EP3098504B1 - Twisted deep radiator reflectors - Google Patents

Twisted deep radiator reflectors Download PDF

Info

Publication number
EP3098504B1
EP3098504B1 EP15001354.8A EP15001354A EP3098504B1 EP 3098504 B1 EP3098504 B1 EP 3098504B1 EP 15001354 A EP15001354 A EP 15001354A EP 3098504 B1 EP3098504 B1 EP 3098504B1
Authority
EP
European Patent Office
Prior art keywords
reflector
light
polygon
inlet end
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15001354.8A
Other languages
German (de)
French (fr)
Other versions
EP3098504A1 (en
Inventor
Simon Appelhans
Heinrich J. Gantenbrink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bega Gantenbrink Leuchten KG
Original Assignee
Bega Gantenbrink Leuchten KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bega Gantenbrink Leuchten KG filed Critical Bega Gantenbrink Leuchten KG
Priority to EP15001354.8A priority Critical patent/EP3098504B1/en
Priority to US15/094,149 priority patent/US9841164B2/en
Priority to CN201610293931.4A priority patent/CN106122844B/en
Publication of EP3098504A1 publication Critical patent/EP3098504A1/en
Application granted granted Critical
Publication of EP3098504B1 publication Critical patent/EP3098504B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • F21V3/0615Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass the material diffusing light, e.g. translucent glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0066Reflectors for light sources specially adapted to cooperate with point like light sources; specially adapted to cooperate with light sources the shape of which is unspecified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/046Optical design with involute curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources

Definitions

  • a generic reflector comprises a light entry end, a light exit end with at least one substantially quadrangular light exit opening, an optical axis, and a reflector surface extending between the light entrance end and the light exit end, the reflector surface defining a polygon in a plane perpendicular to the optical axis.
  • Generic reflectors come u.a. in recessed spotlights, but also in other lights used.
  • the light exit opening is aligned concentrically to the optical axis of the reflector, and the optical axis is substantially completely surrounded by the reflector surface.
  • reflectors with a rectangular reflector surface are often used, wherein the four side surfaces of the reflector in the direction between the light entry end and the light exit end are curved in particular parabolic.
  • the reflector surface at the corners of the cross-sectional area is not continuous into one another.
  • the angle between the faces of the reflector surface is 90 °. This leads to inhomogeneities of the illuminance in the emitted cone of light.
  • the emitted light cone has a light intensity with sharp edges, wherein the shape of the light cone substantially corresponds to the shape of the reflector surface, if no aperture is arranged at the light exit end of the reflector or in the direction of the emitted light cone.
  • the inhomogeneities caused by the edges now cause the emitted light cone not a uniform illuminance, but areas with increased or decreased illuminance.
  • the reflector has a circular light exit opening and a reflector surface which shows a regular 48-sided polygon.
  • EP 0915 287 A2 a round reflector, wherein the reflector is provided inside with spirally formed reflector surfaces.
  • the light source a light bulb is used.
  • the US 7,441,927 discloses a lamp with individual facets extending spirally from the light entrance opening to the light exit opening.
  • a corresponding lamp is particularly suitable for the use of halogen lamps.
  • the invention offers the advantage that a twisted surface of revolution is created by the rotating polygon.
  • the inhomogeneities generated along the edge are thus no longer superimposed in one area of the emitted cone of light, but are distributed over several emission directions and are superimposed by light beams which have been reflected off the edges of the reflector surface.
  • the luminous intensity of the emitted light cone becomes more homogeneous overall.
  • the polygon also changes shape and size between the light entry end and the light exit end.
  • the corners of the rotating polygon define spirals on the reflector surface.
  • the polygon has more than four corners, and at the light exit end, a first transition region is formed, in which the polygon merges continuously into the shape of the light exit opening. Increasing the number of corners increases the angle between two adjoining surface sections, resulting in a reduction in the inhomogeneity of a corner. In the first transition region, the polygon can continue to rotate about the rotation axis.
  • the axis of rotation is also perpendicular to the plane of the polygon.
  • the reflector surface is a reflective coating of a reflector shell. It is also an alternative possible that the reflector shell consists of a reflective material and its inner, the optical axis facing surface is formed as a reflector surface.
  • the axis of rotation and the optical axis coincide. This makes it possible to realize symmetrical light cone shapes in a particularly simple manner. However, it is alternatively conceivable that the rotational axis and the optical axis do not coincide for the realization of other light cone shapes.
  • the light exit opening is square.
  • the light exit opening has a different quadrangular shape.
  • the quadrangular light exit opening may have curved edges. This allows the reflector to adapt to lighting tasks or design aspects.
  • the present invention further provides an arrangement with at least two reflectors according to the invention, wherein the light exit openings of the reflectors are arranged adjacent, and the rotations of the polygons of adjacent reflectors have an opposite direction of rotation.
  • the invention further provides a luminaire with a reflector according to the invention and a light source, wherein the light source is arranged at the light entry end of the reflector and comprises at least one LED.
  • the reflector according to the invention is particularly advantageous for lights with LEDs.
  • the edges of the polygon are curved.
  • the reflector can be easily adapted to lighting tasks.
  • the edges are convexly curved. This further improves the imaging properties of the reflector.
  • the outside of the reflector shell may be curved in particular convex.
  • the polygon is a point-symmetric polygon, and the center of symmetry lies on the axis of rotation. Accordingly, the polygon rotates about its center of symmetry. This makes it particularly easy to realize symmetrical light cone shapes.
  • the polygon is a point-symmetrical octagon with a 4-fold rotational symmetry.
  • even a small angle of rotation already has a particularly advantageous effect on the homogeneity of the illuminance, while at the same time the production costs and the number of discontinuities in the reflector surface are kept low.
  • the polygon rotates along the entire reflector surface between the light entry end and the light exit end.
  • the rotation of the polygon has a particularly effective effect on the homogeneity of the illuminance of the emitted light cone. If the reflector has a first transition region at the light exit end, the polygon can rotate to the beginning of the transition region or even within the transition region to the light exit end.
  • the angle of rotation swept from a corner of the polygon in a plane perpendicular to the axis of rotation by the rotation between the light entry end and the light exit end is greater than 15 °. From this angle of rotation, the rotation has a particularly advantageous effect on the homogeneity of the illuminance.
  • the angle of rotation of each corner is substantially 360 ° divided by the number of corners of the polygon.
  • the inhomogeneities of a corner are distributed over an area that extends to the starting point of the inhomogeneity caused by the next corner. At this angle of rotation so no inhomogeneities are available.
  • the reflector surface is parabolic in a plane parallel to the optical axis between the light entry end and the light exit end.
  • the reflector additionally has the refractive properties of a parabolic mirror. In this embodiment, it is particularly easy to realize parallel light cones.
  • the reflector has a light inlet opening at the light entry end.
  • a light source can be arranged in a particularly simple manner in the reflector, or introduce light in a particularly simple way in the reflector.
  • the reflector is flattened at the light entry end and the reflector surface opens at the flattened light entry end into a base surface.
  • the base surface formed by the flattened end, into which the reflector surface opens can have the shape of the polygon. Most preferably, the base and the plane spanned by the light exit opening are parallel.
  • the base surface is formed substantially quadrangular, and at the light entry end, a second transition region is formed, in which the polygon merges steadily into the shape of the base surface.
  • the shape of the base surface may have curved edges and / or the shape of the light exit opening. This results in a particularly aesthetic overall impression.
  • the polygon in the second transition region can continue to rotate about the axis of rotation.
  • the light exit opening and the base area are essentially square, and the polygon is a point-symmetrical octagon with a 4-fold rotational symmetry, wherein the reflector surface is designed to be parabolic in a plane parallel to the optical axis between the light entry end and the light exit end runs and the polygon between the base and the light exit opening along the entire reflector surface rotates such that the corners of the base pass into those corners of the octagon, which open at the centers of the edges of the light exit opening, and the centers of the edges the base surface in those corners of the octagon, which open in the corners of the light exit opening.
  • This design results in an improved illuminance regardless of the height of the reflector. In addition, there is a good overall aesthetic impression.
  • two different spiral shapes are defined on the reflector surface by the corners of the rotating octagon, with the first spirals extending from the centers of the corners of the base to the centers of the edges of the light exit aperture and the second spirals from the centers of the edges of the base extend the corners of the light exit opening.
  • edges of the base surface and the edges of the light exit opening are aligned parallel to each other. This results in a particularly aesthetic reflector.
  • the reflector is produced by means of injection molding.
  • the reflector according to the invention can be produced particularly easily.
  • the reflector shell is at least partially convex. As a result, the demolding of the reflector during injection molding is simplified.
  • a reflector body is first produced by means of injection molding and then applied to the inside of the reflector shell to form the reflector surface, a reflective layer.
  • the reflector according to the invention can be produced in a particularly simple and cost-effective manner.
  • the arrangement comprises four reflectors, which are arranged in a rectangle, wherein the opposite reflectors are of the same design.
  • the superposition of the invention homogeneous light cone of the individual reflectors results in a particularly homogeneous emitted light beam for the entire arrangement.
  • the luminaire comprises a diffuser element.
  • the diffuser element can be designed, for example, as a cover glass be and be arranged at the light exit opening. As a result, the illuminance of the emitted light cone can be further homogenized.
  • the Figures 1 and 2 show a reflector 1 according to the invention with a light entry end 2, a light exit end 3 and a reflector shell 7, which extends between the light entry end 2 and the light exit end 3.
  • a light exit opening 6 is formed at the light exit end 3.
  • the reflector surface 4 is formed on the inside of the reflector shell 7, the reflector surface 4 is formed.
  • the reflector has a flattened light entry end 2 with a base 8.
  • the base 8 is quadrangular, wherein the edges are convex.
  • a light inlet opening 5 is formed.
  • the reflector surface 4 surrounds the optical axis O of the reflector 1.
  • the light inlet opening 5 and the light exit opening 6 are formed square, and coaxially aligned with the optical axis O and parallel to each other.
  • the reflector 1 was produced by injection molding, in which case a reflector body comprising the reflector shell 7 was first produced, and then the reflector surface 4 was applied to the inside of the reflector shell 7 as a reflective coating.
  • the outside of the reflector shell 7 is convex.
  • the outer side follows the curvature of the reflector surface 4, so that the reflector shell 7 has a substantially constant wall thickness.
  • the reflector surface 4 defines an octagon.
  • the reflector surface 4 has a first transition region 12 at the light exit end 3 and a second transition region 13 at the light entry end 3.
  • the octagon 11 is continuous in the shape of the light inlet opening 5 and the light exit opening 6, respectively.
  • the octagon 11 rotates along the entire reflector surface 4 between the light entry end 2 and the light exit end 3 about an axis of rotation R, wherein the axis of rotation R coincides with the optical axis O.
  • the octagon 11 also rotates within the first transition region 12 and the second transition region 13.
  • the edges of the rotating octagon 11 define on the reflector shell 7 and on the reflector surface 4 spirals 9, 10.
  • the total angle of rotation of all corners is ⁇ 45 °.
  • the angle of rotation of each corner is therefore greater than 15 ° and corresponds to 360 ° divided by the number of corners.
  • the spirals 9 each extend from a center of the edges of the base 8 to a respective corner of the light exit opening 6.
  • the spirals 10 extend from one corner of the base 8 to a respective center of the edges of the light exit opening 6.
  • FIG. 3 shows the reflector of the FIG. 1 in section along the section line A.
  • the reflector surface 4 is formed parabolic in the illustrated embodiment.
  • Base 8 and light exit opening 6 are parallel to each other.
  • FIG. 4 shows the second transition region 13 of the reflector 1 of FIG. 3 in section along the axis B.
  • the octagon 11 is almost completely in the shape of the base 8 has gone over, and has in relation to the base 8 a small angle of rotation ⁇ of about 5 ° about the axis of rotation R.
  • FIG. 5 shows the reflector of the FIG. 3 along the section line C.
  • the polygon 11 defined by the reflector surface 4 is a point-symmetrical octagon 11 with a 4-fold rotational symmetry which rotates about its center of symmetry.
  • the edges of the octagon 11 are convex.
  • FIG. 6 shows the reflector of the FIG. 3 along the section line D.
  • the octagon 11 is still point-symmetrical and has a 4-fold rotational symmetry. However, the shape of the octagon 11 has changed them slightly, since the corners defining the spirals 9 to reach the corners of the light exit opening number 5 must travel a greater distance than the corners defining the spirals 10.
  • the angle of rotation ⁇ is now approximately 30 °.
  • FIG. 7 shows the first transition region 12 of the reflector of FIG. 3 along the section line E.
  • the octagon 11 continues to rotate and has almost completely transitioned into the shape of the light exit opening.
  • the rotation angle ⁇ is almost 45 °.
  • FIGS. 8 and 9 show an assembly 14 of 4 reflectors 1.15, the reflectors 15 to the reflector of Figures 1-7 correspond, but have an opposite sense of rotation.
  • the 4 Lichteintrittsenten 3 are adjacent in a plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

Die vorliegende Erfindung betrifft einen Reflektor für eine Leuchte, insbesondere für eine Leuchte mit zumindest einer LED-Lichtquelle, nach dem Oberbegriff des Anspruchs 1. Demnach umfasst ein gattungsgemäßer Reflektor ein Lichteintrittsende, ein Lichtaustrittsende mit zumindest einer im Wesentlichen viereckigen Lichtaustrittsöffnung, eine optische Achse, und eine Reflektorfläche, die sich zwischen dem Lichteintrittsende und dem Lichtaustrittsende erstreckt, wobei die Reflektorfläche in einer Ebene senkrecht zur optischen Achse ein Polygon definiert.The present invention relates to a reflector for a luminaire, in particular for a luminaire with at least one LED light source, according to the preamble of claim 1. Accordingly, a generic reflector comprises a light entry end, a light exit end with at least one substantially quadrangular light exit opening, an optical axis, and a reflector surface extending between the light entrance end and the light exit end, the reflector surface defining a polygon in a plane perpendicular to the optical axis.

Gattungsgemäße Reflektoren kommen u.a. in Einbaustrahlern, aber auch in sonstigen Leuchten zum Einsatz. Üblicherweise ist die Lichtaustrittsöffnung konzentrisch zur optischen Achse des Reflektors ausgerichtet, und die optische Achse wird von der Reflektorfläche im Wesentlichen vollständig umgeben. Insbesondere kommen häufig Reflektoren mit einer rechteckigen Reflektorfläche zum Einsatz, wobei die vier Seitenflächen des Reflektors in der Richtung zwischen dem Lichteintrittsende und dem Lichtaustrittsende gekrümmt insbesondere parabelförmig ausgebildet sind.Generic reflectors come u.a. in recessed spotlights, but also in other lights used. Usually, the light exit opening is aligned concentrically to the optical axis of the reflector, and the optical axis is substantially completely surrounded by the reflector surface. In particular, reflectors with a rectangular reflector surface are often used, wherein the four side surfaces of the reflector in the direction between the light entry end and the light exit end are curved in particular parabolic.

Nachteilig bei den gattungsgemäßen Reflektoren ist jedoch, dass die Reflektoroberfläche an den Ecken der Querschnittsfläche nicht stetig ineinander übergeht. Bei gattungsgemäßen Reflektoren beträgt der Winkel zwischen den Teilflächen der Reflektorfläche 90°. Dies führt zu Inhomogenitäten der Beleuchtungsstärke im abgestrahlten Lichtkegel. Idealerweise hat der abgestrahlte Lichtkegel eine gelichmäßige Beleuchtungsstärke mit scharfen Kanten, wobei die Form des Lichtkegels im Wesentlichen der Form der Reflektorfläche entspricht, falls am Lichtaustrittsende des Reflektors oder in Richtung des abgestrahlten Lichtkegels keine Blende angeordnet ist. Die durch die Kanten bedingten Inhomogenitäten bewirken nun, dass der abgestrahlte Lichtkegel keine gleichmäßige Beleuchtungsstärke, sondern Bereiche mit erhöhter oder verringerter Beleuchtungsstärke aufweist.A disadvantage of the generic reflectors, however, is that the reflector surface at the corners of the cross-sectional area is not continuous into one another. In generic reflectors, the angle between the faces of the reflector surface is 90 °. This leads to inhomogeneities of the illuminance in the emitted cone of light. Ideally, the emitted light cone has a light intensity with sharp edges, wherein the shape of the light cone substantially corresponds to the shape of the reflector surface, if no aperture is arranged at the light exit end of the reflector or in the direction of the emitted light cone. The inhomogeneities caused by the edges now cause the emitted light cone not a uniform illuminance, but areas with increased or decreased illuminance.

Diese Nachteile kommen insbesondere bei LEDs als Lichtquellen zum Vorschein, da bei der Verwendung dieser quasi punktförmigen Lichtquellen die Abbildungseigenschaften der Reflektoren stärkere Auswirkungen auf den abgestrahlten Lichtkegel haben. Gattungsgemäße Reflektoren weisen deswegen bei der Verwendung mit LEDs besonders starke Inhomogenitäten auf.These disadvantages are particularly evident in LEDs as light sources, because with the use of these quasi point-shaped light sources, the imaging properties of the reflectors have stronger effects on the emitted light beam. Therefore, generic reflectors have particularly strong inhomogeneities when used with LEDs.

Aus der DE 699 353 81 D2 ist eine Leuchte mit facettierter Reflektor- und Spirallinse bekannt. Der Reflektor weist eine kreisförmige Lichtaustrittsöffnung auf und eine Reflektorfläche, die ein regelmäßiges 48-seitiges Polygon zeigt.From the DE 699 353 81 D2 is a luminaire with faceted reflector and spiral lens known. The reflector has a circular light exit opening and a reflector surface which shows a regular 48-sided polygon.

Ferner beschreibt die EP 0915 287 A2 einen runden Reflektor, wobei der Reflektor im Inneren mit spiralförmig ausgebildeten Reflektorflächen bereitgestellt ist. Als Lichtquelle wird eine Glühbirne eingesetzt.Furthermore, the describes EP 0915 287 A2 a round reflector, wherein the reflector is provided inside with spirally formed reflector surfaces. As the light source, a light bulb is used.

Die US 7,441,927 offenbart eine Lampe mit einzelnen Facetten, die sich spiralförmig von der Lichteintrittsöffnung bis zur Lichtaustrittsöffnung erstrecken. Eine entsprechende Lampe ist insbesondere für den Einsatz von Halogen-Lampen geeignet.The US 7,441,927 discloses a lamp with individual facets extending spirally from the light entrance opening to the light exit opening. A corresponding lamp is particularly suitable for the use of halogen lamps.

Es ist daher die Aufgabe der vorliegenden Erfindung, einen Reflektor der eingangs genannten Art bereitzustellen, dessen abgestrahlter Lichtkegel eine homogenere Beleuchtungsstärke aufweist.It is therefore an object of the present invention to provide a reflector of the type mentioned, whose radiated light cone has a more homogeneous illuminance.

Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1. Demnach liegt bei einem Reflektor der eingangs genannten Art dann eine erfindungsgemäße Lösung der Aufgabe vor, wenn die Reflektorfläche derart ausgebildet ist, dass das Polygon zwischen dem Lichteintrittsende und dem Lichtaustrittsende zumindest abschnittsweise um eine Rotationsachse rotiert, die parallel zur optischen Achse ausgerichtet ist.The object is achieved by the features of claim 1. Accordingly, in a reflector of the type mentioned above, an inventive solution to the problem, if the reflector surface is formed such that the polygon between the light entry end and the light exit end at least partially rotated about an axis of rotation , which is aligned parallel to the optical axis.

Die Erfindung bietet den Vorteil, dass durch das rotierende Polygon eine verdrehte Rotationsfläche entsteht. Die entlang der Kante erzeugten Inhomogenitäten überlagern sich so nicht mehr in einem Bereich des abgestrahlten Lichtkegels, sondern werden auf mehrere Abstrahlrichtungen verteilt und überlagern sich mit Lichtstrahlen, die fern der Kanten an der Reflektorfläche reflektiert wurden. Die Leuchtstärke des abgestrahlten Lichtkegels wird insgesamt homogener.The invention offers the advantage that a twisted surface of revolution is created by the rotating polygon. The inhomogeneities generated along the edge are thus no longer superimposed in one area of the emitted cone of light, but are distributed over several emission directions and are superimposed by light beams which have been reflected off the edges of the reflector surface. The luminous intensity of the emitted light cone becomes more homogeneous overall.

Da Reflektoren sich üblicherweise zum Lichteintrittsende hin verjüngen, ist es im Rahmen der vorliegenden Erfindung offensichtlich möglich, dass das Polygon auch seine Form und Größe zwischen dem Lichteintrittsende und dem Lichtaustrittsende ändert. Die Ecken des rotierenden Polygons definieren dabei Spiralen auf der Reflektorfläche.As reflectors usually taper toward the light entry end, it is obviously possible within the scope of the present invention that the polygon also changes shape and size between the light entry end and the light exit end. The corners of the rotating polygon define spirals on the reflector surface.

In einer Ausgestaltung weist das Polygon mehr als vier Ecken auf, und am Lichtaustrittsende ist ein erster Übergangsbereich ausgebildet, in dem das Polygon stetig in die Form der Lichtaustrittsöffnung übergeht. Durch die Erhöhung der Eckenzahl vergrößert sich der Winkel zwischen zwei angrenzenden Flächenabschnitten, was zu einer Verringerung der Stärke der Inhomogenität einer Ecke führt. Im ersten Übergangsbereich kann das Polygon weiterhin um die Rotationsachse rotieren.In one embodiment, the polygon has more than four corners, and at the light exit end, a first transition region is formed, in which the polygon merges continuously into the shape of the light exit opening. Increasing the number of corners increases the angle between two adjoining surface sections, resulting in a reduction in the inhomogeneity of a corner. In the first transition region, the polygon can continue to rotate about the rotation axis.

Da die optische Achse und die Rotationsachse parallel sind, und die Ebene des Polygons senkrecht zur optischen Achse ist, steht auch die Rotationsachse senkrecht auf die Ebene des Polygons.Since the optical axis and the axis of rotation are parallel, and the plane of the polygon is perpendicular to the optical axis, the axis of rotation is also perpendicular to the plane of the polygon.

In einer Ausgestaltung der vorliegenden Erfindung handelt es sich bei der Reflektorfläche um eine reflektierende Beschichtung eines Reflektormantels. Es ist alternativ jedoch auch möglich, dass der Reflektormantel aus einem reflektierenden Material besteht und seine innere, der optischen Achse zugewandte Oberfläche als Reflektorfläche ausgebildet ist.In one embodiment of the present invention, the reflector surface is a reflective coating of a reflector shell. It is also an alternative possible that the reflector shell consists of a reflective material and its inner, the optical axis facing surface is formed as a reflector surface.

In einer weiteren Ausgestaltung der vorliegenden Erfindung stimmen die Rotationsachse und die optische Achse überein. Dadurch lassen sich besonders einfach symmetrische Lichtkegelformen verwirklichen. Es ist alternativ jedoch denkbar, dass zur Realisierung anderer Lichtkegelformen die Rotationsachse und die optische Achse nicht übereinstimmen.In a further embodiment of the present invention, the axis of rotation and the optical axis coincide. This makes it possible to realize symmetrical light cone shapes in a particularly simple manner. However, it is alternatively conceivable that the rotational axis and the optical axis do not coincide for the realization of other light cone shapes.

In einer weiteren Ausgestaltung des erfindungsgemäßen Reflektors ist die Lichtaustrittsöffnung quadratisch. Es ist alternativ jedoch auch denkbar, dass die Lichtaustrittsöffnung eine andere viereckige Form aufweist.In a further embodiment of the reflector according to the invention, the light exit opening is square. However, it is alternatively also conceivable that the light exit opening has a different quadrangular shape.

Im Rahmen der vorliegenden Erfindung kann die viereckige Lichtaustrittsöffnung gekrümmte Kanten aufweisen. Dadurch lässt sich der Reflektor an lichttechnische Aufgaben oder Designaspekte anpassen.In the context of the present invention, the quadrangular light exit opening may have curved edges. This allows the reflector to adapt to lighting tasks or design aspects.

Die vorliegende Erfindung stellt ferner eine Anordnung mit zumindest zwei erfindungsgemäße Reflektoren zur Verfügung, wobei die Lichtaustrittsöffnungen der Reflektoren benachbart angeordnet sind, und die Rotationen der Polygone benachbarter Reflektoren einen entgegengesetzten Drehsinn aufweisen.The present invention further provides an arrangement with at least two reflectors according to the invention, wherein the light exit openings of the reflectors are arranged adjacent, and the rotations of the polygons of adjacent reflectors have an opposite direction of rotation.

Die Erfindung stellt ferner eine Leuchte mit einem erfindungsgemäßen Reflektor und einer Lichtquelle zur Verfügung, wobei die Lichtquelle am Lichteintrittsende des Reflektors angeordnet ist und zumindest eine LED umfasst. Der erfindungsgemäße Reflektor ist besonders vorteilhaft für Leuchten mit LEDs.The invention further provides a luminaire with a reflector according to the invention and a light source, wherein the light source is arranged at the light entry end of the reflector and comprises at least one LED. The reflector according to the invention is particularly advantageous for lights with LEDs.

Vorteilhafte Ausgestaltungen der vorliegenden Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the present invention are the subject of the dependent claims.

In einer bevorzugten Ausführungsform sind die Kanten des Polygons gekrümmt ausgebildet. Dadurch lässt sich der Reflektor einfach an lichttechnische Aufgaben anpassen. Insbesondere sind die Kanten konvex gekrümmt. Dadurch lassen sich die Abbildungseigenschaften des Reflektors weiter verbessern. Bei dieser Ausführungsform kann auch die Außenseite des Reflektormantels gekrümmt insbesondere konvex ausgebildet sein.In a preferred embodiment, the edges of the polygon are curved. As a result, the reflector can be easily adapted to lighting tasks. In particular, the edges are convexly curved. This further improves the imaging properties of the reflector. In this embodiment, the outside of the reflector shell may be curved in particular convex.

In einer weiteren bevorzugten Ausführungsform ist das Polygon ein punktsymmetrisches Polygon, und das Symmetriezentrum liegt auf der Rotationsachse. Dementsprechend rotiert das Polygon um sein Symmetriezentrum. Dadurch lassen sich besonders einfach symmetrische Lichtkegelformen realisieren.In a further preferred embodiment, the polygon is a point-symmetric polygon, and the center of symmetry lies on the axis of rotation. Accordingly, the polygon rotates about its center of symmetry. This makes it particularly easy to realize symmetrical light cone shapes.

Erfindungsgemäß ist das Polygon ein punktsymmetrisches Oktagon mit einer 4-zähligen Drehsymmetrie. Bei dieser Ausführung wirkt sich bereits ein geringer Drehwinkel besonders vorteilhaft auf die Homogenität der Beleuchtungsstärke aus, wobei gleichzeitig die Herstellungskosten und die Anzahl der Unstetigkeiten in der Reflektorfläche gering gehalten werden.According to the invention, the polygon is a point-symmetrical octagon with a 4-fold rotational symmetry. In this embodiment, even a small angle of rotation already has a particularly advantageous effect on the homogeneity of the illuminance, while at the same time the production costs and the number of discontinuities in the reflector surface are kept low.

Ganz besonders bevorzugt münden vier der acht Ecken des Oktagons an den Ecken des Vierecks der Lichtaustrittsöffnung, und die restlichen vier Ecken des Oktagons an den Mittelpunkten der Kanten des Vierecks der Lichtaustrittsöffnung, wobei die Ecken des Oktagons abwechselnd an den Ecken und an den Mittelpunkten der Kanten der Lichtaustrittsöffnung münden.Most preferably, four of the eight corners of the octagon open at the corners of the quadrangle of the light exit opening, and the remaining four corners of the octagon at the midpoints of the edges of the quadrangle of the light exit opening, with the corners of the octagon alternately at the corners and at the centers of the edges the light exit opening open.

Erfindungsgemäß rotiert das Polygon entlang der gesamten Reflektorfläche zwischen dem Lichteintrittsende und dem Lichtaustrittsende. Bei dieser Ausführungsform wirkt sich die Rotation des Polygons besonders effektiv auf die Homogenität der Beleuchtungsstärke des abgestrahlten Lichtkegels aus. Falls der Reflektor am Lichtaustrittsende einen ersten Übergangsbereich aufweist, kann das Polygon bis zum Beginn des Übergangsbereichs oder auch innerhalb des Übergangsbereichs bis zum Lichtaustrittsende rotieren.According to the invention, the polygon rotates along the entire reflector surface between the light entry end and the light exit end. In this embodiment, the rotation of the polygon has a particularly effective effect on the homogeneity of the illuminance of the emitted light cone. If the reflector has a first transition region at the light exit end, the polygon can rotate to the beginning of the transition region or even within the transition region to the light exit end.

In einer weiteren bevorzugten Ausführungsform ist der von einer Ecke des Polygons in einer Ebene senkrecht zur Rotationsachse durch die Rotation zwischen dem Lichteintrittsende und dem Lichtaustrittsende überstrichene Drehwinkel größer als 15°. Ab diesem Drehwinkel wirkt sich die Rotation besonders vorteilhaft auf die Homogenität der Beleuchtungsstärke aus.In a further preferred embodiment, the angle of rotation swept from a corner of the polygon in a plane perpendicular to the axis of rotation by the rotation between the light entry end and the light exit end is greater than 15 °. From this angle of rotation, the rotation has a particularly advantageous effect on the homogeneity of the illuminance.

In einer weiteren bevorzugten Ausführungsform beträgt der Drehwinkel jeder Ecke im Wesentlichen 360° geteilt durch die Anzahl der Ecken des Polygons. Bei dieser Ausführungsform werden die Inhomogenitäten einer Ecke über einen Bereich verteilt, der sich bis zum Ausgangspunkt der durch die nächste Ecke bewirkten Inhomogenität erstreckt. Bei diesem Drehwinkel sind also keine Inhomogenitäten mehr vorhanden.In another preferred embodiment, the angle of rotation of each corner is substantially 360 ° divided by the number of corners of the polygon. In this embodiment, the inhomogeneities of a corner are distributed over an area that extends to the starting point of the inhomogeneity caused by the next corner. At this angle of rotation so no inhomogeneities are available.

Erfindungsgemäß ist die Reflektorfläche in einer Ebene parallel zur optischen Achse zwischen dem Lichteintrittsende und dem Lichtaustrittsende parabelförmig ausgebildet. Bei dieser Ausführungsform weist der Reflektor zusätzlich die lichtbrechenden Eigenschaften eines Parabolspiegels auf. Bei dieser Ausführungsform lassen sich besonders einfach parallele Lichtkegel realisieren.According to the invention, the reflector surface is parabolic in a plane parallel to the optical axis between the light entry end and the light exit end. In this embodiment, the reflector additionally has the refractive properties of a parabolic mirror. In this embodiment, it is particularly easy to realize parallel light cones.

In einer weiteren bevorzugten Ausführungsform weist der Reflektor am Lichteintrittsende eine Lichteintrittsöffnung auf. Durch die Lichteintrittsöffnung lässt sich eine Lichtquelle auf besonders einfache Weise im Reflektor anordnen, bzw. Licht auf besonders einfache Art in den Reflektor einbringen.In a further preferred embodiment, the reflector has a light inlet opening at the light entry end. Through the light entrance opening, a light source can be arranged in a particularly simple manner in the reflector, or introduce light in a particularly simple way in the reflector.

Erfindungsgemäß ist der Reflektor am Lichteintrittsende abgeflacht und die Reflektorfläche mündet am abgeflachten Lichteintrittsende in eine Grundfläche. Dadurch wird der Reflektor besonders kompakt. Die durch das abgeflachte Ende ausgebildete Grundfläche, in die die Reflektorfläche mündet, kann dabei die Form des Polygons aufweisen. Ganz besonders bevorzugt sind die Grundfläche und die von der Lichtaustrittsöffnung aufgespannte Ebene parallel.According to the invention, the reflector is flattened at the light entry end and the reflector surface opens at the flattened light entry end into a base surface. This makes the reflector very compact. The base surface formed by the flattened end, into which the reflector surface opens, can have the shape of the polygon. Most preferably, the base and the plane spanned by the light exit opening are parallel.

In einer weiteren ganz besonders bevorzugten Ausführungsform ist die Grundfläche im Wesentlichen viereckig ausgebildet, und am Lichteintrittsende ist ein zweiter Übergangsbereich ausgebildet, in dem das Polygon stetig in die Form der Grundfläche übergeht. Dadurch werden durch Kanten erzeugte Inhomogenitäten im abgestrahlten Lichtkegel vermieden. Insbesondere kann die Form der Grundfläche gekrümmte Kanten und/oder die Form der Lichtaustrittsöffnung aufweisen. Dadurch ergibt sich ein besonders ästhetischer Gesamteindruck. Bei dieser Ausführungsform kann das Polygon im zweiten Übergangsbereich weiterhin um die Rotationsachse rotieren.In a further very particularly preferred embodiment, the base surface is formed substantially quadrangular, and at the light entry end, a second transition region is formed, in which the polygon merges steadily into the shape of the base surface. As a result, inhomogeneities generated in the emitted light cone are avoided by edges. In particular, the shape of the base surface may have curved edges and / or the shape of the light exit opening. This results in a particularly aesthetic overall impression. In this embodiment, the polygon in the second transition region can continue to rotate about the axis of rotation.

Erfindungsgemäß sind die Lichtaustrittsöffnung und die Grundfläche im Wesentlichen quadratisch ausgebildet, und das Polygon ist ein punktsymmetrisches Oktagon mit einer 4-zähligen Drehsymmetrie, wobei die Reflektorfläche derart ausgebildet ist, dass sie in einer Ebene parallel zur optischen Achse zwischen dem Lichteintrittsende und dem Lichtaustritt Ende parabelförmig verläuft und das Polygon zwischen der Grundfläche und der Lichtaustrittsöffnung entlang der gesamten Reflektorfläche derart rotiert, dass die Ecken der Grundfläche in diejenigen Ecken des Oktagons übergehen, die in den Mittelpunkten der Kanten der Lichtaustrittsöffnung münden, und die Mittelpunkte der Kanten der Grundfläche in diejenigen Ecken des Oktagons übergehen, die in den Ecken der Lichtaustrittsöffnung münden. Durch diese Ausführung ergibt sich eine verbesserte Beleuchtungsstärke unabhängig von der Höhe des Reflektors. Zusätzlich ergibt sich ein guter ästhetischer Gesamteindruck.According to the invention, the light exit opening and the base area are essentially square, and the polygon is a point-symmetrical octagon with a 4-fold rotational symmetry, wherein the reflector surface is designed to be parabolic in a plane parallel to the optical axis between the light entry end and the light exit end runs and the polygon between the base and the light exit opening along the entire reflector surface rotates such that the corners of the base pass into those corners of the octagon, which open at the centers of the edges of the light exit opening, and the centers of the edges the base surface in those corners of the octagon, which open in the corners of the light exit opening. This design results in an improved illuminance regardless of the height of the reflector. In addition, there is a good overall aesthetic impression.

Bei dieser Ausführungsform sind auf der Reflektorfläche durch die Ecken des rotierenden Oktagons zwei verschiedene Spiralformen definiert, wobei sich die ersten Spiralen von den Mittelpunkten der Ecken der Grundfläche zu den Mittelpunkten der Kanten der Lichtaustrittsöffnung, und die zweiten Spiralen von den Mittelpunkte der Kanten der Grundfläche zu den Ecken der Lichtaustrittsöffnung erstrecken.In this embodiment, two different spiral shapes are defined on the reflector surface by the corners of the rotating octagon, with the first spirals extending from the centers of the corners of the base to the centers of the edges of the light exit aperture and the second spirals from the centers of the edges of the base extend the corners of the light exit opening.

In einer besonders bevorzugten Ausführungsform sind die Kanten der Grundfläche und die Kanten der Lichtaustrittsöffnung parallel zueinander ausgerichtet. Dadurch ergibt sich ein besonders ästhetischer Reflektor.In a particularly preferred embodiment, the edges of the base surface and the edges of the light exit opening are aligned parallel to each other. This results in a particularly aesthetic reflector.

In einer weiteren bevorzugten Ausführungsform ist der Reflektor mittels Spritzgießen hergestellt. Damit lässt sich der erfindungsgemäße Reflektor besonders einfach herstellen.In a further preferred embodiment, the reflector is produced by means of injection molding. Thus, the reflector according to the invention can be produced particularly easily.

In einer besonders bevorzugten Ausführungsform ist der Reflektormantel zumindest teilweise konvex ausgebildet. Dadurch wird das Entformen des Reflektors beim Spritzgießen vereinfacht.In a particularly preferred embodiment, the reflector shell is at least partially convex. As a result, the demolding of the reflector during injection molding is simplified.

Ganz besonders bevorzugt wird zunächst ein Reflektorkörper mittels Spritzgießen hergestellt und anschließend auf der Innenseite des Reflektormantels zur Bildung der Reflektorfläche eine reflektierende Schicht aufgebracht. Mit dieser Methode lässt sich der erfindungsgemäße Reflektor besonders einfach und kostengünstig herstellen.Most preferably, a reflector body is first produced by means of injection molding and then applied to the inside of the reflector shell to form the reflector surface, a reflective layer. With this method, the reflector according to the invention can be produced in a particularly simple and cost-effective manner.

In einer besonders bevorzugten Anordnung umfasst die Anordnung vier Reflektoren, die in einem Rechteck angeordnet sind, wobei die gegenüberliegenden Reflektoren gleich ausgebildet sind. Durch die Überlagerung der erfindungsgemäß homogenen Lichtkegel der einzelnen Reflektoren ergibt sich für die gesamte Anordnung ein besonders homogenes abgestrahltes Lichtbündel.In a particularly preferred arrangement, the arrangement comprises four reflectors, which are arranged in a rectangle, wherein the opposite reflectors are of the same design. The superposition of the invention homogeneous light cone of the individual reflectors results in a particularly homogeneous emitted light beam for the entire arrangement.

In einer bevorzugten Ausführungsform der Leuchte umfasst die Leuchte ein Diffusorelement. Das Diffusorelement kann beispielsweise als Abdeckglas ausgebildet sein und an der Lichtaustrittsöffnung angeordnet sein. Dadurch kann die Beleuchtungsstärke des abgestrahlten Lichtkegels weiter homogenisiert werden.In a preferred embodiment of the luminaire, the luminaire comprises a diffuser element. The diffuser element can be designed, for example, as a cover glass be and be arranged at the light exit opening. As a result, the illuminance of the emitted light cone can be further homogenized.

Ein Ausführungsbeispiel der vorliegenden Erfindung wird im Folgenden anhand von Zeichnungen näher erläutert. Es zeigen:

Figur 1:
eine schematische Darstellung eines erfindungsgemäßen Reflektors in Perspektive,
Figur 2:
eine weitere Darstellung des Reflektors der Fig. 1 in Perspektive,
Figur 3:
den Reflektor der Fig. 1 im Querschnitt entlang der Schnittlinie A,
Figur 4:
den Reflektor der Fig. 3 im Querschnitt entlang der Schnittlinie B,
Figur 5:
den Reflektor der Fig. 3 im Querschnitt entlang der Schnittlinie C,
Figur 6:
den Reflektor der Fig. 3 im Querschnitt entlang der Schnittlinie D,
Figur 7:
den Reflektor der Fig. 3 im Querschnitt entlang der Schnittlinie E,
Figur 8:
eine Anordnung von vier erfindungsgemäßen Reflektoren in Perspektive und
Figur 9:
eine weitere Darstellung der Anordnung aus Fig. 8 in Perspektive.
An embodiment of the present invention will be explained in more detail below with reference to drawings. Show it:
FIG. 1:
a schematic representation of a reflector according to the invention in perspective,
FIG. 2:
another illustration of the reflector of the Fig. 1 in perspective,
FIG. 3:
the reflector of Fig. 1 in cross-section along the section line A,
FIG. 4:
the reflector of Fig. 3 in cross-section along the section line B,
FIG. 5:
the reflector of Fig. 3 in cross section along the section line C,
FIG. 6:
the reflector of Fig. 3 in cross-section along the section line D,
FIG. 7:
the reflector of Fig. 3 in cross-section along the section line E,
FIG. 8:
an arrangement of four reflectors according to the invention in perspective and
FIG. 9:
another illustration of the arrangement Fig. 8 in perspective.

Für die folgenden Ausführungen gilt, dass gleiche Teile durch gleiche Bezugszeichen bezeichnet werden sofern in einer Zeichnung Bezugszeichen enthalten sind, auf die in der zugehörigen Figurenbeschreibung nicht näher eingegangen wird, so wird auf vorangehende oder nachfolgende Figurenbeschreibungen Bezug genommen.For the following statements applies that the same parts are denoted by the same reference numerals, if reference signs are included in a drawing, which is not discussed in detail in the accompanying figure description, reference is made to previous or subsequent description of the figures.

Die Figuren 1 und 2 zeigen einen erfindungsgemäßen Reflektor 1 mit einem Lichteintrittsende 2, einem Lichtaustrittsende 3 und einem Reflektormantel 7, der sich zwischen dem Lichteintrittsende 2 und dem Lichtaustrittsende 3 erstreckt. Am Lichtaustrittsende 3 ist eine Lichtaustrittsöffnung 6 ausgebildet. An der Innenseite des Reflektormantels 7 ist die Reflektorfläche 4 ausgebildet. Der Reflektor weist ein abgeflachtes Lichteintrittsende 2 mit einer Grundfläche 8 auf. Die Grundfläche 8 ist viereckig, wobei die Kanten konvex ausgebildet sind. An der Grundfläche 8 ist eine Lichteintrittsöffnung 5 ausgebildet. Die Reflektorfläche 4 umgibt die optische Achse O des Reflektors 1. Im dargestellten Ausführungsbeispiel sind die Lichteintrittsöffnung 5 und die Lichtaustrittsöffnung 6 quadratisch ausgebildet, und koaxial zur optischen Achse O sowie parallel zueinander ausgerichtet.The Figures 1 and 2 show a reflector 1 according to the invention with a light entry end 2, a light exit end 3 and a reflector shell 7, which extends between the light entry end 2 and the light exit end 3. At the light exit end 3, a light exit opening 6 is formed. On the inside of the reflector shell 7, the reflector surface 4 is formed. The reflector has a flattened light entry end 2 with a base 8. The base 8 is quadrangular, wherein the edges are convex. At the base 8 a light inlet opening 5 is formed. The reflector surface 4 surrounds the optical axis O of the reflector 1. In the illustrated embodiment, the light inlet opening 5 and the light exit opening 6 are formed square, and coaxially aligned with the optical axis O and parallel to each other.

Der Reflektor 1 wurde im Spritzguss-Verfahren hergestellt, wobei zunächst ein den Reflektormantel 7 umfassender Reflektorkörper hergestellt und anschließend die Reflektorfläche 4 als eine reflektierende Beschichtung auf die Innenseite des Reflektormantels 7 aufgebracht wurde. Um das Entformen beim Spritzgießen des Reflektors 1 zu erleichtern, ist die Außenseite des Reflektormantels 7 konvex ausgebildet. Die Außenseite folgt dabei der Krümmung der Reflektorfläche 4, sodass der Reflektormantel 7eine im Wesentlichen konstante Wandstärke aufweist.The reflector 1 was produced by injection molding, in which case a reflector body comprising the reflector shell 7 was first produced, and then the reflector surface 4 was applied to the inside of the reflector shell 7 as a reflective coating. In order to facilitate demolding during injection molding of the reflector 1, the outside of the reflector shell 7 is convex. The outer side follows the curvature of the reflector surface 4, so that the reflector shell 7 has a substantially constant wall thickness.

In Figur 2 ist dargestellt, dass die Reflektorfläche 4 ein Oktagon definiert. Die Reflektorfläche 4 weist am Lichtaustrittsende 3 einen ersten Übergangsbereich 12, und am Lichteintrittsende 3 einen zweiten Übergangsbereich 13 auf. In den Übergangsbereichen 12, 13 geht das Oktagon 11 stetig in die Form der Lichteintrittsöffnung 5 bzw. der Lichtaustrittsöffnung 6 über. Das Oktagon 11 rotiert entlang der gesamten Reflektorfläche 4 zwischen dem Lichteintrittsende 2 und dem Lichtaustrittsende 3 um eine Rotationsachse R, wobei die Rotationsachse R mit der optischen Achse O übereinstimmt. Das Oktagon 11 rotiert auch innerhalb des ersten Übergangsbereichs 12 und des zweiten Übergangsbereichs 13. Die Kanten des rotierenden Oktagon 11 definieren auf dem Reflektormantel 7 und auf der Reflektorfläche 4 Spiralen 9, 10. Im dargestellten Ausführungsbeispiel beträgt der gesamte Drehwinkel aller Ecken α 45°. Der Drehwinkel jeder Ecke ist also größer als 15° und entspricht 360° geteilt durch die Anzahl der Ecken.In FIG. 2 it is shown that the reflector surface 4 defines an octagon. The reflector surface 4 has a first transition region 12 at the light exit end 3 and a second transition region 13 at the light entry end 3. In the transition regions 12, 13, the octagon 11 is continuous in the shape of the light inlet opening 5 and the light exit opening 6, respectively. The octagon 11 rotates along the entire reflector surface 4 between the light entry end 2 and the light exit end 3 about an axis of rotation R, wherein the axis of rotation R coincides with the optical axis O. The octagon 11 also rotates within the first transition region 12 and the second transition region 13. The edges of the rotating octagon 11 define on the reflector shell 7 and on the reflector surface 4 spirals 9, 10. In the illustrated embodiment, the total angle of rotation of all corners is α 45 °. The angle of rotation of each corner is therefore greater than 15 ° and corresponds to 360 ° divided by the number of corners.

Die Spiralen 9 erstrecken sich von jeweils einem Mittelpunkt der Kanten der Grundfläche 8 zu jeweils einer Ecke der Lichtaustrittsöffnung 6. Die Spiralen 10 erstrecken sich von jeweils einer Ecke der Grundfläche 8 zu jeweils einem Mittelpunkt der Kanten der Lichtaustrittsöffnung 6.The spirals 9 each extend from a center of the edges of the base 8 to a respective corner of the light exit opening 6. The spirals 10 extend from one corner of the base 8 to a respective center of the edges of the light exit opening 6.

Figur 3 zeigt den Reflektor der Figur 1 im Schnitt entlang der Schnittlinie A. Die Reflektorfläche 4 ist in der dargestellten Ausführungsform parabelförmig ausgebildet. Grundfläche 8 und Lichtaustrittsöffnung 6 sind parallel zueinander. FIG. 3 shows the reflector of the FIG. 1 in section along the section line A. The reflector surface 4 is formed parabolic in the illustrated embodiment. Base 8 and light exit opening 6 are parallel to each other.

Figur 4 zeigt den zweiten Übergangsbereich 13 des Reflektors 1 der Figur 3 im Schnitt entlang der Achse B. Das Oktagon 11 ist fast vollständig in die Form der Grundfläche 8 übergegangen, und weist in Relation zur Grundfläche 8 einen geringen Drehwinkel α von etwa 5° um die Rotationsachse R auf. FIG. 4 shows the second transition region 13 of the reflector 1 of FIG. 3 in section along the axis B. The octagon 11 is almost completely in the shape of the base 8 has gone over, and has in relation to the base 8 a small angle of rotation α of about 5 ° about the axis of rotation R.

Figur 5 zeigt den Reflektor der Figur 3 entlang der Schnittlinie C. Das durch die Reflektorfläche 4 definierte Polygon 11 ist ein punktsymmetrisches Oktagon 11 mit einer 4-zähligen Drehsymmetrie, welches um sein Symmetriezentrum rotiert. Die Kanten des Oktagon 11 sind konvex ausgebildet. FIG. 5 shows the reflector of the FIG. 3 along the section line C. The polygon 11 defined by the reflector surface 4 is a point-symmetrical octagon 11 with a 4-fold rotational symmetry which rotates about its center of symmetry. The edges of the octagon 11 are convex.

Figur 6 zeigt den Reflektor der Figur 3 entlang der Schnittlinie D. Das Oktagon 11 ist weiterhin punktsymmetrisch und weist eine 4-zählige Drehsymmetrie auf. Die Form des Oktagons 11 hat sie jedoch leicht verändert, da die Ecken die die Spiralen 9 definieren, um die Ecken der Lichtaustrittsöffnung Ziffer 5 zu erreichen, einen größeren Weg zurücklegen müssen als die Ecken, die die Spiralen 10 definieren. Der Drehwinkel α beträgt nun in etwa 30°. FIG. 6 shows the reflector of the FIG. 3 along the section line D. The octagon 11 is still point-symmetrical and has a 4-fold rotational symmetry. However, the shape of the octagon 11 has changed them slightly, since the corners defining the spirals 9 to reach the corners of the light exit opening number 5 must travel a greater distance than the corners defining the spirals 10. The angle of rotation α is now approximately 30 °.

Figur 7 zeigt den ersten Übergangsbereich 12 des Reflektors der Figur 3 entlang der Schnittlinie E. Das Oktagon 11 rotiert weiterhin und ist fast vollständig in die Form der Lichtaustrittsöffnung übergegangen. Der Drehwinkel α beträgt fast 45°. FIG. 7 shows the first transition region 12 of the reflector of FIG. 3 along the section line E. The octagon 11 continues to rotate and has almost completely transitioned into the shape of the light exit opening. The rotation angle α is almost 45 °.

Die Figuren 8 und 9 zeigen eine Anordnung 14 aus 4 Reflektoren 1,15, wobei die Reflektoren 15 dem Reflektor der Figuren 1-7 entsprechen, jedoch einen entgegengesetzten Drehsinn aufweisen. Die 4 Lichteintrittsenten 3 liegen benachbart in einer Ebene.The FIGS. 8 and 9 show an assembly 14 of 4 reflectors 1.15, the reflectors 15 to the reflector of Figures 1-7 correspond, but have an opposite sense of rotation. The 4 Lichteintrittsenten 3 are adjacent in a plane.

Claims (11)

  1. Reflector (1) for a luminaire, in particular for a luminaire with at least one LED light source, comprising a light inlet end (2), a light outlet end (3) with at least one substantially rectangular light outlet opening (6), an optical axis (0), and a reflector surface (4) which extends between said light inlet end (2) and said light outlet end (3), where said reflector surface (4) at least in sections in a plane perpendicular to said optical axis (0) defines a polygon,
    where the reflector surface (4) is formed such that said polygon between said light inlet end (2) and said light outlet end (3) at least in sections rotates about an axis of rotation (R) which is oriented parallel to said optical axis (0),
    where said reflector (1) is flattened at said light inlet end (2) and said reflector surface (4) at said flattened light inlet end (2) opens to a base area (8),
    said light outlet opening (3) and said base area (8) are formed substantially square-shaped, and said polygon is a point-symmetrical octagon (11) with a 4-fold rotational symmetry,
    and where said reflector surface (4) is designed such that it extends parabolically in a plane parallel to said optical axis (0) between said light inlet end (2) and said light outlet end (3), and said polygon rotates between said base area (8) and said light outlet opening (3) along said entire reflector surface (4) such that the corners of said base area (8) transition to those corners of the octagon (11) which open to the centers of said edges of said light outlet opening (3), and the centers of said edges of said base area transition to those corners of said octagon which open to the corners of said light outlet opening.
  2. Reflector (1) according to claim 1, characterized in that the edges of said polygon are formed in a curved manner.
  3. Reflector (1) according to claims 1 or 2, characterized in that said polygon is point-symmetric and the center of symmetry is located on said axis of rotation (R).
  4. Reflector (1) according to one of the preceding claims, characterized in that said rotational angle swept through by a corner of said polygon in a plane perpendicular to said axis of rotation (R) due to the rotation between said light inlet end (2) and said light outlet end (3) is greater than 15°.
  5. Reflector (1) according to one of the preceding claims, characterized in that said rotational angle of each corner is substantially 360° divided by the number of corners of said polygon.
  6. Reflector (1) according to one of the preceding claims, characterized in that said reflector surface (4) is formed in a parabolic manner in a plane parallel to said optical axis (0) between said light inlet end (2) and said light outlet end (3).
  7. Reflector (1) according to one of the preceding claims, characterized in that said reflector comprises a light inlet opening (5) at said light inlet end (2).
  8. Reflector according to one of the preceding claims, characterized in that said base area (8) is formed to be substantially rectangular, and a second transition region is formed at said light inlet end (2) in which said polygon transitions continuously to the shape of said base area (8).
  9. Reflector (1) according to one of the preceding claims, characterized in that said reflector is produced by way of injection-molding.
  10. Arrangement comprising at least two reflectors according to one of claims 1 to 9, characterized in that said light outlet openings (6) of said reflectors (1) are disposed adjacently and the rotations of said polygons of adjacent reflectors (1) have an opposite direction of rotation.
  11. Luminaire with a reflector (1) and a light source, characterized in that said reflector is formed according to one of the claims 1 to 9, and said light source is disposed at said light inlet end (2) of said reflector (1) and comprises at least one LED.
EP15001354.8A 2015-05-06 2015-05-06 Twisted deep radiator reflectors Active EP3098504B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15001354.8A EP3098504B1 (en) 2015-05-06 2015-05-06 Twisted deep radiator reflectors
US15/094,149 US9841164B2 (en) 2015-05-06 2016-04-08 Twisted downlight reflectors
CN201610293931.4A CN106122844B (en) 2015-05-06 2016-05-03 The downlight reflector of torsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15001354.8A EP3098504B1 (en) 2015-05-06 2015-05-06 Twisted deep radiator reflectors

Publications (2)

Publication Number Publication Date
EP3098504A1 EP3098504A1 (en) 2016-11-30
EP3098504B1 true EP3098504B1 (en) 2019-08-28

Family

ID=53175232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15001354.8A Active EP3098504B1 (en) 2015-05-06 2015-05-06 Twisted deep radiator reflectors

Country Status (3)

Country Link
US (1) US9841164B2 (en)
EP (1) EP3098504B1 (en)
CN (1) CN106122844B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213577327U (en) * 2020-10-16 2021-06-29 广州视源电子科技股份有限公司 Reflector plate and backlight lamp with same
JP2023016089A (en) * 2021-07-21 2023-02-02 株式会社ジャパンディスプレイ Lighting device
JP2023037174A (en) * 2021-09-03 2023-03-15 株式会社ジャパンディスプレイ Lighting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201950A1 (en) * 2013-02-06 2014-08-07 Osram Gmbh Grid lamp with reflector cells and semiconductor light sources

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017733A1 (en) * 1991-04-03 1992-10-15 Gte Products Corporation Lamp and reflector assembly
JP3048632U (en) * 1997-11-05 1998-05-22 日本フレネル株式会社 Lighting reflector
US6086227A (en) * 1998-09-11 2000-07-11 Osram Sylvania Inc. Lamp with faceted reflector and spiral lens
US7441927B1 (en) * 2007-07-02 2008-10-28 Osram Sylvania Inc. Lamp with a lens lenticule pattern based on the golden ratio
EP2535639A1 (en) * 2011-06-17 2012-12-19 Jordan Reflektoren GmbH & Co.KG Light reflector and method and device for its manufacture
DE102011085289B4 (en) * 2011-07-08 2021-01-14 Zumtobel Lighting Gmbh Light influencing element for influencing the light output of essentially point-shaped light sources as well as luminaire with light influencing element
CN102392974A (en) * 2011-11-23 2012-03-28 蒋建华 Rectangular light reflector of efficient anti-glare LED (light emitting diode) lamp fitting
DE202013101815U1 (en) * 2013-04-26 2014-07-29 Zumtobel Lighting Gmbh Arrangement for emitting light with an LED light source and a reflector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201950A1 (en) * 2013-02-06 2014-08-07 Osram Gmbh Grid lamp with reflector cells and semiconductor light sources

Also Published As

Publication number Publication date
US20160327243A1 (en) 2016-11-10
CN106122844A (en) 2016-11-16
US9841164B2 (en) 2017-12-12
CN106122844B (en) 2019-03-01
EP3098504A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
EP0683355B1 (en) Vehicle lamp
EP3098504B1 (en) Twisted deep radiator reflectors
EP1978298A2 (en) Reflector for a light
EP2333402B1 (en) Lighting device with hollow light guide
DE19615388A1 (en) Luminaire with a particularly small-volume lamp
EP1106905B1 (en) Luminaire
DE602004005872T2 (en) LIGHTING AND METHOD OF LIGHTING
DE4312889B4 (en) Mainly direct luminaire with a suspended light guide
EP3631554B1 (en) Optical arrangement for a light source
DE102006030646B4 (en) Interior light for illuminating a wall or ceiling
DE10011304A1 (en) Luminaire with inhomogeneous light radiation
DE1925277A1 (en) Light, in particular rear or safety light
EP2320129B1 (en) Reflector lamp
DE10011378A1 (en) Internal room lighting panel uses prism surface reflector to generate uniform high intensity indirect lighting output
DE3841518A1 (en) MIRROR LAMP
DE10153756B4 (en) Luminaire with segmented inner reflector
EP1900998B1 (en) Reflector with a structure featuring light
EP1685348B2 (en) Lamp comprising a transparent light-emerging element
EP1411294B1 (en) Reflector having a structured surface and luminaire or indirect lighting system including such a reflector
DE4230907C2 (en) Luminaire louvre for louvre luminaires
DE10357399B4 (en) Low-profile reflector
EP1130312B1 (en) Luminaire having an around a point symmetrical light emitting surface, in particular of round shape
DE10354462B4 (en) Luminaire with asymmetrical light emission
DE3933411A1 (en) Divided paraboloidal reflector for motor vehicle lamp - minimises central dark zone by direct transmission through Fresnel lens with peripheral reflection from inclined paraboloids
EP1130311B1 (en) Luminaire having a polygonal light emission window and a rectilinear prism structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170517

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181002

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/10 20160101ALN20190221BHEP

Ipc: F21V 7/09 20060101ALI20190221BHEP

Ipc: F21V 7/04 20060101ALI20190221BHEP

Ipc: F21V 7/00 20060101AFI20190221BHEP

Ipc: F21V 7/06 20060101ALI20190221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1172852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010107

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010107

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230529

Year of fee payment: 9

Ref country code: FR

Payment date: 20230523

Year of fee payment: 9

Ref country code: DE

Payment date: 20230526

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230524

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230526

Year of fee payment: 9