EP3088749B1 - Oil diffusion pump and oil vapor generator used therefor - Google Patents

Oil diffusion pump and oil vapor generator used therefor Download PDF

Info

Publication number
EP3088749B1
EP3088749B1 EP14895619.6A EP14895619A EP3088749B1 EP 3088749 B1 EP3088749 B1 EP 3088749B1 EP 14895619 A EP14895619 A EP 14895619A EP 3088749 B1 EP3088749 B1 EP 3088749B1
Authority
EP
European Patent Office
Prior art keywords
oil
heated
casing
diffusion pump
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14895619.6A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3088749A1 (en
EP3088749A4 (en
Inventor
Shinichiro Saisho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Publication of EP3088749A1 publication Critical patent/EP3088749A1/en
Publication of EP3088749A4 publication Critical patent/EP3088749A4/en
Application granted granted Critical
Publication of EP3088749B1 publication Critical patent/EP3088749B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/36Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid characterised by using specific inducing fluid
    • F04F5/40Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid characterised by using specific inducing fluid the inducing fluid being oil vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F9/00Diffusion pumps

Definitions

  • the present invention relates to an oil diffusion pump, which is connected to a vacuum container constituting a variety of vacuum devices, such as a vapor deposition device and a sputtering device, and suitably used as a vacuum pump for evacuating inside the container, and an oil vapor generator installed in the pump.
  • a vacuum container constituting a variety of vacuum devices, such as a vapor deposition device and a sputtering device, and suitably used as a vacuum pump for evacuating inside the container, and an oil vapor generator installed in the pump.
  • an oil diffusion pump is used as a vacuum pump used in an exhaust device for evacuating inside a vacuum container constituting the devices.
  • oil diffusion pumps of the related art those using an electric heater including a heater wire as a heating source for a hydraulic oil held in a boiler are known (Patent Document 1).
  • Patent Document 1 The documents JP 2007 023778 A and GB 2 053 356 A each disclose oil diffusion pumps with boilers.
  • the document JP 2007 152651 and JP 2005 011561 disclose induction heating elements including an induction coil which heats a pipe carrying a fluid to be heated or an outer cylindrical body.
  • Patent Document 1 Japanese Unexamined Patent Publication (Kokai) No. 2007-23778
  • the device can be formed inexpensively when using a heater wire as a heating source for a hydraulic oil, it involves elements of causing various troubles, such as losing a heating function due to disconnection of the heater wire, arising of a current leakage due to an insulation defect of the heater wire, arising of a contact defect due to a high temperature of a terminal board, and arising of rust on a heated body. Also, since a temperature of the heater wire becomes high as red heat during operation of the oil diffusion pump, a position of attaching it has to be determined cautiously and there is also a disadvantage in an installation environment that a degree of freedom is limited in the installation position.
  • an oil vapor generator capable of eliminating disadvantages in using a heater wire as a heating source for a hydraulic oil and an oil diffusion pump comprising the oil vapor generator and capable of contributing to power saving during its operation.
  • An oil diffusion pump of the present invention is a vacuum pump provided with an oil vapor generator arranged in a jet provided in a casing, wherein the oil vapor generator is operated to heat a hydraulic oil to produce oil vapor and the oil vapor in the jet is sprayed from the jet for an operation of high-vacuum exhaustion of an intake air.
  • the oil vapor generator comprises a body to be heated, an induction coil provided near the object to be heated in an electrically insulated way, and a power supply means for applying an alternating current to the induction coil. It is configured to operate the power supply means to apply an alternating current to the induction coil so as to heat the body to be heated and, thus, vaporize the hydraulic oil.
  • the oil vapor generator of the present invention is used for heating a hydraulic oil in an oil diffusion pump comprising a casing and jet so as to produce oil vapor.
  • the oil vapor generator of the present invention comprises an object to be heated provided in the jet inside the casing such that a part or all thereof is immersed in the hydraulic oil stored in the casing in the oil diffusion pump, an induction coil provided near the object to be heated in an electrically insulated way such that a part or all thereof is immersed in the hydraulic oil stored in the casing, and a power supply means for applying an alternating current to the induction coil.
  • the object to be heated is heated so as to vaporize the hydraulic oil.
  • a shape of the object to be heated constituting the oil vapor generator is not particularly limited and, for example, a plate shape, tubular shape or a combination of a plate shape and tubular shape, etc. may be mentioned.
  • the induction coil may be wound around the object to be heated via an insulating material ( FIG. 3 to FIG. 5 ).
  • the induction coil may be provided around the object to be heated (for example, on the back surface, etc.) via an insulating material.
  • induction coil When combining, separate induction coil may be used for each and a plurality of power supply means may be used, alternatively, power may be supplied by using one system of an induction coil and a power supply means. In either case, the object to be heated and the induction coil in the present invention are installed such that a part or all thereof is immersed in the hydraulic oil stored in the casing.
  • a flow path for a hydraulic oil may be provided in the casing in the oil diffusion pump so as to operate the oil vapor generator to heat.
  • it may be configured to thermally isolate between the oil vapor generator provided in the casing and a bottom surface of the casing.
  • the induction coil of the oil vapor generator may be formed by a heat-resistant electric wire.
  • the oil vapor generator to be installed in the oil diffusion pump of the present invention uses as a hydraulic oil heating source an induction coil provided near the object to be heated via an insulating material provided therebetween (as an example, an induction coil wound around a tubular object to be heated via an insulating material provided therebetween), the object to be heated is heated by applying an alternating current to the induction coil and thus the hydraulic oil is vaporized by the heat. Also, the object to be heated and the induction coil are installed on the bottom portion of the casing so as to be immersed in the hydraulic oil stored in the casing of the oil diffusion pump.
  • the oil vapor generator installed in the oil diffusion pump of the present invention not by heating the induction coil but by applying an alternating current to the induction coil, a magnetic flux interlinking with a predetermined direction of the object to be heated (the vertical upright direction in the case of the example above) is generated, the generated magnetic flux generates an induced current, that is, an eddy current in the object to be heated and Joule heat is produced thereby (induced heating).
  • the generated heat heats the object to be heated itself (self-heating of the object to be heated), consequently, the hydraulic oil is heated.
  • the heating function is not lost due to disconnection. Also, the current is all consumed in the object to be heated as a heating body, so that an electric leakage due to an insulation defect does not arise and a contact defect of a terminal board due to a high temperature does not arise. Also, because the hydraulic oil heating source can be heated selectively, the degree of freedom in selecting an installation position of the induction coil becomes higher, which is advantageous.
  • the object to be heated and the induction coil are installed in an arrangement such that a part or all thereof is immersed in the hydraulic oil stored in the casing in the oil diffusion pump. Therefore, even when a temperature of the induction coil becomes high due to a temperature rise of the object to be heated, a cooling effect by the hydraulic oil can be expected and abnormal heating can be prevented. Accordingly, an upper limit of the temperature of the induction coil can be suppressed lower comparing, for example, with an air cooling method for cooling the induction coil provided outside the casing.
  • the oil diffusion pump of the present invention comprises the oil vapor generator of the present invention installed in the casing, all of the current applied to the induction coil of the oil vapor generator can be consumed by the object to be heated as a heating body. Consequently, the energy efficiency of the heating body is good and power saving can be achieved.
  • the hydraulic oil is expected to be preheated while passing through the flow path during hydraulic oil circulation and a preferable condition can be created for generating oil vapor.
  • the oil diffusion pump of the present invention comprises the oil vapor generator as a heating source inside the casing as explained above and a heating source is not provided outside the casing as in an oil diffusion pump of the related art provided with a heating source.
  • the bottom portion of the casing can be formed substantially planar and the oil diffusion pump can be placed flatly so as to improve the convenience.
  • the oil vapor generator of the present invention since the upper end in the upright direction of the object to be heated as a heating body obtained by winding the induction coil is exposed above the oil surface of the contacting hydraulic oil, oil vapor rising from the oil surface contacts with the upper portion of the inner wall of the object to be heated exposed above the oil surface, thereby, it is heated furthermore, and sufficiently heated oil vapor can be generated in a short time.
  • heat rising of the hydraulic oil that is, generation of oil vapor
  • a vacuum device 1 of the present example comprises a vacuum container 10. Inside the vacuum container 10, a variety of equipment necessary for forming a thin film (film formation) in general are arranged, such as a film formation source (illustration omitted) like a vapor source and sputter source, and a substrate holder for holding a substrate to be subjected to a treatment, etc.
  • the vacuum container 10 is connected with a downstream side of a pipe 21.
  • the vacuum container 10 is connected with a vacuum gauge (illustration omitted) to detect an atmospheric pressure (vacuum degree) inside the vacuum container 10.
  • the upstream side of the pipe 21 is connected to a downstream side of the intake pipe 23 via a main evacuation valve 31.
  • the upstream side of the intake pipe 23 is connected to an intake part 55 of an oil diffusion pump 50.
  • the middle of the pipe 21 is connected to the downstream side of a branch pipe 25.
  • the middle of the branch pipe 25 is connected to the downstream side of a pipe 26, and a leak valve 33 is provided on the upstream side of the pipe 26.
  • the upstream side of the branch pipe 25 is connected to the downstream side of the pipe 27 via a rough evacuation valve 35.
  • the upstream side of the pipe 27 is connected to a rough evacuation pump 60.
  • the middle of the pipe 27 is connected to the downstream side of the pipe 28.
  • the upstream side of the pipe 28 is connected to an exhaust part 57 of the oil diffusion pump 50 via an auxiliary valve 37.
  • Ajoint part of the pipe 27 and the pipe 28 is connected to the downstream side of the pipe 29, and the upstream side of the pipe 29 is provided with a leak valve 39.
  • a vacuum gauge (illustration omitted) is connected inside the pipe 28 to detect a pressure inside the oil diffusion pump 50.
  • the vacuum device 1 of the present example is provided with a control device (illustration omitted) for controlling an operation of the device 1.
  • the control device provided in the present example is configured to comprise a main control circuit (illustration omitted) including a variety of processing circuits, a vacuum gauge drive circuit (illustration omitted) connected with a vacuum gauge connected inside the pipe 21, a rough evacuation pump control circuit (illustration omitted) for operating and controlling the rough evacuation pump 60 and an oil diffusion pump control circuit (illustration omitted) for operating and controlling the oil diffusion pump 50.
  • the main control circuit is connected to respective valves (main evacuation valve 31, leak valves 33 and 39, rough evacuation valve 35 and auxiliary valve 37), and those valves are opened/closed in accordance with a predetermined sequence of the main control circuit.
  • the oil diffusion pump 50 is connected to a rough evacuation pump 60, and an exhaust air from the oil diffusion pump 50 through the auxiliary valve 37 is sucked by the rough evacuation pump 60 and exhausted from a not shown path.
  • the oil diffusion pump 50 of the present example has a tubular container (casing) 51 having a closed bottom.
  • an oil vapor generator 70 for heating and vaporizing a hydraulic oil 8 is installed on the bottom inside the casing 51.
  • the bottom of the casing 51 is formed to be substantially planar. The detailed explanation on the oil vapor generator 70 will be made later on.
  • a jet 53 is arranged where oil vapor, which is the hydraulic oil 8 (refer to FIG. 3 ) heated by the oil vapor generator 70, vaporized and convected upward is taken in and sprayed through a nozzle 53a to the rough evacuation direction.
  • the upper end of the casing 51 is provided with an intake part 55 and the side surface of the casing 5 1 is provided with an exhaust part 57.
  • the mechanism is that the casing 51 is cooled by the water cooling pipe 58, so that the oil vapor of the hydraulic oil 8 adhered to the inner wall of the casing 51 is cooled and condensed, returns to an oil storage 59 at a lower portion of the casing 51 and reheated by the oil vapor generator 70 to circulate.
  • the oil vapor generator 70 in the present example is installed via a plate-shaped pedestal 70a on the bottom portion inside the casing 51 of the oil diffusion pump 50 shown in FIG. 2 .
  • the pedestal 70a is supported by a lower lid (flange) 90 from the atmosphere side.
  • a heat insulating material (illustration omitted) may be provided between the pedestal 70a and the lower lid 90.
  • the lower lid 90 is attached to the bottom surface of the casing 51 by an engaging means 92, such as a bolt, in a detachable way, and the atmosphere-side bottom portion of the casing 51 is formed to be substantially planar.
  • a tubular case 71 is arranged as an example of an object to be heated.
  • a lower end of the case 71 is supported by a base 72 having an opening portion 72a near its substantial center.
  • the base 72 is supported by the pedestal 70a via leg portions 70b having a predetermined height, so that it is arranged to form a space of allowing the hydraulic oil 8 to flow between the pedestal 70a and itself.
  • the space between the base 72 and the pedestal 70a formed by the leg portions 70b functions as a preheating flow path of the hydraulic oil. Also, by providing this space, it is configured to secure heat insulation between the oil vapor generator 70 arranged in the casing 51 of the oil diffusion pump 50 and the bottom surface of the casing 51.
  • a flanged case (illustration omitted) formed integrally with the base 72 having an opening portion 72a may be used, as well.
  • the base 72 may be supported above the pedestal 70a via an insulating disk member (illustration omitted) of an induction coil 75, which will be explained later on.
  • the case 71 in the present example is formed by a material to be heated.
  • the material to be heated at least any one of stainless steel, carbon steel, rolled steel for general structure specified in JIS-G3101 may be used.
  • SUS As stainless steel, all kinds of SUS may be used, for example, SUS304, SUS303, SUS302, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS405, SUS430, SUS434, SUS444, SUS429, SUS430F AND SUS302, etc.
  • Carbon steel includes low carbon steel with a little carbon amount, such as soft steel materials, and high carbon steel with a large amount of carbon, such as hard steel materials.
  • the rolled steel for general structure includes SS330, SS400, SS490 and SS540.
  • the case 71 it is preferable to configure the case 71 with a ferromagnetic material having low electric resistance with resistivity of 10 ⁇ 10 -8 ⁇ m to 20 ⁇ 10 -8 ⁇ m or so, such as a soft steel material.
  • a ferromagnetic material soft steel, etc.
  • electric resistance since electric resistance is low, an eddy current amount generated by application to the induction coil 75 becomes large, consequently, a self-heating amount by the case 71 itself becomes large and a high efficiency can be expected.
  • the case 71 it is also preferable to configure the case 71 by an easily available general steel SS400. In that case, even if it is an object to be heated, whose temperature becomes high, a rust prevention property can be expected because it is always immersed in the hydraulic oil in a vacuum atmosphere.
  • the case 71 may be formed, for example, by a mold provided with a clad member on a surface on the induction coil 75 side of a material to be heated.
  • the base 72 for supporting the lower end of the case 71 may be formed by a material to be heated.
  • the case 71 is configured to have a circumferential wall extending in the upright direction (vertical direction).
  • both of an inner region 71 and outer region 71b configure the oil storage 59 (refer to FIG. 2 ), where the hydraulic oil 8 is filled and stored.
  • the hydraulic oil 8 is filled such that an oil surface L level of the oil vapor generator 70 becomes 30mm or so during an operation stop. In that case, when the operation of the oil vapor generator 70 starts, the oil surface L level of the hydraulic oil 8 decreases, for example, to 10mm or so.
  • the case 71 is formed to have a thickness in a range of 5mm to 12mm so as to realize induction heating with a low frequency alternating current (low frequency induction heating).
  • the inner region 71a of the case 71 is connected with the outer region 71b of the case 71 via the opening portion 72a of the base 72 (refer to FIG. 3 ).
  • An induction coil 75 is wound around the case 71 via an insulating material 73.
  • the induction coil 75 is arranged in an electrically insulated way on the outer circumference (an example of periphery) of the base 71.
  • the insulating material 73 may be configured, for example, by a polyimide film, mica or thermal spraying material of an insulating material to the outer surface of an object to be heated, etc. having a thickness of 10 ⁇ m to 180 ⁇ m or so.
  • an insulator-coated heat-resistant electric wire having small electric resistance and high heat resistance may be used as a conducting wire composing the induction coil 75.
  • an alumite electric wire which is an aluminum wire subjected to an anodizing treatment, may be mentioned.
  • a diameter of the conducting wire constituting the induction coil 75 is preferably in a range of 2mm to 4mm.
  • the number of wound layers of the induction coil 75 is preferably in a range of 7 to 14 layers.
  • the induction coil 75 is connected with a power supply means (illustration omitted) for providing power to the induction coil 75 and a condition of power supply by the power supply means is controlled by a control device.
  • the induction coil 75 together with the case 71 is installed in an arrangement so that a part or all thereof is immersed in the hydraulic oil 8, the induction coil 75 is not heated abnormally to be higher than a temperature of the hydraulic oil 8 and, even when the temperature of the induction coil 75 itself becomes high, a cooling effect by the hydraulic oil 8 can be expected. Furthermore, temperature rise of the induction coil 75 helps to heat the hydraulic oil 8, which contributes to the energy saving effect.
  • the power supply means is operated to apply an alternating current to the induction coil 75.
  • a frequency of the alternating current to be applied to the induction coil 75 is not particularly limited and low frequency currents of several tens of Hz to several hundreds of Hz may be mentioned, or it may be a high frequency alternating current. The same effects can be obtained by supplying a high frequency alternating current, as well.
  • the current control method is used to control the power supply means, however, it may be a power control method. The case of applying a low frequency alternating current by using the current control method will be explained as an example below.
  • the hydraulic oil 8 after condensing and returning passes through the space between the base 72 and the pedestal 70a formed by the leg portions 70b, flows to the inner region 71a in the case 71 through the opening portion 72a of the base 72, reheated by the oil vapor generator 70, and the hydraulic oil 8 is vaporized again so as to circulate.
  • the base 72 for supporting the lower end of the case 71 when the base 72 for supporting the lower end of the case 71 is formed by a material to be heated, the base 72 portion together with the case 71 can be also used as an object to be heated.
  • the hydraulic oil 8 cooled in the casing 51 and returned to the outer region 71b of the case 71 can be preheated in the space between the base 72 and the pedestal 70a (namely, the flow path), so that it can contribute to an improvement of efficiency in vaporizing the hydraulic oil 8 when reheating in the inner region 71a.
  • the pedestal 70a for supporting the base 72 from the back surface via the leg portions 70b is formed by a material to be heated as well as the case 71 and the base 72, it is expected that the pedestal 70a also serves as an object to be heated.
  • the heating source for the hydraulic oil 8 to be used is obtained by winding the induction coil 75 around the tubular case 71 formed by a material to be heated, such as a soft steel and SS400, via an insulating material 73 provided therebetween, the case 71 is heated by applying a low frequency alternating current to the induction coil 75, and the heat vaporizes the hydraulic oil 8. Because the induction coil 75 is not heated, a disconnection problem is prevented, which means that the exhaustion function of the oil diffusion pump 50 is not lost due to a loss of the heating function caused by disconnection. Also, an electric leakage caused by an insulation defect does not arise. Furthermore, the induction coil 75 itself does not become a heating body and a contact defect of a terminal board due to a deterioration caused by a high temperature does not arise because it can be accommodated in the casing 51.
  • the base 72 supporting the lower end of the case 71 is also formed by a material to be heated
  • the base 72 can be also heated by applying a low frequency alternating current to the induction coil 75 and the efficiency of vaporization can be improved.
  • the pedestal 70a supporting the base 72 from lower side surface is also formed by a material to be heated, there is a possibility that the pedestal 70a can be used as an object to be heated by applying a low frequency alternating current to the induction coil 75, so that an improvement of the vaporization efficiency can be expected. In that case, by providing a heat shielding material (illustration omitted) between the pedestal 70a and the lower lid 90, the vaporization efficiency may be improved furthermore.
  • the oil vapor generator 70 of the present example is installed in the oil diffusion pump 50 of the present example, all of the current supplied to the induction coil 75 of the oil vapor generator 70 can be consumed by the case 71 (or the case 71 and the base 72). Consequently, there arise effects of improving the energy efficiency, accelerating energy saving and contributing to a reduction of heat rising time of the hydraulic oil 8 (shortening start-up time of the oil diffusion pump 50), etc.
  • a key part thereof (the case 71, insulating material 73 and induction coil 75) is installed at the bottom portion of the casing 51 in a state where the lower end is arranged above the pedestal 70a, so that the atmosphere-side bottom portion of the casing 51 can be formed to be substantially planar.
  • the oil diffusion pump 50 able to be placed flatly can be provided and the convenience is enhanced.
  • the oil vapor generator 70 of the present example is configured that the upper end U in the upright direction of the case 71 as a heating body wound by the induction coil 75 is exposed above an oil surface L of the contacting hydraulic oil 8, so that oil vapor rising from the oil surface L is furthermore heated as a result of contacting with the upper portion of the case 71 exposed above the oil surface L and sufficiently heated oil vapor is generated. Consequently, in the oil diffusion pump 50 incorporating the oil vapor generator 70 of the present example, the temperature of the vapor to be sprayed from the jet 53 can be made high, which is extremely advantageous for attaining an improvement of an exhausting speed.
  • the induction coil 75 was provided via the insulating material 73 around the single-structured case 71 formed by a soft steel material or SS400, etc. and the outer circumferential part of the induction coil 75 was exposed (refer to FIG. 3 ), however, it is not limited to this mode and the effects of the present example may be also obtained, for example, by forming the case 71 to have a double structure of a case inner wall and a case outer wall and configuring to have the structure of an outer region 71b / case outer wall / insulating material 73 / induction coil 75 / insulating material 73 / case inner wall / inner region 71a.
  • a hydraulic oil 8 stored in the outer region 71b can be also heated together with the hydraulic oil 8 stored in the inner region 71a, so that a drastic improvement of the heating efficiency of the hydraulic oil 8 can be expected.
  • the tubular object to be heated is not limited to the plate material as in the example and may be a wound porous metal body or net, through which the hydraulic oil can pass through in the configuration using a material to be heated.
  • the outer circumferential side of the induction coil 75 was exposed (refer to FIG. 3 ) but it is not limited to this mode and, for example, as the mode shown in FIG. 5 , almost all of the induction coil 75 (except for a part at a lower portion: refer to FIG. 5 ) may be covered with a magnetic shield case 76 formed by a different material from that of the case 71. That mode is preferable as a further improvement of the heating efficiency can be expected thereby when heating the case 71 by applying an alternating current to the induction coil 75.
  • the tubular case 71 was used as a material to be heated to constitute the oil vapor generator 70, however, it is not limited to this mode and a plate material (illustration omitted), such as a disk shape, may be used as a material to be heated and arranged so that a part or a whole of the plate material may be immersed in the stored hydraulic oil 8.
  • the induction coil 75 may be provided around the plate material, for example, on the back surface of the plate material (the bottom portion side of the casing 51) via an insulating material 73. The effects of the present example can be also obtained in such a mode.
  • one oil vapor generator 70 was provided to single oil diffusion pump 50 in the example explained above, however, it is not limited to this mode and, particularly in the case of seeking for a larger oil diffusion pump, for example as shown in FIG. 7 and FIG. 8, a plurality of oil vapor generators 70 of the present example may be provided at the bottom of the casing 51.
  • an oil diffusion pump 50 ( FIG. 2 ) explained below incorporating the oil vapor generator 70 ( FIG. 3 ) as a heating source for a hydraulic oil was prepared and evaluated under the condition below.
  • an oil diffusion pump of the conventional configuration was prepared, wherein an electric heater using a heater wire (nichrome wire) as a heating source for hydraulic oil was arranged at the bottom of the pump, and evaluation was made under the condition below.
  • a heater wire nichrome wire
  • An operation power was measured by using an oil diffusion pump in each example. Specifically, power supply parts to the nichrome wire (the comparative example) and induction coil (the example) were measured by a clamp ammeter, a power (start-up power, operation power) was calculated from the voltage, current and power factor, and a ratio of the example to the comparative example (comparison with conventional one) was calculated. The result was that the operation power in the example was decreased by 40% at start-up and decreased by 65% during operation from those in the conventional one, and it revealed that a significant power reduction was attained both at start-up and in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Induction Heating (AREA)
  • Compressor (AREA)
EP14895619.6A 2014-06-24 2014-06-24 Oil diffusion pump and oil vapor generator used therefor Active EP3088749B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066723 WO2015198397A1 (ja) 2014-06-24 2014-06-24 油拡散ポンプ及びそれに用いる油蒸気発生器

Publications (3)

Publication Number Publication Date
EP3088749A1 EP3088749A1 (en) 2016-11-02
EP3088749A4 EP3088749A4 (en) 2017-09-06
EP3088749B1 true EP3088749B1 (en) 2019-10-30

Family

ID=54602167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14895619.6A Active EP3088749B1 (en) 2014-06-24 2014-06-24 Oil diffusion pump and oil vapor generator used therefor

Country Status (7)

Country Link
US (1) US20180135657A1 (zh)
EP (1) EP3088749B1 (zh)
JP (1) JP5818295B1 (zh)
KR (1) KR101861031B1 (zh)
CN (1) CN106104009B (zh)
TW (1) TWI618864B (zh)
WO (1) WO2015198397A1 (zh)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542390A (en) * 1921-07-09 1925-06-16 Western Electric Co Vacuum pump
US3224665A (en) * 1962-01-12 1965-12-21 Milleron Norman Diffusion pump
JPS5712238Y2 (zh) * 1978-08-28 1982-03-10
GB2053356B (en) * 1979-07-13 1983-05-18 Preload Technology Diffusion pumps
US4566861A (en) * 1984-05-07 1986-01-28 Varian Associates, Inc. Method of and apparatus for operating a diffusion pump
US5137429A (en) * 1991-04-15 1992-08-11 Spectrameasure Inc. Diffusion pump
JP4172560B2 (ja) * 1998-12-28 2008-10-29 日本サルヴ▲ヱ▼ージ株式会社 液体物質回収方法、および液体物質回収装置
JP4071164B2 (ja) * 2003-06-17 2008-04-02 トクデン株式会社 電磁誘導加熱器
JP4242245B2 (ja) * 2003-10-06 2009-03-25 株式会社ワークビット フラッシュrom制御装置
JP4045325B2 (ja) * 2005-07-12 2008-02-13 株式会社昭和真空 油拡散ポンプの消費電力量削減装置および方法
JP2007152651A (ja) * 2005-12-02 2007-06-21 Tokuden Co Ltd 流体誘導加熱装置
CN2918822Y (zh) * 2006-07-14 2007-07-04 宝鸡市建昌工贸有限责任公司 一种油扩散真空泵
JP5363721B2 (ja) * 2007-11-15 2013-12-11 株式会社日立製作所 荷電粒子線装置における冷却装置
CA2628605C (en) * 2008-05-09 2011-06-28 Huazi Lin Self-powered pump for heated liquid, fluid heating and storage tank and fluid heating system employing same
JP2011255250A (ja) * 2010-06-04 2011-12-22 Shincron:Kk 油霧化装置、油霧化方法及び油拡散ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR101861031B1 (ko) 2018-05-24
US20180135657A1 (en) 2018-05-17
EP3088749A1 (en) 2016-11-02
TWI618864B (zh) 2018-03-21
JPWO2015198397A1 (ja) 2017-04-20
CN106104009B (zh) 2017-09-08
WO2015198397A1 (ja) 2015-12-30
EP3088749A4 (en) 2017-09-06
TW201600734A (zh) 2016-01-01
CN106104009A (zh) 2016-11-09
KR20160102206A (ko) 2016-08-29
JP5818295B1 (ja) 2015-11-18

Similar Documents

Publication Publication Date Title
US20100243620A1 (en) Plasma processing apparatus
JP3791694B1 (ja) 誘導加熱式蒸気発生装置
JP2008175423A (ja) 電気温水加熱ユニット
KR102380593B1 (ko) 자기 유도 방식의 기화 장치 및 그에 의한 가습기
JP3758668B2 (ja) 誘導加熱式蒸気発生装置
US9732423B2 (en) Dry coating apparatus
EP3088749B1 (en) Oil diffusion pump and oil vapor generator used therefor
EP2975271B1 (en) Oil diffusion pump and vacuum film formation device
KR20090009599A (ko) 전기히터
JP2004059992A (ja) 有機薄膜形成装置
JP2002083673A (ja) 高温蒸気発生装置
TWI541439B (zh) Oil diffusion pump and vacuum film forming device
JP2001203069A (ja) 電磁誘導加熱装置
JP2015007528A (ja) 流体加熱装置
JP7350045B2 (ja) 蒸着用坩堝、蒸着源及び蒸着装置
KR20170054986A (ko) 과열 수증기 처리 장치 및 그 동작 방법
KR101087028B1 (ko) 토카막의 진공용기 코팅 유로 가열구조
KR102519028B1 (ko) 유도가열 방식의 발열체가 적용된 멸균장치
JP5467614B2 (ja) 瞬間湯沸かし器
JP2023084564A (ja) 蒸着源及び蒸着装置
CN113116119A (zh) 锅具和烹饪装置
JP2010156394A (ja) 圧力容器用加熱器
TW201321532A (zh) 離化裝置及應用離化裝置的鍍膜裝置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20170803

RIC1 Information provided on ipc code assigned before grant

Ipc: F04F 9/00 20060101AFI20170728BHEP

Ipc: F04F 5/20 20060101ALI20170728BHEP

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014056127

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014056127

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1196444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014056127

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200624

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200624

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030