EP3096974A1 - Procede de gestion d'un etat de charge d'une batterie - Google Patents

Procede de gestion d'un etat de charge d'une batterie

Info

Publication number
EP3096974A1
EP3096974A1 EP15705630.0A EP15705630A EP3096974A1 EP 3096974 A1 EP3096974 A1 EP 3096974A1 EP 15705630 A EP15705630 A EP 15705630A EP 3096974 A1 EP3096974 A1 EP 3096974A1
Authority
EP
European Patent Office
Prior art keywords
battery
state
charge
value
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP15705630.0A
Other languages
German (de)
English (en)
Inventor
Yann Chazal
Do-Hieu TRINH
Philippe TOUSAINT
Mathieu UMLAWSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3096974A1 publication Critical patent/EP3096974A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a method for managing a state of charge of a connected battery for powering a power distribution network.
  • This invention can be applied regardless of the type of battery and extends non-exclusively to vehicles.
  • the invention finds a particularly advantageous application for managing the state of charge of a plurality of connected batteries for powering a power distribution network, so as to maximize their residual capacity.
  • the problem posed here is to optimize the management of the state of charge of a battery.
  • it is a question of minimizing the calendar degradation of the battery.
  • It also aims at optimizing the choice of the ranges of value of the state of charge of the battery by taking into account the operating state of the battery; in particular, the present invention aims to take into account the operating state of the battery, such as charging, discharging, or periods of non-use of the battery (periods during which the battery is neither charged nor discharged but can self-discharge). It also aims at optimizing the ranges of value of the state of charge of the battery according to the operating temperature of the battery and / or the ambient temperature to minimize the state of aging of the battery.
  • the invention particularly relates to a method of managing a state of charge of a connected battery for powering a power distribution network.
  • the method comprises a step of estimating a value range of said state of charge minimizing the state of aging of the battery. It also comprises a step of charging or discharging the battery to reach an optimal state of charge value within said value range.
  • the method according to the invention is characterized in that it advantageously comprises a preliminary step of detecting a state of non-use of the battery during which the battery is neither charged nor discharged.
  • the detection of the state of not using the battery makes it possible to place the battery in favorable conditions minimizing its state of aging when the battery is not used.
  • the expiration of a predetermined period during which the battery is in the idle state is detected.
  • the value range of said state of charge of the battery minimizing the state of aging of the battery is defined by a first minimum value and a second maximum value that vary according to a temperature related to the battery. .
  • the temperature associated with the battery is an operating temperature of the battery.
  • the temperature associated with the battery is an ambient temperature of an enclosure in which the battery is installed.
  • a step makes it possible to estimate the temperature related to the battery from said ambient temperature and information relating to the operation of the battery.
  • the first value is equal to 10%
  • the second value is 70%.
  • an operating temperature of the battery substantially equal to 45 ° C:
  • the first value is equal to 50%, and the second value is equal to 70%.
  • an operating temperature of the battery substantially equal to 55 ° C:
  • the first value is 50%
  • the second value is equal to 70%.
  • the method includes the following preliminary steps:
  • an additional step makes it possible to determine the aging state of a battery by collecting information relating to physical quantities of the battery.
  • a second object of the invention is also contemplated, in which a system for managing a state of charge of a battery comprises means for implementing the method according to any one of the preceding embodiments.
  • Figure 1 shows an example of architecture of the stationary storage system.
  • FIG. 2 shows a diagram illustrating an exemplary management method according to the invention.
  • Figure 3 shows a diagram illustrating another example of a management method according to the invention.
  • FIG. 4 shows a curve representing the evolution of the degradation coefficient of the battery (ie its state of aging) as a function of the state of charge of the battery in a range of operating battery temperatures of between 10 ° C. and 25 ° C.
  • FIG. 5 shows a curve representing the evolution of the degradation coefficient of the battery (ie its state of aging) as a function of the state of charge of the battery for a battery operating temperature substantially equal to 45 ° C. .
  • FIG. 6 shows a curve representing the evolution of the degradation coefficient of the battery (i.e. its aging state) as a function of the state of charge of the battery for a battery operating temperature substantially equal to 55 ° C.
  • a stationary storage system 56 controls this information.
  • the main function of the stationary storage system 56 is to implement the management of the information on the state of each battery 50 constituting the plurality of batteries 50 in order to allow a use of the plurality of batteries 50 to the maximum of its capacities. while minimizing the aging state of the battery 50.
  • the stationary storage system is capable of collecting, in a step 20, information relating to physical quantities for determining the state of aging of a battery, of the following type (non-exhaustive list):
  • the stationary storage system 56 for the residual capacities of a plurality of batteries 50 comprises the following elements:
  • a system 51 for monitoring the battery a system 52 for stationary storage control
  • This stationary storage system 56 is connected to the AC network 55.
  • the battery monitoring system 51 acquires physical quantities of the battery (temperature measurements, voltages of each cell, current, etc.). These physical quantities notably have the function of determining the state of aging of the battery 50. Battery monitoring system 51 makes calculations from these measurements in order, for example, to determine:
  • the supervision system 51 of the battery 50 communicates the physical quantities for determining the aging state of the battery 50 to the stationary storage control system 52.
  • the battery monitoring system 51 makes it possible in particular to perform a step 70 for measuring the operating temperature of the battery 50.
  • the stationary storage control system 52 is subject to certain energy constraints. For example, the stationary storage control system 52 may require charging the battery 50 during off-peak hours and discharging it during peak hours.
  • the stationary storage control system 52 establishes charge or discharge instructions as a function of the information it receives and its energy constraints.
  • the instructions are sent to the charger 53 or the inverter 54 to be realized: the battery 50 is charged or discharged.
  • the power distribution network 55 comprises the following steps:
  • the preliminary step 120 including detecting a state of unused the battery during which the battery is neither charged nor discharged, can for example detect the expiration of a predetermined period during which the battery is in the state of inuse.
  • This preliminary step advantageously makes it possible to put the battery under conditions that minimize its calendar degradation.
  • the state of non-use of a battery is a state in which the battery is particularly vulnerable, that is why charging or discharging the battery to reach a value within the value range minimizing its state of aging makes it possible to preserve said battery . In the absence of active use, it is therefore appropriate to position as often as possible the battery 50 in a state of charge SOC limiting this degradation.
  • the battery 50 can typically be charged or discharged without taking into account said value range minimizing the aging state of the battery 50. requesting it to operate the storage system 56, the stationary storage control system 52 is free to decide the level of charge to position each battery 50.
  • the invention also provides a method for managing a state of charge of a plurality of batteries connected together to power a grid 55 for distributing electrical energy, this method comprising a storage phase for storing in the plurality of batteries 50 of the energy coming from the network 55 and a destocking phase to restore the energy on the network 55.
  • the step 110 of charging the battery 50 corresponds to the storage phase to store in the plurality of batteries of the energy from the network 55 and the discharge of the battery 50 corresponds to the destocking phase to restore the energy on the network 55.
  • the stationary storage control system 52 is free to decide on the level of charge to which to position each battery 50.
  • a stationary storage system 56 comprising a plurality of batteries 50
  • these are conventionally located in narrow and closed enclosures, such as technical rooms. Consequently, the ambient temperature of an enclosure in which battery 50 is connected to power a power distribution network 55 varies in function of parameters such as the geographical position of the enclosure concerned, the position of the enclosure within the building, etc. In addition, for the same chamber, the ambient temperature may vary over time depending on the sun exposure, seasons etc.
  • the use of such a stationary storage system 56 will generate heat and affect the ambient temperature of the room.
  • step 120 including detecting the state of non-use of the battery is particularly advantageous because it makes it possible to update parameters that can serve to bring the battery 50 in the value range of the state of charge minimizing the aging state of the battery.
  • SOCi fi (T)
  • SOC2 f 2 (T)
  • a step 60 for measuring the ambient temperature of the enclosure in which the battery 50 is installed is thus provided.
  • a step 70 of measuring the operating temperature of the battery 50 is thus provided.
  • the step 65 including recording the information relating to the operation of the battery may for example correspond to a time interval during which the battery is neither charged nor discharged.
  • the first value SOC1 and the second value SOC2 may follow a step 90 during which the first value SOC1 and the second value SOC2 are calculated as a function of the operating temperature of the battery and the ambient temperature of an enclosure in which the battery 50 is connected to power a network 55 of energy distribution.
  • the first value SOC1 and the second value SOC2 are calculated during step 90 solely as a function of the operating temperature of the battery.
  • the first value SOC1 and the second value SOC2 are calculated during step 90 as a function of the ambient temperature.
  • the type of battery 50 used (lithium-ion etc.) must also be taken into account.
  • the batteries 50 constituting the plurality of batteries connected for a power distribution network 55 do not all have the same sensitivities at ambient temperature. The value ranges of the state of charge of each battery minimizing the state of aging may therefore be different.
  • the first value (SOC1) is equal to 10%
  • the second value (SOC2) is equal to 70%
  • the first value (SOC1) is equal to 50%
  • the second value (SOC2) is equal to 70%
  • the first value (SOC1) is equal to 50%
  • the second value (SOC2) is equal to 70%
  • the state of charge SOC of the battery 50 calculated according to the operating temperature of the battery and / or the ambient temperature of an enclosure in which the battery 50 is connected to supply a distribution network of energy, corresponding here to the step 90 shown in Figure 2, it is appropriate to translate this charge SOC state energy to identify the set to be applied to the energy storage system 56. For example, for a battery 50 having a capacity equal to 14KWh, we would obtain a target energy range of between 7kWh and 9.8kWh which minimizes the aging state of the battery 50.
  • the management method may also include the following preliminary steps:
  • a step 30 of selecting a battery 50 from said plurality of batteries 50 is a step 30 of selecting a battery 50 from said plurality of batteries 50.
  • This embodiment is advantageous for a plurality of batteries connected together to power an electrical network.
  • the management method may also comprise a step 20 for collecting information relating to physical quantities to determine the aging state of a battery 50. This information can be used to rebbus a battery 50 if its performance is insufficient.
  • the minimum energy level guaranteed to the customer is E2nd, MiN- This minimum energy level guaranteed to the customer E2nd, MiN is established according to the operating temperatures to which the battery 50 is subjected. In practice, it will therefore be necessary to verify that the first value SOC1 which is lower than the second value SOC2 allows to provide an energy higher than E2nd, MiN.
  • the stationary storage control system 52 performs most of the calculations of interest to us in the context of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Il s'agit d'un procédé de gestion d'un état de charge (SOC) d'une batterie (50) connectée pour alimenter un réseau (55) de distribution d'énergie, le procédé comportant les étapes suivantes: -estimer(100)une plage de valeur dudit état de charge de la batterie minimisant l'état de vieillissement de la batterie, -charger ou décharger la batterie pour atteindre une valeur optimale d'état de charge comprise dans ladite plage de valeur, En outre, le procédé comporte l'étape(120) préliminaire suivante: -détecter un état d'inutilisation de la batterie durant lequel la batterie n'est ni chargée ni déchargée.

Description

PROCEDE DE GESTION D'UN ETAT DE CHARGE D'UNE BATTERIE
DESCRIPTION
Domaine de l' invention L'invention concerne un procédé de gestion d'un état de charge d'une batterie connectée pour alimenter un réseau de distribution d'énergie.
Cette invention peut s'appliquer quel que soit le type de batterie et s'étend de manière non exclusive aux véhicules. En particulier, l'invention trouve une application particulièrement avantageuse pour gérer l'état de charge d'une pluralité de batteries connectées pour alimenter un réseau de distribution d'énergie, de sorte à maximiser leurs capacités résiduelles.
Etat de la technique
Dans le domaine, on connaît des procédés de gestion d'un état de charge d'une batterie connectée pour alimenter un réseau de distribution d'énergie. Ces procédés comportent les étapes suivantes :
estimer une plage de valeur dudit état de charge de la batterie minimisant l'état de vieillissement de la batterie,
charger ou décharger la batterie pour atteindre une valeur d'état de charge comprise dans ladite plage de valeur .
Un tel exemple est divulgué dans US2012/0249048 qui décrit une solution dans laquelle l'état de vieillissement de la batterie est limité en faisant fonctionner les batteries, à la charge comme à la décharge, dans une plage de valeur de l'état de charge comprise entre deux valeurs. Il a été constaté que l'invention décrite dans US2012/0249048 présente l'inconvénient de ne pas prendre en compte tous les éléments nécessaires pour minimiser l'état de vieillissement de la batterie. Est divulguée une plage de valeur, figée, qui n'est pas optimale, pour minimiser l'état de vieillissement de la batterie. Par exemple, pendant une longue période d' inutilisation de la batterie, la batterie peut rester à une valeur d'état charge sous-optimale, dans le sens où il existe d'autres valeurs d'état de charge qui dégraderaient moins la batterie.
Objet de l'invention
Dans ce contexte, le problème ici posé est d'optimiser la gestion de l'état de charge d'une batterie. En particulier, il s'agit de minimiser la dégradation calendaire de la batterie. Est également visé l'optimisation des choix des plages de valeur de l'état de charge de la batterie en prenant en compte l'état de fonctionnement de la batterie ; en particulier, la présente invention vise à prendre en compte l'état de fonctionnement de la batterie, comme sa charge, sa décharge, ou les périodes d' inutilisation de la batterie (périodes durant lesquelles la batterie n'est ni chargée, ni déchargée mais peut s'auto- décharger) . Est également visé l'optimisation des plages de valeur de l'état de charge de la batterie en fonction de la température de fonctionnement de la batterie et/ou de la température ambiante pour minimiser l'état de vieillissement de la batterie.
A cet effet, l'invention a notamment pour objet un procédé de gestion d'un état de charge d'une batterie connectée pour alimenter un réseau de distribution d'énergie. Le procédé comporte une étape d'estimation d'une plage de valeur dudit état de charge minimisant l'état de vieillissement de la batterie. Il comporte également une étape de charge ou de décharge de la batterie pour atteindre une valeur optimale d'état de charge comprise dans ladite plage de valeur. Le procédé selon l'invention se caractérise en ce qu' il comporte avantageusement une étape préliminaire de détection d'un état d' inutilisation de la batterie durant lequel la batterie n'est ni chargée ni déchargée.
Cette solution permet de pallier les problèmes précités.
En particulier, la détection de l'état d' inutilisation de la batterie permet de placer la batterie dans des conditions favorables minimisant son état de vieillissement lorsque la batterie n'est pas utilisée.
Dans un mode de réalisation, durant l'étape préliminaire, l'expiration d'une période prédéterminée durant laquelle la batterie est dans l'état d' inutilisation est détectée.
Dans un mode de réalisation, la plage de valeur dudit état de charge de la batterie minimisant l'état de vieillissement de la batterie est définie par une première valeur minimum et une deuxième valeur maximum qui varient en fonction d'une température liée à la batterie.
Dans un mode de réalisation, la température liée à la batterie est une température de fonctionnement de la batterie .
Dans un mode de réalisation, la température liée à la batterie est une température ambiante d'une enceinte dans laquelle la batterie est installée.
Dans un mode de réalisation, une étape permet d'estimer la température liée à la batterie à partir de ladite température ambiante et d' informations relatives au fonctionnement de la batterie.
Dans un mode de réalisation, pour une plage de température de fonctionnement de la batterie comprise entre 10°C et 25°C :
la première valeur est égale à 10%, et,
la deuxième valeur est égale à 70%.
Dans un mode de réalisation, pour une température de fonctionnement de la batterie sensiblement égale à 45°C :
- la première valeur est égale à 50%, et, la deuxième valeur est égale à 70%.
Dans un mode de réalisation, pour une température de fonctionnement de la batterie sensiblement égale à 55°C :
la première valeur est égale à 50%, et,
- la deuxième valeur est égale à 70%.
Dans un mode de réalisation, le procédé comporte les étapes préliminaires suivantes :
mesurer l'état de charge d'une pluralité de batterie,
- sélectionner une batterie parmi ladite pluralité de batterie.
Dans un mode de réalisation, une étape supplémentaire permet de déterminer l'état de vieillissement d'une batterie en recueillant des informations relatives à des grandeurs physiques de la batterie.
Est également visé un deuxième objet de l'invention, dans lequel un système de gestion d'un état de charge d'une batterie comporte des moyens de mise en œuvre du procédé selon l'un quelconque des modes de réalisation précédents.
Brève description des figures La figure 1 montre un exemple d' architecture du système de stockage stationnaire .
La figure 2 montre un diagramme illustrant un exemple de procédé de gestion selon l'invention.
La figure 3 montre un diagramme illustrant un autre exemple de procédé de gestion selon l'invention.
La figure 4 montre une courbe représentant l'évolution du coefficient de dégradation de la batterie (i.e. son état de vieillissement) en fonction de l'état de charge de la batterie dans une plage de températures de fonctionnement de la batterie comprises entre 10°C et 25°C.
La figure 5 montre une courbe représentant l'évolution du coefficient de de dégradation de la batterie (i.e. son état de vieillissement) en fonction de l'état de charge de la batterie pour une température de fonctionnement de la batterie sensiblement égale à 45°C.
La figure 6 montre une courbe représentant l'évolution du coefficient de dégradation de la batterie (i.e. son état de vieillissement) en fonction de l'état de charge de la batterie pour une température de fonctionnement de la batterie sensiblement égale à 55°C.
Description d'exemples de réalisation de l'invention
En fonction de son vieillissement, les performances de la batterie 50 peuvent varier fortement pendant son utilisation. Un système 56 de stockage stationnaire contrôle ces informations.
La principale fonction du système 56 de stockage stationnaire, est d' implémenter la gestion des informations sur l'état de chaque batterie 50 composant la pluralité de batteries 50 afin de permettre une utilisation de la pluralité de batteries 50 au maximum de ses capacités énergétiques tout en minimisant l'état de vieillissement de la batterie 50.
Classiquement, le système de stockage stationnaire est capable de recueillir par une étape 20 des informations relatives à des grandeurs physiques pour déterminer l'état de vieillissement d'une batterie, du type suivant (liste non exhaustive) :
la température de fonctionnement en différents points de la batterie,
- le courant et la tension totale de la batterie, la tension de chaque cellule de la batterie, l'état de charge de la batterie,
l'énergie disponible restante en décharge, la puissance disponible en décharge.
Comme montré sur la figure 1, le système 56 de stockage stationnaire des capacités résiduelles d'une pluralité de batteries 50 comprend les éléments suivants :
une batterie 50,
un système 51 de supervision de la batterie, - un système 52 de contrôle de stockage stationnaire,
un chargeur 53,
un onduleur 54.
Ces éléments forment le système 56 de stockage stationnaire. Ce système 56 de stockage stationnaire est connecté au réseau 55 de courant alternatif.
Le système 51 de supervision de la batterie 50 fait l'acquisition de grandeurs physiques de la batterie (mesures de températures, tensions de chacune des cellules, courant, etc.) . Ces grandeurs physiques ont notamment pour fonction de déterminer l'état de vieillissement de la batterie 50. Le système 51 de supervision de la batterie 50 fait des calculs à partir de ces mesures afin, par exemple, de déterminer :
une tension minimale des cellules VCeiiMin ;
une première valeur binaire indiquant si la charge est terminée fEoc = 1 ou fEoc = 0 ;
une puissance de charge PCHG,HVB ou une puissance de décharge PDCHG,HVB que la batterie 50 peut supporter sans qu'elle soit endommagée ;
une tension VHVB et un courant IHVB mesures aux bornes de la batterie 50 ;
une quantité d'énergie EHVB disponible de la batterie 50.
Le système de supervision 51 de la batterie 50 communique les grandeurs physiques permettant de déterminer l'état de vieillissement de la batterie 50 au système 52 de contrôle de stockage stationnaire . Le système 51 de supervision de la batterie 50 permet notamment de réaliser une étape 70 de mesure de la température de fonctionnement de la batterie 50.
Le système 52 de contrôle de stockage stationnaire est soumis à certaines contraintes énergétiques. Par exemple, le système 52 de contrôle de stockage stationnaire peut demander à charger la batterie 50 pendant les heures creuses et de la décharger pendant les heures pleines.
Comme montré sur la figure 1, le système 52 de contrôle de stockage stationnaire établit des consignes de charge ou décharge en fonction des informations qu' il reçoit et de ses contraintes énergétiques. Les consignes sont envoyées vers le chargeur 53 ou l'onduleur 54 pour être réalisées : on charge ou on décharge la batterie 50.
Selon l'invention, le procédé de gestion d'un état de charge SOC d'une batterie 50 connectée pour alimenter un réseau 55 de distribution d'énergie comporte les étapes suivantes :
détecter 120 un état d' inutilisation de la batterie durant lequel la batterie n'est ni chargée, ni déchargée,
estimer 100 une plage de valeur dudit état de charge de la batterie minimisant l'état de vieillissement de la batterie,
charger ou décharger 110 la batterie pour atteindre une valeur optimale d'état de charge comprise dans ladite plage de valeur.
L'étape 120 préliminaire incluant de détecter un état d' inutilisation de la batterie durant lequel la batterie n'est ni chargée, ni déchargée, peut par exemple détecter l'expiration d'une période prédéterminée durant laquelle la batterie est dans l'état d' inutilisation . Cette étape préliminaire permet avantageusement de mettre la batterie dans des conditions minimisant sa dégradation calendaire. L'état d' inutilisation d'une batterie est un état dans lequel la batterie est particulièrement vulnérable, c'est pourquoi charger ou décharger la batterie pour atteindre une valeur comprise dans la plage de valeur minimisant son état de vieillissement permet de préserver ladite batterie. En l'absence d'usage actif, il convient donc de positionner aussi souvent que possible la batterie 50 dans un état de charge SOC limitant cette dégradation. Dans le cas d'un usage actif (dans un état d'utilisation), la batterie 50 pourra typiquement se charger ou se décharger sans prendre en compte ladite plage de valeur minimisant l'état de vieillissement de la batterie 50. En attendant une consigne lui demandant d'exploiter le système de stockage 56, le système 52 de contrôle de stockage stationnaire est libre de décider du niveau de charge auquel positionner chaque batterie 50.
Par ailleurs, l'invention vise également un procédé de gestion d'un état de charge d'une pluralité de batteries connectées entre elles pour alimenter un réseau 55 de distribution d'énergie électrique, ce procédé comprenant une phase de stockage pour stocker dans la pluralité de batteries 50 de l'énergie provenant du réseau 55 et une phase de déstockage pour restituer l'énergie sur le réseau 55. On comprend donc que l'étape 110 de charge de la batterie 50 correspond à la phase de stockage pour stocker dans la pluralité de batteries de l'énergie en provenance du réseau 55 et la décharge de la batterie 50 correspond à la phase de déstockage pour restituer l'énergie sur le réseau 55. En attendant une consigne lui demandant d'exploiter le système de stockage 56, le système 52 de contrôle de stockage stationnaire est libre de décider du niveau de charge auquel positionner chaque batterie 50. Ainsi, lorsque le procédé de gestion de l'état de charge de la pluralité de batteries n'est ni en phase de stockage, ni en phase de déstockage, alors la pluralité de batteries 50 est considérée comme étant dans un état d' inutilisation, c'est- à-dire que le système 56 de stockage n'est pas sollicité.
Parmi les facteurs influençant l'état de vieillissement d'une batterie 50, il y a la température. Dans un contexte d'utilisation dans un système 56 de stockage stationnaire comprenant une pluralité de batteries 50, celles-ci sont classiquement localisées dans des enceintes étroites et fermées, comme par exemple des locaux techniques. En conséquence, la température ambiante d'une enceinte dans laquelle batterie 50 est connectée pour alimenter un réseau 55 de distribution d'énergie varie en fonction de paramètres tels que la position géographique de l'enceinte concernée, la position de l'enceinte au sein du bâtiment etc. De plus, pour une même enceinte, la température ambiante peut varier au cours du temps en fonction de l'exposition au soleil, des saisons etc. Enfin, l'utilisation d'un tel système 56 de stockage stationnaire va générer de la chaleur et influer sur la température ambiante du local. Au vu de l'impact de la température sur l'état de vieillissement d'une batterie 50, l'étape 120 incluant de détecter l'état d' inutilisation de la batterie est particulièrement avantageuse car elle permet de mettre à jour des paramètres pouvant servir à amener la batterie 50 dans la plage de valeur de l'état de charge minimisant l'état de vieillissement de la batterie.
Dans un autre mode de réalisation, la plage de valeur comprend une première valeur minimum SOC1 et une deuxième valeur maximum SOC2 qui varient en fonction d'une température T liée à la batterie 50, suivant une relation SOCi = fi(T), respectivement SOC2 = f2 (T) . Cela permet avantageusement de minimiser la dégradation calendaire de la batterie 50 impactant l'état de vieillissement de la batterie 50. La température liée à la batterie peut être une température ambiante d'une enceinte dans laquelle la batterie 50 est installée ou une température de fonctionnement de la batterie.
Dans un mode de réalisation, il est ainsi prévu une étape 60 de mesure de la température ambiante de l'enceinte dans laquelle la batterie 50 est installée. Alternativement, il est possible de réaliser une étape 70 de mesure de la température de fonctionnement de la batterie 50.
Dans un autre mode de réalisation de l'invention, il est prévu une étape 80 d'estimation la température T liée à la batterie 50 à partir de la température ambiante et d'informations relatives au fonctionnement de la batterie. L'étape 65 incluant de relever les informations relatives au fonctionnement de la batterie peut par exemple correspondre à un intervalle de temps durant lequel la batterie n'est ni chargée, ni déchargée.
La première valeur SOC1 et la deuxième valeur SOC2 peuvent faire suite à une étape 90 durant laquelle la première valeur SOC1 et la deuxième valeur SOC2 sont calculées en fonction de la température de fonctionnement de la batterie et de la température ambiante d'une enceinte dans laquelle la batterie 50 est connectée pour alimenter un réseau 55 de distribution d'énergie. Alternativement, la première valeur SOC1 et la deuxième valeur SOC2 sont calculées durant l'étape 90 uniquement en fonction de la température de fonctionnement de la batterie. Selon une autre alternative, la première valeur SOC1 et la deuxième valeur SOC2 sont calculées durant l'étape 90 en fonction de la température ambiante.
Outre la température ambiante de l'enceinte et la température de fonctionnement de la batterie, doit également être pris en compte le type de batterie 50 utilisée (lithium-ion etc.) . De fait, les batteries 50 composant la pluralité de batteries connectées pour un réseau 55 de distribution d'énergie n'ont pas toutes les mêmes sensibilités à la température ambiante. Les plages de valeur de l'état de charge de chaque batterie minimisant l'état de vieillissement pourront donc être différentes.
Sur la figure 4, il a été constaté que lorsque la température moyenne de fonctionnement de la batterie 50 est comprise entre 10°C et 25°C, le coefficient de dégradation calendaire, donc l'état de vieillissement de la batterie 50, est influencé par l'état de charge SOC de la batterie 50. En substance, plus l'état de charge SOC de la batterie 50 est élevé, plus le coefficient de dégradation de la batterie est élevé. D'autre part, comme visible sur la figure 4, à partir de 70% de l'état de charge de la batterie, la courbe s' accroît très rapidement pour adopter une forme de type courbe exponentielle. Dans ce contexte, afin de minimiser l'état de vieillissement de la batterie, il convient de rester à un état de charge de la batterie relativement bas. Ainsi, selon une disposition avantageuse, pour une plage de température de fonctionnement de la batterie comprise entre 10°C et 25°C :
la première valeur (SOC1) est égale à 10%, et, la deuxième valeur (SOC2) est égale à 70%.
Sur la figure 5, des essais similaires à ceux montrés sur la figure 4 ont été réalisés, mais pour une température moyenne de fonctionnement de la batterie 50 sensiblement égale à 45°C. De la même manière que pour les résultats montrés sur la figure 4 pour une plage de températures comprise entre 10°C et 25°C, le coefficient de dégradation croît rapidement lorsque l'état de charge de la batterie 50 dépasse 70%. De plus, il y a un accroissement brutal du coefficient de dégradation pour un état de charge SOC de la batterie compris entre 20% et 40%. Ainsi, selon une autre disposition avantageuse, pour une température de fonctionnement de la batterie sensiblement égale à 45°C :
la première valeur (SOC1) est égale à 50%, et, la deuxième valeur (SOC2) est égale à 70%.
Enfin, sur la figure 6, pour des conditions de température de fonctionnement de la batterie encore plus éprouvante, avec une température de fonctionnement de la batterie sensiblement égale à 55°C, la courbe du coefficient de dégradation calendaire présente une forme analogue, avec un accroissement brutal entre 20% et 40% de l'état de charge de la batterie 50 et un autre accroissement quand l'état de charge de la batterie 50 dépasse 70%. Ainsi, selon une autre disposition avantageuse, pour une température de fonctionnement de la batterie sensiblement égale à 55°C :
la première valeur (SOC1) est égale à 50%, et, la deuxième valeur (SOC2) est égale à 70%.
Une fois l'état de charge SOC de la batterie 50 calculée en fonction de la température de fonctionnement de la batterie et/ou de la température ambiante d'une enceinte dans la laquelle la batterie 50 est connectée pour alimenter un réseau de distribution d'énergie, correspondant ici à l'étape 90 représentée sur la figure 2, il convient de traduire cet état de charge SOC en énergie pour identifier la consigne qu'il faut appliquer au système 56 de stockage d'énergie. A titre d'exemple, pour une batterie 50 ayant une capacité égale à 14KWh, on obtiendrait une plage d'énergie cible comprise entre 7kWh et 9, 8KWh qui minimise l'état de vieillissement de la batterie 50.
Dans un mode de réalisation représenté sur la figure 3, le procédé de gestion peut également comporter les étapes préliminaires suivantes:
une étape 10 de mesure de l'état de charge SOC d'une pluralité de batterie 50,
une étape 30 de sélection d'une batterie 50 parmi ladite pluralité de batterie 50.
Ce mode de réalisation est avantageux pour une pluralité de batteries connectées entre elles pour alimenter un réseau électrique.
Le procédé de gestion peut également comporter une étape 20 de recueil des informations relatives à des grandeurs physiques pour déterminer l'état de vieillissement d'une batterie 50. Ces informations peuvent servir à mettre au rébus une batterie 50 si ses performances sont insuffisantes . Dans le cadre d'une prestation, le niveau d'énergie minimum garanti au client est E2nd,MiN- Ce niveau d'énergie minimum garanti au client E2nd,MiN est établi en fonction des températures de fonctionnement à laquelle la batterie 50 est soumise. En pratique, il conviendra donc de vérifier que la première valeur SOC1 qui est inférieure à la deuxième valeur SOC2 permette de fournir une énergie supérieure à E2nd,MiN. Si ce n'est pas le cas, il faut envisager soit de modifier le comportement du système 52 de contrôle de stockage stationnaire pour garantir le niveau d'énergie minimum garanti E2nd,MiN ,par exemple, en chargeant davantage la batterie 50 mais en restant dans la plage de valeur de l'état de charge, soit de changer la batterie 50 connectée à la pluralité d'autres batteries 50, pour une autre batterie 50 disposant d'une capacité résiduelle supérieure .
Le système 52 de contrôle de stockage stationnaire effectue l'essentiel des calculs nous intéressant dans le cadre de la présente invention.

Claims

REVENDICATIONS
1. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) connectée pour alimenter un réseau (55) de distribution d'énergie, le procédé comportant les étapes (100,110) suivantes :
estimer (100) une plage de valeur dudit état de charge de la batterie minimisant l'état de vieillissement de la batterie,
- charger (110) ou décharger la batterie pour atteindre une valeur optimale d'état de charge comprise dans ladite plage de valeur,
ledit procédé étant caractérisé en ce qu'il comporte l'étape (120) préliminaire suivante :
- détecter un état d' inutilisation de la batterie durant lequel la batterie n'est ni chargée ni déchargée.
2. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 1, caractérisé en ce que durant l'étape (120) préliminaire, l'expiration d'une période prédéterminée durant laquelle la batterie est dans l'état d' inutilisation est détectée.
3. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que ladite plage de valeur minimisant l'état de vieillissement de la batterie comprend une première valeur minimum (SOC1) et une deuxième valeur maximum (SOC2) qui varient en fonction d'une température (T) liée à la batterie.
4. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 3, caractérisé en ce que la température (T) liée à la batterie est une température de fonctionnement de la batterie.
5. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 3, caractérisé en ce que la température (T) liée à la batterie est une température ambiante d'une enceinte dans laquelle la batterie est installée.
6. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 5, caractérisé en ce qu'il comporte une étape (80) suivante :
- estimer la température (T) liée à la batterie à partir de ladite température ambiante et d' informations relatives au fonctionnement de la batterie (50) .
7. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 4, caractérisé en ce que pour une plage de température de fonctionnement de la batterie comprise entre 10°C et 25°C :
la première valeur (SOC1) est égale à 10%, et, la deuxième valeur (SOC2) est égale à 70%.
8. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 4, caractérisé en ce que pour une température de fonctionnement de la batterie sensiblement égale à 45°C :
- la première valeur (SOC1) est égale à 50%, et, la deuxième valeur (SOC2) est égale à 70%.
9. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon la revendication 4, caractérisé en ce que pour une température de fonctionnement de la batterie sensiblement égale à 55°C :
- la première valeur (SOC1) est égale à 50%, et, la deuxième valeur (SOC2) est égale à 70%.
10. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comporte les étapes préliminaires suivantes :
mesurer (10) l'état de charge (SOC) d'une pluralité de batteries,
sélectionner (30) ladite batterie (50) parmi ladite pluralité de batteries.
11. Procédé de gestion d'un état de charge (SOC) d'une batterie (50) selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comporte en outre une étape supplémentaire de détermination de l'état de vieillissement de la batterie (50) en recueillant (20) des informations relatives à des grandeurs physiques de la batterie (50) .
12. Système de gestion d'un état de charge (SOC) d'une batterie (50) comportant des moyens de mise en œuvre du procédé selon l'une quelconque des revendications précédentes .
EP15705630.0A 2014-01-20 2015-01-15 Procede de gestion d'un etat de charge d'une batterie Ceased EP3096974A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450420A FR3016737B1 (fr) 2014-01-20 2014-01-20 Procede de gestion d'un etat de charge d'une batterie
PCT/FR2015/050090 WO2015107299A1 (fr) 2014-01-20 2015-01-15 Procede de gestion d'un etat de charge d'une batterie

Publications (1)

Publication Number Publication Date
EP3096974A1 true EP3096974A1 (fr) 2016-11-30

Family

ID=50549097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15705630.0A Ceased EP3096974A1 (fr) 2014-01-20 2015-01-15 Procede de gestion d'un etat de charge d'une batterie

Country Status (7)

Country Link
US (1) US20160332531A1 (fr)
EP (1) EP3096974A1 (fr)
JP (1) JP6738738B2 (fr)
KR (1) KR20160110409A (fr)
CN (1) CN106103180A (fr)
FR (1) FR3016737B1 (fr)
WO (1) WO2015107299A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355509B2 (en) * 2015-08-21 2019-07-16 Panasonic Intellectual Property Management Co., Ltd. Management apparatus, charge and discharge control apparatus, power storage system, and charge and discharge control method
FR3050893B1 (fr) * 2016-04-29 2018-05-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de controle des flux d'energie electrique au sein d'un systeme d'acces radio a un reseau de communication et dispositif de controle associe
FR3060889B1 (fr) * 2016-12-21 2020-12-04 Commissariat Energie Atomique Procede et dispositif de charge d'une batterie
KR102447619B1 (ko) * 2017-09-18 2022-09-27 주식회사 엘지에너지솔루션 지그를 이용한 고정 과정을 포함하는 파우치형 전지셀 제조방법
CN109523166B (zh) * 2018-11-19 2022-03-15 云南电网有限责任公司 一种有源配电网规划方案评估方法和装置
FR3094152B1 (fr) * 2019-03-20 2021-03-12 Psa Automobiles Sa Procede de controle de charge d’un module de batterie rechargeable au moyen d’un algorithme de programmation dynamique

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157369B2 (ja) * 1993-10-29 2001-04-16 三洋電機株式会社 二次電池の保護方法及び保護装置
JP3545972B2 (ja) * 1999-08-02 2004-07-21 日本電信電話株式会社 バックアップ用二次電池パックの充電方法
US6515456B1 (en) * 2000-04-13 2003-02-04 Mixon, Inc. Battery charger apparatus
JP2005261034A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 蓄電機構の制御装置
JP4806558B2 (ja) * 2005-10-18 2011-11-02 プライムアースEvエナジー株式会社 二次電池用の制御装置及び二次電池の劣化判定方法
US8245865B2 (en) * 2006-05-16 2012-08-21 Nutek Disposables, Inc. Dispenser lid including a secondary lid and container including the same
JP4841402B2 (ja) * 2006-11-10 2011-12-21 三洋電機株式会社 過充電・過放電検出回路を備える電源装置
JP2008308122A (ja) * 2007-06-18 2008-12-25 Mazda Motor Corp 車両用バッテリの制御装置
JP4858378B2 (ja) * 2007-09-14 2012-01-18 日本テキサス・インスツルメンツ株式会社 多セル直列電池用のセル電圧監視装置
US20100016034A1 (en) * 2008-06-10 2010-01-21 Telefonaktiebolaget L M Ericsson (Publ) Power supply method and apparatus for radio access network nodes/sites
JP4715881B2 (ja) * 2008-07-25 2011-07-06 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
KR101107115B1 (ko) * 2008-12-01 2012-01-30 삼성에스디아이 주식회사 배터리 관리 시스템 및 배터리 관리 방법
FR2939977A3 (fr) * 2008-12-15 2010-06-18 Renault Sas Procede et systeme d'endormissement de moyen de stockage d'energie electrique de vehicule electrique ou hybride
FR2940864B1 (fr) * 2009-01-06 2011-01-28 Peugeot Citroen Automobiles Sa Dispositif de gestion de la charge d'une batterie embarquee a bord d'un vehicule
JP2011015473A (ja) * 2009-06-30 2011-01-20 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
JP5466564B2 (ja) * 2010-04-12 2014-04-09 本田技研工業株式会社 電池劣化推定方法、電池容量推定方法、電池容量均等化方法、および電池劣化推定装置
JP2012039725A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 充電方法、充電システム
FR2963997B1 (fr) * 2010-08-20 2013-07-05 Peugeot Citroen Automobiles Sa Dispositif et procede pour la charge de la batterie d'un vehicule sur un reseau de distribution electrique
KR101154308B1 (ko) * 2010-12-03 2012-06-13 기아자동차주식회사 전기자동차의 잔존주행거리 추정 방법
US8937452B2 (en) * 2011-02-04 2015-01-20 GM Global Technology Operations LLC Method of controlling a state-of-charge (SOC) of a vehicle battery
JP2013247726A (ja) * 2012-05-24 2013-12-09 Toshiba Corp 蓄電池劣化制御装置
JP6148879B2 (ja) * 2013-02-28 2017-06-14 旭化成株式会社 二次電池の電池状態推定装置及び電池パックの製造方法並びにセルバランス確認方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015107299A1 *

Also Published As

Publication number Publication date
JP2017505603A (ja) 2017-02-16
WO2015107299A1 (fr) 2015-07-23
CN106103180A (zh) 2016-11-09
KR20160110409A (ko) 2016-09-21
FR3016737A1 (fr) 2015-07-24
JP6738738B2 (ja) 2020-08-12
FR3016737B1 (fr) 2021-11-05
US20160332531A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
EP1774353B1 (fr) Procédé de gestion d'un parc de batteries rechargeables
EP3096974A1 (fr) Procede de gestion d'un etat de charge d'une batterie
EP3080626B1 (fr) Procédé d'estimation des capacités résiduelles d'une pluralité de batteries
FR3025663A1 (fr) Procede de gestion de la plage d'utilisation d'une batterie
EP3276364B1 (fr) Procédé de détermination de l'état de santé des cellules d'une batterie
EP2087574A2 (fr) Procede de gestion de charge d'une batterie rechargeable
EP3729553B1 (fr) Procédé de gestion d'un état de charge d'une batterie laissée au repos
WO2007132086A2 (fr) Procede de gestion d'un parc de batteries rechargeables utilisant l'effet coup de fouet en charge
WO2008081106A1 (fr) Procede de determination du seuil de fin de decharge d'une batterie rechargeable
EP4264301A1 (fr) Procédé pour estimer la durée de vie d'un système de stockage d'énergie
EP0498715A1 (fr) Procédé d'optimisation de la charge d'une batterie d'accumulateurs, et dispositif pour la mise en oeuvre de ce procédé
EP3667345A1 (fr) Procédé de détermination de l'état de santé des cellules d'une batterie
EP2079125B1 (fr) Procédé de gestion de la charge d'une batterie
EP4198538A1 (fr) Méthode de diagnostic et de prédiction de durée de vie de batteries au plomb, notamment destinées au stockage d'énergie de secours
EP3331125B1 (fr) Procédé d'équilibrage d'etats de charge d'une pluralité de dispositifs de stockage d'énergie électrique
EP4029075B1 (fr) Procédé et système de gestion d'un élément de stockage d'énergie électrique
WO2023227722A1 (fr) Procédé de détection d'un risque de défaillance par déséquilibre d'un dispositif de stockage d'énergie comprenant un ensemble d'étages de cellules électrochimiques
WO2024008715A1 (fr) Procédé de détection d'un risque de défaillance par déséquilibre d'un dispositif de stockage d'énergie comprenant un ensemble d'étages de cellules électrochimiques
WO2023006505A1 (fr) Procédé de diagnostic d'une batterie et procédé de contrôle associé
EP3999864A1 (fr) Procédé de détermination de l'état de charge des cellules d'une batterie
FR3060132A1 (fr) Procede de determination de l'etat de sante d'une batterie nickel chlorure de sodium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20191125