aber auch variieren.
  • Mit dieser Ausgestaltung können im Betriebszustand insgesamt drei Entlastungskanäle unterschiedlicher Länge realisiert werden. Lässt man die Leckageströmung Q durch den Rückführkanal 8 abströmen, so ist die effektive Länge des Entlastungskanals 63 in axialer Richtung L1 + L2 + L3, wobei diese efffektive Länge natürlich kleiner ist als die Gesamtlänge L.
  • Lässt man die Leckageströmung Q durch den zweiten Zwischenkanal 9' abströmen, so wie dies in Fig 10 dargestellt ist, dann ist die effektive Länge des Entlastungskanals 63 in axialer Richtung L1 + L2.
  • Lässt man die Leckageströmung Q durch den ersten Zwischenkanal 9 abströmen, dann ist die effektive Länge des Entlastungskanals 63 nur noch L1.
  • Auf diese Weise lassen sich also mehrere Entlastungskanäle 63 realisieren, die alle unterschiedliche Längen in axialer Richtung haben und zudem unterschiedliche Breiten B in radialer Richtung aufweisen können.
  • Natürlich können auch hier die Zwischenkanäle 9, 9' oder der Rückführkanal 8 zum Zuführen eines zweiten Fluids genutzt werden.
  • Es versteht sich, dass in sinngemäss gleicher Weise auch noch mehr als zwei Zwischenkanäle 9, 9' vorgesehen sein können, die jeweils in den Entlastungskanal 63 einmünden.
  • Bei der erfindungsgemässen Pumpe 1 ist es auch möglich, den Rotor 61 und/oder den Stator 62 aus mehreren Teilen zusammenzusetzen. Es ist also keinesfalls notwendig, dass der Rotor 61 oder der Stator 62 einstückig ausgestaltet ist. Ferner ist es möglich, den Rotor 61 oder den Stator 62 so auszugestalten, dass der Entlastungsspalt 63 auch ausserhalb der Ringräume 66, 66' keine konstante Breite B1, B2, B aufweist, sondern sich beispielsweise in axialer Richtung gesehen verjüngt oder aufweitet. Ferner ist es möglich, die Mantelfläche des Rotors 61 oder die innere Mantelfläche des Stators 62 zu beschichten oder zu strukturieren. Weiterhin ist es möglich, auf der Hochdruckseite 65 im Bereich des Eingangs in den Entlastungskanal 63 und/oder im Entlastungskanal 63, beispielsweise an den Eingängen in die jeweiligen Teilkanäle 631, 632, 633, ein oder mehrere Swirl Brakes vorzusehen, mit denen Strömungen des Fluids in Umfangsrichtung um die Welle 5 herum in die axiale Richtung umgelenkt werden.
  • Das Sperrorgan 10, 10' und das zweite Sperrorgan 12 können als Auf-Zu-Ventile ausgestaltet sein, mit denen der Fluss durch den jeweiligen Kanal entweder ganz freigegeben oder vollständig gesperrt wird. Es ist aber auch möglich, das Sperrorgan 10, 10' oder das zweite Sperrorgan 12 als einstellbares Durchflussventil auszugestalten, mit welchem der Fluss in dem jeweiligen Kanal auf beliebige Werte zwischen Null und einem maximalen Wert einstellbar sind.
  • Das Sperrorgan 10, 10' oder das zweite Sperrorgan 12 oder das Umschaltorgan 13 können so ausgestaltet sein, dass sie ferngesteuert bedienbar sind, beispielsweise bei unterseeischen Anwendungen über eine Signalleitung, über welche ein vorzugsweise elektrisches oder hydraulisches Signal geleitet wird, welches das jeweilige Sperrorgan oder Umschaltorgan in den jeweils gewünschten Zustand schaltet bzw. regelt. Die ferngesteuerte Bedienbarkeit kann auch signalleitungsfrei ausgestaltet sein.
  • Natürlich sind auch solche Ausgestaltungen der Sperrorgane 10, 10', 12 oder des Umschaltorgans 13 möglich, bei denen das jeweilige Organ 10, 10', 12 bzw. 13 manuell, also von Hand betätigt wird. Bei unterseeischen Anwendungen kann diese manuelle Einstellung auch mit Hilfe von Tauchrobotern vorgenommen werden.

Claims (15)

  1. Pumpe zum Fördern eines Fluids mit variierender Viskosität, welche ein Gehäuse (2) mit einem Einlass (3) und einem Auslass (4) für das zu fördernde Fluid aufweist, sowie mindestens ein Laufrad (7) zum Fördern des Fluids vom Einlass (3) zum Auslass (4), welches auf einer drehbaren Welle (5) angeordnet ist, sowie einen Entlastungskolben (6) zur Axialschubentlastung, wobei der Entlastungskolben (6) einen drehfest mit der Welle (5) verbundenen Rotor (61) mit einer Hochdruckseite (65) und mit einer Niederdruckseite (64) umfasst, einen bezüglich des Gehäuses (2) stationären Stator (62), und einen ringförmigen Entlastungskanal (63), der sich zwischen dem Rotor (61) und dem Stator (62) von der Hochdruckseite (65) bis zur Niederdruckseite (64) des Rotors (61) erstreckt, wobei ferner mindestens ein Zwischenkanal (9, 9') vorgesehen ist, welcher zwischen der Hochdruckseite (65) und der Niederdruckseite (64) des Rotors (61) in den Entlastungskanal (63) einmündet, und wobei ein Sperrorgan (10, 10') zur Beeinflussung der Strömung durch den Zwischenkanal (9, 9') vorgesehen ist, dadurch gekennzeichnet, dass ein Rückführkanal (8) vorgesehen ist, welcher die Niederdruckseite (64) des Rotors (61) mit dem Einlass (3) verbindet, und dass sich der Entlastungskanal (63) von der Hochdruckseite (65) in axialer Richtung bis zur Niederdruckseite (64) erstreckt.
  2. Pumpe nach Anspruch 1, bei welcher der Entlastungskanal (63) einen Ringraum (66, 66') umfasst, welcher die Welle (5) umgibt, und in welchen der Zwischenkanal (9, 9') einmündet.
  3. Pumpe nach Anspruch 2, bei welcher der Entlastungskanal (63) ausserhalb des Ringraums (9, 9') in einem ersten Teilkanal (631) des Entlastungskanals (63) oder in einem zweiten Teilkanal (632) des Entlastungskanals (63) eine konstante Breite (B1, B2, B) in radialer Richtung aufweist.
  4. Pumpe nach einem der vorangehenden Ansprüche, wobei der Zwischenkanal (9) mit dem Einlass (3) verbunden ist.
  5. Pumpe nach einem der vorangehenden Ansprüche, wobei der Zwischenkanal (9) in den Rückführkanal (8) einmündet.
  6. Pumpe nach einem der vorangehenden Ansprüche, wobei das Sperrorgan (10) als einstellbares Durchflussventil ausgestaltet ist.
  7. Pumpe nach einem der vorangehenden Ansprüche, wobei ein zweites Sperrorgan (12) zur Beeinflussung der Strömung durch den Rückführkanal (8) vorgesehen ist.
  8. Pumpe nach einem der vorangehenden Ansprüche, wobei das Sperrorgan (10) als Dreiwegeventil ausgestaltet ist, welches mit dem Einlass (3), mit dem Rückführkanal (8) und mit dem Zwischenkanal (9) strömungsverbunden ist.
  9. Pumpe nach einem der vorangehenden Ansprüche, wobei ein Umschaltorgan (13) vorgesehen ist, mit welchem der Rückführkanal (8) wahlweise mit dem Einlass (3) der Pumpe (1) oder mit einer Quelle (15) für ein zweites Fluid verbindbar ist, sodass das zweite Fluid durch den Rückführkanal (8) der Niederdruckseite (64) des Rotors (61) zuführbar ist.
  10. Pumpe nach einem der vorangehenden Ansprüche, bei welchem das Sperrorgan (10) derart angeordnet und ausgestaltet ist, dass der Zwischenkanal (9) mit einer Quelle (16) für ein zweites Fluid verbindbar ist, sodass das zweite Fluid durch den Zwischenkanal (9) in den Entlastungskanal (63) einbringbar ist.
  11. Pumpe nach einem der vorangehenden Ansprüche, wobei mehrere Zwischenkanäle (9, 9') vorgesehen sind, von denen jeder zwischen der Hochdruckseite (65) und der Niederdruckseite (64) in den Entlastungskanal (63) einmündet.
  12. Pumpe nach Anspruch 1 oder 7 oder 9, bei welcher das Sperrorgan (10, 10') oder das zweite Sperrorgan (12) oder das Umschaltorgan (13) ferngesteuert bedienbar sind.
  13. Pumpe nach einem der vorangehenden Ansprüche, ausgestaltet als mehrstufige Pumpe, die mindestens ein zweites, auf der Welle angeordnetes Laufrad (7) zum Fördern des Fluids aufweist.
  14. Pumpe nach einem der vorangehenden Ansprüche, ausgestaltet als Multiphasenpumpe.
  15. Pumpe nach einem der vorangehenden Ansprüche, ausgestaltet als Zentrifugalpumpe für die Öl- und Gasförderung, insbesondere als Unterseepumpe für die unterseeischen Öl- und Gasförderung.
EP16173766.3A 2015-07-23 2016-06-09 Pumpe zum fördern eines fluids mit variierender viskosität Not-in-force EP3121450B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15178068 2015-07-23

Publications (2)

Publication Number Publication Date
EP3121450A1 EP3121450A1 (de) 2017-01-25
EP3121450B1 true EP3121450B1 (de) 2020-09-02

Family

ID=53761985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16173766.3A Not-in-force EP3121450B1 (de) 2015-07-23 2016-06-09 Pumpe zum fördern eines fluids mit variierender viskosität

Country Status (10)

Country Link
US (1) US10215185B2 (de)
EP (1) EP3121450B1 (de)
KR (1) KR20170012022A (de)
CN (1) CN106368977B (de)
AU (1) AU2016204438B2 (de)
BR (1) BR102016014783A2 (de)
CA (1) CA2935527A1 (de)
MX (1) MX2016008881A (de)
RU (1) RU2703164C1 (de)
SG (1) SG10201605244QA (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800011099A1 (it) * 2018-12-14 2020-06-14 Nuovo Pignone Tecnologie Srl Sistema di de-idrogenazione di propano con un compressore di effluente di reattore a cassa singola e metodo
DE102019001120A1 (de) * 2019-02-15 2020-08-20 KSB SE & Co. KGaA Entlastungseinrichtung
EP3686436A1 (de) 2019-07-31 2020-07-29 Sulzer Management AG Mehrstufige pumpe und unterwasserpumpenanordnung
EP3798449A1 (de) * 2019-09-24 2021-03-31 Sulzer Management AG Pumpe zum fördern einer flüssigkeit
EP3896288A1 (de) * 2020-04-16 2021-10-20 Sulzer Management AG Zentrifugalpumpe zum fördern eines fluids
EP3739215A1 (de) * 2020-04-20 2020-11-18 Sulzer Management AG Durch prozessflüssigkeit geschmierte pumpe
EP3936726A1 (de) * 2020-07-07 2022-01-12 Sulzer Management AG Anpassung der ausströmmenge einer mehrstufigen pumpe durch einstellung des spiels des entlastungskolbens
EP4012186A1 (de) * 2020-12-08 2022-06-15 Sulzer Management AG Prozessflüssigkeitsgeschmierte pumpe und pumpsystem
CN115217775B (zh) * 2022-07-05 2023-02-28 天津乐科节能科技有限公司 一种带有扩压作用回流器的混流-离心组合式离心压缩机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE249336C (de) * 1900-01-01
US4121839A (en) * 1976-08-18 1978-10-24 Mitsui Toatsu Chemicals, Inc. Sealing system for use in composite multi-stage pump
SU903570A1 (ru) * 1980-05-07 1982-02-07 Предприятие П/Я А-3884 Способ разгрузки упорного подшипника турбомашины
CH669241A5 (de) * 1985-11-27 1989-02-28 Sulzer Ag Axialschub-ausgleichsvorrichtung fuer fluessigkeitspumpe.
FR2592688B1 (fr) * 1986-01-08 1988-03-18 Alsthom Turbomachine.
US4725196A (en) * 1986-09-19 1988-02-16 Hitachi, Ltd. Single-shaft multi-stage centrifugal compressor
JPH01237394A (ja) * 1988-03-18 1989-09-21 Hitachi Ltd 遠心圧縮機のバランスピストン構造
DE4313455A1 (de) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radialer Spalt, beispielsweise einer Strömungsmaschine
CN2392931Y (zh) * 1999-10-15 2000-08-23 邱熙 一种多级离心泵
CN2844530Y (zh) * 2005-11-07 2006-12-06 上海东方泵业(集团)有限公司 分段式多级泵的轴向力平衡装置
DE102008022966B4 (de) * 2008-05-09 2014-12-24 Siemens Aktiengesellschaft Rotationsmaschine
CN201582170U (zh) * 2009-11-20 2010-09-15 上海电力修造总厂有限公司 一种新型多级给水泵的平衡鼓节流衬套
IT1397707B1 (it) * 2009-12-22 2013-01-24 Nuovo Pignone Spa Bilanciamento dinamico di spinta per compressori centrifughi.
WO2011078680A1 (en) * 2009-12-23 2011-06-30 William Paul Hancock Turbo-machine thrust balancer
FR2997739B1 (fr) * 2012-11-07 2015-01-09 Thermodyn Compresseur comprenant un equilibrage de poussee
CN103398012B (zh) * 2013-08-15 2015-12-23 沈阳三科水力机械制造有限公司 核电站启停给水泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2935527A1 (en) 2017-01-23
RU2703164C1 (ru) 2019-10-16
MX2016008881A (es) 2017-01-23
AU2016204438A1 (en) 2017-02-09
US20170022997A1 (en) 2017-01-26
CN106368977A (zh) 2017-02-01
KR20170012022A (ko) 2017-02-02
US10215185B2 (en) 2019-02-26
SG10201605244QA (en) 2017-02-27
CN106368977B (zh) 2020-11-24
EP3121450A1 (de) 2017-01-25
AU2016204438B2 (en) 2020-12-24
BR102016014783A2 (pt) 2017-01-31

Similar Documents

Publication Publication Date Title
EP3121450B1 (de) Pumpe zum fördern eines fluids mit variierender viskosität
DE102013102030B3 (de) Schraubenspindelpumpe
EP2960561B1 (de) Hydraulikventil
DE102013104051B4 (de) Zentralventil für einen Schwenkmotorversteller
EP2961988B1 (de) Aus wenigstens zwei teilen gebildete schraubenspindelpumpe
DE102013111716B3 (de) Exzenterschneckenpumpe und Verwendung einer Exzenterschneckenpumpe
DE1955044B2 (de) Stromregelventil
DE2653630A1 (de) Vorrichtung zum pumpen von fluiden
DE102012207010A1 (de) Abgasturbolader mit einem zwei Radiallager aufweisenden Lagergehäuse
EP0894299B1 (de) Vorgesteuertes 3-wege-druckregelventil
DE102015219752A1 (de) Lagerbuchse
EP2084395B1 (de) Anordnung zur abdichtung zwischen zwei relativ zueinander bewegbaren teilen einer hydraulischen strömungsmaschine
DE1450457A1 (de) Durchflussmengenregelventil fuer Fluessigkeiten
DE102015108829A1 (de) Doppeltwirkender Verriegelungszylinder und Verfahren zum Betreiben eines doppeltwirkenden Verriegelungszylinders
DE1600946A1 (de) Eingriffsmischbatterie
EP3439789B1 (de) Hochdruck-rotordüse
DE102015225927A1 (de) Ventilkolben und Schieberventil mit einem Ventilkolben
EP3118497B1 (de) Hydraulisches wegeventil
CH700016B1 (de) Gleitringdichtung.
DE3107012A1 (de) Schieberventil fuer oel-in-wasser-emulsionen
EP3710704B1 (de) Pumpenanordnung zur versorgung einer gleitringdichtungsanordnung
DE1808305A1 (de) Spaltrohrmotor-Kreiselpumpenaggregat
DE102009037733B4 (de) Regelventilanordnung und Verstellpumpe
EP2251550A2 (de) Hydrauliksystem sowie mobile Baumaschine
WO2005083308A1 (de) Stromregelventilvorrichtung für eine pumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1309128

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010990

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010990

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210618

Year of fee payment: 6

Ref country code: FR

Payment date: 20210622

Year of fee payment: 6

26N No opposition filed

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210625

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1309128

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016010990

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160609

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220609

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902