EP3097299A1 - Verfahren zur herstellung eines kolbens für einen verbrennungsmotor - Google Patents

Verfahren zur herstellung eines kolbens für einen verbrennungsmotor

Info

Publication number
EP3097299A1
EP3097299A1 EP14824796.8A EP14824796A EP3097299A1 EP 3097299 A1 EP3097299 A1 EP 3097299A1 EP 14824796 A EP14824796 A EP 14824796A EP 3097299 A1 EP3097299 A1 EP 3097299A1
Authority
EP
European Patent Office
Prior art keywords
melt
piston
faserpreform
suction
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14824796.8A
Other languages
English (en)
French (fr)
Inventor
Martin RÜHLE
Udo Rotmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3097299A1 publication Critical patent/EP3097299A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • B22D19/0027Cylinders, pistons pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/28Other pistons with specially-shaped head
    • F02F3/285Other pistons with specially-shaped head the head being provided with an insert located in or on the combustion-gas-swept surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for producing a piston according to the preamble of claim 1.
  • Fluid energy machines perform in the piston in cylinders transmitted via push rods periodic translational movement, are known in mechanical engineering as reciprocating engines.
  • the most common type of piston engine represents the reciprocating engine, which converts the change in volume of a gas in the described linear movement of the piston and a connecting rod and a crank further into a rotational movement.
  • the piston comprises a combustion bowl for this purpose.
  • Suitable pistons are produced according to the prior art regularly by means of a primary molding process, in particular by means of specialized casting techniques.
  • the problem here is the compensation of the occurring during operation of the engine extremely high thermal load in the edge region of the combustion bowl, which can lead to the formation of cracks in the piston under unfavorable conditions.
  • the use of cooled ring carriers is known in view of this problem.
  • the trough edge is also reinforced by the pouring of ceramic fibers.
  • Kokilleng think compiler for this purpose sometimes a pressurization after the mold filling used to ensure the complete infiltration of the ceramic fibers through the molten aluminum and thus to promote the integration of the ceramic fibers in the metal structure.
  • a corresponding method is known from the embodiment according to claim 4 of DE 10 2004 056 519 A1.
  • an annular Faserpreform is first attached to reinforce the edge of the combustion bowl in the mold.
  • a liquid aluminum or aluminum alloy melt is introduced into the mold, from which the Faserpreform infiltrated and is formed in the mold during the casting process in the trough edge.
  • the piston blank produced in this way is subsequently heat treated before the piston is finished by means of a machining process.
  • the pressure difference between the aluminum alloy melt and the Faserpreform is thereby caused on the one hand, that the Faserpreform of suction tubes (in addition to possibly existing further fixings) is held in the mold, wherein in the suction such a negative pressure prevails that sucked from the aluminum alloy melt in the Faserpreform and infiltrate the Faserpreform.
  • the connected vacuum pump contributes by lowering the remaining gas pressure to preferably less than 0.1 bar to completely vent the voids in the Faserpreform before the penetration of the melt and thereby preventing the formation of air pockets.
  • the melt is pressurized by applying an overpressure to the melt in the mold, typically up to 20 bar.
  • This is intended to produce a very high-quality and, in particular, highly resilient piston, which is subsequently free of trapped air in the infiltrated fiber preform.
  • the solidification behavior of the aluminum melt infiltrating the fiber preform proves to be critical. Premature solidification of the melt within the Faserpreform before completion of infiltration releases unwanted voids.
  • the melt flows through the suction pipe after infiltration, it can enter the vacuum pump and clog or narrow channels there. In this respect, premature as well as delayed hardening of the melt can significantly impair the quality of the process result.
  • the invention is therefore based on the object to improve a generic manufacturing process to the effect that it allows a defined solidification of the melt used, without causing air bubbles in the Faserpreform.
  • the invention is therefore based on the idea of providing the intake pipes also used to hold the fiber preform in the casting mold with a specially designed section which promotes defined solidification of the melt in the desired section of the suction pipes and thereby clogs the suction pipe for the inflowing melt.
  • the stream of the melt is brought to a standstill within the suction tube only after the complete infiltration of the fiber preform by a specifically induced solidification.
  • Such a "Sollerstarrungsabites" can thereby be realized on the one hand by means of a thermal, on the other hand by means of a geometric approach.
  • the specially designed section of the suction tube is designed such that, in particular without further components or inserts, that is intrinsically, a defined premature solidification of the melt favored.
  • thermal means the solidification of the melt can be brought about by a local cooling of the suction tube.
  • the choice of a suitable material can accelerate the solidification of the melt, provided that the corresponding material has one of the melt in relation to increased thermal conductivity.
  • a hypoeutectic aluminum-silicon melt for example, the use of copper as a material of the tube.
  • a geometric solution of the problem can be done in different ways.
  • the first thing to think about is the formation of a constriction in the course of the intake manifold, which locally reduces its flow cross-section.
  • a similar effect can be achieved by means of a bent or kinked pipe section, by means of combinations of cross-sectional constrictions and / or directional changes, or generally by any labyrinthine obstruction along the draft path.
  • Fig. 1 is a plan view of the bottom of a according to the invention
  • Fig. 2 shows a section through the mold along the axis of the piston with two different embodiments of the suction pipes according to the invention, which are shown in the right and left side of the figure.
  • Figures 1 and 2 illustrate the implementation of the manufacturing method according to an embodiment of the invention, in which case a specific light metal melt is used as the base material of the piston 1 to be produced. It is preferably a hypoeutectic aluminum-silicon alloy (AISi alloy), which, in view of the mechanical stress to be expected during operation of the piston 1, has undergone a refining microstructural influence.
  • AISi alloy hypoeutectic aluminum-silicon alloy
  • the edge of the combustion bowl 2 on the piston head 5 is reinforced by means of a Faserpreform 3.
  • a sufficiently large pressure difference between light molten metal and Faserpreform 3 ensures that the Faserpreform 3 is completely infiltrated with the light metal melt used in the casting before it solidifies.
  • the fibers of the fiber preform 3 are formed as short fibers of a ceramic material, for example of aluminum oxide (Al 2 O 3 ), as it is known above all. is also referred to in the technical field as electrocorundum (ELK) and is based on the clay or silica fiber products marketed under the brand name Saffil. Alternative embodiments may use a fiber orientation that differs from the random-planar standard without departing from the scope of the invention.
  • the Faserpreform 3 in the form of an annular body with a rectangular cross-section is prepared by the fibers are first prepared to an aqueous suspension containing a binder.
  • the suspension is filled into a water-permeable, the shape of the Faserpreform 3 corresponding form in which the water is separated from the suspension.
  • the resulting body in the form of Faserpreform 3 is dried and can be mechanically repressed to improve its strength.
  • the aim here is a proportion of fibers per unit volume of 10% to 20%.
  • the Faserpreform 3 is preheated to exclude moisture inclusions.
  • a gravity die casting method is used in this case, in which the light metal melt passes through a ladle by gravity into the mold serving as a mold.
  • a pressure between 0.5 bar and 20 bar is used, wherein a not shown in Figures 1 and 2, by means of obliquely tightened retaining pins locking frame of the casting tool for secure recording of the pressure forces.
  • the Eing manmaschine be like, the Faserpreform 3, preferably in combination with a salt core and / or a ring carrier or a cooled ring carrier, fixed in the mold at the designated places. Subsequently, the mold is closed with a lid having two radially outer suction pipes 10, 1 1, which are connected to a vacuum pump, not shown, and open at such locations in the interior of the mold, that at the openings of the suction pipes 10, 1 1 the Faserpreform 3 rests and is held by the prevailing in the tubes 10, 1 1 negative pressure at the designated location.
  • the light metal melt is then introduced into the mold, wherein the pressure prevailing in the suction pipes 10, 1 1 negative pressure causes the held on the suction pipes 10, 1 1 Faserpreform 3 is infiltrated by the light metal melt.
  • the opening into the Faserpreform 3 suction tubes 10, 1 1 are resiliently biased against the Faserpreform 3 and cooled to a temperature that significantly accelerates the solidification of the light metal melt.
  • suction tubes 10, 1 1 with a high thermal conductivity which promote rapid solidification of the melt by heat dissipation.
  • At each suction pipe 10, 1 1 1 at least a portion 13, 14 is provided, which accelerates the solidification of entering the suction pipe 10, 1 1 melt.
  • the section can be designed as a constriction or as a bend.
  • the particular copper suction pipes 10, 1 1 are optimized with the aim of accelerated solidification of the light metal melt.
  • the suction tubes 10, 1 1 each have a single wave train with a local offset 4 of the tube axis, which on closer inspection consists of kinks or bends of the tube axis. In the region of the bend or the offset 4, by approaching the opposite tube walls in each case to a local cross-sectional constriction. Changes in direction of the pipe axis by bending but can also be used without change in cross section according to the invention, as well as pure constrictions or cross-sectional changes without changing the direction of the pipe axis.
  • any labyrinth-like geometries can be selected that are suitable for the flowing Melt by constriction and / or deflection represent an obstacle at which the solidification can begin preferentially.
  • the suction tubes 10, 1 1 made of copper or other material having a relation to the melt increased thermal conductivity.
  • the suction tubes 10, 1 1 can be cooled prior to insertion into the mold. In general, it is achieved by the thermal properties of the suction tubes 10, 11 that the melt passing through the fiber preform 3 after complete infiltration preferably solidifies in the suction tube 10, 11 and clogs it.
  • the casting mold is connected to a compressed air line through which after filling the mold with the light metal melt air is introduced under high pressure into the mold to significantly reduce the porosity of the solidified aluminum alloy and to give the piston 1 as a sufficient strength. Thereafter, both the individual fibers of Faserpreform 3 are firmly connected to the solidified light metal melt and the Faserpreform 3 in turn with the other areas of the piston 1.
  • the final shape of the piston 1 is given to the piston blank by means of a machining process.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Kolbens (1) mit einer Verbrennungsmulde (2), umfassend das Befestigen einer ringförmigen Faserpreform (3) mit einer zur Verstärkung des Randes der Verbrennungsmulde (2) geeigneten Form in einer Gießform für den Kolben (1 ) koaxial zur Kolbenachse (10) in der Ebene des Kolbenbodens (5), das Einleiten einer metallischen Schmelze in die Gießform zur Herstellung des Kolbenrohlings, das Erzeugen einer Druckdifferenz zwischen der Schmelze und der Faserpreform (3) zur Infiltration der Schmelze in die Faserpreform (3) und das Bearbeiten des Kolbenrohlings mittels eines spanabhebenden Fertigungsverfahrens zur Fertigstellung des Kolbens (1 ), wobei die Druckdifferenz zwischen der Schmelze und der Faserpreform (3) dadurch herbeigeführt wird, dass die Faserpreform (3) von Saugrohren (10, 11) in der Gießform gehalten wird, wobei in den Saugrohren (10, 11) ein derartiger Unterdruck herrscht, dass hiervon die Schmelze in die Faserpreform (3) gesaugt wird und die Faserpreform (3) infiltriert. Ein optimiertes Erstarrungsverhalten ergibt sich, wenn wenigstens ein Abschnitt (13, 14) wenigstens eines der Saugrohre (10, 11), die Erstarrung der in das Saugrohr (10, 11) eintretenden Schmelze beschleunigt.

Description

Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kolbens nach dem Oberbegriff des Anspruchs 1 .
Fluidenergiemaschinen, bei der Kolben in Zylindern eine über Schubstangen übertragene periodische Translationsbewegung vollführen, sind im Maschinenbau als Kolbenmaschinen bekannt. Die wohl verbreitetste Bauart der Kolbenmaschine stellt dabei der Hubkolbenmotor dar, welcher die Volumenänderung eines Gases in die beschriebene Linearbewegung des Kolbens und über eine Pleuelstange sowie eine Kurbel weiter in eine Drehbewegung umsetzt. In der wohl gebräuchlichsten Variante der Kolbenmaschine, dem Verbrennungsmotor, umfasst der Kolben hierzu eine Verbrennungsmulde.
Geeignete Kolben werden nach dem Stand der Technik regelmäßig mittels eines Urformverfahrens, insbesondere mithilfe spezialisierter Gießtechniken, hergestellt. Besonders bewährt hat sich das aus der Metallverarbeitung bekannte Kokillengießverfahren, bei dem eine Schmelze über einen oben liegenden Einguss in eine Kokille genannte metallische Dauerform gegossen wird und deren Hohlraum im Wesentlichen allein infolge der Schwerkraft ausfüllt.
Problematisch gestaltet sich dabei der Ausgleich der im Betrieb des Motors auftretenden extrem hohen thermischen Belastung im Randbereich der Verbrennungsmulde, die unter ungünstigen Umständen zur Bildung von Rissen im Kolben führen kann. Aus dem Stand der Technik ist im Hinblick auf diese Problemstellung beispielsweise die Verwendung gekühlter Ringträger bekannt. Vermehrt wird der Muldenrand auch durch das Eingießen von Keramikfasern verstärkt. Als Kokillengießverfahren wird zu diesem Zweck mitunter eine Druckbeaufschlagung nach der Formfüllung eingesetzt, um die vollständige Infiltration der Keramikfasern durch die Aluminiumschmelze zu gewährleisten und somit die Einbindung der Keramikfasern in das Metallgefüge zu begünstigen.
Ein entsprechendes Verfahren ist aus der Ausführungsform gemäß Anspruch 4 der DE 10 2004 056 519 A1 bekannt. Gemäß diesem Ansatz wird zunächst eine ringförmige Faserpreform zur Verstärkung des Randes der Verbrennungsmulde in der Gießform befestigt. Anschließend wird eine flüssige Aluminium- bzw. Aluminiumlegierungsschmelze in die Gießform eingeleitet, von der die Faserpreform infiltriert und im Rahmen des Gießvorganges in den Muldenrand eingeformt wird. Der auf diese Weise hergestellte Kolbenrohling wird anschließend wärmebehandelt, bevor der Kolben mittels eines spanabhebenden Fertigungsverfahrens fertiggestellt wird. Die Druckdifferenz zwischen der Aluminiumlegierungsschmelze und der Faserpreform wird dabei einerseits dadurch herbeigeführt, dass die Faserpreform von Saugrohren (neben evtl. vorhandenen weiteren Fixierungen) in der Gießform gehalten wird, wobei in den Saugrohren ein derartiger Unterdruck herrscht, dass hiervon die Aluminiumlegierungsschmelze in die Faserpreform gesaugt wird und die Faserpreform infiltriert. Abgesehen von der Möglichkeit, die Saugrohre durch den Unterdruck zur Halterung der Faserpreform zu verwenden, trägt die angeschlossene Vakuumpumpe durch Absenkung des verbleibenden Gasdrucks auf vorzugsweise unter 0,1 bar dazu bei, die Hohlräume in der Faserpreform vor dem Eindringen der Schmelze vollständiger zu entlüften und dadurch die Bildung von Lufteinschlüssen zu verhindern. Andererseits wird die Schmelze durch Aufbringen eines Überdrucks auf die Schmelze in der Kokille von typischerweise bis zu 20 bar unter Druck gesetzt. Hierdurch soll ein sehr hochwertiger und insbesondere hochbelastbarer Kolben entstehen, der nachher in der infiltrierten Faserpreform frei von eingeschlossener Luft ist. Als kritisch erweist sich in diesem Zusammenhang das Erstarrungsverhalten der die Faserpreform infiltrierenden Aluminiumschmelze. Eine vorzeitige Erstarrung der Schmelze innerhalb der Faserpreform noch vor Abschluss der Infiltration lässt unerwünschte Hohlräume frei. Strömt die Schmelze dagegen nach der Infiltration durch das Saugrohr hindurch, kann sie in die Vakuumpumpe eintreten und dort Kanäle verstopfen oder verengen. Insofern können sowohl ein verfrühtes als auch ein verspätetes Aushärten der Schmelze die Qualität des Verfahrensergebnisses deutlich beeinträchtigen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein gattungsgemäßes Herstellungsverfahren dahingehend zu verbessern, dass es eine definierte Verfestigung der eingesetzten Schmelze erlaubt, ohne dass Lufteinschlüsse in der Faserpreform entstehen.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche
Die Erfindung fußt demnach auf dem Grundgedanken, die auch zum Halten der Faserpreform in der Gießform genutzten Saugrohre mit einem speziell gestalteten Abschnitt zu versehen, der eine definierte Erstarrung der Schmelze im gewünschten Abschnitt der Saugrohre begünstigt und das Saugrohr dadurch für die nachströmende Schmelze verstopft. Der Strom der Schmelze wird erfindungsgemäß erst nach der vollständigen Infiltration der Faserpreform durch eine gezielt herbeigeführte Erstarrung noch innerhalb des Saugrohres zum Stillstand gebracht. Ein derartiger„Sollerstarrungsabschnitt" lässt sich dabei einerseits mittels eines thermischen, andererseits mittels eines geometrischen Ansatzes realisieren. Dabei ist der speziell gestaltete Abschnitt des Saugrohres derart ausgebildet, dass er insbesondere ohne weitere Bauteile oder Einsätze, das heißt intrinsisch, ein definiert frühzeitiges Erstarren der Schmelze begünstigt. Auf thermischem Wege lässt sich die Erstarrung der Schmelze etwa durch eine lokale Kühlung des Saugrohrs bewirken. Alternativ kann die Wahl eines geeigneten Werkstoffs die Erstarrung der Schmelze beschleunigen, sofern das entsprechende Material eine der Schmelze gegenüber erhöhte Wärmeleitfähigkeit aufweist. In Betracht kommt in Kombination mit einer untereutektischen Aluminium- Silizium-Schmelze beispielsweise die Verwendung von Kupfer als Werkstoff des Rohrs.
Auch eine geometrische Lösung des Problems kann auf unterschiedliche Art erfolgen. Zu denken ist zunächst an die Bildung einer Engstelle im Verlauf des Saugrohres, die dessen Durchflussquerschnitt örtlich reduziert. Eine ähnliche Wirkung lässt sich mittels eines gebogenen oder abknickenden Rohrabschnitts, mittels Kombinationen aus Querschnittsverengungen und/oder Richtungsänderungen oder allgemein mittels irgendeines labyrinthartigen Hindernisses entlang des Saugrohrverlaufes erzielen.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
Es zeigen, jeweils schematisch
Fig. 1 eine Draufsicht auf den Boden eines nach dem erfindungsgemäßen
Verfahrens hergestellten Kolbens und
Fig. 2 einen Schnitt durch die Gießform entlang der Achse des Kolbens mit zwei verschiedenen Ausführungsformen der erfindungsgemäßen Saugrohre, die in der rechten bzw. linken Seite der Figur dargestellt sind.
Die Figuren 1 und 2 illustrieren die Durchführung des Herstellungsverfahrens gemäß einer Ausführungsform der Erfindung, wobei hier eine spezifische Leichtmetallschmelze als Grundwerkstoff des zu fertigenden Kolbens 1 zum Einsatz kommt. Es handelt sich dabei vorzugsweise um eine untereutektische Aluminium- Silizium-Legierung (AISi-Legierung), die angesichts der im Betrieb des Kolbens 1 zu erwartenden mechanischen Beanspruchung einer veredelnden Gefügebeeinflussung unterzogen wurde.
Der Rand der Verbrennungsmulde 2 am Kolbenboden 5 ist dabei mittels einer Faserpreform 3 verstärkt. Eine ausreichend große Druckdifferenz zwischen Leichtmetallschmelze und Faserpreform 3 gewährleistet dabei, dass die Faserpreform 3 vollständig mit der beim Gießen verwendeten Leichtmetallschmelze infiltriert wird, bevor diese erstarrt.
Die Fasern der Faserpreform 3 sind als Kurzfasern aus einem keramischen Werkstoff, beispielsweise aus Aluminiumoxid (AI2O3), ausgebildet, wie es vor al- lern im technischen Bereich auch als Elektrokorund (ELK) bezeichnet wird und den unter dem Markennamen Saffil vermarkteten Ton- oder Kieselerde- Faserprodukten zugrunde liegt. Alternative Ausführungsformen mögen sich einer vom random-planaren Standard abweichenden Faserausrichtung bedienen, ohne den Rahmen der Erfindung zu verlassen. Die Faserpreform 3 in Gestalt eines ringförmigen Körpers mit rechteckigem Querschnitt wird hergestellt, indem die Fasern zunächst zu einer wässrigen, ein Bindemittel enthaltenden Suspension aufbereitet werden. Anschließend wird die Suspension in eine wasserdurchlässige, der Gestalt der Faserpreform 3 entsprechenden Form eingefüllt, in der das Wasser aus der Suspension abgeschieden wird. Der sich ergebende Körper in Gestalt der Faserpreform 3 wird getrocknet und kann zur Verbesserung von dessen Festigkeit mechanisch nachgepresst werden. Angestrebt wird hierbei ein Anteil der Fasern je Volumeneinheit von 10% bis 20%. Vor dem Einlegen in die Gießform wird die Faserpreform 3 vorgewärmt, um Feuchtigkeitseinschlüsse auszuschließen.
Zur möglichst dichten und porenfreien Herstellung des Kolbens 1 mitsamt seiner in Form eines runden Sacklochs ausgeführten Verbrennungsmulde 2 wird vorliegend ein Schwerkraftkokillengussverfahren verwendet, bei welchem die Leichtmetallschmelze über einen Gießlöffel durch Schwerkraft in die als Kokille dienende Gießform gelangt. In der vorliegenden Ausführungsform kommt nach abgeschlossener Formfüllung ein Druck zwischen 0,5 bar und 20 bar zum Einsatz, wobei ein in den Figuren 1 und 2 nicht dargestellter, mittels schräg angezogener Haltestifte abgedichteter Verriegelungsrahmen des Gießwerkzeugs zur sicheren Aufnahme der Druckkräfte dient.
Hierbei werden zunächst die Eingießteile wie, die Faserpreform 3, vorzugsweise in Kombination mit einem Salzkern und/oder einem Ringträger bzw. einem gekühlten Ringträger, in der Gießform an den dafür vorgesehenen Stellen befestigt. Anschließend wird die Gießform mit einem Deckel verschlossen, der zwei radial außen angeordnete Saugrohre 10, 1 1 aufweist, die mit einer nicht gezeigten Vakuumpumpe verbunden sind und an solchen Stellen in den Innenraum der Gießform münden, dass an den Öffnungen der Saugrohre 10, 1 1 die Faserpreform 3 anliegt und von dem in den Rohren 10, 1 1 herrschenden Unterdruck an der dafür vorgesehenen Stelle gehalten wird. Über einen Einlauf wird nun die Leichtmetallschmelze in die Gießform eingeleitet, wobei der in den Saugrohren 10, 1 1 herrschende Unterdruck bewirkt, dass die an den Saugrohren 10, 1 1 gehaltene Faserpreform 3 von der Leichtmetallschmelze infiltriert wird. Die in die Faserpreform 3 mündenden Saugrohre 10, 1 1 sind dabei federnd gegen die Faserpreform 3 vorgespannt und auf eine Temperatur abgekühlt, die das Erstarren der Leichtmetallschmelze maßgeblich beschleunigt. Auch denkbar sind Saugrohre 10, 1 1 mit einer hohen Wärmeleitfähigkeit, die eine schnelle Erstarrung der Schmelze durch Wärmeabfuhr begünstigen. An jedem Saugrohr 10, 1 1 ist wenigstens ein Abschnitt 13, 14 vorgesehen, der die Erstarrung der in das Saugrohr 10, 1 1 eintretenden Schmelze beschleunigt. Der Abschnitt kann dabei als Verengung oder als Biegung ausgebildet sein.
Auch in geometrischer Hinsicht sind die insbesondere kupfernen Saugrohre 10, 1 1 mit dem Ziel einer beschleunigten Erstarrung der Leichtmetallschmelze optimiert. Hierzu weisen die Saugrohre 10, 1 1 jeweils einen einzelnen Wellenzug mit einem lokalen Versatz 4 der Rohrachse auf, der bei genauerer Betrachtung aus Knicken bzw. Biegungen der Rohrachse besteht. Im Bereich der Biegung bzw. des Versatzes 4 kommt es durch Annäherung der gegenüberliegenden Rohrwände jeweils zu einer lokalen Querschnittsverengung. Richtungsänderungen der Rohrachse durch Biegungen können aber auch ohne Querschnittsänderung erfindungsgemäß verwendet werden, ebenso wie reine Einschnürungen oder Querschnittsänderungen ohne Richtungsänderung der Rohrachse. Allgemein können beliebige labyrinthartige Geometrien gewählt werden, die für die strömende Schmelze durch Verengung und/oder Umlenkung ein Hindernis darstellen, an dem die Erstarrung bevorzugt beginnen kann.
In der auf der linken Seite von Fig. 2 gezeigten Ausführungsform bestehen die Saugrohre 10, 1 1 aus Kupfer oder einem anderen Material, das eine gegenüber der Schmelze erhöhte Wärmeleitfähigkeit aufweist. Alternativ oder zusätzlich können die Saugrohre 10, 1 1 vor dem Einsetzen in die Gießform gekühlt werden. Allgemein wird durch die thermischen Eigenschaften der Saugrohre 10, 1 1 erreicht, dass die nach vollständiger Infiltration durch die Faserpreform 3 hindurchtretende Schmelze im Saugrohr 10, 1 1 bevorzugt erstarrt und dieses verstopft.
Die geometrische und die thermische Realisierung des erfindungsgemäßen Sollerstarrungsbereiches im Saugrohr 10 bzw. 1 1 sind nur zweckmäßigerweise in derselben Zeichnung veranschaulicht. Das erfindungsgemäße Gießverfahren kann auch mit nur einer einzigen Variante durchgeführt werden. Andererseits ist es natürlich möglich, geometrische und thermische Lösungen zu kombinieren und z.B. ein Saugrohr aus Kupfer zusätzlich mit einer Einschnürung zu versehen, um die erfindungsgemäße Wirkung zu verstärken.
Zudem ist die Gießkokille mit einer Druckluftleitung verbunden, über die nach dem Füllen der Gießform mit der Leichtmetallschmelze Luft unter hohem Druck in die Gießform eingeleitet wird, um die Porosität der erstarrten Aluminiumlegierung maßgeblich zu reduzieren und dem Kolben 1 so eine ausreichende Festigkeit zu verleihen. Danach sind sowohl die einzelnen Fasern der Faserpreform 3 fest mit der erstarrten Leichtmetallschmelze als auch die Faserpreform 3 ihrerseits mit den übrigen Bereichen des Kolbens 1 verbunden.
Im Anschluss daran wird dem Kolbenrohling mittels eines spanabhebenden Fertigungsverfahrens die endgültige Form des Kolbens 1 verliehen. Um die Qualität des Kolbens 1 weiter zu verbessern, können die Flanken und die Grundflächen der nicht gezeigten Ringnuten, die vor allem beim Einsatz des Kolbens im Rahmen eines gattungsgemäßen Dieselmotors besonderer Belastung unterliegen, im Wege der sogenannten anodischen Oxidation mit einer verschleißfesten BeSchichtung versehen werden.

Claims

Ansprüche erfahren zur Herstellung eines Kolbens (1 ) mit einer Verbrennungsmulde (2), umfassend die folgenden Verfahrensschritte:
- Befestigen einer ringförmigen Faserpreform (3) mit einer zur Verstärkung des Randes der Verbrennungsmulde (2) geeigneten Form in einer Gießform für den Kolben (1 ) koaxial zur Kolbenachse in der Ebene des Kolbenbodens (5),
- Einleiten einer metallischen Schmelze in die Gießform zur Herstellung des Kolbenrohlings,
- Erzeugen einer Druckdifferenz zwischen der Schmelze und der Faserpreform (3) zur Infiltration der Schmelze in die Faserpreform (3),
- Bearbeiten des Kolbenrohlings mittels eines spanabhebenden Fertigungsverfahrens zur Fertigstellung des Kolbens (1 ), wobei die Druckdifferenz zwischen der Schmelze und der Faserpreform (3) dadurch herbeigeführt wird, dass die Faserpreform (3) von Saugrohren (10, 1 1 ) in der Gießform gehalten wird, wobei in den Saugrohren (10, 1 1 ) ein derartiger Unterdruck herrscht, dass hiervon die Schmelze in die Faserpreform (3) gesaugt wird und die Faserpreform (3) infiltriert,
dadurch gekennzeichnet,
dass wenigstens ein Abschnitt (13, 14) wenigstens eines der Saugrohre (10, 1 1 ) die Erstarrung der in das Saugrohr (10, 1 1 ) eintretenden Schmelze beschleunigt.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Schmelze eine Leichtmetallschmelze, insbesondere eine untereutekti- sche Aluminium-Silizium-Schmelze, ist.
3. Verfahren nach Anspruch 1 oder 2,
gekennzeichnet durch
das vorausgehende Verdichten einer keramischen, vorzugsweise AI2O3 umfassenden Faser, zu der Faserpreform (3) derart, dass die Faser einen Volumenanteil von 10 % bis 20 % der Faserpreform (3) einnimmt.
4. Verfahren nach einem der Ansprüche 1 bis 3,
gekennzeichnet durch
dadurch gekennzeichnet, dass
über eine Vakuumpumpe ein Unterdruck mit einem Gasdruck unter 0,1 bar an die Saugrohre (10,1 1 ) angelegt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
das Verfahren als Schwerkraftkokillenguss- oder Niederdruckgussverfahren, insbesondere unter einer Nachverdichtung zwischen 0,5 bar und 20 bar, durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Gießform wenigstens eine Teilung aufweist, die derart mit einem Gegendruck beaufschlagt wird, dass die Schmelze die Teilung nicht durchdringt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
wenigstens eines der Saugrohre (10, 1 1 ) in die Faserpreform (3) mündet und federnd gegen diese vorgespannt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
der Abschnitt (13, 14) eine gegenüber der Schmelze erhöhte Wärmeleitfähigkeit aufweist, insbesondere aus Kupfer ist.
9. Verfahren nach einem der Ansprüche 1 bis 8,
gekennzeichnet durch
das Kühlen wenigstens eines der Saugrohre (10, 1 1 ) vor dem Einleiten der Schmelze in die Gießform.
10. Verfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass
der Abschnitt (13, 14) eine Verengung, insbesondere eine Einschnürung, aufweist.
1 1 . Verfahren nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass
der Abschnitt (13, 14) mindestens eine Biegung oder einen Knick aufweist.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 ,
dadurch gekennzeichnet, dass
die Druckdifferenz durch den Unterdruck in den Saugrohren (10, 1 1 ) in Kombination mit einer Druckbeaufschlagung der Schmelze herbeigeführt wird. *****
EP14824796.8A 2013-12-19 2014-12-11 Verfahren zur herstellung eines kolbens für einen verbrennungsmotor Withdrawn EP3097299A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226717.7A DE102013226717A1 (de) 2013-12-19 2013-12-19 Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
PCT/EP2014/077431 WO2015091217A1 (de) 2013-12-19 2014-12-11 Verfahren zur herstellung eines kolbens für einen verbrennungsmotor

Publications (1)

Publication Number Publication Date
EP3097299A1 true EP3097299A1 (de) 2016-11-30

Family

ID=52302183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14824796.8A Withdrawn EP3097299A1 (de) 2013-12-19 2014-12-11 Verfahren zur herstellung eines kolbens für einen verbrennungsmotor

Country Status (6)

Country Link
US (1) US20170028464A1 (de)
EP (1) EP3097299A1 (de)
JP (1) JP2017500485A (de)
CN (1) CN105849400A (de)
DE (1) DE102013226717A1 (de)
WO (1) WO2015091217A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108213389A (zh) * 2017-12-29 2018-06-29 安徽高德铝业有限公司 一种真空浇注成形的门窗铝合金型材加工工艺
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288775A (ja) * 1986-06-06 1987-12-15 Kobe Steel Ltd 繊維強化軽合金製ピストン及びその製造方法
JPH02137661A (ja) * 1988-11-17 1990-05-25 Atsugi Unisia Corp 繊維強化金属部品の製造方法
GB8913632D0 (en) * 1989-06-14 1989-08-02 Cray Advanced Materials Ltd Metal impregnation apparatus and composite bodies obtained thereby
JP3044202B2 (ja) * 1997-06-20 2000-05-22 マツダ株式会社 軽合金複合部材の製造装置
DE19851258A1 (de) * 1998-11-06 2000-05-18 Fuerstlich Hohenzollernsche We Verfahren und Vorrichtung zum Ausfüllen von Hohlräumen bzw. Nuten eines Körpers mit einem flüssigen Metall
JP2001071118A (ja) * 1999-09-06 2001-03-21 Mazda Motor Corp 鋳包み部材並びに該部材の鋳包み方法
JP2001276961A (ja) * 2000-03-30 2001-10-09 Mazda Motor Corp 金属多孔予備成形体及び該成形体を用いた金属複合部材の製造方法
WO2004105980A1 (ja) * 2003-05-29 2004-12-09 Kolbenschmidt K.K. 繊維強化アルミニウム合金ピストンの製造装置及びその製造方法
JP2004351472A (ja) * 2003-05-29 2004-12-16 Kolben Schmidt Kk 繊維強化アルミニウム合金ピストンの製造法
DE102004056519B4 (de) 2004-11-24 2017-07-13 Mahle Gmbh Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
JP2007185705A (ja) * 2006-01-16 2007-07-26 Nhk Spring Co Ltd 金属基複合材料用プリフォーム及びその製造方法並びにピストンの製造方法
JP5339764B2 (ja) * 2007-04-19 2013-11-13 本田技研工業株式会社 鋳造方法
US8387504B2 (en) * 2011-01-06 2013-03-05 General Electric Company Fiber-reinforced Al-Li compressor airfoil and method of fabricating
JP5859395B2 (ja) * 2012-07-27 2016-02-10 日立オートモティブシステムズ株式会社 内燃機関のピストン及びこのピストンの製造方法

Also Published As

Publication number Publication date
CN105849400A (zh) 2016-08-10
DE102013226717A1 (de) 2015-06-25
WO2015091217A1 (de) 2015-06-25
US20170028464A1 (en) 2017-02-02
JP2017500485A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
EP2091678B1 (de) Giessform zum giessen eines gussteils und verwendung einer solchen giessform
DE102007002208B4 (de) Ausbildung eines Trennwandfensters eines Zylinderblockgiessteils
EP2727668B1 (de) Verfahren zum Herstellen eines Zylinderkurbelgehäuses und Gießformanordnung für ein Zylinderkurbelgehäuse
WO2008138508A1 (de) Verfahren zur herstellung eines zylinderkurbelgehäuses
DE102009002653B3 (de) Verfahren und Vorrichtung zur Herstellung eines Kolbens für einen Verbrennungsmotor sowie Kolben für einen Verbrennungsmotor
DE112009000915B4 (de) Verfahren zum Druckgießen eines Aluminium- oder Magnesiumlegierungsgegenstandes mithilfe einer Opferhülse
WO2015091217A1 (de) Verfahren zur herstellung eines kolbens für einen verbrennungsmotor
WO2008116556A1 (de) Druckgiesswerkzeuganordnung
DE102005050963B4 (de) Bauteil und Verfahren zum Herstellen eines Bauteils
DE102005004486B4 (de) Laufbuchse zum Eingießen in einen Motorblock
EP2340901B9 (de) Verfahren zur Herstellung eines Gussteils
EP3055088B1 (de) Giessform und damit hergestellter kolben
DE102005051561B3 (de) Verfahren und Anlage zum Gießen von Leichtmetall-Zylinderkurbelgehäusen in Sandformen
EP2734322B1 (de) GIEßKERN EINER GUSSFORM ZUR HERSTELLUNG EINES ZYLINDERS
DE102007060502B4 (de) Verfahren zur Herstellung eines Zylinderkurbelgehäuses
DE102010020793A1 (de) Verbindungsanordnung und Verfahren zu ihrer Herstellung
DE102012021065A1 (de) Verfahren zum Herstellen eines Zylinderkurbelgehäuses sowie Zylinderkurbelgehäuse
DE10221673C5 (de) Zylinderliner zum Eingießen in ein Zylindergehäuse
WO2007054299A1 (de) Einteiliger stahlkolben als feinguss-variante mit kern für die feingusstechnische herstellung eines kühlkanales
DE102012110258A1 (de) Verfahren zur Herstellung eines Zylinderkurbelgehäuses
DE102009051269A1 (de) Verfahren zur Herstellung von Zylinderkurbelgehäusen
DE102005019961A1 (de) Verfahren zur Herstellung eines Gussteiles im Verbundguss
DE102007062965A1 (de) Gießkern für den Metallguss
DE10224130A1 (de) Verfahren zum Herstellen eines Motorblocks aus einem Metallgusswerkstoff, Gießform zur Herstellung eines Motorblocks aus Metallgusswerkstoff und Motorblock aus Metallgusswerkstoff
DE102013013646A1 (de) Zylindergehäuse für eine Hubkolben-Verbrennungskraftmaschine, insbesondere eines Kraftwagens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200701