EP3087435B1 - Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement - Google Patents

Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement Download PDF

Info

Publication number
EP3087435B1
EP3087435B1 EP14821180.8A EP14821180A EP3087435B1 EP 3087435 B1 EP3087435 B1 EP 3087435B1 EP 14821180 A EP14821180 A EP 14821180A EP 3087435 B1 EP3087435 B1 EP 3087435B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
zone
oscillation
axis
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14821180.8A
Other languages
German (de)
French (fr)
Other versions
EP3087435A2 (en
Inventor
Gianni Di Domenico
Pascal Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP13199427.9A external-priority patent/EP2887157B1/en
Priority claimed from EP14186261.5A external-priority patent/EP2889704B1/en
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP14821180.8A priority Critical patent/EP3087435B1/en
Publication of EP3087435A2 publication Critical patent/EP3087435A2/en
Application granted granted Critical
Publication of EP3087435B1 publication Critical patent/EP3087435B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/107Controlling frequency or amplitude of the oscillating system
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance

Definitions

  • the present invention relates to the field of devices regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled so as to define together an oscillator.
  • the regulating device of the present invention sets the pace of a mechanical watch movement. More particularly, the invention relates to magnetic escapements for mechanical watch movements in which there is provided a direct magnetic coupling between a resonator and a magnetic structure. In general, their function is to subject the frequencies of rotation of the mobiles of a counter gear train of such a watch movement to the resonant frequency of the resonator.
  • the regulating device therefore comprises a resonator, an oscillating part of which is provided with at least one magnetic coupling element, and a magnetic escapement arranged so as to control the relative angular speed between a magnetic structure forming this magnetic escapement and this resonator. It replaces the balance-spring and the classic escapement mechanism, in particular the escapement with a Swiss type anchor and a toothed escape wheel.
  • the resonator or the magnetic structure is integral in rotation with a mobile driven in rotation with a certain motor torque which maintains an oscillation of the resonator.
  • the mobile is incorporated in a train or more generally a kinematic chain of a mechanism. This oscillation makes it possible to adjust the relative angular speed between the magnetic structure and the resonator thanks to the magnetic coupling between them.
  • the devices for regulating the speed of a wheel, also called a rotor, by a magnetic coupling, also called a magnetic coupling, between a resonator and a magnetic wheel have been known for many years in the watchmaking field.
  • a magnetic coupling also called a magnetic coupling
  • Several patents relating to this field have been granted to Horstmann Clifford Magnetics for inventions of CF Clifford.
  • the regulation device described in this document has various drawbacks, in particular an anisochronism problem (a non-isochronism, that is to say an absence of isochronism), namely a significant variation of the pulsation (angular speed ) of the rotor as a function of the engine torque applied to this rotor.
  • Such an anisochronism results from an anisochronism of the oscillator formed by the resonator and the magnetic wheel.
  • the reasons for this anisochronism have been understood in the context of the developments which have led to the present invention. These reasons will emerge later on reading the description of the invention.
  • JPS 5240366 (request No JP19750116941 ) and Japanese utility models JPS 5245468U (request No JP19750132614U ) and JPS 5263453U (request No JP19750149018U ) magnetic escapements with direct magnetic coupling between a resonator and a wheel formed by a disc.
  • JPS 5245468U (request No JP19750132614U )
  • JPS 5263453U (request No JP19750149018U ) magnetic escapements with direct magnetic coupling between a resonator and a wheel formed by a disc.
  • FIG. 1 To the Figure 1 is schematically shown a regulator or oscillator device 2 of the prior art comprising a magnetic escapement of the type described in the above-mentioned Japanese documents.
  • This device comprises a magnetic structure 4 and a resonator 6.
  • the magnetic structure is supported by a mobile 8 made of non-magnetic material on the surface of which are arranged two pluralities of rectangular magnets with axial magnetization, the first and second pluralities of magnets 10 and 12 respectively forming first and second annular magnetic tracks 11 and 13 which are adjacent and concentric.
  • Each of the two pluralities of magnets has the same number of magnets distributed angularly in a regular manner and defining the same angular period ⁇ P , the first track being phase shifted by half a period (corresponding to a phase shift of 180 °).
  • the resonator 6 is symbolically represented by a spring 15, corresponding to its elastic deformation capacity defined by an elastic constant, and by an inertia 16 (symbol 'I') defined by its mass and its structure.
  • This resonator comprises a magnet 18 having a rectangular shape and defining a coupling element to the magnetic structure.
  • This magnet has an axial magnetization in the opposite direction to that of magnets 10 and 12, so that it is arranged in repulsion of the latter.
  • the magnet 18 is located above the mobile 8 so that its center of mass is axially superimposed on an intermediate geometric circle defining a common limit or interface of the two concentric and contiguous annular tracks when the resonator is in its rest position.
  • the magnets 10 and 12 form zones of magnetic interaction with the magnet 18 of the resonator and they are located alternately on one side and the other of the above-mentioned intermediate geometric circle, they define a sinuous magnetic path (sinusoidal ) with a determined angular period ⁇ P , which corresponds to the angular period of each of the first and second annular tracks 11 and 13.
  • ⁇ P angular period of each of the first and second annular tracks 11 and 13
  • the magnet 18 oscillates along this path magnetic winding and the angular speed ⁇ of the wheel is defined substantially by the oscillation frequency of the resonator. There is therefore a synchronization between the frequency of the resonator and the frequency of rotation or pulsation of the mobile 8.
  • the geometric shape of the magnet 18 whose active end part (shown in the Figure 1 ) defines, in axial projection in the general geometric plane of the magnetic structure, a rectangular surface.
  • this active end part has a general and average external contour or profile, in a plane parallel to that of the magnetic structure, which is substantially rectangular.
  • the length of said rectangular surface is radial while its width, less than the length, is angular relative to the central axis of the annular or tangential magnetic structure relative to the above-mentioned intermediate geometric circle. In the example described here, this length is approximately twice the width.
  • the magnetic potential energy (also called potential magnetic interaction energy) of the oscillator 2 which varies angularly and radially.
  • the level curves 22 correspond to different levels of the potential magnetic energy. They define equipotential curves.
  • the potential magnetic energy of the oscillator at a given point corresponds to a state of the oscillator when the magnetic coupling element of the resonator is in a given position (its center of mass or geometric being located at this given point) . It is defined to the nearest constant.
  • the magnetic potential energy is defined relative to a reference energy which corresponds to the minimum potential energy of the oscillator.
  • this potential energy corresponds to the work necessary to bring the magnet from a position of minimum energy to a given position.
  • this work is provided by the motor torque applied to the mobile 8.
  • the potential energy accumulated in the oscillator is transferred to the resonator when the coupling member of the resonator returns to an energy position lower potential, in particular minimum potential energy, by a radial movement relative to the axis of rotation of the mobile (that is to say according to the degree of freedom of the useful resonance mode).
  • this potential energy is transformed into kinetic energy and elastic energy in the resonator by the work of the magnetic force between the coupling element of the resonator and the magnetic structure. This is how the motor torque supplied to the wheel is used maintain the oscillation of the resonator which in turn brakes the wheel by adjusting its angular speed.
  • the outer annular track 11 defines an alternation of low potential energy zones 24 and high potential energy zones 26 while the inner annular track 13 defines, with an angular offset of an angular half-period ⁇ P / 2 relatively at the first track (that is to say a phase shift of 180 °), an alternation of low potential energy zones 28 and high potential energy zones 30.
  • the layout 32 gives the position of the center of the magnet 18 when the oscillator 2 is energized and the mobile 8 is therefore driven in rotation with a certain motor torque.
  • This line is a representation of the oscillation of the magnet of the resonator 6 in a frame of reference linked to the mobile.
  • the areas of low potential energy correspond to the areas between the magnets of the magnetic structure while the areas of high potential energy correspond to the areas of these magnets, ie in situations where the magnet 18 is at least partially superimposed on the magnets of the magnetic structure.
  • the magnets are arranged in attraction, alternatively in the case where the magnetic structure or the coupling member of the resonator is made of ferromagnetic material, there is a spatial inversion between the zones of low potential energy and the high potential energy zones relative to the case of repellant magnets.
  • the oscillator accumulates magnetic potential energy at each alternation of the oscillation essentially when the magnet 18 has reached its maximum amplitude. and it begins to return to its zero position.
  • the potential energy of the oscillator decreases over a large part of each half-wave.
  • the force F exerted on the magnet of the resonator is given by the gradient of the potential magnetic energy, which is perpendicular to the level curves 22.
  • the angular component degrees of freedom of the magnetic structure
  • the radial component degrees of freedom of the resonator
  • the angular force corresponds on average to a braking force of the mobile because the angular reaction force mainly opposes the direction of rotation of this mobile over a period of oscillation.
  • the radial force corresponds to a pushing force on the oscillating structure of the resonator.
  • the force F (see Figure 2 ) has a radial component over a significant distance between the extremes of oscillation 32. A thrust force therefore acts on the magnet of the resonator in most of each half-wave.
  • the inventors have thus found that a pushing force on a relatively extended path outside of a zone located around the zero position disturbs the oscillator; which varies its frequency as a function of the torque supplied, and thus of the amplitude of oscillation, and is therefore a source of anisochronism.
  • the present invention provides a device for regulating the relative angular speed between a magnetic structure and a resonator, magnetically coupled so as to define together an oscillator forming this regulating device, as defined in claim 1 for a first main embodiment and in claim 11 for a second main embodiment.
  • the regulating device determines the relative angular speed between a magnetic structure and a resonator magnetically coupled so as to define together an oscillator forming this regulating device, the magnetic structure comprising at minus an annular magnetic track centered on the axis of rotation of this magnetic structure or of the resonator.
  • the magnetic structure and the resonator are arranged to rotate relative to each other about the axis of rotation when a driving torque is applied to the structure magnetic or resonator.
  • the resonator comprises at least one magnetic coupling element to the annular magnetic track, this coupling element having an active end part formed of a first magnetic material and situated on the side of this magnetic track, the latter being formed at least partially.
  • ⁇ P angular period
  • Each second zone generates, relative to a first adjacent zone, a higher repulsion force or a lower attraction force for any one zone of said active end portion when this same any zone is superimposed, in projection orthogonal to a surface.
  • the magnetic coupling element is magnetically coupled to the magnetic track so that an oscillation according to a degree of freedom of a resonance mode of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator and that a period of this oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of the oscillation thus determining the relative angular speed.
  • the degree of freedom defines an axis of oscillation of the active end part passing through its center of mass.
  • the resonator is arranged relative to the magnetic structure so that the active end part is at least for the most part superimposed, in projection orthogonal to the general geometric surface, to this annular magnetic track during substantially a first alternation in each period of said oscillation, and so that the path of the magnetic coupling element during this first alternation is substantially parallel to the general geometric surface.
  • the annular magnetic track has in this general geometric surface a dimension according to the orthogonal projection of the axis of oscillation which is greater than the dimension of the active end part along this axis of oscillation. Note that the axis of oscillation can be straight or curvilinear.
  • the first zones in a magnetic coupling in repulsion or the second zones in a magnetic coupling in attraction can be formed by a non-magnetic material or air.
  • the term “magnetic material” is understood to mean a material having a magnetic property generating an external magnetic field (magnet) or a good conductor of the magnetic flux (in particular a material having a high magnetic permeability, for example a ferromagnetic material).
  • magnet an external magnetic field
  • a good conductor of the magnetic flux in particular a material having a high magnetic permeability, for example a ferromagnetic material.
  • By 'active end part' is understood the end part of the coupling element, situated on the side of the magnetic structure considered, through which passes the essential part of the magnetic coupling flux between this coupling element. and the magnetic structure.
  • the second dimension of the active end part is at least twice as large as its first dimension.
  • the dimension of each of the second zones, along an axis perpendicular to said position circle zero at a midpoint of its exit line, is at least three times larger than the first dimension of the active end portion.
  • the output line of each second zone is substantially coincident with the zero position circle.
  • a superposition in particular 'above', 'below', 'in front' or 'facing'
  • the expression 'in projection' or 'in orthogonal projection' we comprises respectively an orthogonal projection in the surface in question, a superposition in orthogonal projection on a geometric surface considered in the context or mentioned previously, or 'in orthogonal projection to such a geometric surface'. This is to be taken into account in the remainder of the present description and in particular in the claims.
  • the invention also relates, according to a second main embodiment, a regulating device which determines the relative angular speed between a magnetic structure and a magnetically coupled resonator so as to define together an oscillator forming this regulating device, the magnetic structure comprising at least an annular magnetic track centered on an axis of rotation of this magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to undergo rotation relative to each other about said axis of rotation when a driving torque is applied to the magnetic structure or to the resonator.
  • the resonator comprises at least one magnetic coupling element to the annular magnetic track, this coupling element having an active end part formed from a first magnetic material and situated on the side of the annular magnetic track.
  • This annular magnetic track is formed at least partially from a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along the annular magnetic track, defining thus an angular period ( ⁇ P ) of this annular magnetic track.
  • the magnetic coupling element is magnetically coupled to the annular magnetic track so that an oscillation according to a degree of freedom of a resonator resonance mode is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator. and that a period of this oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of the oscillation thus determining the relative angular speed.
  • the degree of freedom defines an axis of oscillation of the active end part passing through its center of mass.
  • the zone of accumulation of potential magnetic energy in a magnetic coupling in attraction or the zone of entry and the exit zone in a magnetic coupling in repulsion can be defined by a nonmagnetic material integral with the coupling element or correspond to regions with air at the periphery of the active end portion of the coupling element.
  • the first zones (repulsion coupling) or the second zones (attraction coupling) can be formed by a non-magnetic material or air.
  • the exit line from the magnetic potential energy accumulation zone is substantially combined, in orthogonal projection to the general geometric surface, with the median geometric circle when the coupling element is in its rest position.
  • the second dimension of each second zone is at least twice as large as its first dimension.
  • the length of the penetration line of the zone of accumulation of potential magnetic energy along the axis of oscillation is at least five times greater than the dimension of the annular magnetic track along this axis of oscillation in orthogonal projection in the general geometric surface.
  • the general geometric surface is a plane perpendicular to the axis of rotation, the degree of freedom being substantially parallel to this plane.
  • the general geometric surface is a cylindrical surface having as its central axis the axis of rotation, the degree of freedom being substantially oriented along this axis of rotation.
  • the regulating device forms an oscillator with an escapement with a cylinder of the magnetic type.
  • this regulating device is characterized in that an active end part of the coupling element is formed substantially by a section of truncated cylindrical tube and having a central axis coincident with an axis of rotation of the resonator, the degree of freedom of the latter being angular and the axis of circular oscillation.
  • This section of truncated cylindrical tube defines in the general geometrical surface a truncated annular surface, corresponding to said zone of accumulation of potential magnetic energy successively in the two half-waves of each period of oscillation.
  • This truncated annular surface has a first end and a second end, as well as an exterior contour defining a first circular penetration line and an interior contour defining a second circular penetration line.
  • the first end defines a first output line
  • the second end defines a second output line having characteristics similar to the first output line.
  • the outer contour is associated with the first output line in a first alternation of the oscillation periods of the resonator to successively ensure magnetic coupling with the second zones of the magnetic track and generate a first pulse at the end of each first alternation, then that the interior contour is associated with the second output line to successively ensure magnetic coupling with these second zones in the second half-wave of the oscillation periods and generate a second pulse at the end of each second half-wave.
  • the regulating device 36 of the Figure 3 determines the relative angular speed ⁇ between the magnetic structure 4 and a resonator 38 which are magnetically coupled so as to define together a clock oscillator forming this regulating device.
  • the magnetic structure 4 is secured to a mobile with an axis of rotation 20. It is similar to the magnetic structure of the Figure 1 and comprises a first annular magnetic track and a second annular magnetic track centered on the axis of rotation 20 and contiguous.
  • the magnetic structure and the resonator are arranged to rotate relative to each other when a driving torque is applied to the magnetic structure or to the resonator.
  • the resonator is integral with the watch movement while the magnetic structure is pivotally arranged and defines a magnetic escape wheel.
  • the resonator comprises a coupling element magnetically coupled to the annular magnetic tracks 11 and 13, this coupling element having an active end portion 46 formed by a first magnetic material and located on the side of said magnetic structure.
  • Each magnetic track is partially formed of a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along this annular magnetic track, thus defining the same angular period ( ⁇ P ) for the two magnetic tracks.
  • each magnetic track is formed of first zones 40, respectively 42 and second zones 10, respectively 12 which are angularly alternated with a first zone and a second adjacent zone in each angular period.
  • each second zone generates, relative to a first adjacent zone, a higher repulsion force (in the case of a magnetic repulsion coupling between the end portion 46 and the magnetic tracks 11 and 13, as is the case in the examples of Figures 3 to 6 ) or a lower attraction force (in the case of a magnetic coupling in attraction in a variant where either the coupled magnets are arranged in attraction, or the active end part or the magnetic tracks is / are formed) of a material with high magnetic permeability without a magnetic flux generator) for the same arbitrary zone 50 of the active end part 46 when this same arbitrary zone is superimposed, in projection orthogonal to a general geometric surface in which the annular magnetic track, at this second zone, respectively at this first adjacent zone.
  • the general geometric surface is here a general plane of the magnetic structure perpendicular to the axis of
  • the magnetic coupling element is magnetically coupled to each annular magnetic track, via the active end portion 46, so that an oscillation according to a degree of freedom of a mode of resonance of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator and that a period of this oscillation occurs during the relative rotation between the resonator and the magnetic structure in each angular period ⁇ P of each track magnetic ring.
  • the frequency of this oscillation thus determines the relative angular speed ⁇ .
  • the degree of freedom is linear in the schematic examples of Figures 3 and 5 , and it defines an axis of oscillation 48 of the active end part 46 passing through the center of mass of this active end part.
  • This axis of oscillation here has a radial direction relative to the axis of rotation 20. It will be noted that when the degree of freedom follows a curve, in particular when this degree of freedom is a rotation around a given axis, the oscillation axis is curvilinear, in particular circular.
  • the first main embodiment is characterized in that the annular magnetic tracks each have a dimension according to the degree of freedom, that is to say along an orthogonal projection of the axis of oscillation 48 in the general plane of the magnetic tracks, which is greater than the dimension of the active end portion 46 according to this degree of freedom, that is to say along the axis of oscillation.
  • Each of the second zones 10, 12 of each annular magnetic track has in orthogonal projection a general contour with a first portion, defining a penetration line 10a, 12a above this second zone for the active end part 46 leaving the first adjacent zone 40, 42 during the oscillation of this active end part, and a second portion defining an exit line 10b, 12b from above this second zone for at least a major part of this active end part passing directly from this second zone to an exit zone 42, 40 during this oscillation.
  • This exit zone is defined by the magnetic structure and it extends in the general plane of the magnetic tracks.
  • the entry zones 40, 42 of a magnetic track defined by the first zones of this track, correspond to the exit zones for the other magnetic track.
  • the exit zones or the annular exit zone are / is arranged so as to generate, relative to the second zones, a lower repulsive force or a greater attractive force for any same zone 50 of the active end part when this same arbitrary zone is superimposed in orthogonal projection on these / this exit zone (s), respectively on these second zones.
  • This condition is fulfilled when the input zones and the output zones are both defined by the first zones of the two magnetic tracks coupled to the active end part, as is the case with Figures 3 and 5 .
  • each output line is oriented substantially in an angular direction parallel to a zero position circle 44 which is centered on the axis of rotation 20 and passes through a projection of the center of mass of the active end part 46 in the general geometric surface when this active end part is in its rest position (position in which the elastic energy of the resonator is minimum and around which it oscillates).
  • the orthogonal projection 54 of the active end part is shown in its rest position.
  • the angular direction gives substantially the orientation of the exit line of each second zone; which notably includes the directions tangential to the zero position circle 44 for the portion of this circle located in an angular sector defined by this second zone.
  • the exit line is parallel to the tangent to the circle 44 at the point of intersection with a radial straight line passing through the middle of this exit line.
  • the active end portion 46 of the coupling element in its rest position has, in orthogonal projection in the general plane of the magnetic tracks, a first dimension W2 along a first axis in this general plane which is perpendicular to the position circle zero 44 and passes through the orthogonal projection of the center of mass of this active end part.
  • this first axis is rectilinear and coincides with an orthogonal projection of the axis of oscillation 48 in the general plane, and it has a radial direction relative to the axis of rotation 20.
  • the orthogonal projection of the part of active end 46 has a second dimension L2, along a second axis defined by the zero position circle, which is greater than the first dimension W2.
  • each of the second zones 10, 12 has a length L1, along said at least one exit zone and along the second axis defined by the circle of position zero, which is greater than the first dimension. W2 of the active end part 46.
  • the angular position of the second zone considered is immaterial.
  • the length L1 of a second zone is measured along this tangential axis when the middle of this length is positioned on the first axis.
  • the second dimension L2 of the active end portion is at least twice as large as its first dimension W2 and the length L1 of the outlet line is at least twice as large as this first dimension W2.
  • the length to width ratio of the end portion 46 is approximately equal to three.
  • the resonator is arranged relative to the magnetic structure so that the active end part is at least for the most part superimposed on this annular magnetic track during substantially a first half-wave in each period of the oscillation of this active end part, and so that the path of the magnetic coupling element during this first alternation is substantially parallel to the general geometric surface. It can be considered that this condition is generally satisfied when the orthogonal projection zone 54 of the active end part according to the invention, in its rest position, is crossed by the inner circle of the outer magnetic track 11 and the outer circle of the inner magnetic track 13. It will be noted that these two circles are merged when the two magnetic tracks are contiguous, as is substantially the case in the preferred variants of the invention. They then define an interface circle for the two tracks. Preferably, the zero position circle 44 is substantially coincident with the interface circle of the two magnetic tracks.
  • the output line of each second zone 10, 12 is substantially coincident with the zero position circle, as is the case in the variants of the Figures 3 and 5 .
  • the zero position circle is located between these two tracks, preferably substantially in the middle of the intermediate zone.
  • Such an intermediate zone which will be kept small for various reasons, can be useful for ensuring easy start-up of the oscillator.
  • a first reason relates to the small dimension provided for the active end part of the coupling element along the oscillation axis, since it is necessary to prevent the oscillator from turning 'idle' with this part. active end remaining substantially on the zero position circle.
  • Another reason relates to an objective of the present invention, namely to obtain localized pulses which are close and preferably substantially centered on the zero position circle.
  • the condition discussed here is also verified as long as the width of the intermediate zone has a dimension much less than the width of each magnetic strip; which is the case in the context of the invention.
  • the zero position circle 44 and the axis of oscillation 48 are, in orthogonal projection to the general geometric surface, substantially orthogonal to their point of intersection. This is the case in the variants shown in Figures 3 and 5 .
  • the dimension W1 of each of the second zones, along an axis perpendicular to the circle of position zero at a midpoint of its exit line is at least three times greater than the first dimension W2 of the part of active end. In another preferred variant, this dimension of the second zones is at least six times larger than the first dimension of the active end part.
  • the variant of Figures 5 and 5A differs from that of the Figure 3 firstly by the fact that the second zones 10A and 12A as well as the first zones 40A and 42A of the annular tracks 11A and 13A define annular sectors.
  • the zero position circle 44 is coincident, in orthogonal projection in the general plane of the magnetic structure 4A, with the output lines 10b, 12b. These outlet lines therefore have an angular direction and the penetration lines 10a, 12a are radial.
  • the variant of the Figure 5 is distinguished by the dimensions W2 and L2 of the active end part 46A of the coupling element of the resonator 38A.
  • the second dimension L2 of the active end portion is at least four times greater than its first dimension W2 and the length L1 of the outlet line is at least four times greater than this first dimension.
  • the length to width ratio of the end portion 46A is approximately equal to five.
  • the penetration line 10a, 12a of each second zone is oriented along the axis of oscillation 48, projected orthogonally into the general plane of the magnetic tracks, when this penetration line is aligned with the center of mass of the part of active end 46A projected orthogonally into this general plane.
  • this is substantially the case.
  • the exit line of the second zones, along the exit zones defined by the second zones of the other magnetic track, and the active end part extend angularly over half of an angular period ⁇ P / 2 at Figure 5 , and this is about the case at the Figure 3 .
  • the degree of freedom of the resonator is entirely in a plane parallel to the general plane of the magnetic tracks and therefore of the magnetic structure.
  • the entire path taken by the magnetic coupling element during its oscillation is, in these variants, parallel to the general plane of the magnetic structure.
  • the path of the oscillating element is substantially parallel to the general geometric surface defined by the magnetic structure.
  • this path, and therefore the axis of oscillation can deviate somewhat from a surface parallel to the general geometric surface, in particular at the end points of the oscillation and this all the more that the amplitude is great.
  • Such a situation occurs for example when the coupling element of the resonator oscillates along a substantially circular path with an axis of rotation parallel to the general plane of the magnetic structure.
  • the direction defined by the degree of freedom of the coupling element in its rest position is parallel to a plane tangent to said general geometric surface at a point corresponding to the orthogonal projection of the center of mass of the active end part of the coupling element in its rest position.
  • the potential magnetic energy of the oscillator as a function of the relative position of the active end part 46 and of the magnetic structure 4, in particular of each of its two magnetic tracks.
  • This relative position is defined by the relative angular position in a frame of reference linked to the magnetic tracks and by the position of the end part along the axis of oscillation 48.
  • the equipotential lines 60 are given for relative positions corresponding to the two magnetic tracks. We can easily observe a big difference with the distribution of the potential magnetic energy of the Figure 2 .
  • each low potential energy zone 62, 66 and a next high potential energy zone 64, 68 there is between each low potential energy zone 62, 66 and a next high potential energy zone 64, 68 a sector 70, 72 of accumulation of magnetic potential energy in the oscillator, this sector being well defined and extending angularly over a certain relatively large range, namely approximately half a period for the inner magnetic track 13 and a little less for the outer magnetic track 11 of larger diameter.
  • These sectors 70 and 72 respectively define two annular zones ZA1 and ZA2 for the accumulation of potential magnetic energy in which the equipotential curves are substantially radial.
  • the force is essentially tangential and therefore corresponds to a braking force for the magnetic structure 4.
  • the force exerted on the coupling element according to its degree freedom is low or almost nil.
  • each annular magnetic track, at least one output zone described above and the magnetic coupling element define in each angular period, depending the relative position of this annular magnetic track and the active end part (in a reference frame linked to the magnetic track), an accumulation sector 70, 72 in which the oscillator essentially accumulates potential magnetic energy and a pulse sector 76, adjacent to this accumulation sector, in which the magnetic coupling element receives essentially a pulse, the pulse sectors being located in a central pulse zone ZC comprising the zero position circle 44
  • the magnetic structure is arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the sectors of accumulation of magnetic potential energy is less than the average gradient of this magnetic potential energy in the sectors of pulse according to the degree of freedom of the coupling element of the resonator and in the same unit.
  • This condition is clearly visible on Figure 4 and results from the features of the invention.
  • the relatively large angular extent of the accumulation sectors and the relatively small radial distance of the pulse sectors originate in particular from the first and second dimensions W2 and L2 of the active end part as well as from the orientations of the penetration lines and of the output lines of potential magnetic energy accumulation zones.
  • the motor torque supplied by a barrel varies significantly as a function of the tension level of the barrel spring. To ensure that the watch movement continues over a sufficiently long period, it is generally necessary that this movement can be caused by a torque varying between a maximum torque and approximately half of this maximum torque. In addition, it is obviously necessary to ensure proper operation at maximum torque. In practice, to ensure such operation and in particular to prevent the oscillator from picking up at a relatively large amplitude of oscillation, it is necessary that the braking sectors extend over a certain angular distance and that braking is thus progressive. This is one of the benefits obtained by the regulating device according to the invention.
  • the annular magnetic track of the magnetic structure has a dimension, along the axis of oscillation of each active end part coupled to this track and in orthogonal projection, which is less than the dimension according to this axis of oscillation of this active end part.
  • This second embodiment constitutes to a certain extent a technical inversion of the first embodiment. However, it has its own advantages, like this will appear later.
  • this second embodiment is not a priori obvious, the person skilled in the art having generally provided magnetic pads extended radially on an escape wheel and magnetic coupling elements of smaller extent associated with the resonator .
  • the sinuous (sinusoidal) magnetic path is arranged in a circular fashion on a mobile.
  • these two tracks extend in a general plan with an interior track and an exterior track. These two tracks therefore do not have the same dimensions, the inner track having at least some smaller areas relative to the corresponding areas of the outer track, while the dimensions of the coupling element are by definition constant.
  • the second main embodiment resolves this disadvantage in a surprising manner by arranging at least one extended magnetic range at the level of the coupling element of the resonator while the magnetic track is radially reduced and narrower than this coupling range.
  • the winding magnetic track is no longer defined by the escape wheel, but by one or preferably two coupling elements secured to an oscillating structure of the resonator.
  • the device 80 regulating the angular speed ⁇ of an escapement mobile comprises a magnetic structure 82 integral with this mobile and a resonator 84 magnetically coupled so as to define together an oscillator.
  • the magnetic structure comprises an annular magnetic track 86 centered on the axis of rotation 20.
  • the magnetic structure and the resonator are arranged to be rotated relative to each other about the axis of rotation 20 when a couple engine is applied to the exhaust mobile and therefore to the magnetic structure.
  • the resonator is shown schematically. It comprises two magnetic coupling elements to the magnetic track which are arranged on a non-magnetic support 88, which has two arms associated respectively with two identical elastic structures 90 and 91 allowing a linear oscillation of the support 88 along a radial straight line 100.
  • the elements coupling are formed in the variant described here by two elongated magnets which have first and second active end portions 92 and 94 respectively located on the side of the magnetic track 86, these magnets having a direction of magnetization generally along the axis of rotation (direction of axial magnetization).
  • the degree of freedom of the resonator defines a first axis of oscillation 96 and a second axis of oscillation 98 for the two active end parts respectively passing through their center of mass.
  • These first and second axes of oscillation are parallel to a central axis 100 passing longitudinally between the two active end parts, this central axis being provided for radial, that is to say that it intercepts the axis of rotation 20 .
  • the magnetic strip 86 comprises a plurality of magnets 102, of angularly elongated shape, which are arranged along this magnetic strip so that they define first non-magnetic zones 104 and second magnetic zones 106 angularly alternated with a first zone. and a second adjacent zone in each angular period ⁇ P , which is defined by the alternation of the first non-magnetic zones and the second magnetized zones.
  • the coupling elements are magnetically coupled to the magnetic track 86 so that an oscillation according to the degree of freedom of the useful resonance mode of the resonator 84 is maintained within a useful range of the motor torque applied to the magnetic structure, and so that '' a period of this oscillation occurs during a rotation of the magnetic structure, resulting from this motor torque, in each angular period ⁇ P of the magnetic strip.
  • the magnets 102 are arranged with an axial magnetization direction, repelling the magnets forming the coupling elements.
  • the surface in which the active end portions of the resonator generally coupled to the annular magnetic track considered and comprising their respective axes of oscillation are considered as the determining general geometric surface , these active end parts defining magnetic areas in this surface.
  • the Figure 10 has been shown, in orthogonal projection in the general plane of the active end parts 92 and 94, the relative movement between the annular magnetic track and these active end parts during a period of oscillation during which the magnetic track 86 turns by an angular period. So this Figure 10 shows a succession of images a) to i) which follow the oscillation movement of a magnet 102A, among the magnets 102 of the magnetic track 86.
  • magnetic ranges 92 and 94 we put in the magnetic ranges, defined by the orthogonal projection of the active end parts (hereinafter also called magnetic ranges 92 and 94), arrows indicating the direction of the oscillation movement and we have indicated approximately the speed of movement by the length of these arrows, the absence of arrow corresponding to an extreme position where there is inversion of the direction of the linear movement of the coupling elements. Then, the magnets of the magnetic track are projected in the general plane and are not shown as passing under the two coupling elements.
  • the magnet 102A is firstly upstream of the magnetic area 92 (drawing 10a), before gradually penetrating into this area 92 (drawing 10b-10c) and then leaving it (drawing10d) and being coupled magnetically similarly to magnetic pad 94 (drawings 10e-10g). Finally, the magnet 102A leaves the magnetic area 94 (drawing 10h) while a following magnet 102 is presented in front of the area 92; which corresponds to the situation in drawing 10a for this following magnet 102, which in turn will undergo the same magnetic coupling with the two coupling elements of the resonator.
  • each second zone generates per unit of angular length, relative to a first adjacent zone, a force higher repulsion for the magnetic potential energy accumulation zone (case of magnetic repulsion coupling described here) or a higher attraction force for the entry and exit zone (case of magnetic coupling in attraction described below).
  • the magnetic potential energy accumulation zone 92A, 94A generates, relative to the entry zone 110, 114 and the exit zone 112, 116, a higher repulsion force (case of magnetic coupling in repulsion) or a lower attraction force (case of magnetic coupling in attraction) for the same arbitrary zone of each second zone 106 when this same arbitrary zone is superimposed on this zone of accumulation of potential magnetic energy, respectively on the entry zone or to the exit area.
  • the magnetic potential energy accumulation zone 92A, 94A associated with an active end part corresponds to the magnetic area 92, 94 formed materially by this active end part, c ' that is to say to an orthogonal projection of this active end part in its general geometric plane.
  • the entry and exit zones do not have to be formed physically by a part of the coupling element. In a general variant, these zones correspond to free peripheral regions of the active end part, that is to say filled with air.
  • the two end parts in the variant described here are arranged on either side of a circular arc, centered on the axis of rotation when the coupling elements are at rest, and have a width (angular direction) corresponding approximately to an angular half-period ⁇ P / 2.
  • the two magnetic pads 92 and 94 are angularly offset by an angular half-period.
  • the output zone 112 associated with the first coupling element corresponds to the input zone 114 associated with the second coupling element.
  • the resonator is arranged relative to the magnetic structure 82 so that the first and second areas of potential magnetic energy accumulation 92A and 94A are crossed in orthogonal projection by a median geometric circle 120, passing through the middle of the annular magnetic track , respectively during the first and second half-waves in each period of the oscillation of the two coupling elements considered.
  • each magnetic potential energy accumulation zone has a general outline 123, 124 with: i) a first portion, defining a penetration line 126, 128 under this accumulation zone successively for each of said second zones 106 during the oscillation of the coupling elements, and ii) a second portion defining an output line 127, 129 from below this accumulation zone for this second zone (case in magnetic repulsion described here) or a second following zone (case in attraction magnetic) during this oscillation.
  • the output line is oriented, when the magnetic coupling element considered is in its rest position, substantially in an angular direction parallel to the orthogonal projection of the median geometric circle 120.
  • each of the second zones has in orthogonal projection a first dimension W3 along a first axis which is perpendicular to the orthogonal projection of the median geometric circle and passes through the center of this second zone.
  • a first axis is a straight line having a radial direction relative to the axis of rotation 20.
  • Each second zone still has a second dimension L3, along a second axis defined by the orthogonal projection of the geometric circle median 120 in said general plane, which is greater than the first dimension W3.
  • the second dimension is preferably measured along a second axis perpendicular to the first axis and passing through the point of intersection of the orthogonal projection of the median geometric circle with the axis of oscillation of the coupling element considered. 96, 98 or by the central axis 100 in the case of two neighboring coupling elements as described here.
  • the dimensions of the second zones are measured when the center of the second zone considered is superimposed on an axis of oscillation or on the central axis 100.
  • the exit line 127, 129 has a length L4, along the exit zone 112, 116 and along the second axis mentioned above, which is greater than the first dimension W3 of the second zones.
  • the axis of oscillation of each active end part is substantially orthogonal to the median geometric circle 120, in orthogonal projection, at their point of intersection.
  • the central axis 100 which is radial and therefore exactly orthogonal to the circle 120 centered on the axis of rotation.
  • the exit line of the magnetic potential energy accumulation zone along the exit zone and each second zone extend angularly over substantially half of an angular period.
  • the annular magnetic track and each active end portion 92, 94 thus define in each period angular, as a function of the relative position of this annular magnetic track and of this active end part, an accumulation sector 70A, 72A in which the oscillator essentially accumulates magnetic potential energy and a pulse sector 76A , 77A, adjacent to this accumulation zone, in which the coupling element essentially receives a pulse.
  • the accumulation sectors are radially extended and define for the two active end parts respectively two annular zones of accumulation ZA1 * and ZA2 *.
  • the radial width of these annular accumulation zones depends essentially on the extent of the active end parts along their axis of oscillation and no longer on the radial width of the annular magnetic tracks as in the first main embodiment .
  • the equipotential lines are substantially radial, which indicates that the resulting force is angular (more precisely tangential) and that the component of this force along the axis of oscillation of each active end part is very weak. In this case, we can speak of pure accumulation of potential energy.
  • the pulse sectors are located in a central zone of pulses ZC * corresponding substantially to the annular magnetic track, that is to say having the same spatial coordinates as this magnetic track in its general geometric plane.
  • the smaller the first dimension W3 of the magnets 102 and therefore the transverse dimension of the magnetic track the more the pulses supplied to the coupling elements are located around their rest position. Then the higher the second dimension L3 of the magnets 102 is large, the greater the angular distance of the accumulation sectors.
  • the penetration line 126, 128 in the magnetic potential energy accumulation zone 92A, 94A is oriented in a direction substantially parallel to said axis of oscillation, as is the case in all the corresponding embodiments in the second main embodiment shown in the figures.
  • This characteristic is advantageous for obtaining substantially radial equipotential lines 60 in the areas of potential magnetic energy accumulation.
  • the aforementioned penetration line defines a path according to the degree of freedom.
  • the second dimension L3 of each second area 106 is at least twice as large as its first dimension W3, and the length L4 of the outlet line is at least twice as large as this first dimension W3.
  • this second dimension of each second zone is at least four times greater than its first dimension, and the length of the exit line is then at least four times greater than this first dimension.
  • the dimension W4 of the penetration line of the magnetic potential energy accumulation zone 92A, 94A, along the axis of oscillation of the corresponding end part is at least five times greater than the transverse dimension W3 of the annular magnetic track along this axis of oscillation in orthogonal projection.
  • this dimension W4 of the penetration line is at least eight times greater than the transverse dimension W3.
  • FIGS. 11 and 11A schematically show a variant of the embodiment of the Figures 7 to 10 .
  • This regulating device 126 is essentially distinguished by the fact that the magnetic coupling is provided in attraction.
  • the magnetic structure 82 is identical to that of the Figure 7 , only the magnetic track 86 being shown with two magnets 102A and 102B selected from the magnets 102 to explain the magnetic interaction of this variant in attraction.
  • the resonator is represented only by the active end part of a magnetic coupling element which here comprises two separate magnetic parts 128 and 130 formed by a ferromagnetic material, this resonator not being provided with a magnetic flux generator of so that the two parts are subjected to a force of attraction on the part of the magnets of the magnetic track.
  • the two parts 128 and 130 have, in the general geometric plane in which they extend, the same shape and the same linear degree of freedom as the two active end parts of the repulsion variant described above, but they are not independent and both necessary for the operation of the oscillator; whereas in the repulsive variant each part 92 and 94 ( Figure 7 ) is independent and the oscillator in magnetic repulsion can operate with only one of the two parts 92 and 94.
  • the central axis 100 between the two parts 128 and 130 corresponds to the axis of oscillation of the active end part. He has one radial direction and is perpendicular to the center geometric circle of runway 86.
  • the two accumulation zones 132 and 134 as well as the complementary zone 135 and the equivalent zone 136 are all formed by the empty or air-filled region surrounding the active end part and are all magnetically equivalent.
  • the magnetic parts 128 and 130 form magnetic pads 128A and 130A in their general plane which each constitute an entry area and also an exit area. The arrangement of these two ranges is provided so that they are magnetically active in each of the two half-waves of each oscillation period, a first time as an entry area and a second time as an exit area, and to generate a pulse around the rest position of the coupling element at the end of each half cycle.
  • the accumulation zone 134 and the complementary zone 135 are considered together as a zone of accumulation of potential magnetic energy and the next second zone (magnet 102B) of the magnetic strip replaces the second zone. which precedes it (magnet 102A above) to generate a pulse (situation shown in the Figure 11A ) following the accumulation of energy resulting from the passage of the magnetic area 130A in an exit area 134 located in a surrounding non-magnetic region, which defines for this second area a region of higher potential magnetic energy relative to the magnetic area 130A for a portion of this second zone superimposed on this magnetic area, respectively on the exit zone 134.
  • the situation shown in the Figure 11 corresponds to a relative position of the coupling element and of the magnetic track for which the potential magnetic energy is minimum.
  • the resonator of the regulating device 126 is arranged relative to the magnetic structure 82 so that each zone of potential magnetic energy accumulation 132, 134 is crossed in orthogonal projection by the median geometric circle passing through the middle of the annular magnetic track during a first half-wave, respectively a second half-wave in each period of oscillation of the resonator.
  • the areas 132 and 134 are delimited spatially by a geometric circle passing through the central point between the two magnetic ranges 128A and 130A along the axis of oscillation 100 and centered on the axis of rotation 20 when l the coupling element is in its rest position.
  • Each accumulation zone 132, 134 partially has a general contour, determined by the active end part, which defines first and second penetration lines 138 and 139 and first and second output lines 140 and 141, by analogy with the terminology used previously.
  • a second variant of the second main embodiment is partially represented.
  • This variant is essentially distinguished by the fact that the degree of freedom is circular, the coupling element to the magnetic track 86 oscillating around its own axis of rotation C.
  • the active end part 144 is in magnetic repulsion with the magnets 102, as in the variant of the Figure 7 .
  • the lessons given for this last variant also apply to this second variant.
  • Part 144 follows a circular oscillation axis 150 passing through its center of mass. It is shown in the rest position of the corresponding coupling element of the resonator.
  • the axis of oscillation is not provided perpendicular to an orthogonal projection of the median geometric circle 120.
  • the penetration line 145 and the output line 146 are optimal.
  • the exit line merges with the orthogonal projection of the median geometric circle 120 so as to minimize the pulse zones around the rest position.
  • the penetration line in the magnetic potential energy accumulation zone 148 defines a path according to the degree of freedom.
  • the zone 148 is here represented with a surface less than the projection of the part 144.
  • This zone 148 delimited by a curve 149 in broken lines effectively corresponds to the zone of active accumulation.
  • the part 144 may have an external contour which follows the curve 149 or which is parallel thereto passing through the end point of the outlet line shown.
  • the zone 148 (respectively the part 144) can move along the axis of oscillation outside the zone of pulse without undergoing in the alternation considered of potential energy variation.
  • the magnetic interaction remains identical with a zone of pure accumulation of potential energy in this alternation which ends with a pulse localized in the rest position of the part 144.
  • the dimensions of this part 144 and magnets 102 have been defined previously and will not be described again here. They are indicated on the drawings.
  • the output line 146 extends angularly over an angular half-period while the magnets 102 extend over a slightly smaller angular distance.
  • the Figure 12A shows a simplified alternative of the Figure 12 wherein the magnets 103 of the magnetic track 86A define second areas 106A of rectangular shape, oriented tangentially to the median geometric circle 120, and first non-magnetic areas 104A between these second areas.
  • the active end portion 144A has a contour of parallelepiped shape, with a penetration line 145A and an outlet line 146A formed by linear segments. These linear segments are optimally oriented for this particular configuration.
  • the 145A and 146A segments are formed respectively by the strings of circular segments 145 and 146 of the Figure 12 . In other words, each of these linear segments is parallel to the tangent at the midpoint of the corresponding circular segment.
  • the axis of oscillation 150 passes through the center of the part 144A.
  • FIG. 13 To the Figure 13 is shown partially a third variant of the second main embodiment which can be provided in magnetic repulsion or magnetic attraction according to the teaching given above.
  • the magnetic structure comprises a magnetic track 86A already described.
  • this variant is shown with two coupling members oscillating about a proper axis C.
  • the specific shape and positioning of these two coupling members in their rest position also apply to a variant where the degree of freedom is linear, like at Figure 7 .
  • the central axis 154 passing through the central point between the two active end parts 156 and 158 is orthogonal to the median circle 120 at their point of intersection.
  • a first rectilinear axis is defined, perpendicular to the median circle 120 and passing through this point of intersection, and a second rectilinear axis, perpendicular to the first axis and also passing through this point.
  • the parts 156 and 158 define in their general plane rectangular magnetic pads each with an output line 160, 162 on the second axis.
  • the penetration lines 164 and 166 of these two magnetic pads are parallel to the first axis.
  • the magnetic potential energy accumulation zone 148B shows that part of the magnetic ranges is not active. However, the rectangular shape simplifies the construction of the resonator.
  • the output lines 160 and 162 are considered to be oriented, when the element of magnetic coupling is in its rest position as shown in the Figure 13 , substantially in an angular direction parallel to the orthogonal projection of the median geometric circle 120 in the general geometric surface of the end portions 156 and 158. They are in fact tangent to the orthogonal projection of the circle 120 at the point of intersection of the central axis 154 with this orthogonal projection, this point of intersection corresponding to an interior corner of each magnetic range.
  • the rectangular shapes are replaced by annular sectors of center C on the axis of rotation of the resonator.
  • the respective output lines of the magnetic pads of this variant are identical to those of the rectangular pads.
  • the penetration lines are circular according to the degree of freedom of the corresponding coupling elements. They each define a path according to the degree of freedom and are therefore oriented in a direction substantially parallel to the respective axes of oscillation. Then, each of the second zones 103 has in orthogonal projection, when the center of this second zone is superimposed on the central axis, a first dimension W3, according to the first axis mentioned above, and a second dimension L3, according to the second axis mentioned above, which is greater than the first dimension. Finally, when the magnetic coupling elements are in their rest position, their respective exit line 160, 162 has a length, along the exit zone and along said second axis, which is greater than the first dimension W3 of the second zones.
  • the regulating device 170 of the Figure 14 comprises a magnetic escapement mobile 82 supporting a magnetic track 86 already described and a resonator 174 formed by a balance 176 (shown diagrammatically) oscillating around the axis C parallel to the axis of rotation 20.
  • the balance is associated with elastic means 178, 179 exerting a restoring force when it deviates from its rest position (zero position shown in the Figure 14 ).
  • the balance comprises two active end parts 92 and 94 corresponding essentially to those already described in Figures 7 and 9 , except for the fact that the output lines 127A and 129A of the magnetic pads 92A and 94A are not superimposed on the middle circle 120, but are located a short distance from this circle on either side so that this circle is located in the middle of an annular intermediate zone between the two magnetic pads.
  • This intermediate zone is magnetically homogeneous, here non-magnetic.
  • the regulating device 180 of the Figure 15 includes a magnetic exhaust mobile 182, with two concentric magnetic tracks 86A and 186, and a resonator 184.
  • the first track 86A has already been described and the second track 186 formed of a plurality of magnets 188 is similar to it, but with a smaller diameter.
  • the potential magnetic energy of the oscillator 180 varies angularly along this second track with the same angular period ⁇ P and similarly to the variation of the first track.
  • the first and second magnetic tracks have an angular offset equal to half of the angular period.
  • the resonator 184 comprises a coupling element with an active end portion 190 formed of a magnet arranged in repulsion and defining in its general plane a zone of accumulation of potential magnetic energy 190A of frustoconical shape.
  • This part 190 is arranged in a non-magnetic support 192 fixed to the watch movement by two elastic blades 193 and 194 allowing oscillation of the support 192.
  • the active end part is coupled to the two magnetic tracks.
  • the 190A accumulation zone defined by this part has a common penetration line 196 for the magnets of the two tracks and two output lines 197 and 198 respectively defining the two parallel and substantially angular portions of this frustoconical area.
  • the part 190 is coupled to the first track 86A. Similarly, it is coupled to the second track 186 in the second half-wave of each oscillation period.
  • the oscillating structure 192 receives a pulse at the end of each alternation around its rest position (position shown).
  • the regulating device 200 of the Figure 16 comprises a magnetic exhaust mobile 202 with a radially extended magnetic track 204, as described in the first main embodiment.
  • the magnets 206 of this track have a frustoconical shape with the two sides parallel in a tangential direction relative to the axis of rotation 20.
  • the oscillator 200 also includes a resonator 210 of the same type as that of the Figure 14 , this resonator also comprising two coupling elements carried by a balance 212 made of non-magnetic material, but being distinguished by the fact that the two corresponding active end parts 46A and 46B are radially narrow relative to the magnets 206 in the position of rest of the coupling elements (position shown).
  • the two parts 46A and 46B are located on either side of a straight line perpendicular to their longitudinal direction and substantially radial relative to the axis of rotation 20 of the exhaust mobile. Relative to this axis, they both extend over an angular distance substantially equal to an angular half-period of the magnetic tracks, with an angular offset of half a period.
  • the longitudinal axis of each part 46A and 46B is substantially perpendicular to the axis of oscillation of the pendulum 212.
  • the line penetration 214 defined by each magnet of the magnetic track is common to the two active end parts.
  • the longitudinal axis of the part 46A is substantially superimposed on the line outlet 215 defined by the outer edge of this magnet while the longitudinal axis of the part 46B is substantially superimposed on the outlet line 216 defined by the inner edge of this magnet.
  • the balance 212 thus receives two pulses per period of oscillation located substantially around its rest position.
  • the regulating device 220 comprises a first magnetic escape wheel 222 and a second magnetic escape wheel 224 which are identical and arranged in the same general plane. These two escape wheels form two magnetic structures each defining a radially narrow magnetic track 86A with a plurality of magnets 103. The potential magnetic energy of the oscillator therefore varies angularly in a similar fashion along these two tracks 86A.
  • the two escape wheels mesh directly with each other via their respective teeth 226 and 228.
  • the two magnetic tracks are coupled to the same coupling element 234 of the resonator 230 which further comprises a non-magnetic support 232 in the form of T and two flexible blades 233A, 233B at the two ends of the crossbar of this support.
  • the magnet 234 is arranged at the free end of the central bar of the support.
  • the flexible blades are arranged so that the magnet 234 can oscillate along a slightly curved axis of oscillation.
  • the resonator may have two separate coupling elements and coupled respectively to the two magnetic tracks supported respectively by the two wheels 222, 224.
  • the magnet 234 is arranged in magnetic repulsion of the magnets 103.
  • the regulating device 220 includes in in addition to two additional magnetic structures situated respectively opposite the two wheels 222, 224 and coaxial with them. These two complementary structures are arranged on the other side of the magnet 234 forming a common coupling element for the two magnetic tracks located on either side of the magnet in an axial direction.
  • a single additional magnetic structure 236 is shown in the Figure 18 , but the second is similar to it.
  • the structure 236 comprises a plate 237 supporting a magnetic track 86A identical to that of the escape wheel 224 and angularly arranged in an equally identical manner.
  • the two wheels mesh so that, along a transverse axis passing through their two respective axes of rotation and corresponding substantially to the axis of oscillation of the magnet 234, the two magnetic tracks have a 180 ° magnetic phase shift, the first track being coupled in a first half-wave while the second track is coupled in a second half-wave of each oscillation period, the coupling element 234 receiving a pulse at the end of each half-wave, which is located around the rest position of the oscillating structure according to the concept of the present invention.
  • the magnetic tracks 86A of the superimposed magnetic structures are integral in rotation, the plate 237 being connected to the wheel 224 by a central tube 238.
  • these two tracks superimposed and arranged on either side of the general plane of the magnet 234 are not integral in rotation.
  • the regulating device 240 is based on the same concept as the previous embodiment.
  • the relative dimensioning of each coupling member and the magnetic tracks corresponds to the first main embodiment
  • the variant proposed in the previous embodiment corresponds to second main embodiment.
  • the variants of each of the two modes can be applied to the other mode by adapting certain constructive elements.
  • the oscillator 240 comprises a resonator 242 and two magnetic structures 244 and 246 situated in the same general plane and integral respectively with two wheels 248 and 250 which mesh with each other indirectly via two intermediate wheels 252 and 254 arranged so that the two magnetic structures rotate at the same speed but in an opposite direction.
  • the intermediate wheel 252 comprises a pinion 253 for the input of a motor torque supplied to the regulating device.
  • the resonator is formed by two flexible blades 260 and 264 made of material with high magnetic permeability and comprising two respective end parts 262 and 266 situated respectively on either side of the general plane of the two magnetic structures.
  • the resonator comprises a magnetic flux generator 256 formed by a magnet 258 housed in a rigid structure 257, which is arranged to allow the fixing of the two flexible blades on either side of the magnet 258 so as to generate a closed magnetic path for the flux of magnet passing through the flexible blades, in particular through the end parts 262 and 266 and the air gap between these two ends.
  • the flexible blades can have an enlargement so as to channel the entire magnetic flux of this magnet.
  • the two magnetic structures are formed by two discs each having at their periphery a magnetic ring defining a plurality of magnetic zones 10A, which are provided over the height of the disc so as to produce an axial magnetic flux on both sides of the magnetic ring.
  • these magnetized areas form at the upper surface of the magnetic structure a first magnetic track 11A1 and at the lower surface a second equivalent magnetic track 11A2.
  • These two magnetic tracks are respectively coupled with the two active end parts 262 and 266.
  • the magnetized zones can be formed by a plurality of distinct magnets or by a ring formed of the same material of which only the zones 10A are magnetized. In another interesting variant, this ring is magnetized with an alternation of the direction of polarity in each angular period.
  • the two magnetic tracks coupled to the resonator are respectively secured to two rotating mobiles having no engagement relationship with each other.
  • These two mobiles can be coaxial or located one next to the other with two distinct axes of rotation.
  • these two mobiles are coupled to the same coupling element or respectively to two coupling elements of the resonator.
  • the two rotating mobiles can each be driven by their own source of mechanical energy.
  • a seventh embodiment is shown of a regulating device 270 according to the invention.
  • the magnetic structure 4B is similar to that described in Figure 5 . It includes two tracks 11A and 13A which are concentric.
  • the resonator 272 is of the balance-spring type with a rigid balance 274 associated with a balance spring 276.
  • the balance can take various forms, in particular circular as in a classic watch movement.
  • the balance pivots about an axis 278 and it comprises two magnetic coupling members 280 and 282 according to the invention which are angularly offset relative to the axis of rotation 20 of the magnetic structure 4B. These two organs are formed by two magnets.
  • the angular offset of the two magnets and their positioning relative to the structure 4B are provided so that these two magnets define the same circle of zero position 44 and that they have in their rest position an angular offset ⁇ D equal to an integer of angular period ⁇ P increased by half a period.
  • these two magnets have a phase shift of ⁇ .
  • the circle 44 corresponds substantially to the interface circle (common limit) of the two magnetic tracks 11A and 13A.
  • the axis of rotation 278 of the balance wheel is positioned at the intersection of the two tangents to the zero position circle 44 respectively at the two points of intersection of this circle with the two respective axes of oscillation of the two magnets of the resonator.
  • the balance is balanced, more precisely that its center of mass is on the axis of the balance.
  • Those skilled in the art will easily be able to configure pendulums of various shapes having this important characteristic. It is therefore understood that the various variants shown in the figures are schematic and the problem linked to the inertia of the resonator is not dealt with concretely in these figures.
  • arrangements guaranteeing a zero result of the magnetic forces acting radially and axially on the axis of the balance are preferred.
  • a balance with flexible blades defining a fictitious axis of rotation that is to say without pivoting, in place of the balance spring.
  • each of the magnets 280 and 282 When passing through the central pulse zone located around the interface circle 44, each of the magnets 280 and 282 receives a pulse in each alternation of each oscillation period. So here we have a double impulse.
  • four simultaneous pulses are obtained at the end of the first half-wave and of the second half-wave in each period of oscillation.
  • Such a system has a strong coupling between the resonator and the magnetic structures driven in rotation by a motor torque in a useful range, the latter thus being able to be relatively extended.
  • the Figure 22 is an alternative to the device of the Figure 21 , the device of the Figure 22 being based on the second main embodiment while the device of the Figure 21 is based on the first main embodiment.
  • This alternative relates to a regulating device 290 with two concentric magnetic tracks 86A and 186 of small radial dimension forming the magnetic structure 182, which is similar to that already described in Figure 15 (the only difference is the arched shape of magnets 103 and 188 on the Figure 22 ).
  • This regulating device further comprises a resonator 292 of the balance-spring type described above.
  • the resonator therefore has a hairspring 276 or another suitable elastic element and a balance 274A having two arms, the respective free ends of which carry two coupling elements 294 and 296 respectively formed by two magnets arranged in repulsion of the magnets of the magnetic tracks.
  • Each coupling element is formed by a magnetic zone similar to element 190 of the Figure 15 .
  • the regulating device 300 comprises a magnetic structure 82A similar to that described in Figures 12A and 13 and a resonator 302 formed by a tuning fork with two branches 308 and 309 (shown diagrammatically) which have at their two free ends two identical magnetic plates 304A and 304B.
  • Each magnetic plate is formed by two magnetic pads 156 and 158 and by two non-magnetic complementary parts 305 and 306.
  • the magnetic pads 156 and 158 are arranged identically to the two active end parts which are described in Figure 13 .
  • the magnetic operation here is equivalent to that described using the Figures 9 to 11A and 13 , and will therefore not be discussed again here.
  • the magnetic coupling can be provided in repulsion (see Figures 9 and 10 ) or as an attraction (see Figures 11 and 11A ).
  • the magnetic track has an even number of magnets and therefore of angular periods so that the two plates 304A, 304B advantageously oscillate in opposite directions.
  • an odd number of magnets must be provided along the track magnetic 86A.
  • the resonator is formed by a tuning fork, two free ends of its resonant structure of which carry the first and second magnetic coupling elements, respectively.
  • the regulating device 310 differs essentially from the previous embodiments by three particular characteristics. Firstly, it includes two independent resonators 312 and 314, that is to say not having a common resonance mode. However, these two resonators are identical. Secondly, the magnetic structure 316 is provided fixed on a support or a plate 318 of a timepiece movement, while the two resonators 312 and 314 are driven in rotation at the angular speed ⁇ by a motor torque supplied to a rotor 320 which comprises two rigid arms 322 and 323 at the respective free ends of which the two resonators are arranged respectively.
  • These two resonators each comprise an elastic strip at the free end of which is arranged an elongated magnet 325, 326.
  • These magnets are arranged according to the invention tangentially to an interface circle 44 between the two magnetic tracks 328 and 330 when the respective resonators are in their rest position, so that this interface circle corresponds to a zero position circle for the two active end parts defined by the magnets 325 and 326.
  • Each magnetic track comprises first zones 332 and second zones 334 having properties already described in the description of the first main embodiment.
  • Each of the two magnets defines with the two magnetic tracks an oscillator.
  • the inversion of the drive at the level of the 'resonator - magnetic track' system with a motor torque applied to the resonator to drive it in rotation around an axis of rotation 20A coincident with the central axis of the structure magnetic does not change the magnetic interaction between the resonator and the magnetic structure which has been exposed previously, so that this inversion can be implemented as a variant in the other embodiments.
  • the third particular characteristic of this embodiment comes from the fact that, in an embodiment corresponding to the first main embodiment, the oscillation of the coupling elements is not radial relative to the axis of rotation 20A of the rotor 320 , namely that the axis of oscillation intercepts the zero position circle 44 in a non-perpendicular manner.
  • the degree of freedom of the coupling element of each resonator is located substantially on a circle whose radius is substantially equal to the length L of the elastic blade and centered at the anchor point of this blade.
  • the device regulator 340 is distinguished by the fact that the resonator comprises a truncated annular magnet 352 rigidly connected to a balance 348 which is associated with a hairspring 350.
  • the truncated annular magnet defines the wall of a section of cylindrical tube open laterally.
  • This truncated annular magnet is located in a first general plane parallel to a second general plane defined by the annular magnetic track, so that this annular magnet passes over the exhaust mobile to be magnetically repelled, and therefore contactless. , to the annular track 344 driven in rotation by a motor torque.
  • no pendulum other than the section of cylindrical tube with its pivoting means is provided.
  • the truncated annular magnet is arranged to rotate around the axis C.
  • a shaft can be provided in this variant, this shaft being connected to the annular magnet for example by a plate supporting this magnet and fixedly mounted on the shaft. The plate is provided on the other side of the exhaust mobile relative to this annular magnet.
  • the annular magnet 352 forms two active end parts of two coupling elements, these two ends being in the variant shown formed by a single truncated annular magnet. Indeed, in a variant limiting the amplitudes of oscillation, one can provide two arcuate magnets of the same radius and connected by a non-magnetic fixing part.
  • the truncated annular magnet defines in its general plane a first penetration line 354, corresponding to its outer wall and a first outlet line 356 at a first end of this annular magnet in its general plane. The second end defines a second outlet line 357 while a second penetration line 355 is defined by the interior wall of this annular magnet.
  • the annular magnet corresponds in orthogonal projection to a zone of accumulation of potential magnetic energy.
  • the penetration lines are oriented according to the degree of freedom of the resonator since they are circular and centered on the axis of oscillation C. They define paths according to this degree of freedom so that, for a given angular position from the magnetic track 344, the potential magnetic energy of a magnet 343 partially superimposed on the annular magnet 352 does not vary when this magnet oscillates in a first alternation of the period of oscillation of the balance spring ( Figures 25A and 25C ) before reaching the exit line ( Figures 25B and 25D ) where a pulse P is supplied to the balance via the annular magnet.
  • the magnet 352 defines in its general plane a truncated annular surface.
  • a first magnet 343 of the magnetic track penetrates under the annular magnet by the external penetration line 354.
  • the first magnet In the useful range of the motor torque, thanks to the arrangement of a stop magnetic 345 following each magnet 343 (significantly stronger interaction with the annular magnet for this magnetic stop), the first magnet ultimately remains in a certain position of maximum penetration or final superposition position. In this final overlapping position, the balance can rotate freely substantially throughout the first half-cycle ( Figure 25A ) until it substantially reaches its rest position around which it receives a first pulse P ( Figure 25B ). The balance continues its rotation at substantially maximum speed and a second magnet preceding the first magnet, relative to the direction of rotation of the driving mobile, penetrates after a certain rotation of the exhaust mobile under the annular magnet by the internal penetration line. 355.
  • This second magnet also remains in a position of maximum penetration corresponding to a certain partial superposition with the annular magnet during most of the second half-wave ( Figure 25C ) before exiting via the output line 357 around the rest position of the resonator ( Figure 25D ) by providing a second pulse P to the balance spring.
  • the magnet 343 can be completely superimposed on the annular magnet in its position of maximum penetration.
  • the annular magnet forms the active end part common to the coupling of the magnetic track to the resonator in the two half-waves of each period of oscillation. Note that in its rest position ( Figures 25B and 25D ), the output lines defined by this common active end part each have an orientation according to the present invention, because these output lines are substantially tangential to the median geometric circle 120.
  • this embodiment in its main operating mode, is characterized by a jerky advance of the exhaust mobile with a large amplitude of oscillation.
  • the truncated annular ring forms a magnetic barrier for the magnetic stops of the magnetic track, making it possible to stop the exhaust mobile momentarily, which then advances in steps (two steps for a rotation of an angular period).
  • steps two steps for a rotation of an angular period.
  • the magnetic stops are no longer necessary.
  • an almost continuous or continuous advance is mainly provided for in the other embodiments.
  • certain embodiments depending on the dimensioning of the resonator and of the magnetic structure, can also operate in a jerky mode.
  • the regulating device 360 of the “magnetic cylinder exhaust” type differs from the previous variant essentially by the fact that it is intended that the same magnet 343A which is first magnetically coupled to the annular magnet 352A of the resonator in a first alternation a period of oscillation, by entering under this annular magnet by the external penetration line 354 (substantially same radius R E as in the previous variant) and leaving by the output line 356A by providing a first pulse, is then directly magnetically coupled to the annular magnet in the second alternation of this oscillation period by penetrating under this annular magnet by the interior penetration line 355A before finally exiting by the output line 357A by providing a second impulse to the balance-spring ( no shown in the Figure 26 ).
  • Such a configuration makes it possible, for a given external diameter of the annular magnet of the resonator, to considerably increase the thickness E T of the wall of this cylindrical tube and therefore the length L4 of the outlet lines, as well as the longitudinal dimension L3 (angular or tangential dimension) of the magnets 343A of the magnetic track.
  • This makes it possible to increase the accumulation of potential magnetic energy in the oscillator since, for a given first dimension W3, the second dimension L3 of these magnets can be enlarged, which thus increases the ratio between these two dimensions.
  • the opening of the annular magnet 352A, defined above, is less than an angular period of the magnetic track 342A.
  • the annular magnet is mounted on or suspended from a structure comprising two crossed flexible blades defining a geometric axis of oscillation C for the annular magnet.
  • This elastically deformable structure is arranged on the other side of this annular magnet relative to the magnetic structure of the exhaust mobile. Thus, no material axis is necessary at the level of the annular magnet and the exhaust mobile.
  • the diameter (2 ⁇ R I ) of the internal contour of the truncated annular magnet is less than or substantially equal to the second dimension L3 of the second zones defined by the magnets of the magnetic track.
  • the difference between the radii of the first and second circular penetration lines 354 and 355A, corresponding approximately to the length L4 of the first and second outlet lines, is substantially equal to the second dimension L3 or between eighty and one hundred and twenty percent ( 80% to 120%) of this second dimension.
  • the regulating device 370 is particular in two main characteristics. First, it includes a magnetic exhaust mobile 372 formed by a disc 374 with a non-magnetic central part and a peripheral ring 376 magnetized radially so as to define two lateral magnetic tracks 378 and 380 each formed by alternating magnetic poles 382 and 384, these magnetic poles generating a magnetic flux corresponding to radial magnet axes in alternating directions. They define first and second zones of each magnetic strip. The second zones are in magnetic repulsion with the magnets 392 and 394 of the resonator while the first zones are in magnetic attraction with these magnets.
  • the general geometric surface of the two magnetic tracks is a cylindrical surface so that the penetration lines opposite the second zones for the magnets of the resonator are segments of axial lines.
  • the output lines follow the interface circle of the two magnetic tracks, this interface circle preferably being merged with the zero position circle 44A defined by the orthogonal projection in the cylindrical surface of the center of mass of the end part. active of each of the magnets 394 and 396 in their rest position.
  • each of the centers of mass is on a radial axis of the disc 374 intercepting the interface circle of the two magnetic tracks when the first and second coupling elements are in their rest position.
  • the resonator 386 is of the torsion type with two free ends of its resonant structure carrying the first and second coupling elements respectively.
  • This resonator has a resonant structure in H with two longitudinal bars 387 and 388, each carrying a coupling magnet 392, 394. These two longitudinal bars are connected by a transverse bar 390 which has a capacity of deformation in torsion. Indeed, it is expected that the longitudinal bars oscillate with a phase shift of 180 ° so that the transverse bar deforms elastically in torsion around its longitudinal axis.
  • the number of angular periods of the magnetic tracks is odd and, as in the other embodiments with two magnetic tracks, these two magnetic tracks are angularly offset by an angular half-period, that is to say phase shifted by 180 °.
  • Two fixing parts 395 and 396 of the resonator are connected in the middle of the transverse bar by two relatively narrow bridges 398, because the material does not undergo in this median zone of rotation around the longitudinal axis of the transverse bar during movements d substantially axial oscillation, in opposite directions, of the two longitudinal bars.
  • the first and second zones 382 and 384 of the two magnetic tracks 378 and 380 of the rotating magnetic structure and the two magnetic coupling elements 392 and 394 of the resonator are dimensioned and arranged according to the criteria of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne le domaine des dispositifs régulateur de la vitesse angulaire relative entre une structure magnétique et un résonateur couplés magnétiquement de manière à définir ensemble un oscillateur. Le dispositif régulateur de la présente invention rythme la marche d'un mouvement horloger mécanique. Plus particulièrement, l'invention concerne les échappements magnétiques pour mouvements horlogers mécaniques dans lesquels il est prévu un couplage magnétique direct entre un résonateur et une structure magnétique. En général, leur fonction est d'assujettir les fréquences de rotation des mobiles d'un rouage compteur d'un tel mouvement horloger à la fréquence de résonance du résonateur.The present invention relates to the field of devices regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled so as to define together an oscillator. The regulating device of the present invention sets the pace of a mechanical watch movement. More particularly, the invention relates to magnetic escapements for mechanical watch movements in which there is provided a direct magnetic coupling between a resonator and a magnetic structure. In general, their function is to subject the frequencies of rotation of the mobiles of a counter gear train of such a watch movement to the resonant frequency of the resonator.

Le dispositif régulateur comprend donc un résonateur, dont une partie oscillante est munie d'au moins un élément de couplage magnétique, et un échappement magnétique agencés de manière à commander la vitesse angulaire relative entre une structure magnétique formant cet échappement magnétique et ce résonateur. Il remplace le balancier-spiral et le mécanisme d'échappement classique, notamment l'échappement avec une ancre de type suisse et une roue d'échappement dentée.The regulating device therefore comprises a resonator, an oscillating part of which is provided with at least one magnetic coupling element, and a magnetic escapement arranged so as to control the relative angular speed between a magnetic structure forming this magnetic escapement and this resonator. It replaces the balance-spring and the classic escapement mechanism, in particular the escapement with a Swiss type anchor and a toothed escape wheel.

Le résonateur ou la structure magnétique est solidaire en rotation d'un mobile entraîné en rotation avec un certain couple moteur qui entretient une oscillation du résonateur. En général le mobile est incorporé dans un rouage ou plus généralement une chaîne cinématique d'un mécanisme. Cette oscillation permet de régler la vitesse angulaire relative entre la structure magnétique et le résonateur grâce au couplage magnétique entre eux.The resonator or the magnetic structure is integral in rotation with a mobile driven in rotation with a certain motor torque which maintains an oscillation of the resonator. In general, the mobile is incorporated in a train or more generally a kinematic chain of a mechanism. This oscillation makes it possible to adjust the relative angular speed between the magnetic structure and the resonator thanks to the magnetic coupling between them.

Arrière-plan technologiqueTechnological background

Les dispositifs de régulation de la vitesse d'une roue, nommé aussi rotor, par un couplage magnétique, nommé aussi accouplement magnétique, entre un résonateur et une roue magnétique sont connus depuis de nombreuses années dans le domaine horloger. Plusieurs brevets relatifs à ce domaine ont été délivrés à la société Horstmann Clifford Magnetics pour des inventions de C. F. Clifford. En particulier, on citera le brevet US 2,946,183 . Le dispositif de régulation décrit dans ce document présente divers inconvénients, en particulier un problème d'anisochronisme (un non-isochronisme, c'est-à-dire une absence d'isochronisme), à savoir une variation significative de la pulsation (vitesse angulaire) du rotor en fonction du couple moteur appliqué à ce rotor. Un tel anisochronisme résulte d'un anisochronisme de l'oscillateur formé par le résonateur et la roue magnétique. Les raisons de cet anisochronisme ont été comprises dans le cadre des développements ayant conduit à la présente invention. Ces raisons ressortiront ultérieurement à la lecture de la description de l'invention.The devices for regulating the speed of a wheel, also called a rotor, by a magnetic coupling, also called a magnetic coupling, between a resonator and a magnetic wheel have been known for many years in the watchmaking field. Several patents relating to this field have been granted to Horstmann Clifford Magnetics for inventions of CF Clifford. In particular, mention will be made of the patent US 2,946,183 . The regulation device described in this document has various drawbacks, in particular an anisochronism problem (a non-isochronism, that is to say an absence of isochronism), namely a significant variation of the pulsation (angular speed ) of the rotor as a function of the engine torque applied to this rotor. Such an anisochronism results from an anisochronism of the oscillator formed by the resonator and the magnetic wheel. The reasons for this anisochronism have been understood in the context of the developments which have led to the present invention. These reasons will emerge later on reading the description of the invention.

Il est aussi connu de la demande de brevet japonaise JPS 5240366 (demande No JP19750116941 ) et des modèles d'utilité japonais JPS 5245468U (demande No JP19750132614U ) et JPS 5263453U (demande No JP19750149018U ) des échappements magnétiques à couplage magnétique direct entre un résonateur et une roue formée par un disque. Dans les deux premiers documents, il est prévu de remplir des ouvertures rectangulaires d'un disque non magnétique avec une poudre à haute perméabilité magnétique ou un matériau aimanté. On obtient ainsi deux pistes annulaires coaxiales et adjacentes qui comprennent chacune des zones magnétiques rectangulaires agencées régulièrement avec une période angulaire donnée, les zones de la première piste étant décalées ou déphasées d'une demi-période relativement aux zones de la seconde piste. On a donc des zones magnétiques distribuées alternativement d'un côté et de l'autre d'un cercle correspondant à la position de repos (position zéro) de l'élément ou organe de couplage magnétique du résonateur. Cet élément ou organe de couplage est réalisé par une boucle ouverte, selon le cas en matériau aimanté ou à haute perméabilité magnétique, entre les extrémités de laquelle passe le disque entraîné en rotation. Le troisième document décrit une alternative dans laquelle les zones magnétiques du disque sont formées par des plaquettes individuelles en matériau à haute perméabilité magnétique, l'élément de couplage magnétique du résonateur étant alors aimanté. Les échappements magnétiques décrits dans ces documents japonais ne permettent pas d'améliorer l'isochronisme de manière importante, notamment pour des raisons qui sont exposées ci-après à l'aide des Figures 1 à 4.It is also known from the Japanese patent application JPS 5240366 (request No JP19750116941 ) and Japanese utility models JPS 5245468U (request No JP19750132614U ) and JPS 5263453U (request No JP19750149018U ) magnetic escapements with direct magnetic coupling between a resonator and a wheel formed by a disc. In the first two documents, provision is made to fill rectangular openings with a non-magnetic disk with a powder with high magnetic permeability or a magnetic material. Two coaxial and adjacent annular tracks are thus obtained which each comprise rectangular magnetic zones arranged regularly with a given angular period, the zones of the first track being offset or phase shifted by half a period relative to the zones of the second track. So we have magnetic zones distributed alternately on one side and on the other, a circle corresponding to the rest position (zero position) of the magnetic coupling element or member of the resonator. This coupling element or member is produced by an open loop, as the case may be made of magnetic material or of high magnetic permeability, between the ends of which the disc driven in rotation passes. The third document describes an alternative in which the magnetic zones of the disc are formed by individual plates of material with high magnetic permeability, the magnetic coupling element of the resonator then being magnetized. The magnetic escapements described in these Japanese documents do not make it possible to improve the isochronism significantly, in particular for reasons which are explained below using the Figures 1 to 4 .

A la Figure 1 est représenté schématiquement un dispositif régulateur ou oscillateur 2 de l'art antérieur comprenant un échappement magnétique du type décrit dans les documents japonais susmentionnés. Ce dispositif comprend une structure magnétique 4 et un résonateur 6. La structure magnétique est supportée par un mobile 8 en matériau non magnétique à la surface duquel sont agencés deux pluralités d'aimants rectangulaires à aimantation axiale, les première et deuxième pluralités d'aimants 10 et 12 formant respectivement des première et deuxième pistes magnétiques annulaires 11 et 13 qui sont adjacentes et concentriques. Chacune des deux pluralités d'aimants a un même nombre d'aimants répartis angulairement de manière régulière et définissant une même période angulaire θP, la première piste étant déphasée d'une demi-période (correspondant à un déphasage de 180°). Le résonateur 6 est représenté symboliquement par un ressort 15, correspondant à sa capacité de déformation élastique définie par une constante élastique, et par une inertie 16 (symbole 'I') définie par sa masse et sa structure. Ce résonateur comprend un aimant 18 ayant une forme rectangulaire et définissant un élément de couplage à la structure magnétique. Cet aimant a une aimantation axiale de sens inversé à celui des aimants 10 et 12, de sorte qu'il est agencé en répulsion de ces derniers. Il est capable d'osciller avec une fréquence propre dans un mode de résonance où il présente une oscillation radiale relativement à l'axe de rotation 20 du mobile 8 qui est confondu avec l'axe central de la structure magnétique annulaire. Ce mode de résonance est excité et entretenu lorsque la structure magnétique 4 est entraînée en rotation par un couple moteur dans une plage de couple utile, par exemple dans le sens antihoraire à la vitesse angulaire ω comme représenté à la Figure 1. A cet effet, l'aimant 18 est situé au-dessus du mobile 8 de manière que son centre de masse soit axialement superposé à un cercle géométrique intermédiaire définissant une limite commune ou interface des deux pistes annulaires concentriques et contiguës lorsque le résonateur est dans sa position de repos.To the Figure 1 is schematically shown a regulator or oscillator device 2 of the prior art comprising a magnetic escapement of the type described in the above-mentioned Japanese documents. This device comprises a magnetic structure 4 and a resonator 6. The magnetic structure is supported by a mobile 8 made of non-magnetic material on the surface of which are arranged two pluralities of rectangular magnets with axial magnetization, the first and second pluralities of magnets 10 and 12 respectively forming first and second annular magnetic tracks 11 and 13 which are adjacent and concentric. Each of the two pluralities of magnets has the same number of magnets distributed angularly in a regular manner and defining the same angular period θ P , the first track being phase shifted by half a period (corresponding to a phase shift of 180 °). The resonator 6 is symbolically represented by a spring 15, corresponding to its elastic deformation capacity defined by an elastic constant, and by an inertia 16 (symbol 'I') defined by its mass and its structure. This resonator comprises a magnet 18 having a rectangular shape and defining a coupling element to the magnetic structure. This magnet has an axial magnetization in the opposite direction to that of magnets 10 and 12, so that it is arranged in repulsion of the latter. It is capable of oscillating with a natural frequency in a resonance mode where it has a radial oscillation relative to the axis of rotation 20 of the mobile 8 which is coincident with the central axis of the annular magnetic structure. This resonance mode is excited and maintained when the magnetic structure 4 is rotated by a motor torque in a range of useful torque, for example in the counterclockwise direction at the angular speed ω as shown in the Figure 1 . For this purpose, the magnet 18 is located above the mobile 8 so that its center of mass is axially superimposed on an intermediate geometric circle defining a common limit or interface of the two concentric and contiguous annular tracks when the resonator is in its rest position.

Comme les aimants 10 et 12 forment des zones d'interaction magnétique avec l'aimant 18 du résonateur et qu'ils sont situés alternativement d'un côté et de l'autre du cercle géométrique intermédiaire susmentionné, ils définissent un chemin magnétique sinueux (sinusoïdal) avec une période angulaire θP déterminée, laquelle correspond à la période angulaire de chacune des première et deuxième pistes annulaires 11 et 13. Lorsque le résonateur est couplé magnétiquement à la structure magnétique entraînée en rotation, l'aimant 18 oscille en suivant ce chemin magnétique sinueux et la vitesse angulaire ω de la roue est définie sensiblement par la fréquence d'oscillation du résonateur. On a donc une synchronisation entre la fréquence du résonateur et la fréquence de rotation ou pulsation du mobile 8. Par synchronisation, on comprend ici un rapport déterminé et constant entre deux fréquences. On remarquera la forme géométrique de l'aimant 18 dont la partie d'extrémité active (représentée à la Figure 1) définit, en projection axiale dans le plan géométrique général de la structure magnétique, une surface rectangulaire. En d'autres termes, cette partie d'extrémité active a un contour ou profil extérieur général et moyen, dans un plan parallèle à celui de la structure magnétique, qui est sensiblement rectangulaire. Dans cette réalisation de l'art antérieur, la longueur de ladite surface rectangulaire est radiale alors que sa largeur, inférieure à la longueur, est angulaire relativement à l'axe central de la structure magnétique annulaire ou tangentielle relativement au cercle géométrique intermédiaire susmentionné. Dans l'exemple décrit ici, cette longueur est environ égale au double de la largeur.As the magnets 10 and 12 form zones of magnetic interaction with the magnet 18 of the resonator and they are located alternately on one side and the other of the above-mentioned intermediate geometric circle, they define a sinuous magnetic path (sinusoidal ) with a determined angular period θ P , which corresponds to the angular period of each of the first and second annular tracks 11 and 13. When the resonator is magnetically coupled to the magnetic structure driven in rotation, the magnet 18 oscillates along this path magnetic winding and the angular speed ω of the wheel is defined substantially by the oscillation frequency of the resonator. There is therefore a synchronization between the frequency of the resonator and the frequency of rotation or pulsation of the mobile 8. By synchronization, we understand here a determined and constant relationship between two frequencies. Note the geometric shape of the magnet 18 whose active end part (shown in the Figure 1 ) defines, in axial projection in the general geometric plane of the magnetic structure, a rectangular surface. In other words, this active end part has a general and average external contour or profile, in a plane parallel to that of the magnetic structure, which is substantially rectangular. In this embodiment of the prior art, the length of said rectangular surface is radial while its width, less than the length, is angular relative to the central axis of the annular or tangential magnetic structure relative to the above-mentioned intermediate geometric circle. In the example described here, this length is approximately twice the width.

A la Figure 2 est représentée schématiquement, pour une partie de la structure magnétique 4 et sur une plage radiale correspondant à la largueur des deux pistes magnétiques 11 et 13, l'énergie potentielle magnétique (aussi nommée énergie potentielle d'interaction magnétique) de l'oscillateur 2 qui varie angulairement et radialement. Les courbes de niveaux 22 correspondent à différents niveaux de l'énergie potentielle magnétique. Elles définissent des courbes équipotentielles. L'énergie potentielle magnétique de l'oscillateur en un point donné correspond à un état de l'oscillateur lorsque l'élément de couplage magnétique du résonateur se trouve dans une position donnée (son centre de masse ou géométrique étant situé à ce point donné). Elle est définie à une constante près. En général, l'énergie potentielle magnétique est définie relativement à une énergie de référence qui correspond à l'énergie potentielle minimale de l'oscillateur. En l'absence de force dissipative, cette énergie potentielle correspond au travail nécessaire pour amener l'aimant d'une position d'énergie minimale à une position donnée. Dans le cas de l'oscillateur considéré, ce travail est fourni par le couple moteur appliqué au mobile 8. L'énergie potentielle accumulée dans l'oscillateur est transférée au résonateur lorsque l'organe de couplage du résonateur retourne vers une position d'énergie potentielle moindre, en particulier d'énergie potentielle minimale, par un mouvement radial relativement à l'axe de rotation du mobile (c'est-à-dire selon le degré de liberté du mode de résonance utile). En l'absence de force dissipative, cette énergie potentielle est transformée en énergie cinétique et énergie élastique dans le résonateur par le travail de la force magnétique entre l'élément de couplage du résonateur et la structure magnétique. C'est ainsi que le couple moteur fourni à la roue sert à entretenir l'oscillation du résonateur qui en retour freine la roue en réglant sa vitesse angulaire.To the Figure 2 is shown schematically, for a part of the magnetic structure 4 and over a radial range corresponding to the width of the two magnetic tracks 11 and 13, the magnetic potential energy (also called potential magnetic interaction energy) of the oscillator 2 which varies angularly and radially. The level curves 22 correspond to different levels of the potential magnetic energy. They define equipotential curves. The potential magnetic energy of the oscillator at a given point corresponds to a state of the oscillator when the magnetic coupling element of the resonator is in a given position (its center of mass or geometric being located at this given point) . It is defined to the nearest constant. In general, the magnetic potential energy is defined relative to a reference energy which corresponds to the minimum potential energy of the oscillator. In the absence of dissipative force, this potential energy corresponds to the work necessary to bring the magnet from a position of minimum energy to a given position. In the case of the oscillator considered, this work is provided by the motor torque applied to the mobile 8. The potential energy accumulated in the oscillator is transferred to the resonator when the coupling member of the resonator returns to an energy position lower potential, in particular minimum potential energy, by a radial movement relative to the axis of rotation of the mobile (that is to say according to the degree of freedom of the useful resonance mode). In the absence of dissipative force, this potential energy is transformed into kinetic energy and elastic energy in the resonator by the work of the magnetic force between the coupling element of the resonator and the magnetic structure. This is how the motor torque supplied to the wheel is used maintain the oscillation of the resonator which in turn brakes the wheel by adjusting its angular speed.

La piste annulaire extérieure 11 définit une alternance de zones d'énergie potentielle basse 24 et de zones d'énergie potentielle haute 26 alors que la piste annulaire intérieure 13 définit, avec un décalage angulaire d'une demi-période angulaire θP/2 relativement à la première piste (c'est-à-dire un déphasage de 180°), une alternance de zones d'énergie potentielle basse 28 et de zones d'énergie potentielle haute 30. Le tracé 32 donne la position du centre de l'aimant 18 lorsque l'oscillateur 2 est excité et que le mobile 8 est donc entraîné en rotation avec un certain couple moteur. Ce tracé est une représentation de l'oscillation de l'aimant du résonateur 6 dans un référentiel lié au mobile. Comme cet aimant est en répulsion des aimants de la structure magnétique 4, les zones d'énergie potentielle basse correspondent aux zones entre les aimants de la structure magnétique alors que les zones d'énergie potentielle haute correspondent aux zones de ces aimants, c'est-à-dire aux situations où l'aimant 18 est au moins partiellement superposé aux aimants de la structure magnétique. On notera que dans le cas où les aimants sont agencés en attraction, alternativement dans le cas où la structure magnétique ou l'organe de couplage du résonateur est en matériau ferromagnétique, on a une inversion spatiale entre les zones d'énergie potentielle basse et les zones d'énergie potentielle haute relativement au cas des aimants en répulsion.The outer annular track 11 defines an alternation of low potential energy zones 24 and high potential energy zones 26 while the inner annular track 13 defines, with an angular offset of an angular half-period θ P / 2 relatively at the first track (that is to say a phase shift of 180 °), an alternation of low potential energy zones 28 and high potential energy zones 30. The layout 32 gives the position of the center of the magnet 18 when the oscillator 2 is energized and the mobile 8 is therefore driven in rotation with a certain motor torque. This line is a representation of the oscillation of the magnet of the resonator 6 in a frame of reference linked to the mobile. As this magnet repels the magnets of the magnetic structure 4, the areas of low potential energy correspond to the areas between the magnets of the magnetic structure while the areas of high potential energy correspond to the areas of these magnets, ie in situations where the magnet 18 is at least partially superimposed on the magnets of the magnetic structure. It will be noted that in the case where the magnets are arranged in attraction, alternatively in the case where the magnetic structure or the coupling member of the resonator is made of ferromagnetic material, there is a spatial inversion between the zones of low potential energy and the high potential energy zones relative to the case of repellant magnets.

En observant les courbes de niveau 22 de l'énergie potentielle magnétique et l'oscillation 32, on remarque que l'oscillateur accumule de l'énergie potentielle magnétique à chaque alternance de l'oscillation essentiellement lorsque l'aimant 18 a atteint son amplitude maximale et qu'il commence à revenir vers sa position zéro. On remarque également que l'énergie potentielle de l'oscillateur diminue sur une grande partie de chaque alternance. La force F exercée sur l'aimant du résonateur est donnée par le gradient de l'énergie potentielle magnétique, lequel est perpendiculaire aux courbes de niveaux 22. La composante angulaire (degré de liberté de la structure magnétique) travaille par réaction sur la roue alors que la composante radiale (degré de liberté du résonateur) travaille sur l'organe de couplage du résonateur. La force angulaire correspond en moyenne à une force de freinage du mobile car la force de réaction angulaire s'oppose majoritairement au sens de rotation de ce mobile sur une période d'oscillation. La force radiale correspond à une force de poussée sur la structure oscillante du résonateur. On observe que la force F (voir Figure 2) a une composante radiale sur une distance importante entre les extrema de l'oscillation 32. Une force de poussée agit donc sur l'aimant du résonateur dans la majeure partie de chaque alternance.By observing the level curves 22 of the magnetic potential energy and the oscillation 32, it is noted that the oscillator accumulates magnetic potential energy at each alternation of the oscillation essentially when the magnet 18 has reached its maximum amplitude. and it begins to return to its zero position. We also note that the potential energy of the oscillator decreases over a large part of each half-wave. The force F exerted on the magnet of the resonator is given by the gradient of the potential magnetic energy, which is perpendicular to the level curves 22. The angular component (degree of freedom of the magnetic structure) works by reaction on the wheel while the radial component (degree of freedom of the resonator) works on the coupling member of the resonator. The angular force corresponds on average to a braking force of the mobile because the angular reaction force mainly opposes the direction of rotation of this mobile over a period of oscillation. The radial force corresponds to a pushing force on the oscillating structure of the resonator. We observe that the force F (see Figure 2 ) has a radial component over a significant distance between the extremes of oscillation 32. A thrust force therefore acts on the magnet of the resonator in most of each half-wave.

Lorsqu'on analyse les courbes d'énergie potentielle 22 et qu'on étudie le comportement de l'oscillateur considéré ici en fonction du couple moteur appliqué à la roue, on observe au moins deux inconvénients majeurs d'un tel dispositif régulateur. Premièrement, la plage de valeurs pour le couple moteur est réduite et deuxièmement le dispositif régulateur présente un anisochronisme important. Cet anisochronisme est dans l'art antérieur si important qu'il n'est pas possible de produire un mouvement horloger ayant une plage de fonctionnement convenable, c'est-à-dire avec une précision acceptable.When analyzing the potential energy curves 22 and studying the behavior of the oscillator considered here as a function of the motor torque applied to the wheel, there are at least two major drawbacks of such a regulating device. Firstly, the range of values for the motor torque is reduced and secondly the regulating device exhibits significant anisochronism. This anisochronism is in the prior art so important that it is not possible to produce a timepiece movement having a suitable operating range, that is to say with acceptable precision.

Résumé de l'inventionSummary of the invention

Dans le cadre de la présente invention, après avoir constaté les problèmes d'anisochronisme et de plage de fonctionnement limitée dans les dispositifs régulateurs connus mentionnés précédemment, les inventeurs se sont donnés pour objectif d'en comprendre les raisons et d'apporter une solution à ces problèmes.In the context of the present invention, after having noted the problems of anisochronism and limited operating range in the known regulating devices mentioned above, the inventors have given themselves the objective of understanding the reasons and providing a solution to these problems.

Les réflexions quant aux problèmes de l'art antérieur et diverses recherches effectuées ont permis de cerner des causes à ces problèmes. Le problème d'anisochronisme et également celui de la plage utile du couple moteur limitée sont dus en particulier au fait qu'une force de poussée s'exerce sur l'aimant du résonateur sur une distance radiale relativement importante entre les positions correspondant aux extrema de son oscillation. Ainsi, le résonateur est perturbé car une force de poussée est appliquée sur son organe oscillant hors d'une zone localisée autour de sa position zéro (position de repos correspondant à une énergie élastique minimale, généralement nulle, dans le résonateur). En effet, seules des impulsions localisées à l'endroit de position zéro de l'organe oscillant ne perturbent quasi pas l'oscillateur. Les inventeurs ont ainsi constaté qu'une force de poussée sur un chemin relativement étendu hors d'une zone localisée autour de la position zéro perturbe l'oscillateur ; ce qui varie sa fréquence en fonction du couple fourni, et ainsi de l'amplitude d'oscillation, et est donc source d'anisochronisme.Reflections on the problems of the prior art and various researches have made it possible to identify the causes of these problems. The problem of anisochronism and also that of the useful range of the limited engine torque are due in particular to the fact that a thrust force is exerted on the magnet of the resonator over a relatively large radial distance between the positions corresponding to the extremes of its oscillation. Thus, the resonator is disturbed because a pushing force is applied to its oscillating member outside a zone located around its zero position (rest position corresponding to a minimum elastic energy, generally zero, in the resonator). In fact, only pulses located at the position of zero position of the oscillating member hardly disturb the oscillator. The inventors have thus found that a pushing force on a relatively extended path outside of a zone located around the zero position disturbs the oscillator; which varies its frequency as a function of the torque supplied, and thus of the amplitude of oscillation, and is therefore a source of anisochronism.

Pour résoudre le problème d'anisochronisme identifié tout en permettant un fonctionnement efficace et stable de l'oscillateur sur une plage de couple relativement importante, la présente invention propose un dispositif régulateur de la vitesse angulaire relative entre une structure magnétique et un résonateur, couplés magnétiquement de manière à définir ensemble un oscillateur formant ce dispositif régulateur, tel que défini à la revendication 1 pour un premier mode de réalisation principal et à la revendication 11 pour un second mode de réalisation principal.To resolve the anisochronism problem identified while allowing efficient and stable operation of the oscillator over a relatively large torque range, the present invention provides a device for regulating the relative angular speed between a magnetic structure and a resonator, magnetically coupled so as to define together an oscillator forming this regulating device, as defined in claim 1 for a first main embodiment and in claim 11 for a second main embodiment.

De manière générale, selon un premier mode de réalisation principal, le dispositif régulateur selon l'invention détermine la vitesse angulaire relative entre une structure magnétique et un résonateur couplés magnétiquement de manière à définir ensemble un oscillateur formant ce dispositif régulateur, la structure magnétique comprenant au moins une piste magnétique annulaire centrée sur l'axe de rotation de cette structure magnétique ou du résonateur. La structure magnétique et le résonateur sont agencés pour subir une rotation l'un relativement à l'autre autour de l'axe de rotation lorsqu'un couple moteur est appliqué à la structure magnétique ou au résonateur. Le résonateur comprend au moins un élément de couplage magnétique à la piste magnétique annulaire, cet élément de couplage présentant une partie d'extrémité active formée d'un premier matériau magnétique et située du côté de cette piste magnétique, cette dernière étant formée au moins partiellement d'un deuxième matériau magnétique agencé de sorte que l'énergie potentielle magnétique de l'oscillateur varie angulairement de manière périodique le long de la piste magnétique, définissant ainsi une période angulaire (θP) de cette piste magnétique, et qu'il définisse magnétiquement des premières zones et des deuxièmes zones angulairement alternées avec une première zone et une deuxième zone adjacente dans chaque période angulaire.In general, according to a first main embodiment, the regulating device according to the invention determines the relative angular speed between a magnetic structure and a resonator magnetically coupled so as to define together an oscillator forming this regulating device, the magnetic structure comprising at minus an annular magnetic track centered on the axis of rotation of this magnetic structure or of the resonator. The magnetic structure and the resonator are arranged to rotate relative to each other about the axis of rotation when a driving torque is applied to the structure magnetic or resonator. The resonator comprises at least one magnetic coupling element to the annular magnetic track, this coupling element having an active end part formed of a first magnetic material and situated on the side of this magnetic track, the latter being formed at least partially. of a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along the magnetic track, thus defining an angular period (θ P ) of this magnetic track, and that it defines magnetically first zones and second zones angularly alternated with a first zone and a second adjacent zone in each angular period.

Chaque deuxième zone engendre, relativement à une première zone adjacente, une force de répulsion supérieure ou une force d'attraction inférieure pour une même zone quelconque de ladite partie d'extrémité active lorsque cette même zone quelconque est superposée, en projection orthogonale à une surface géométrique générale dans laquelle s'étend la piste magnétique annulaire, à cette deuxième zone, respectivement à cette première zone adjacente. L'élément de couplage magnétique est couplé magnétiquement à la piste magnétique de manière qu'une oscillation selon un degré de liberté d'un mode de résonnance du résonateur est entretenue dans une plage utile du couple moteur appliqué à la structure magnétique ou au résonateur et qu'une période de cette oscillation intervienne lors de ladite rotation relative dans chaque période angulaire de la piste magnétique annulaire, la fréquence de l'oscillation déterminant ainsi la vitesse angulaire relative. Le degré de liberté définit un axe d'oscillation de la partie d'extrémité active passant par son centre de masse.Each second zone generates, relative to a first adjacent zone, a higher repulsion force or a lower attraction force for any one zone of said active end portion when this same any zone is superimposed, in projection orthogonal to a surface. general geometry in which the annular magnetic track extends, to this second zone, respectively to this first adjacent zone. The magnetic coupling element is magnetically coupled to the magnetic track so that an oscillation according to a degree of freedom of a resonance mode of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator and that a period of this oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of the oscillation thus determining the relative angular speed. The degree of freedom defines an axis of oscillation of the active end part passing through its center of mass.

Le résonateur est agencé relativement à la structure magnétique de manière que la partie d'extrémité active est au moins en majeure partie superposée, en projection orthogonale à la surface géométrique générale, à cette piste magnétique annulaire durant sensiblement une première alternance dans chaque période de ladite oscillation, et de manière que le trajet de l'élément de couplage magnétique lors de cette première alternance est sensiblement parallèle à la surface géométrique générale. La piste magnétique annulaire présente dans cette surface géométrique générale une dimension selon la projection orthogonale de l'axe d'oscillation qui est supérieure à la dimension de la partie d'extrémité active selon cet axe d'oscillation. On notera que l'axe d'oscillation peut être rectiligne ou curviligne.The resonator is arranged relative to the magnetic structure so that the active end part is at least for the most part superimposed, in projection orthogonal to the general geometric surface, to this annular magnetic track during substantially a first alternation in each period of said oscillation, and so that the path of the magnetic coupling element during this first alternation is substantially parallel to the general geometric surface. The annular magnetic track has in this general geometric surface a dimension according to the orthogonal projection of the axis of oscillation which is greater than the dimension of the active end part along this axis of oscillation. Note that the axis of oscillation can be straight or curvilinear.

Le dispositif régulateur selon le premier mode de réalisation principal se distingue particulièrement par la combinaison des caractéristiques suivantes :

  • chacune des deuxièmes zones présente, en projection orthogonale dans la surface géométrique générale de la piste magnétique annulaire, un contour général avec une première portion, définissant une ligne de pénétration au-dessus de cette deuxième zone pour la partie d'extrémité active de l'élément de couplage magnétique lors de ladite oscillation, et une deuxième portion définissant une ligne de sortie de dessus cette deuxième zone pour cette partie d'extrémité active lors de cette oscillation;
  • la ligne de sortie est orientée sensiblement selon une direction angulaire parallèle à un cercle de position zéro centré sur l'axe de rotation et passant par la projection orthogonale, dans la surface géométrique générale, du centre de masse de la partie d'extrémité active dans la position de repos de l'élément de couplage;
  • la structure magnétique définit en outre pour la partie d'extrémité active au moins une zone de sortie qui s'étend dans la surface géométrique générale, cette au moins une zone de sortie recevant, en projection orthogonale à cette surface géométrique générale, au moins la majeure partie de la partie d'extrémité active lorsqu'elle sort, lors de ladite oscillation, successivement de la piste magnétique annulaire par les lignes de sortie respectives des deuxièmes zones, cette au moins une zone de sortie engendrant, relativement aux deuxièmes zones, une force de répulsion inférieure ou une force d'attraction supérieure pour une même zone quelconque de la partie d'extrémité active lorsque cette même zone quelconque est superposée, en projection orthogonale à la surface géométrique générale, à cette au moins une zone de sortie, respectivement à ces deuxièmes zones;
  • la partie d'extrémité active de l'élément de couplage dans sa position de repos a, en projection orthogonale dans la surface géométrique générale, une première dimension, selon un axe perpendiculaire au cercle de position zéro et passant par la projection orthogonale du centre de masse de cette partie d'extrémité active, et une deuxième dimension, selon un deuxième axe défini par le cercle de position zéro, qui est supérieure à cette première dimension; et
  • la ligne de sortie de chacune des deuxièmes zones a une longueur, le long de ladite au moins une zone de sortie et selon ledit deuxième axe, qui est supérieure à la première dimension de la partie d'extrémité active.
The regulating device according to the first main embodiment is particularly distinguished by the combination of the following characteristics:
  • each of the second zones has, in orthogonal projection in the general geometric surface of the annular magnetic track, a general contour with a first portion, defining a line of penetration above this second zone for the active end part of the magnetic coupling element during said oscillation, and a second portion defining an exit line from above this second zone for this end portion active during this oscillation;
  • the output line is oriented substantially in an angular direction parallel to a zero position circle centered on the axis of rotation and passing through the orthogonal projection, in the general geometric surface, of the center of mass of the active end part in the rest position of the coupling element;
  • the magnetic structure further defines for the active end part at least one exit zone which extends into the general geometric surface, this at least one exit zone receiving, in projection orthogonal to this general geometric surface, at least the major part of the active end part when it leaves, during said oscillation, successively from the annular magnetic track by the respective exit lines of the second zones, this at least one exit zone generating, relatively to the second zones, a repelling force lower or a higher attractive force for any same area of the active end part when this same any area is superimposed, in projection orthogonal to the general geometric surface, to this at least one exit area, respectively to these second zones;
  • the active end part of the coupling element in its rest position has, in orthogonal projection in the general geometric surface, a first dimension, along an axis perpendicular to the circle of zero position and passing through the orthogonal projection of the center of mass of this active end part, and a second dimension, along a second axis defined by the zero position circle, which is greater than this first dimension; and
  • the exit line of each of the second zones has a length, along said at least one exit zone and along said second axis, which is greater than the first dimension of the active end part.

On notera que les premières zones dans un couplage magnétique en répulsion ou les deuxièmes zones dans un couplage magnétique en attraction peuvent être formées par un matériau non magnétique ou de l'air. On comprend par 'matériau magnétique' un matériau ayant une propriété magnétique générant un champ magnétique externe (aimant) ou un bon conducteur du flux magnétique (en particulier un matériau ayant une haute perméabilité magnétique, par exemple un matériau ferromagnétique). Par 'partie d'extrémité active', on comprend la partie d'extrémité de l'élément de couplage, située du côté de la structure magnétique considérée, au travers de laquelle passe l'essentiel du flux magnétique de couplage entre cet élément de couplage et la structure magnétique.It will be noted that the first zones in a magnetic coupling in repulsion or the second zones in a magnetic coupling in attraction can be formed by a non-magnetic material or air. The term “magnetic material” is understood to mean a material having a magnetic property generating an external magnetic field (magnet) or a good conductor of the magnetic flux (in particular a material having a high magnetic permeability, for example a ferromagnetic material). By 'active end part' is understood the end part of the coupling element, situated on the side of the magnetic structure considered, through which passes the essential part of the magnetic coupling flux between this coupling element. and the magnetic structure.

Selon une première variante, la deuxième dimension de la partie d'extrémité active est au moins deux fois plus grande que sa première dimension. Selon une deuxième variante, la dimension de chacune des deuxièmes zones, selon un axe perpendiculaire audit cercle de position zéro à un point milieu de sa ligne de sortie, est au moins trois fois plus grande que la première dimension de la partie d'extrémité active. Selon une variante préférée, la ligne de sortie de chaque deuxième zone est sensiblement confondue avec le cercle de position zéro.According to a first variant, the second dimension of the active end part is at least twice as large as its first dimension. According to a second variant, the dimension of each of the second zones, along an axis perpendicular to said position circle zero at a midpoint of its exit line, is at least three times larger than the first dimension of the active end portion. According to a preferred variant, the output line of each second zone is substantially coincident with the zero position circle.

Lorsqu'il est indiqué une projection dans une surface, une superposition (en particulier 'dessus', 'dessous', 'en face' ou 'en regard') ou l'expression 'en projection' ou 'en projection orthogonale', on comprend respectivement une projection orthogonale dans la surface en question, une superposition en projection orthogonale à une surface géométrique considérée dans le contexte ou mentionnée précédemment, ou 'en projection orthogonale à une telle surface géométrique'. Ceci est à prendre en considération dans la suite de la présente description et en particulier dans les revendications.When a projection into a surface is indicated, a superposition (in particular 'above', 'below', 'in front' or 'facing') or the expression 'in projection' or 'in orthogonal projection', we comprises respectively an orthogonal projection in the surface in question, a superposition in orthogonal projection on a geometric surface considered in the context or mentioned previously, or 'in orthogonal projection to such a geometric surface'. This is to be taken into account in the remainder of the present description and in particular in the claims.

L'invention concerne également, selon un deuxième mode de réalisation principal, un dispositif régulateur qui détermine la vitesse angulaire relative entre une structure magnétique et un résonateur couplés magnétiquement de manière à définir ensemble un oscillateur formant ce dispositif régulateur, la structure magnétique comprenant au moins une piste magnétique annulaire centrée sur un axe de rotation de cette structure magnétique ou du résonateur, la structure magnétique et le résonateur étant agencés pour subir une rotation l'un relativement à l'autre autour dudit axe de rotation lorsqu'un couple moteur est appliqué à la structure magnétique ou au résonateur. Le résonateur comprend au moins un élément de couplage magnétique à la piste magnétique annulaire, cet élément de couplage présentant une partie d'extrémité active formée d'un premier matériau magnétique et située du côté de la piste magnétique annulaire. Cette piste magnétique annulaire est formée au moins partiellement d'un deuxième matériau magnétique agencé de sorte que l'énergie potentielle magnétique de l'oscillateur varie angulairement de manière périodique le long de la piste magnétique annulaire, définissant ainsi une période angulaire (θP) de cette piste magnétique annulaire. L'élément de couplage magnétique est couplé magnétiquement à la piste magnétique annulaire de manière qu'une oscillation selon un degré de liberté d'un mode de résonnance du résonateur est entretenue dans une plage utile du couple moteur appliqué à la structure magnétique ou au résonateur et qu'une période de cette oscillation intervienne lors de ladite rotation relative dans chaque période angulaire de la piste magnétique annulaire, la fréquence de l'oscillation déterminant ainsi la vitesse angulaire relative. Le degré de liberté définit un axe d'oscillation de la partie d'extrémité active passant par son centre de masse.The invention also relates, according to a second main embodiment, a regulating device which determines the relative angular speed between a magnetic structure and a magnetically coupled resonator so as to define together an oscillator forming this regulating device, the magnetic structure comprising at least an annular magnetic track centered on an axis of rotation of this magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to undergo rotation relative to each other about said axis of rotation when a driving torque is applied to the magnetic structure or to the resonator. The resonator comprises at least one magnetic coupling element to the annular magnetic track, this coupling element having an active end part formed from a first magnetic material and situated on the side of the annular magnetic track. This annular magnetic track is formed at least partially from a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along the annular magnetic track, defining thus an angular period (θ P ) of this annular magnetic track. The magnetic coupling element is magnetically coupled to the annular magnetic track so that an oscillation according to a degree of freedom of a resonator resonance mode is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator. and that a period of this oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of the oscillation thus determining the relative angular speed. The degree of freedom defines an axis of oscillation of the active end part passing through its center of mass.

Le dispositif régulateur selon le deuxième mode de réalisation principal se distingue particulièrement par la combinaison des caractéristiques suivantes :

  • le deuxième matériau magnétique est agencé le long de la piste magnétique annulaire de sorte qu'il définisse magnétiquement des premières zones et des deuxièmes zones angulairement alternées avec une première zone et une deuxième zone adjacente dans chaque période angulaire;
  • dans la plage utile du couple moteur, la partie d'extrémité active de l'élément de couplage magnétique définit magnétiquement, dans une surface géométrique générale dans laquelle s'étend globalement cette partie d'extrémité active et comprenant l'axe d'oscillation, premièrement une zone d'entrée successivement pour les deuxièmes zones en projection orthogonale à la surface géométrique générale, ensuite une zone d'accumulation d'énergie potentielle magnétique dans l'oscillateur, laquelle est angulairement adjacente à la zone d'entrée et dans laquelle pénètre en projection orthogonale au moins partiellement chaque deuxième zone depuis cette zone d'entrée, et finalement une zone de sortie adjacente à la zone d'accumulation d'énergie potentielle magnétique, cette zone de sortie recevant en projection orthogonale au moins la majeure partie de chaque deuxième zone sortant de cette zone d'accumulation ou d'une deuxième zone suivante;
  • chaque deuxième zone engendre par unité de longueur angulaire, relativement à une première zone adjacente, une force de répulsion supérieure pour la zone d'accumulation d'énergie potentielle magnétique ou une force d'attraction supérieure pour la zone d'entrée et la zone de sortie;
  • la zone d'accumulation d'énergie potentielle magnétique engendre, relativement à la zone d'entrée et la zone de sortie, une force de répulsion supérieure ou une force d'attraction inférieure pour une même zone quelconque de chaque deuxième zone lorsque cette même zone quelconque est superposée à cette zone d'accumulation d'énergie potentielle magnétique, respectivement à la zone d'entrée ou à la zone de sortie;
  • la piste magnétique annulaire présente, en projection orthogonale dans la surface géométrique générale, une dimension selon l'axe d'oscillation qui est inférieure à la dimension selon cet axe d'oscillation de la partie d'extrémité active;
  • le résonateur est agencé relativement à la structure magnétique de manière que la zone d'accumulation d'énergie potentielle magnétique est traversée en projection orthogonale par un cercle géométrique médian, passant par le milieu de la piste magnétique annulaire, durant sensiblement une alternance donnée dans chaque période de ladite oscillation;
  • la zone d'accumulation d'énergie potentielle magnétique présente un contour général avec une première portion, définissant une ligne de pénétration sous cette zone d'accumulation successivement pour chacune des deuxièmes zones lors de ladite oscillation, et une deuxième portion définissant une ligne de sortie de dessous cette zone d'accumulation pour cette deuxième zone ou une deuxième zone suivante lors de cette oscillation;
  • la ligne de sortie est orientée, lorsque l'élément de couplage magnétique est dans sa position de repos, sensiblement selon une direction angulaire parallèle à la projection orthogonale du cercle géométrique médian de la piste magnétique annulaire;
  • chacune des deuxièmes zones a en projection orthogonal, lorsque le centre de cette deuxième zone est superposé à l'axe d'oscillation, une première dimension, selon un premier axe perpendiculaire à la projection orthogonale du cercle géométrique médian et passant par le point d'intersection de cette projection orthogonale du cercle géométrique médian avec l'axe d'oscillation, et une deuxième dimension, selon un deuxième axe perpendiculaire au premier axe et passant par le point d'intersection susmentionné, qui est supérieure à la première dimension; et
  • lorsque l'élément de couplage magnétique est dans sa position de repos, la ligne de sortie a une longueur, le long de la zone de sortie et selon le deuxième axe susmentionné, qui est supérieure à la première dimension des deuxièmes zones.
The regulating device according to the second main embodiment is particularly distinguished by the combination of the following characteristics:
  • the second magnetic material is arranged along the annular magnetic track so that it magnetically defines first zones and second zones angularly alternated with a first zone and a second adjacent zone in each angular period;
  • in the useful range of the motor torque, the active end part of the magnetic coupling element defines magnetically, in a general geometric surface in which this active end part generally extends and comprising the axis of oscillation, first an entry zone successively for the second zones in orthogonal projection to the general geometric surface, then a zone of accumulation of potential magnetic energy in the oscillator, which is angularly adjacent to the entry zone and into which penetrates in orthogonal projection at least partially each second zone from this entry zone, and finally an exit zone adjacent to the zone of accumulation of potential magnetic energy, this exit zone receiving in orthogonal projection at least the major part of each second zone leaving this accumulation zone or a second second zone;
  • each second zone generates, per unit of angular length, relative to a first adjacent zone, a greater repulsion force for the zone of accumulation of potential magnetic energy or a greater attraction force for the entry zone and the zone of exit;
  • the magnetic potential energy accumulation zone generates, relative to the entry zone and the exit zone, a higher repulsion force or a lower attraction force for any same zone of each second zone when this same zone any one is superimposed on this magnetic potential energy accumulation zone, respectively on the entry zone or on the exit zone;
  • the annular magnetic track has, in orthogonal projection in the general geometric surface, a dimension along the axis of oscillation which is less than the dimension along this axis of oscillation of the active end part;
  • the resonator is arranged relative to the magnetic structure so that the zone of accumulation of potential magnetic energy is crossed in orthogonal projection by a median geometrical circle, passing through the middle of the annular magnetic track, during substantially a given alternation in each period of said oscillation;
  • the magnetic potential energy accumulation zone has a general outline with a first portion, defining a penetration line under this accumulation zone successively for each of the second zones during said oscillation, and a second portion defining an exit line from below this accumulation zone for this second zone or a second second zone during this oscillation;
  • the output line is oriented, when the magnetic coupling element is in its rest position, substantially in one direction angular parallel to the orthogonal projection of the median geometric circle of the annular magnetic track;
  • each of the second zones has in orthogonal projection, when the center of this second zone is superimposed on the axis of oscillation, a first dimension, along a first axis perpendicular to the orthogonal projection of the median geometric circle and passing through the point of intersection of this orthogonal projection of the median geometric circle with the axis of oscillation, and a second dimension, along a second axis perpendicular to the first axis and passing through the aforementioned point of intersection, which is greater than the first dimension; and
  • when the magnetic coupling element is in its rest position, the exit line has a length, along the exit zone and along the second axis mentioned above, which is greater than the first dimension of the second zones.

On notera que soit la zone d'accumulation d'énergie potentielle magnétique dans un couplage magnétique en attraction, soit la zone d'entrée et la zone de sortie dans un couplage magnétique en répulsion peuvent être définies par un matériau non magnétique solidaire de l'élément de couplage ou correspondre à des régions avec de l'air à la périphérie de la partie d'extrémité active de l'élément de couplage. Ensuite, on notera également que les premières zones (couplage en répulsion)ou les deuxièmes zones (couplage en attraction) peuvent être formées par un matériau non magnétique ou de l'air.It will be noted that either the zone of accumulation of potential magnetic energy in a magnetic coupling in attraction, or the zone of entry and the exit zone in a magnetic coupling in repulsion can be defined by a nonmagnetic material integral with the coupling element or correspond to regions with air at the periphery of the active end portion of the coupling element. Next, it will also be noted that the first zones (repulsion coupling) or the second zones (attraction coupling) can be formed by a non-magnetic material or air.

On comprend par 'contour général d'une zone', lorsque cette zone est entièrement délimitée, une ligne moyenne définissant le profil général de son pourtour ou, lorsque cette zone est ouverte et donc que partiellement délimitée, une ligne moyenne définissant le profil général de la limite de cette zone relativement à l'élément de couplage magnétique considéré.We understand by 'general outline of a zone', when this zone is entirely delimited, an average line defining the general profile of its periphery or, when this zone is open and therefore only partially delimited, an average line defining the general profile of the limit of this zone relative to the magnetic coupling element considered.

Selon une variante préférée, la ligne de sortie de la zone d'accumulation d'énergie potentielle magnétique est sensiblement confondue, en projection orthogonale à la surface géométrique générale, avec le cercle géométrique médian lorsque l'élément de couplage est dans sa position de repos.According to a preferred variant, the exit line from the magnetic potential energy accumulation zone is substantially combined, in orthogonal projection to the general geometric surface, with the median geometric circle when the coupling element is in its rest position.

Selon une première variante, la deuxième dimension de chaque deuxième zone est au moins deux fois plus grande que sa première dimension. Selon une deuxième variante, la longueur de la ligne de pénétration de la zone d'accumulation d'énergie potentielle magnétique le long de l'axe d'oscillation est au moins cinq fois plus grande que la dimension de la piste magnétique annulaire le long de cet axe d'oscillation en projection orthogonale dans la surface géométrique générale.According to a first variant, the second dimension of each second zone is at least twice as large as its first dimension. According to a second variant, the length of the penetration line of the zone of accumulation of potential magnetic energy along the axis of oscillation is at least five times greater than the dimension of the annular magnetic track along this axis of oscillation in orthogonal projection in the general geometric surface.

Selon une première variante principale, la surface géométrique générale est un plan perpendiculaire à l'axe de rotation, le degré de liberté étant sensiblement parallèle à ce plan. Selon une deuxième variante principale, la surface géométrique générale est une surface cylindrique ayant comme axe central l'axe de rotation, le degré de liberté étant sensiblement orienté selon cet axe de rotation.According to a first main variant, the general geometric surface is a plane perpendicular to the axis of rotation, the degree of freedom being substantially parallel to this plane. According to a second main variant, the general geometric surface is a cylindrical surface having as its central axis the axis of rotation, the degree of freedom being substantially oriented along this axis of rotation.

Selon un mode de réalisation particulier, le dispositif régulateur forme un oscillateur avec un échappement à cylindre du type magnétique. De manière générale, ce dispositif régulateur est caractérisé en ce qu'une partie d'extrémité active de l'élément de couplage est formée sensiblement par une section de tube cylindrique tronquée et ayant un axe central confondu avec un axe de rotation du résonateur, le degré de liberté de ce dernier étant angulaire et l'axe d'oscillation circulaire. Cette section de tube cylindrique tronquée définit dans la surface géométrique générale une surface annulaire tronquée, correspondant à ladite zone d'accumulation d'énergie potentielle magnétique successivement dans les deux alternances de chaque période d'oscillation. Cette surface annulaire tronquée présente une première extrémité et une deuxième extrémité, ainsi qu'un contour extérieur définissant une première ligne de pénétration circulaire et un contour intérieur définissant une deuxième ligne de pénétration circulaire. La première extrémité définit une première ligne de sortie, et la deuxième extrémité définit une deuxième ligne de sortie ayant des caractéristiques similaires à la première ligne de sortie. Le contour extérieur est associé à la première ligne de sortie dans une première alternance des périodes d'oscillation du résonateur pour assurer successivement le couplage magnétique avec les deuxièmes zones de la piste magnétique et engendrer une première impulsion à la fin de chaque première alternance, alors que le contour intérieur est associé à la deuxième ligne de sortie pour assurer successivement le couplage magnétique avec ces deuxièmes zones dans la deuxième alternance des périodes d'oscillation et engendrer une deuxième impulsion à la fin de chaque deuxième alternance.According to a particular embodiment, the regulating device forms an oscillator with an escapement with a cylinder of the magnetic type. In general, this regulating device is characterized in that an active end part of the coupling element is formed substantially by a section of truncated cylindrical tube and having a central axis coincident with an axis of rotation of the resonator, the degree of freedom of the latter being angular and the axis of circular oscillation. This section of truncated cylindrical tube defines in the general geometrical surface a truncated annular surface, corresponding to said zone of accumulation of potential magnetic energy successively in the two half-waves of each period of oscillation. This truncated annular surface has a first end and a second end, as well as an exterior contour defining a first circular penetration line and an interior contour defining a second circular penetration line. The first end defines a first output line, and the second end defines a second output line having characteristics similar to the first output line. The outer contour is associated with the first output line in a first alternation of the oscillation periods of the resonator to successively ensure magnetic coupling with the second zones of the magnetic track and generate a first pulse at the end of each first alternation, then that the interior contour is associated with the second output line to successively ensure magnetic coupling with these second zones in the second half-wave of the oscillation periods and generate a second pulse at the end of each second half-wave.

D'autres caractéristiques particulières de l'invention seront exposées ci-après dans la description détaillée de divers modes de réalisation et de variantes de l'invention.Other particular features of the invention will be set out below in the detailed description of various embodiments and variants of the invention.

Brève description des dessinsBrief description of the drawings

L'invention sera décrite ci-après à l'aide de dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

  • La Figure 1, déjà décrite, est une vue en plan d'un oscillateur horloger de l'art antérieur;
  • La Figure 2, déjà décrite, représente l'énergie potentielle magnétique dans l'oscillateur de la Figure 1;
  • Les Figures 3 et 3A sont des vues schématiques en plan d'un premier mode de réalisation principal de l'invention;
  • Les Figures 5 et 5A sont des vues schématiques en plan d'une première variante du premier mode de réalisation principal;
  • La Figure 7 est une vue schématique en plan d'un deuxième mode de réalisation principal de l'invention;
  • Les Figures 4, 6 et 8 représentent l'énergie potentielle magnétique respectivement dans les oscillateurs des Figures 3, 5 et 7;
  • La Figure 9 est une représentation simplifiée de l'oscillateur de la Figure 7, pour l'exposé du fonctionnement du deuxième mode de réalisation principal;
  • La Figure 10 montre une succession de positions relatives entre le résonateur et une piste magnétique annulaire au cours d'une période d'oscillation pour l'oscillateur de la Figure 7;
  • Les Figures 11 et 11A montrent une première variante du deuxième mode de réalisation principal avec un couplage magnétique en attraction;
  • La Figure 12 montre partiellement une deuxième variante du deuxième mode de réalisation principal, et la Figure 12A donne une alternative simplifiée;
  • La Figure 13 montre partiellement une troisième variante du deuxième mode de réalisation principal;
  • La Figure 14 montre schématiquement une alternative à la Figure 13 avec un résonateur du type balancier-spiral;
  • La Figure 15 montre schématiquement un troisième mode de réalisation de l'invention;
  • La Figure 16 montre schématiquement un quatrième mode de réalisation de l'invention;
  • La Figure 17 montre schématiquement un cinquième mode de réalisation de l'invention;
  • La Figure 18 est une vue en coupe de la Figure 17;
  • La Figure 19 montre schématiquement un sixième mode de réalisation de l'invention;
  • La Figure 20 est une vue en coupe de la Figure 19;
  • La Figure 21 montre schématiquement un septième mode de réalisation de l'invention;
  • La Figure 22 montre schématiquement une alternative à la Figure 21 dans une configuration correspondant au deuxième mode de réalisation principal;
  • Les Figures 23 montre schématiquement un huitième mode de réalisation de l'invention;
  • La Figure 24 montre schématiquement un neuvième mode de réalisation de l'invention;
  • Les Figures 25A à 25D montre schématiquement un dixième mode de réalisation de l'invention dans respectivement quatre positions relatives différentes du résonateur et de la roue d'échappement;
  • La Figure 26 est une variante avantageuse du dixième mode de réalisation;
  • La Figure 27 montre schématiquement un onzième mode de réalisation de l'invention.
The invention will be described below with the aid of appended drawings, given by way of nonlimiting examples, in which:
  • The Figure 1 , already described, is a plan view of a horological oscillator of the prior art;
  • The Figure 2 , already described, represents the potential magnetic energy in the oscillator of the Figure 1 ;
  • The Figures 3 and 3A are schematic plan views of a first main embodiment of the invention;
  • The Figures 5 and 5A are schematic plan views of a first variant of the first main embodiment;
  • The Figure 7 is a schematic plan view of a second main embodiment of the invention;
  • The Figures 4 , 6 and 8 represent the magnetic potential energy respectively in the oscillators of Figures 3 , 5 and 7 ;
  • The Figure 9 is a simplified representation of the oscillator of the Figure 7 , for the presentation of the operation of the second main embodiment;
  • The Figure 10 shows a succession of relative positions between the resonator and an annular magnetic track during a period of oscillation for the oscillator of the Figure 7 ;
  • The Figures 11 and 11A show a first variant of the second main embodiment with magnetic coupling in attraction;
  • The Figure 12 partially shows a second variant of the second main embodiment, and the Figure 12A gives a simplified alternative;
  • The Figure 13 partially shows a third variant of the second main embodiment;
  • The Figure 14 schematically shows an alternative to the Figure 13 with a balance-spring type resonator;
  • The Figure 15 schematically shows a third embodiment of the invention;
  • The Figure 16 schematically shows a fourth embodiment of the invention;
  • The Figure 17 schematically shows a fifth embodiment of the invention;
  • The Figure 18 is a sectional view of the Figure 17 ;
  • The Figure 19 schematically shows a sixth embodiment of the invention;
  • The Figure 20 is a sectional view of the Figure 19 ;
  • The Figure 21 schematically shows a seventh embodiment of the invention;
  • The Figure 22 schematically shows an alternative to the Figure 21 in a configuration corresponding to the second main embodiment;
  • The Figures 23 schematically shows an eighth embodiment of the invention;
  • The Figure 24 schematically shows a ninth embodiment of the invention;
  • The Figures 25A to 25D schematically shows a tenth embodiment of the invention in respectively four different relative positions of the resonator and the escape wheel;
  • The Figure 26 is an advantageous variant of the tenth embodiment;
  • The Figure 27 schematically shows an eleventh embodiment of the invention.

Description détaillée de l'inventionDetailed description of the invention

A l'aide des Figures 3 à 6, on décrira ci-après un premier mode de réalisation principal de l'invention. Le dispositif régulateur 36 de la Figure 3 détermine la vitesse angulaire relative ω entre la structure magnétique 4 et un résonateur 38 qui sont couplés magnétiquement de manière à définir ensemble un oscillateur horloger formant ce dispositif régulateur. La structure magnétique 4 est solidaire d'un mobile d'axe de rotation 20. Elle est semblable à la structure magnétique de la Figure 1 et comprend une première piste magnétique annulaire et une deuxième piste magnétique annulaire centrées sur l'axe de rotation 20 et contiguës. La structure magnétique et le résonateur sont agencés pour subir une rotation l'un relativement à l'autre lorsqu'un couple moteur est appliqué à la structure magnétique ou au résonateur. Dans l'exemple représenté, le résonateur est solidaire du mouvement horloger alors que la structure magnétique est agencée pivotante et définit une roue d'échappement magnétique. Le résonateur comprend un élément de couplage couplé magnétiquement aux pistes magnétiques annulaires 11 et 13, cet élément de couplage présentant une partie d'extrémité active 46 formée d'un premier matériau magnétique et située du côté de ladite structure magnétique. Chaque piste magnétique est formée partiellement d'un deuxième matériau magnétique agencé de sorte que l'énergie potentielle magnétique de l'oscillateur varie angulairement de manière périodique le long de cette piste magnétique annulaire, définissant ainsi une même période angulaire (θP) pour les deux pistes magnétiques.Using the Figures 3 to 6 , a first main embodiment of the invention will be described below. The regulating device 36 of the Figure 3 determines the relative angular speed ω between the magnetic structure 4 and a resonator 38 which are magnetically coupled so as to define together a clock oscillator forming this regulating device. The magnetic structure 4 is secured to a mobile with an axis of rotation 20. It is similar to the magnetic structure of the Figure 1 and comprises a first annular magnetic track and a second annular magnetic track centered on the axis of rotation 20 and contiguous. The magnetic structure and the resonator are arranged to rotate relative to each other when a driving torque is applied to the magnetic structure or to the resonator. In the example shown, the resonator is integral with the watch movement while the magnetic structure is pivotally arranged and defines a magnetic escape wheel. The resonator comprises a coupling element magnetically coupled to the annular magnetic tracks 11 and 13, this coupling element having an active end portion 46 formed by a first magnetic material and located on the side of said magnetic structure. Each magnetic track is partially formed of a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along this annular magnetic track, thus defining the same angular period (θ P ) for the two magnetic tracks.

Plus particulièrement, chaque piste magnétique est formée de premières zones 40, respectivement 42 et de deuxièmes zones 10, respectivement 12 qui sont angulairement alternées avec une première zone et une deuxième zone adjacente dans chaque période angulaire. De manière générale, chaque deuxième zone engendre, relativement à une première zone adjacente, une force de répulsion supérieure (dans le cas d'un couplage magnétique en répulsion entre la partie d'extrémité 46 et les pistes magnétiques 11 et 13, comme ceci est le cas dans les exemples des Figures 3 à 6) ou une force d'attraction inférieure (dans le cas d'un couplage magnétique en attraction dans une variante où soit les aimants couplés sont agencés en attraction, soit la partie d'extrémité active ou les pistes magnétiques est / sont formée(s) d'un matériau à haute perméabilité magnétique sans générateur de flux magnétique) pour une même zone quelconque 50 de la partie d'extrémité active 46 lorsque cette même zone quelconque est superposée, en projection orthogonale à une surface géométrique générale dans laquelle s'étend la piste magnétique annulaire, à cette deuxième zone, respectivement à cette première zone adjacente. La surface géométrique générale est ici un plan général de la structure magnétique perpendiculaire à l'axe de rotation 20. Dans la variante de la Figure 3, les deuxièmes zones 10 et 12 sont rectangulaires et les premières zones ont une forme de trapèze.More particularly, each magnetic track is formed of first zones 40, respectively 42 and second zones 10, respectively 12 which are angularly alternated with a first zone and a second adjacent zone in each angular period. In general, each second zone generates, relative to a first adjacent zone, a higher repulsion force (in the case of a magnetic repulsion coupling between the end portion 46 and the magnetic tracks 11 and 13, as is the case in the examples of Figures 3 to 6 ) or a lower attraction force (in the case of a magnetic coupling in attraction in a variant where either the coupled magnets are arranged in attraction, or the active end part or the magnetic tracks is / are formed) of a material with high magnetic permeability without a magnetic flux generator) for the same arbitrary zone 50 of the active end part 46 when this same arbitrary zone is superimposed, in projection orthogonal to a general geometric surface in which the annular magnetic track, at this second zone, respectively at this first adjacent zone. The general geometric surface is here a general plane of the magnetic structure perpendicular to the axis of rotation 20. In the variant of the Figure 3 , the second zones 10 and 12 are rectangular and the first zones have the shape of a trapezoid.

L'élément de couplage magnétique est couplé magnétiquement à chaque piste magnétique annulaire, via la partie d'extrémité active 46, de manière qu'une oscillation selon un degré de liberté d'un mode de résonnance du résonateur est entretenue dans une plage utile du couple moteur appliqué à la structure magnétique ou au résonateur et qu'une période de cette oscillation intervienne lors de la rotation relative entre le résonateur et la structure magnétique dans chaque période angulaire θP de chaque piste magnétique annulaire. La fréquence de cette oscillation détermine ainsi la vitesse angulaire relative ω. Le degré de liberté est linéaire dans les exemples schématiques des Figures 3 et 5, et il définit un axe d'oscillation 48 de la partie d'extrémité active 46 passant par le centre de masse de cette partie d'extrémité active. Cet axe d'oscillation a ici une direction radiale relativement à l'axe de rotation 20. On notera que lorsque le degré de liberté suit une courbe, en particulier lorsque ce degré de liberté est une rotation autour d'un axe donné, l'axe d'oscillation est curviligne, en particulier circulaire. Le premier mode de réalisation principal est caractérisé par le fait que les pistes magnétiques annulaires présentent chacune une dimension selon le degré de liberté, c'est-à-dire le long d'une projection orthogonale de l'axe d'oscillation 48 dans le plan général des pistes magnétiques, qui est supérieure à la dimension de la partie d'extrémité active 46 selon ce degré de liberté, c'est-à-dire selon l'axe d'oscillation.The magnetic coupling element is magnetically coupled to each annular magnetic track, via the active end portion 46, so that an oscillation according to a degree of freedom of a mode of resonance of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator and that a period of this oscillation occurs during the relative rotation between the resonator and the magnetic structure in each angular period θ P of each track magnetic ring. The frequency of this oscillation thus determines the relative angular speed ω. The degree of freedom is linear in the schematic examples of Figures 3 and 5 , and it defines an axis of oscillation 48 of the active end part 46 passing through the center of mass of this active end part. This axis of oscillation here has a radial direction relative to the axis of rotation 20. It will be noted that when the degree of freedom follows a curve, in particular when this degree of freedom is a rotation around a given axis, the oscillation axis is curvilinear, in particular circular. The first main embodiment is characterized in that the annular magnetic tracks each have a dimension according to the degree of freedom, that is to say along an orthogonal projection of the axis of oscillation 48 in the general plane of the magnetic tracks, which is greater than the dimension of the active end portion 46 according to this degree of freedom, that is to say along the axis of oscillation.

Chacune des deuxièmes zones 10, 12 de chaque piste magnétique annulaire présente en projection orthogonale un contour général avec une première portion, définissant une ligne de pénétration 10a, 12a au-dessus de cette deuxième zone pour la partie d'extrémité active 46 sortant de la première zone adjacente 40, 42 lors de l'oscillation de cette partie d'extrémité active, et une deuxième portion définissant une ligne de sortie 10b, 12b de dessus cette deuxième zone pour au moins une majeure partie de cette partie d'extrémité active passant directement de cette deuxième zone à une zone de sortie 42, 40 lors de cette oscillation. Cette zone de sortie est définie par la structure magnétique et elle s'étend dans le plan général des pistes magnétiques. Dans les exemples donnés aux figures avec deux pistes magnétiques dans la surface géométrique générale, les zones d'entrée 40, 42 d'une piste magnétique, définies par les premières zones de cette piste, correspondent aux zones de sortie pour l'autre piste magnétique. Dans un mode de réalisation avec une seule piste magnétique couplée à la partie d'extrémité active 46, on peut avoir une seule zone de sortie annulaire pour l'ensemble des deuxièmes zones. Ainsi, on a au moins une zone de sortie recevant en projection orthogonale la partie d'extrémité active lorsqu'elle sort lors de l'oscillation de cette partie d'extrémité active, successivement d'une piste magnétique annulaire par les lignes de sortie respectives de ses deuxièmes zones.Each of the second zones 10, 12 of each annular magnetic track has in orthogonal projection a general contour with a first portion, defining a penetration line 10a, 12a above this second zone for the active end part 46 leaving the first adjacent zone 40, 42 during the oscillation of this active end part, and a second portion defining an exit line 10b, 12b from above this second zone for at least a major part of this active end part passing directly from this second zone to an exit zone 42, 40 during this oscillation. This exit zone is defined by the magnetic structure and it extends in the general plane of the magnetic tracks. In the examples given in the figures with two magnetic tracks in the general geometric surface, the entry zones 40, 42 of a magnetic track, defined by the first zones of this track, correspond to the exit zones for the other magnetic track. In an embodiment with a single magnetic track coupled to the active end portion 46, it is possible to have a single annular exit zone for all of the second zones. Thus, there is at least one exit zone receiving in orthogonal projection the active end part when it leaves during the oscillation of this active end part, successively from an annular magnetic track by the respective exit lines. of its second zones.

De manière générale, les zones de sortie ou la zone de sortie annulaire sont / est agencée(s) de manière à engendrer, relativement aux deuxièmes zones, une force de répulsion inférieure ou une force d'attraction supérieure pour une même zone quelconque 50 de la partie d'extrémité active lorsque cette même zone quelconque est superposée en projection orthogonale à ces / cette zone(s) de sortie, respectivement à ces deuxièmes zones. Cette condition est remplie lorsque que les zones d'entrée et les zones de sortie sont toutes deux définies par les premières zones des deux pistes magnétiques couplées à la partie d'extrémité active, comme c'est le cas aux Figures 3 et 5.In general, the exit zones or the annular exit zone are / is arranged so as to generate, relative to the second zones, a lower repulsive force or a greater attractive force for any same zone 50 of the active end part when this same arbitrary zone is superimposed in orthogonal projection on these / this exit zone (s), respectively on these second zones. This condition is fulfilled when the input zones and the output zones are both defined by the first zones of the two magnetic tracks coupled to the active end part, as is the case with Figures 3 and 5 .

Selon l'invention, chaque ligne de sortie est orientée sensiblement selon une direction angulaire parallèle à un cercle de position zéro 44 qui est centré sur l'axe de rotation 20 et passe par une projection du centre de masse de la partie d'extrémité active 46 dans la surface géométrique générale lorsque cette partie d'extrémité active est dans sa position de repos (position dans laquelle l'énergie élastique du résonateur est minimale et autour de laquelle elle oscille). A la Figure 3A est représentée la projection orthogonale 54 de la partie d'extrémité active dans sa position de repos. Comme mentionné, la direction angulaire donne sensiblement l'orientation de la ligne de sortie de chaque deuxième zone ; ce qui englobe notamment les directions tangentielles au cercle de position zéro 44 pour la portion de ce cercle située dans un secteur angulaire défini par cette deuxième zone. Dans la variante de la Figure 3, la ligne de sortie est parallèle à la tangente au cercle 44 au point d'intersection avec une droite radiale passant par le milieu de cette ligne de sortie.According to the invention, each output line is oriented substantially in an angular direction parallel to a zero position circle 44 which is centered on the axis of rotation 20 and passes through a projection of the center of mass of the active end part 46 in the general geometric surface when this active end part is in its rest position (position in which the elastic energy of the resonator is minimum and around which it oscillates). To the Figure 3A The orthogonal projection 54 of the active end part is shown in its rest position. As mentioned, the angular direction gives substantially the orientation of the exit line of each second zone; which notably includes the directions tangential to the zero position circle 44 for the portion of this circle located in an angular sector defined by this second zone. In the variant of the Figure 3 , the exit line is parallel to the tangent to the circle 44 at the point of intersection with a radial straight line passing through the middle of this exit line.

La partie d'extrémité active 46 de l'élément de couplage dans sa position de repos a, en projection orthogonale dans le plan général des pistes magnétiques, une première dimension W2 selon un premier axe dans ce plan général qui est perpendiculaire au cercle de position zéro 44 et passe par la projection orthogonale du centre de masse de cette partie d'extrémité active. Dans les variantes représentées aux Figures 3 et 5, ce premier axe est rectiligne et confondu avec une projection orthogonale de l'axe d'oscillation 48 dans le plan général, et il présente une direction radiale relativement à l'axe de rotation 20. Ensuite, la projection orthogonale de la partie d'extrémité active 46 a une deuxième dimension L2, selon un deuxième axe défini par le cercle de position zéro, qui est supérieure à la première dimension W2. On comprend ici une dimension selon un axe circulaire confondu avec le cercle de position zéro ou selon un axe rectiligne tangent à ce cercle au point d'intersection avec la projection orthogonale de l'axe d'oscillation, c'est-à-dire au point déterminé par la projection orthogonale du centre de masse de la partie 46, et perpendiculaire au premier axe. De plus, la ligne de sortie de chacune des deuxièmes zones 10, 12 a une longueur L1, le long de ladite au moins une zone de sortie et selon le deuxième axe défini par le cercle de position zéro, qui est supérieure à la première dimension W2 de la partie d'extrémité active 46. Dans le cas de l'axe circulaire, la position angulaire de la deuxième zone considérée est sans importance. Par contre, si on choisit l'axe tangentiel, la longueur L1 d'une deuxième zone est mesurée selon cet axe tangentiel lorsque le milieu de cette longueur est positionnée sur le premier axe. Dans une variante particulière, la deuxième dimension L2 de la partie d'extrémité active est au moins deux fois plus grande que sa première dimension W2 et la longueur L1 de la ligne de sortie est au moins deux fois plus grande que cette première dimension W2. Dans l'exemple de la Figure 3, le rapport longueur sur largeur de la partie d'extrémité 46 est environ égal à trois.The active end portion 46 of the coupling element in its rest position has, in orthogonal projection in the general plane of the magnetic tracks, a first dimension W2 along a first axis in this general plane which is perpendicular to the position circle zero 44 and passes through the orthogonal projection of the center of mass of this active end part. In the variants shown in Figures 3 and 5 , this first axis is rectilinear and coincides with an orthogonal projection of the axis of oscillation 48 in the general plane, and it has a radial direction relative to the axis of rotation 20. Then, the orthogonal projection of the part of active end 46 has a second dimension L2, along a second axis defined by the zero position circle, which is greater than the first dimension W2. We understand here a dimension along a circular axis coincident with the zero position circle or along a rectilinear axis tangent to this circle at the point of intersection with the orthogonal projection of the axis of oscillation, that is to say at point determined by the orthogonal projection of the center of mass of part 46, and perpendicular to the first axis. In addition, the exit line of each of the second zones 10, 12 has a length L1, along said at least one exit zone and along the second axis defined by the circle of position zero, which is greater than the first dimension. W2 of the active end part 46. In the case of the circular axis, the angular position of the second zone considered is immaterial. On the other hand, if the tangential axis is chosen, the length L1 of a second zone is measured along this tangential axis when the middle of this length is positioned on the first axis. In a particular variant, the second dimension L2 of the active end portion is at least twice as large as its first dimension W2 and the length L1 of the outlet line is at least twice as large as this first dimension W2. In the example of the Figure 3 , the length to width ratio of the end portion 46 is approximately equal to three.

Le résonateur est agencé relativement à la structure magnétique de manière que la partie d'extrémité active est au moins en majeure partie superposée à cette piste magnétique annulaire durant sensiblement une première alternance dans chaque période de l'oscillation de cette partie d'extrémité active, et de manière que le trajet de l'élément de couplage magnétique lors de cette première alternance est sensiblement parallèle à la surface géométrique générale. On peut considérer que cette condition est vérifiée généralement lorsque la zone de projection orthogonale 54 de la partie d'extrémité active selon l'invention, dans sa position de repos, est traversée par le cercle intérieur de la piste magnétique extérieure 11 et le cercle extérieur de la piste magnétique intérieure 13. On notera que ces deux cercles sont confondus lorsque les deux pistes magnétiques sont contiguës, comme c'est sensiblement le cas dans les variantes préférées de l'invention. Ils définissent alors un cercle d'interface des deux pistes. De préférence, le cercle de position zéro 44 est sensiblement confondu avec le cercle d'interface des deux pistes magnétiques.The resonator is arranged relative to the magnetic structure so that the active end part is at least for the most part superimposed on this annular magnetic track during substantially a first half-wave in each period of the oscillation of this active end part, and so that the path of the magnetic coupling element during this first alternation is substantially parallel to the general geometric surface. It can be considered that this condition is generally satisfied when the orthogonal projection zone 54 of the active end part according to the invention, in its rest position, is crossed by the inner circle of the outer magnetic track 11 and the outer circle of the inner magnetic track 13. It will be noted that these two circles are merged when the two magnetic tracks are contiguous, as is substantially the case in the preferred variants of the invention. They then define an interface circle for the two tracks. Preferably, the zero position circle 44 is substantially coincident with the interface circle of the two magnetic tracks.

Dans une variante préférée, la ligne de sortie de chaque deuxième zone 10, 12 est sensiblement confondue avec le cercle de position zéro, comme ceci est le cas dans les variantes des Figures 3 et 5. Dans une autre variante où les deux pistes magnétiques sont distantes et séparées par une zone intermédiaire formée par un milieu magnétique homogène, le cercle de position zéro est situé entre ces deux pistes, de préférence sensiblement au milieu de la zone intermédiaire. Une telle zone intermédiaire, que l'on conservera de petite largeur pour diverses raisons, peut être utile pour assurer un démarrage aisé de l'oscillateur. Une première raison est relative à la faible dimension prévue pour la partie d'extrémité active de l'élément de couplage selon l'axe d'oscillation, étant donné qu'il faut éviter que l'oscillateur tourne 'à vide' avec cette partie d'extrémité active restant sensiblement sur le cercle de position zéro. Une autre raison tient à un objectif de la présente invention, à savoir d'obtenir des impulsions localisées qui soient proches et de préférence sensiblement centrées sur le cercle de position zéro. La condition discutée ici est également vérifiée pour autant que la largeur de la zone intermédiaire ait une dimension bien inférieure à la largeur de chaque piste magnétique ; ce qui est le cas dans le cadre de l'invention.In a preferred variant, the output line of each second zone 10, 12 is substantially coincident with the zero position circle, as is the case in the variants of the Figures 3 and 5 . In another variant where the two magnetic tracks are distant and separated by an intermediate zone formed by a homogeneous magnetic medium, the zero position circle is located between these two tracks, preferably substantially in the middle of the intermediate zone. Such an intermediate zone, which will be kept small for various reasons, can be useful for ensuring easy start-up of the oscillator. A first reason relates to the small dimension provided for the active end part of the coupling element along the oscillation axis, since it is necessary to prevent the oscillator from turning 'idle' with this part. active end remaining substantially on the zero position circle. Another reason relates to an objective of the present invention, namely to obtain localized pulses which are close and preferably substantially centered on the zero position circle. The condition discussed here is also verified as long as the width of the intermediate zone has a dimension much less than the width of each magnetic strip; which is the case in the context of the invention.

Selon une variante préférée, le cercle de position zéro 44 et l'axe d'oscillation 48 sont, en projection orthogonale à la surface géométrique générale, sensiblement orthogonaux à leur point d'intersection. Ceci est le cas dans les variantes représentées aux Figures 3 et 5.According to a preferred variant, the zero position circle 44 and the axis of oscillation 48 are, in orthogonal projection to the general geometric surface, substantially orthogonal to their point of intersection. This is the case in the variants shown in Figures 3 and 5 .

Selon une autre variante, la dimension W1 de chacune des deuxièmes zones, selon un axe perpendiculaire au cercle de position zéro à un point milieu de sa ligne de sortie, est au moins trois fois plus grande que la première dimension W2 de la partie d'extrémité active. Dans une autre variante préférée, cette dimension des deuxièmes zones est au moins six fois plus grande que la première dimension de la partie d'extrémité active.According to another variant, the dimension W1 of each of the second zones, along an axis perpendicular to the circle of position zero at a midpoint of its exit line, is at least three times greater than the first dimension W2 of the part of active end. In another preferred variant, this dimension of the second zones is at least six times larger than the first dimension of the active end part.

La variante des Figures 5 et 5A se distingue de celle de la Figure 3 premièrement par le fait que les deuxièmes zones 10A et 12A ainsi que les premières zones 40A et 42A des pistes annulaires 11A et 13A définissent des secteurs annulaires. On remarquera que, dans la variante de la Figure 5, le cercle de position zéro 44 est confondu, en projection orthogonale dans le plan général de la structure magnétique 4A, avec les lignes de sorties 10b, 12b. Ces lignes de sorties ont donc une direction angulaire et les lignes de pénétration 10a, 12a sont radiales. Ensuite, la variante de la Figure 5 se distingue par les dimensions W2 et L2 de la partie d'extrémité active 46A de l'élément de couplage du résonateur 38A. Dans une variante préférée, la deuxième dimension L2 de la partie d'extrémité active est au moins quatre fois plus grande que sa première dimension W2 et la longueur L1 de la ligne de sortie est au moins quatre fois plus grande que cette première dimension. Dans la variante de la Figure 5, le rapport longueur sur largeur de la partie d'extrémité 46A est environ égal à cinq.The variant of Figures 5 and 5A differs from that of the Figure 3 firstly by the fact that the second zones 10A and 12A as well as the first zones 40A and 42A of the annular tracks 11A and 13A define annular sectors. Note that, in the variant of the Figure 5 , the zero position circle 44 is coincident, in orthogonal projection in the general plane of the magnetic structure 4A, with the output lines 10b, 12b. These outlet lines therefore have an angular direction and the penetration lines 10a, 12a are radial. Then the variant of the Figure 5 is distinguished by the dimensions W2 and L2 of the active end part 46A of the coupling element of the resonator 38A. In a preferred variant, the second dimension L2 of the active end portion is at least four times greater than its first dimension W2 and the length L1 of the outlet line is at least four times greater than this first dimension. In the variant of the Figure 5 , the length to width ratio of the end portion 46A is approximately equal to five.

A la Figure 5, la ligne de pénétration 10a, 12a de chaque deuxième zone est orientée selon l'axe d'oscillation 48, projeté orthogonalement dans le plan général des pistes magnétiques, lorsque cette ligne de pénétration est alignée avec le centre de masse de la partie d'extrémité active 46A projetée orthogonalement dans ce plan général. Dans la variante de la Figure 3, ceci est sensiblement le cas. On notera encore que la ligne de sortie des deuxièmes zones, le long des zones de sortie définies par les deuxièmes zones de l'autre piste magnétique, et la partie d'extrémité active s'étendent angulairement sur la moitié d'une période angulaire θP/2 à la Figure 5, et ceci est environ le cas à la Figure 3.To the Figure 5 , the penetration line 10a, 12a of each second zone is oriented along the axis of oscillation 48, projected orthogonally into the general plane of the magnetic tracks, when this penetration line is aligned with the center of mass of the part of active end 46A projected orthogonally into this general plane. In the variant of the Figure 3 , this is substantially the case. It will also be noted that the exit line of the second zones, along the exit zones defined by the second zones of the other magnetic track, and the active end part extend angularly over half of an angular period θ P / 2 at Figure 5 , and this is about the case at the Figure 3 .

Dans les variantes de réalisation exposées précédemment, le degré de liberté du résonateur est entièrement dans un plan parallèle au plan général des pistes magnétiques et donc de la structure magnétique. Ainsi, l'entier du trajet effectué par l'élément de couplage magnétique lors de son oscillation est, dans ces variantes, parallèle au plan général de la structure magnétique. On notera que d'autres agencements sont envisageables, par exemple des pistes magnétiques dont la surface géométrique générale est cylindrique ou tronconique. Généralement, le trajet de l'élément oscillant est sensiblement parallèle à la surface géométrique générale définie par la structure magnétique. Toutefois, on remarquera que ce trajet, et donc l'axe d'oscillation, peuvent s'écarter quelque peu d'une surface parallèle à la surface géométrique générale, notamment aux points d'extrémité de l'oscillation et ceci d'autant plus que l'amplitude est grande. Une telle situation a lieu par exemple lorsque l'élément de couplage du résonateur oscille selon un trajet sensiblement circulaire avec un axe de rotation parallèle au plan général de la structure magnétique. Dans un tel cas, il est prévu de préférence que la direction définie par le degré de liberté de l'élément de couplage dans sa position de repos est parallèle à un plan tangent à ladite surface géométrique générale en un point correspondant à la projection orthogonale du centre de masse de la partie d'extrémité active de l'élément de couplage dans sa position de repos.In the embodiments described above, the degree of freedom of the resonator is entirely in a plane parallel to the general plane of the magnetic tracks and therefore of the magnetic structure. Thus, the entire path taken by the magnetic coupling element during its oscillation is, in these variants, parallel to the general plane of the magnetic structure. Note that other arrangements are possible, for example magnetic tracks whose general geometric surface is cylindrical or frustoconical. Generally, the path of the oscillating element is substantially parallel to the general geometric surface defined by the magnetic structure. However, it will be noted that this path, and therefore the axis of oscillation, can deviate somewhat from a surface parallel to the general geometric surface, in particular at the end points of the oscillation and this all the more that the amplitude is great. Such a situation occurs for example when the coupling element of the resonator oscillates along a substantially circular path with an axis of rotation parallel to the general plane of the magnetic structure. In such a case, it is preferably provided that the direction defined by the degree of freedom of the coupling element in its rest position is parallel to a plane tangent to said general geometric surface at a point corresponding to the orthogonal projection of the center of mass of the active end part of the coupling element in its rest position.

A la Figure 4 est représentée, de manière similaire à la Figure 2, l'énergie potentielle magnétique de l'oscillateur en fonction de la position relative de la partie d'extrémité active 46 et de la structure magnétique 4, en particulier de chacune de ses deux pistes magnétiques. Cette position relative est définie par la position angulaire relative dans un référentiel lié aux pistes magnétiques et par la position de la partie d'extrémité le long de l'axe d'oscillation 48. Les lignes équipotentielles 60 sont données pour des positions relatives correspondant aux deux pistes magnétiques. On observe aisément une grande différence avec la distribution de l'énergie potentielle magnétique de la Figure 2. Pour chacune des pistes magnétiques, on a entre chaque zone d'énergie potentielle basse 62, 66 et une zone d'énergie potentielle haute suivante 64, 68 un secteur 70, 72 d'accumulation d'énergie potentielle magnétique dans l'oscillateur, ce secteur étant bien défini et s'étendant angulairement sur une certaine plage relativement grande, à savoir environ une demi-période pour la piste magnétique intérieure 13 et un peu moins pour la piste magnétique extérieure 11 de plus grand diamètre. Ces secteurs 70 et 72 définissent respectivement deux zones annulaires ZA1 et ZA2 d'accumulation d'énergie potentielle magnétique dans lesquelles les courbes équipotentielles sont sensiblement radiales. Ainsi, dans ces deux zones annulaires, la force est essentiellement tangentielle et correspond donc à une force de freinage pour la structure magnétique 4. Par contre, dans ces zones annulaires ZA1 et ZA2, la force exercée sur l'élément de couplage selon son degré de liberté est faible ou quasi nulle.To the Figure 4 is represented, similarly to the Figure 2 , the potential magnetic energy of the oscillator as a function of the relative position of the active end part 46 and of the magnetic structure 4, in particular of each of its two magnetic tracks. This relative position is defined by the relative angular position in a frame of reference linked to the magnetic tracks and by the position of the end part along the axis of oscillation 48. The equipotential lines 60 are given for relative positions corresponding to the two magnetic tracks. We can easily observe a big difference with the distribution of the potential magnetic energy of the Figure 2 . For each of the magnetic tracks, there is between each low potential energy zone 62, 66 and a next high potential energy zone 64, 68 a sector 70, 72 of accumulation of magnetic potential energy in the oscillator, this sector being well defined and extending angularly over a certain relatively large range, namely approximately half a period for the inner magnetic track 13 and a little less for the outer magnetic track 11 of larger diameter. These sectors 70 and 72 respectively define two annular zones ZA1 and ZA2 for the accumulation of potential magnetic energy in which the equipotential curves are substantially radial. Thus, in these two annular zones, the force is essentially tangential and therefore corresponds to a braking force for the magnetic structure 4. On the other hand, in these annular zones ZA1 and ZA2, the force exerted on the coupling element according to its degree freedom is low or almost nil.

Ensuite, on observe que les lignes équipotentielles 60 deviennent sensiblement angulaires dans une zone centrale ZC à l'intérieur de laquelle l'organe de couplage du résonateur reçoit une impulsion selon l'axe d'oscillation. On a représenté le tracé d'une oscillation 74 de la partie d'extrémité active 46 dans un référentiel lié à la structure magnétique. En suivant ce tracé, on observe que la majeure partie du temps l'oscillation est sensiblement libre et qu'une impulsion est fournie à chaque alternance dans la zone centrale d'impulsions ZC. Cette zone centrale ZC est située entre les deux zones annulaires ZA1 et ZA2 et elle comprend le cercle de position zéro 44, plus exactement les positions relatives correspondant à ce cercle de position zéro qui est situé sensiblement au milieu de cette zone centrale ZC. Ainsi, les impulsions sont engendrées autour de la position de repos de la partie d'extrémité active. Les observations relatives à l'énergie potentielle magnétique dans l'oscillateur permettent de comprendre que le dispositif régulateur selon l'invention résout de manière significative le problème lié à l'anisochronisme des dispositifs de l'art antérieur.Next, it is observed that the equipotential lines 60 become substantially angular in a central zone ZC inside which the coupling member of the resonator receives a pulse along the axis. oscillation. The trace of an oscillation 74 of the active end part 46 has been shown in a frame of reference linked to the magnetic structure. By following this plot, it is observed that most of the time the oscillation is substantially free and that a pulse is supplied at each alternation in the central zone of pulses ZC. This central zone ZC is situated between the two annular zones ZA1 and ZA2 and it includes the zero position circle 44, more precisely the relative positions corresponding to this zero position circle which is situated substantially in the middle of this central zone ZC. Thus, the pulses are generated around the rest position of the active end portion. The observations relating to the magnetic potential energy in the oscillator make it possible to understand that the regulating device according to the invention significantly resolves the problem linked to the anisochronism of the devices of the prior art.

De manière générale, dans la plage utile du couple moteur appliqué à l'oscillateur horloger de l'invention, chaque piste magnétique annulaire, au moins une zone de sortie décrite précédemment et l'élément de couplage magnétique définissent dans chaque période angulaire, en fonction de la position relative de cette piste magnétique annulaire et de la partie d'extrémité active (dans un référentiel lié à la piste magnétique), un secteur d'accumulation 70, 72 dans lequel l'oscillateur accumule essentiellement de l'énergie potentielle magnétique et un secteur d'impulsion 76, adjacent à ce secteur d'accumulation, dans lequel l'élément de couplage magnétique reçoit essentiellement une impulsion, les secteurs d'impulsion étant situés dans une zone centrale d'impulsions ZC comprenant le cercle de position zéro 44. Ainsi, on comprend par 'secteur d'accumulation' un secteur dans lequel l'énergie potentielle magnétique dans l'oscillateur augmente pour les diverses amplitudes d'oscillation dans la plage utile du couple moteur et où la force radiale est faible ou négligeable ; et on comprend par 'secteur d'impulsion' un secteur dans lequel cette énergie potentielle magnétique diminue pour les diverses amplitudes d'oscillation de la plage utile du couple moteur et où une force de poussée est exercée sur l'organe de couplage du résonateur selon son degré de liberté, engendrant une impulsion fournie à cet organe de couplage.Generally, in the useful range of the motor torque applied to the timepiece oscillator of the invention, each annular magnetic track, at least one output zone described above and the magnetic coupling element define in each angular period, depending the relative position of this annular magnetic track and the active end part (in a reference frame linked to the magnetic track), an accumulation sector 70, 72 in which the oscillator essentially accumulates potential magnetic energy and a pulse sector 76, adjacent to this accumulation sector, in which the magnetic coupling element receives essentially a pulse, the pulse sectors being located in a central pulse zone ZC comprising the zero position circle 44 Thus, one understands by “sector of accumulation” a sector in which the magnetic potential energy in the oscillator increases for the various oscillation amplitudes in the useful range of the motor torque and where the radial force is low or negligible; and by “pulse sector” is understood a sector in which this potential magnetic energy decreases for the various amplitudes of oscillation of the useful range of the motor torque and where a thrust force is exerted on the coupling of the resonator according to its degree of freedom, generating a pulse supplied to this coupling member.

De manière générale, la structure magnétique est agencée de manière que le gradient angulaire moyen de l'énergie potentielle magnétique de l'oscillateur dans les secteurs d'accumulation d'énergie potentielle magnétique est inférieur au gradient moyen de cette énergie potentielle magnétique dans les secteurs d'impulsion selon le degré de liberté de l'élément de couplage du résonateur et dans une même unité. Cette condition est bien visible à la Figure 4 et résulte des caractéristiques de l'invention. L'étendue angulaire relativement grande des secteurs d'accumulation et la distance radiale relativement faible des secteurs d'impulsions proviennent en particulier des première et deuxième dimensions W2 et L2 de la partie d'extrémité active ainsi que des orientations des lignes de pénétration et des lignes de sortie des zones d'accumulation d'énergie potentielle magnétique. Dans chaque alternance de l'oscillation de l'élément de couplage lorsque sa partie d'extrémité active est couplée magnétiquement à une piste magnétique annulaire, cette partie d'extrémité pénètre progressivement sur (ou sous) une zone d'accumulation d'énergie potentielle magnétique. Vu le contour et l'orientation de cette partie d'extrémité active et le contour des zones d'accumulation, on a une surface de superposition entre la partie d'extrémité active et chaque zone d'accumulation qui augmente progressivement sur une relativement grande période angulaire alors que la sortie d'une telle zone d'accumulation est réalisée sur une relativement courte distance radiale, respectivement selon l'axe d'oscillation. Ceci sera encore exposé par la suite dans le cadre du deuxième mode de réalisation principal de l'invention.Generally, the magnetic structure is arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the sectors of accumulation of magnetic potential energy is less than the average gradient of this magnetic potential energy in the sectors of pulse according to the degree of freedom of the coupling element of the resonator and in the same unit. This condition is clearly visible on Figure 4 and results from the features of the invention. The relatively large angular extent of the accumulation sectors and the relatively small radial distance of the pulse sectors originate in particular from the first and second dimensions W2 and L2 of the active end part as well as from the orientations of the penetration lines and of the output lines of potential magnetic energy accumulation zones. In each alternation of the oscillation of the coupling element when its active end part is magnetically coupled to an annular magnetic track, this end part gradually penetrates over (or under) an area of potential energy accumulation magnetic. Given the outline and orientation of this active end part and the outline of the accumulation zones, there is a superposition surface between the active end part and each accumulation zone which increases progressively over a relatively large period. angular while the exit from such an accumulation zone is carried out over a relatively short radial distance, respectively along the axis of oscillation. This will be further explained below in the context of the second main embodiment of the invention.

On notera que dans le domaine horloger, le couple moteur fourni par un barillet varie de manière importante en fonction du niveau de tension du ressort de barillet. Pour assurer une marche du mouvement horloger sur une période suffisamment grande, on a en général besoin que ce mouvement puisse être entraîné par un couple variant entre un couple maximal et environ la moitié de ce couple maximal. De plus, il faut évidemment assurer un bon fonctionnement au couple maximal. En pratique, pour assurer un tel fonctionnement et empêcher notamment que l'oscillateur décroche à relativement grande amplitude d'oscillation, il est nécessaire que les secteurs de freinage s'étendent sur une certaine distance angulaire et que le freinage soit ainsi progressif. Ceci est un des bénéfices obtenus par le dispositif régulateur selon l'invention.It will be noted that in the watchmaking field, the motor torque supplied by a barrel varies significantly as a function of the tension level of the barrel spring. To ensure that the watch movement continues over a sufficiently long period, it is generally necessary that this movement can be caused by a torque varying between a maximum torque and approximately half of this maximum torque. In addition, it is obviously necessary to ensure proper operation at maximum torque. In practice, to ensure such operation and in particular to prevent the oscillator from picking up at a relatively large amplitude of oscillation, it is necessary that the braking sectors extend over a certain angular distance and that braking is thus progressive. This is one of the benefits obtained by the regulating device according to the invention.

A la Figure 6, on a une représentation de l'énergie potentielle magnétique dans l'oscillateur de la Figure 5. Les diverses références ne seront pas à nouveau décrites ici. On observe que la dimension radiale des pistes annulaires d'accumulation ZA1 et ZA2 est supérieure à celle obtenue pour la variante de la Figure 3, alors que la largeur radiale des zones d'impulsion et donc de la zone centrale d'impulsions ZC est inférieure. Cette variante de la Figure 5 est plus avantageuse que celle de la Figure 3 car la localisation des impulsions autour de la position de repos de l'élément de couplage du résonateur est meilleure. Ceci résulte en premier lieu du rapport longueur sur largeur de la partie d'extrémité active qui est supérieur dans la variante de la Figure 5.To the Figure 6 , we have a representation of the magnetic potential energy in the oscillator of the Figure 5 . The various references will not be described again here. It is observed that the radial dimension of the annular tracks of accumulation ZA1 and ZA2 is greater than that obtained for the variant of the Figure 3 , while the radial width of the pulse zones and therefore of the central pulse zone ZC is less. This variant of the Figure 5 is more advantageous than that of the Figure 3 because the localization of the pulses around the rest position of the coupling element of the resonator is better. This results in the first place from the length to width ratio of the active end part which is greater in the variant of the Figure 5 .

A l'aide des Figures 7 à 10, on décrira ci-après un deuxième mode de réalisation principal de l'invention. Divers enseignements donnés précédemment s'appliquent également à ce deuxième mode de réalisation. Ils ne seront pas répétés ici en détails. Dans ce deuxième mode de réalisation, la piste magnétique annulaire de la structure magnétique présente une dimension, selon l'axe d'oscillation de chaque partie d'extrémité active couplée à cette piste et en projection orthogonale, qui est inférieure à la dimension selon cet axe d'oscillation de cette partie d'extrémité active. Ce deuxième mode de réalisation constitue dans une certaine mesure une inversion technique du premier mode de réalisation. Cependant, il présente des avantages qui lui sont propres, comme ceci apparaîtra par la suite. Au vu des réalisations antérieures, ce deuxième mode de réalisation n'est a priori pas évident, l'homme du métier ayant généralement prévu des plages magnétiques étendues radialement sur une roue d'échappement et des éléments de couplage magnétique de moindre étendue associés au résonateur. Dans ces réalisations antérieures, le chemin magnétique sinueux (sinusoïdal) est agencé de manière circulaire sur un mobile. Lorsqu'il y a deux pistes magnétiques annulaires pour engendrer ce chemin magnétique sinueux, elles ont prévues coaxiales. Dans le mode de réalisation le plus répandu, comme dans les variantes des Figures 3 et 5, ces deux pistes s'étendent dans un plan général avec une piste intérieure et une piste extérieure. Ces deux pistes n'ont donc pas de mêmes dimensions, la piste intérieure ayant au moins certaines zones plus petites relativement aux zones correspondantes de la piste extérieure, alors que les dimensions de l'élément de couplage sont par définition constantes. On a donc une interaction magnétique qui varie dans une certaine mesure entre les deux pistes magnétiques et dans les deux alternances de chaque période d'oscillation. Le deuxième mode de réalisation principal résout ce désavantage de manière étonnante en agençant au moins une plage magnétique étendue au niveau de l'élément de couplage du résonateur alors que la piste magnétique est radialement diminuée et moins large que cette plage de couplage. Ainsi, la piste magnétique sinueuse n'est plus définie par la roue d'échappement, mais par un ou de préférence deux éléments de couplage solidaires d'une structure oscillante du résonateur.Using the Figures 7 to 10 , a second main embodiment of the invention will be described below. Various lessons given previously also apply to this second embodiment. They will not be repeated here in detail. In this second embodiment, the annular magnetic track of the magnetic structure has a dimension, along the axis of oscillation of each active end part coupled to this track and in orthogonal projection, which is less than the dimension according to this axis of oscillation of this active end part. This second embodiment constitutes to a certain extent a technical inversion of the first embodiment. However, it has its own advantages, like this will appear later. In view of the previous embodiments, this second embodiment is not a priori obvious, the person skilled in the art having generally provided magnetic pads extended radially on an escape wheel and magnetic coupling elements of smaller extent associated with the resonator . In these previous embodiments, the sinuous (sinusoidal) magnetic path is arranged in a circular fashion on a mobile. When there are two annular magnetic tracks to generate this winding magnetic path, they are provided coaxially. In the most widespread embodiment, as in the variants of the Figures 3 and 5 , these two tracks extend in a general plan with an interior track and an exterior track. These two tracks therefore do not have the same dimensions, the inner track having at least some smaller areas relative to the corresponding areas of the outer track, while the dimensions of the coupling element are by definition constant. There is therefore a magnetic interaction which varies to a certain extent between the two magnetic tracks and in the two half-waves of each period of oscillation. The second main embodiment resolves this disadvantage in a surprising manner by arranging at least one extended magnetic range at the level of the coupling element of the resonator while the magnetic track is radially reduced and narrower than this coupling range. Thus, the winding magnetic track is no longer defined by the escape wheel, but by one or preferably two coupling elements secured to an oscillating structure of the resonator.

Le dispositif 80 régulateur de la vitesse angulaire ω d'un mobile d'échappement comprend une structure magnétique 82 solidaire de ce mobile et un résonateur 84 couplés magnétiquement de manière à définir ensemble un oscillateur. La structure magnétique comprend une piste magnétique annulaire 86 centrée sur l'axe de rotation 20. La structure magnétique et le résonateur sont agencés pour subir une rotation l'un relativement à l'autre autour de l'axe de rotation 20 lorsqu'un couple moteur est appliqué au mobile d'échappement et donc à la structure magnétique. Le résonateur est représenté schématiquement. Il comprend deux éléments de couplage magnétique à la piste magnétique qui sont agencés sur un support non magnétique 88, lequel a deux bras associés respectivement à deux structures élastiques identiques 90 et 91 permettant une oscillation linéaire du support 88 selon une droite radiale 100. Les éléments de couplage sont formés dans la variante décrite ici par deux aimants allongés qui ont respectivement des première et deuxième parties d'extrémité actives 92 et 94 situées du côté de la piste magnétique 86, ces aimants ayant une direction d'aimantation globalement selon l'axe de rotation (direction d'aimantation axiale). A la Figure 7, comme dans les autres figures, on a représenté le contour général de ces parties d'extrémité actives dans leur plan général, car leur configuration est importante pour l'invention. Le degré de liberté du résonateur définit un premier axe d'oscillation 96 et un deuxième axe d'oscillation 98 pour respectivement les deux parties d'extrémité actives et passant par leur centre de masse. Ces premier et deuxième axes d'oscillation sont parallèles à un axe central 100 passant longitudinalement entre les deux parties d'extrémité actives, cet axe central étant prévu radial, c'est-à-dire qu'il intercepte l'axe de rotation 20.The device 80 regulating the angular speed ω of an escapement mobile comprises a magnetic structure 82 integral with this mobile and a resonator 84 magnetically coupled so as to define together an oscillator. The magnetic structure comprises an annular magnetic track 86 centered on the axis of rotation 20. The magnetic structure and the resonator are arranged to be rotated relative to each other about the axis of rotation 20 when a couple engine is applied to the exhaust mobile and therefore to the magnetic structure. The resonator is shown schematically. It comprises two magnetic coupling elements to the magnetic track which are arranged on a non-magnetic support 88, which has two arms associated respectively with two identical elastic structures 90 and 91 allowing a linear oscillation of the support 88 along a radial straight line 100. The elements coupling are formed in the variant described here by two elongated magnets which have first and second active end portions 92 and 94 respectively located on the side of the magnetic track 86, these magnets having a direction of magnetization generally along the axis of rotation (direction of axial magnetization). To the Figure 7 , as in the other figures, the general outline of these active end parts has been shown in their general plane, since their configuration is important for the invention. The degree of freedom of the resonator defines a first axis of oscillation 96 and a second axis of oscillation 98 for the two active end parts respectively passing through their center of mass. These first and second axes of oscillation are parallel to a central axis 100 passing longitudinally between the two active end parts, this central axis being provided for radial, that is to say that it intercepts the axis of rotation 20 .

La piste magnétique 86 comprend une pluralité d'aimants 102, de forme angulairement allongée, qui sont agencés le long de cette piste magnétique de sorte qu'ils définissent des premières zones non magnétiques 104 et des deuxièmes zones magnétiques 106 angulairement alternées avec une première zone et une deuxième zone adjacente dans chaque période angulaire θP, laquelle est définie par l'alternance des premières zones non magnétiques et des deuxièmes zones aimantées. Les éléments de couplage sont couplés magnétiquement à la piste magnétique 86 de manière qu'une oscillation selon le degré de liberté du mode de résonnance utile du résonateur 84 est entretenue dans une plage utile du couple moteur appliqué à la structure magnétique, et de manière qu'une période de cette oscillation intervienne lors d'une rotation de la structure magnétique, résultant de ce couple moteur, dans chaque période angulaire θP de la piste magnétique. Dans la variante décrite aux Figures 7 à 10, les aimants 102 sont agencés avec une direction d'aimantation axiale, en répulsion des aimants formant les éléments de couplage.The magnetic strip 86 comprises a plurality of magnets 102, of angularly elongated shape, which are arranged along this magnetic strip so that they define first non-magnetic zones 104 and second magnetic zones 106 angularly alternated with a first zone. and a second adjacent zone in each angular period θ P , which is defined by the alternation of the first non-magnetic zones and the second magnetized zones. The coupling elements are magnetically coupled to the magnetic track 86 so that an oscillation according to the degree of freedom of the useful resonance mode of the resonator 84 is maintained within a useful range of the motor torque applied to the magnetic structure, and so that '' a period of this oscillation occurs during a rotation of the magnetic structure, resulting from this motor torque, in each angular period θ P of the magnetic strip. In the variant described in Figures 7 to 10 , the magnets 102 are arranged with an axial magnetization direction, repelling the magnets forming the coupling elements.

On notera que, dans le deuxième mode de réalisation principal, on considère comme surface géométrique générale déterminante la surface dans laquelle s'étendent globalement les parties d'extrémité actives du résonateur couplées à la piste magnétique annulaire considérée et comprenant leurs axes d'oscillation respectifs, ces parties d'extrémité actives définissant dans cette surface des plages magnétiques. A la Figure 10 a été représenté, en projection orthogonale dans le plan général des parties d'extrémité actives 92 et 94, le mouvement relatif entre la piste magnétique annulaire et ces parties d'extrémité actives au cours d'une période d'oscillation pendant laquelle la piste magnétique 86 tourne d'une période angulaire. Ainsi, cette Figure 10 montre une succession d'images a) jusqu'à i) qui suivent le mouvement d'oscillation d'un aimant 102A, parmi les aimants 102 de la piste magnétique 86. Pour faciliter la compréhension, ces images sont données dans un référentiel lié au support 88 du résonateur et donc aux éléments de couplage. Ainsi, on voit notamment l'aimant 102A de la piste magnétique qui oscille avec son centre de masse décrivant sensiblement une courbe sinusoïdale 122, alors qu'en réalité, la piste magnétique subit seulement une rotation et ce sont les parties d'extrémité actives qui oscillent le long de leur axe d'oscillation linéaire. Pour indiquer ce fait, on a mis dans les plages magnétiques, définies par la projection orthogonale des parties d'extrémité actives (ci-après nommées aussi plages magnétiques 92 et 94), des flèches indiquant le sens du mouvement d'oscillation et on a indiqué approximativement la vitesse de déplacement par la longueur de ces flèches, l'absence de flèche correspondant à une position extrême où il y a inversion du sens du mouvement linéaire des éléments de couplage. Ensuite, les aimants de la piste magnétique sont projetés dans le plan général et ne sont pas représentés comme passant dessous les deux éléments de couplage. A cette Figure 10 (dessins 10a à 10i), on peut observer que l'aimant 102A se trouve premièrement en amont de la plage magnétique 92 (dessin 10a), avant de pénétrer progressivement dans cette plage 92 (dessin 10b-10c) pour ensuite en sortir (dessin10d) et être couplé magnétiquement de manière similaire avec la plage magnétique 94 (dessins 10e-10g). Finalement, l'aimant 102A sort de la plage magnétique 94 (dessin 10h) alors qu'un aimant suivant 102 se présente devant la plage 92 ; ce qui correspond à la situation du dessin 10a pour cet aimant suivant 102, lequel va à son tour subir un même couplage magnétique avec les deux éléments de couplage du résonateur.It will be noted that, in the second main embodiment, the surface in which the active end portions of the resonator generally coupled to the annular magnetic track considered and comprising their respective axes of oscillation are considered as the determining general geometric surface , these active end parts defining magnetic areas in this surface. To the Figure 10 has been shown, in orthogonal projection in the general plane of the active end parts 92 and 94, the relative movement between the annular magnetic track and these active end parts during a period of oscillation during which the magnetic track 86 turns by an angular period. So this Figure 10 shows a succession of images a) to i) which follow the oscillation movement of a magnet 102A, among the magnets 102 of the magnetic track 86. To facilitate understanding, these images are given in a reference frame linked to the support 88 of the resonator and therefore of the coupling elements. Thus, we see in particular the magnet 102A of the magnetic track which oscillates with its center of mass substantially describing a sinusoidal curve 122, when in reality, the magnetic track undergoes only one rotation and it is the active end parts which oscillate along their linear oscillation axis. To indicate this fact, we put in the magnetic ranges, defined by the orthogonal projection of the active end parts (hereinafter also called magnetic ranges 92 and 94), arrows indicating the direction of the oscillation movement and we have indicated approximately the speed of movement by the length of these arrows, the absence of arrow corresponding to an extreme position where there is inversion of the direction of the linear movement of the coupling elements. Then, the magnets of the magnetic track are projected in the general plane and are not shown as passing under the two coupling elements. At this Figure 10 (drawings 10a to 10i), it can be observed that the magnet 102A is firstly upstream of the magnetic area 92 (drawing 10a), before gradually penetrating into this area 92 (drawing 10b-10c) and then leaving it (drawing10d) and being coupled magnetically similarly to magnetic pad 94 (drawings 10e-10g). Finally, the magnet 102A leaves the magnetic area 94 (drawing 10h) while a following magnet 102 is presented in front of the area 92; which corresponds to the situation in drawing 10a for this following magnet 102, which in turn will undergo the same magnetic coupling with the two coupling elements of the resonator.

En référence notamment à la Figure 9, on décrira ci-après plus précisément plusieurs caractéristiques de l'invention selon ce deuxième mode de réalisation principal. Chaque partie d'extrémité active 92, 94 (de chaque élément de couplage magnétique) définit magnétiquement, en projection dans le plan général dans lequel s'étend globalement cette partie d'extrémité active et comprenant son axe d'oscillation :

  • une zone d'entrée 110, respectivement 114 successivement pour les deuxièmes zones 106 (aimants 102, 102A) en projection orthogonale au plan géométrique général,
  • une zone 92A, respectivement 94A d'accumulation d'énergie potentielle magnétique dans l'oscillateur, laquelle est angulairement adjacente à la zone d'entrée susmentionnée et dans laquelle pénètre en projection orthogonale au moins partiellement chaque deuxième zone 106 depuis cette zone d'entrée, et
  • une zone de sortie 112, respectivement 116 adjacente à la zone d'accumulation d'énergie potentielle magnétique, cette zone de sortie recevant en projection orthogonale au moins la majeure partie de chaque deuxième zone 106 sortant de la zone d'accumulation ou d'une deuxième zone suivante.
With particular reference to the Figure 9 , several characteristics of the invention will be described more precisely below according to this second main embodiment. Each active end part 92, 94 (of each magnetic coupling element) defines magnetically, in projection in the general plane in which this active end part generally extends and comprising its axis of oscillation:
  • an entry area 110, respectively 114 successively for the second areas 106 (magnets 102, 102A) in projection orthogonal to the general geometric plane,
  • a zone 92A, respectively 94A of accumulation of potential magnetic energy in the oscillator, which is angularly adjacent to the aforementioned entry zone and into which at least partially each second zone 106 enters in orthogonal projection from this entry zone , and
  • an exit zone 112, respectively 116 adjacent to the magnetic potential energy accumulation zone, this exit zone receiving in orthogonal projection at least the major part of each second zone 106 leaving the accumulation zone or a second next area.

De manière générale, chaque deuxième zone engendre par unité de longueur angulaire, relativement à une première zone adjacente, une force de répulsion supérieure pour la zone d'accumulation d'énergie potentielle magnétique (cas du couplage magnétique en répulsion décrit ici) ou une force d'attraction supérieure pour la zone d'entrée et la zone de sortie (cas d'un couplage magnétique en attraction décrit par la suite). Ensuite, la zone d'accumulation d'énergie potentielle magnétique 92A, 94A engendre, relativement à la zone d'entrée 110, 114 et la zone de sortie 112, 116, une force de répulsion supérieure (cas du couplage magnétique en répulsion) ou une force d'attraction inférieure (cas du couplage magnétique en attraction) pour une même zone quelconque de chaque deuxième zone 106 lorsque cette même zone quelconque est superposée à cette zone d'accumulation d'énergie potentielle magnétique, respectivement à la zone d'entrée ou à la zone de sortie.In general, each second zone generates per unit of angular length, relative to a first adjacent zone, a force higher repulsion for the magnetic potential energy accumulation zone (case of magnetic repulsion coupling described here) or a higher attraction force for the entry and exit zone (case of magnetic coupling in attraction described below). Then, the magnetic potential energy accumulation zone 92A, 94A generates, relative to the entry zone 110, 114 and the exit zone 112, 116, a higher repulsion force (case of magnetic coupling in repulsion) or a lower attraction force (case of magnetic coupling in attraction) for the same arbitrary zone of each second zone 106 when this same arbitrary zone is superimposed on this zone of accumulation of potential magnetic energy, respectively on the entry zone or to the exit area.

Dans le cas d'un couplage en répulsion, la zone d'accumulation d'énergie potentielle magnétique 92A, 94A associée à une partie d'extrémité active correspond à plage magnétique 92, 94 formée matériellement par cette partie d'extrémité active, c'est-à-dire à une projection orthogonale de cette partie d'extrémité active dans son plan géométrique général. Les zones d'entrée et de sortie n'ont pas à être formées matériellement par une partie de l'élément de couplage. Dans une variante générale, ces zones correspondent à des régions périphériques libres de la partie d'extrémité active, c'est-à-dire remplies d'air. On remarquera encore que les deux parties d'extrémité dans la variante décrite ici sont agencées de part et d'autre d'un arc de cercle, centré sur l'axe de rotation lorsque les éléments de couplage sont au repos, et ont une largeur (direction angulaire) correspondant environ à une demi-période angulaire θP / 2. Les deux plages magnétiques 92 et 94 sont décalées angulairement d'une demi-période angulaire. Dans cette configuration permettant d'avoir un couplage magnétique entre la piste magnétique et le résonateur dans chaque alternance de l'oscillation de sa structure oscillante, la zone de sortie 112 associée au premier élément de couplage correspond à la zone d'entrée 114 associée au deuxième élément de couplage.In the case of repulsion coupling, the magnetic potential energy accumulation zone 92A, 94A associated with an active end part corresponds to the magnetic area 92, 94 formed materially by this active end part, c ' that is to say to an orthogonal projection of this active end part in its general geometric plane. The entry and exit zones do not have to be formed physically by a part of the coupling element. In a general variant, these zones correspond to free peripheral regions of the active end part, that is to say filled with air. It will also be noted that the two end parts in the variant described here are arranged on either side of a circular arc, centered on the axis of rotation when the coupling elements are at rest, and have a width (angular direction) corresponding approximately to an angular half-period θ P / 2. The two magnetic pads 92 and 94 are angularly offset by an angular half-period. In this configuration making it possible to have a magnetic coupling between the magnetic track and the resonator in each alternation of the oscillation of its oscillating structure, the output zone 112 associated with the first coupling element corresponds to the input zone 114 associated with the second coupling element.

Le résonateur est agencé relativement à la structure magnétique 82 de manière que les première et deuxième zones d'accumulation d'énergie potentielle magnétique 92A et 94A sont traversées en projection orthogonale par un cercle géométrique médian 120, passant par le milieu de la piste magnétique annulaire, durant respectivement les première et deuxième alternances dans chaque période de l'oscillation des deux éléments de couplage considérés. Ensuite, chaque zone d'accumulation d'énergie potentielle magnétique présente un contour général 123, 124 avec : i) une première portion, définissant une ligne de pénétration 126, 128 sous cette zone d'accumulation successivement pour chacune desdites deuxièmes zones 106 lors de l'oscillation des éléments de couplage, et ii) une deuxième portion définissant une ligne de sortie 127, 129 de dessous cette zone d'accumulation pour cette deuxième zone (cas en répulsion magnétique décrit ici) ou une deuxième zone suivante (cas en attraction magnétique) lors de cette oscillation. La ligne de sortie est orientée, lorsque l'élément de couplage magnétique considéré est dans sa position de repos, sensiblement selon une direction angulaire parallèle à la projection orthogonale du cercle géométrique médian 120. Dans l'exemple représenté, la ligne de sortie est circulaire et reste parallèle à la projection orthogonale du cercle géométrique médian lors de l'oscillation rectiligne. Cette ligne de sortie est confondue avec la projection orthogonale du cercle géométrique médian lorsque l'élément de couplage est dans sa position de repos (tel que représenté aux dessins d) et h) de la Figure 10). De plus, chacune des deuxièmes zones a en projection orthogonale une première dimension W3 selon un premier axe qui est perpendiculaire à la projection orthogonale du cercle géométrique médian et passe au centre de cette deuxième zone. Dans le cas d'un plan général, un tel axe est une droite présentant une direction radiale relativement à l'axe de rotation 20. Chaque deuxième zone a encore une deuxième dimension L3, selon un deuxième axe défini par la projection orthogonale du cercle géométrique médian 120 dans ledit plan général, qui est supérieure à la première dimension W3.The resonator is arranged relative to the magnetic structure 82 so that the first and second areas of potential magnetic energy accumulation 92A and 94A are crossed in orthogonal projection by a median geometric circle 120, passing through the middle of the annular magnetic track , respectively during the first and second half-waves in each period of the oscillation of the two coupling elements considered. Then, each magnetic potential energy accumulation zone has a general outline 123, 124 with: i) a first portion, defining a penetration line 126, 128 under this accumulation zone successively for each of said second zones 106 during the oscillation of the coupling elements, and ii) a second portion defining an output line 127, 129 from below this accumulation zone for this second zone (case in magnetic repulsion described here) or a second following zone (case in attraction magnetic) during this oscillation. The output line is oriented, when the magnetic coupling element considered is in its rest position, substantially in an angular direction parallel to the orthogonal projection of the median geometric circle 120. In the example shown, the output line is circular and remains parallel to the orthogonal projection of the median geometric circle during the rectilinear oscillation. This exit line coincides with the orthogonal projection of the median geometric circle when the coupling element is in its rest position (as shown in drawings d) and h) of the Figure 10 ). In addition, each of the second zones has in orthogonal projection a first dimension W3 along a first axis which is perpendicular to the orthogonal projection of the median geometric circle and passes through the center of this second zone. In the case of a general plane, such an axis is a straight line having a radial direction relative to the axis of rotation 20. Each second zone still has a second dimension L3, along a second axis defined by the orthogonal projection of the geometric circle median 120 in said general plane, which is greater than the first dimension W3.

Dans le cas général, la deuxième dimension est de préférence mesurée selon un deuxième axe perpendiculaire au premier axe et passant par le point d'intersection de la projection orthogonale du cercle géométrique médian avec l'axe d'oscillation de l'élément de couplage considéré 96, 98 ou par l'axe central 100 dans le cas de deux éléments de couplage voisins tel que décrits ici. Dans ce cas général, les dimensions des deuxièmes zones sont mesurées lorsque le centre de la deuxième zone considérée est superposé à un axe d'oscillation ou à l'axe central 100. Finalement, lorsque les éléments de couplage magnétique sont dans leur position de repos, la ligne de sortie 127, 129 a une longueur L4, le long de la zone de sortie 112, 116 et selon le deuxième axe susmentionné, qui est supérieure à la première dimension W3 des deuxièmes zones.In the general case, the second dimension is preferably measured along a second axis perpendicular to the first axis and passing through the point of intersection of the orthogonal projection of the median geometric circle with the axis of oscillation of the coupling element considered. 96, 98 or by the central axis 100 in the case of two neighboring coupling elements as described here. In this general case, the dimensions of the second zones are measured when the center of the second zone considered is superimposed on an axis of oscillation or on the central axis 100. Finally, when the magnetic coupling elements are in their rest position , the exit line 127, 129 has a length L4, along the exit zone 112, 116 and along the second axis mentioned above, which is greater than the first dimension W3 of the second zones.

Selon une variante préférée, l'axe d'oscillation de chaque partie d'extrémité active est sensiblement orthogonal au cercle géométrique médian 120, en projection orthogonale, à leur point d'intersection. C'est le cas dans la variante de la Figure 7, bien que ce soit l'axe central 100 qui est radial et donc exactement orthogonal au cercle 120 centré sur l'axe de rotation. Selon une autre variante avantageuse, comme c'est le cas dans la variante de la Figure 7, la ligne de sortie de la zone d'accumulation d'énergie potentielle magnétique le long de la zone de sortie et chaque deuxième zone s'étendent angulairement sur sensiblement la moitié d'une période angulaire.According to a preferred variant, the axis of oscillation of each active end part is substantially orthogonal to the median geometric circle 120, in orthogonal projection, at their point of intersection. This is the case in the variant of the Figure 7 , although it is the central axis 100 which is radial and therefore exactly orthogonal to the circle 120 centered on the axis of rotation. According to another advantageous variant, as is the case in the variant of the Figure 7 , the exit line of the magnetic potential energy accumulation zone along the exit zone and each second zone extend angularly over substantially half of an angular period.

A la Figure 8 sont représentées des courbes équipotentielles 60 de l'énergie potentielle magnétique dans le dispositif régulateur 80 de la Figure 7 en fonction de la position du point central entre les deux plages magnétiques 92 et 94 dans un référentiel lié à la structure magnétique 82. On observe que l'on a des zones d'énergie minimales 62A et 66A et des zones d'énergie maximales 64A et 68A qui sont radiales et allongées. Dans la plage utile du couple moteur, la piste magnétique annulaire et chaque partie d'extrémité active 92, 94 définissent ainsi dans chaque période angulaire, en fonction de la position relative de cette piste magnétique annulaire et de cette partie d'extrémité active, un secteur d'accumulation 70A, 72A dans lequel l'oscillateur accumule essentiellement de l'énergie potentielle magnétique et un secteur d'impulsion 76A, 77A, adjacent à cette zone d'accumulation, dans lequel l'élément de couplage reçoit essentiellement une impulsion. Les secteurs d'accumulation sont radialement étendus et définissent pour les deux parties d'extrémité actives respectivement deux zones annulaires d'accumulation ZA1* et ZA2*. On notera que la largeur radiale de ces zones annulaires d'accumulation dépendent essentiellement de l'étendue des parties d'extrémité actives selon leur axe d'oscillation et non plus de la largeur radiale des pistes magnétiques annulaires comme dans le premier mode de réalisation principal. Dans ces zones annulaires d'accumulation, les lignes équipotentielles sont sensiblement radiales, ce qui indique que la force résultante est angulaire (plus précisément tangentielle) et que la composante de cette force selon l'axe d'oscillation de chaque partie d'extrémité active est très faible. On peut dans ce cas parler de pure accumulation d'énergie potentielle. Les secteurs d'impulsion sont situés dans une zone centrale d'impulsions ZC* correspondant sensiblement à la piste magnétique annulaire, c'est-à-dire ayant les mêmes coordonnées spatiales que cette piste magnétique dans son plan géométrique général.To the Figure 8 are shown equipotential curves 60 of the magnetic potential energy in the regulating device 80 of the Figure 7 as a function of the position of the central point between the two magnetic pads 92 and 94 in a frame of reference linked to the magnetic structure 82. It can be seen that there are minimum energy zones 62A and 66A and maximum energy zones 64A and 68A which are radial and elongated. In the useful range of the motor torque, the annular magnetic track and each active end portion 92, 94 thus define in each period angular, as a function of the relative position of this annular magnetic track and of this active end part, an accumulation sector 70A, 72A in which the oscillator essentially accumulates magnetic potential energy and a pulse sector 76A , 77A, adjacent to this accumulation zone, in which the coupling element essentially receives a pulse. The accumulation sectors are radially extended and define for the two active end parts respectively two annular zones of accumulation ZA1 * and ZA2 *. It will be noted that the radial width of these annular accumulation zones depends essentially on the extent of the active end parts along their axis of oscillation and no longer on the radial width of the annular magnetic tracks as in the first main embodiment . In these annular zones of accumulation, the equipotential lines are substantially radial, which indicates that the resulting force is angular (more precisely tangential) and that the component of this force along the axis of oscillation of each active end part is very weak. In this case, we can speak of pure accumulation of potential energy. The pulse sectors are located in a central zone of pulses ZC * corresponding substantially to the annular magnetic track, that is to say having the same spatial coordinates as this magnetic track in its general geometric plane.

Ainsi, plus le rapport selon l'axe central 100 entre la dimension des plages magnétiques du résonateur, définies par les parties d'extrémité actives des éléments de couplage de ce résonateur, et la dimension de la piste magnétique est grand, plus la partie du trajet d'oscillation libre peut être grande pour ces parties d'extrémité actives et les impulsions d'entretien de l'oscillation du résonateur localisées autour de la position de repos de ses éléments de couplage. En valeur absolue, plus la première dimension W3 des aimants 102 et donc la dimension transversale de la piste magnétique est petite, plus les impulsions fournies aux éléments de couplage sont localisées autour de leur position de repos. Ensuite, plus la deuxième dimension L3 des aimants 102 est grande, plus la distance angulaire des secteurs d'accumulation est grande. Ceci découle du fait que la zone de superposition entre un aimant 102 et la partie d'extrémité active augmente progressivement sur une relativement grande distance angulaire, comme ceci ressort de la succession de positions relatives entre la piste magnétique et les deux parties d'extrémité actives, pour une période d'oscillation, donnée à la Figure 10. Une telle situation est très favorable pour un bon isochronisme du dispositif régulateur.Thus, the greater the ratio along the central axis 100 between the dimension of the magnetic pads of the resonator, defined by the active end parts of the coupling elements of this resonator, and the dimension of the magnetic track, the greater the part of the free oscillation path can be great for these active end parts and the resonator oscillation maintenance pulses located around the rest position of its coupling elements. In absolute value, the smaller the first dimension W3 of the magnets 102 and therefore the transverse dimension of the magnetic track, the more the pulses supplied to the coupling elements are located around their rest position. Then the higher the second dimension L3 of the magnets 102 is large, the greater the angular distance of the accumulation sectors. This follows from the fact that the superposition zone between a magnet 102 and the active end part increases progressively over a relatively large angular distance, as is apparent from the succession of relative positions between the magnetic track and the two active end parts , for a period of oscillation, given at Figure 10 . Such a situation is very favorable for a good isochronism of the regulatory device.

Selon une variante préférée, la ligne de pénétration 126, 128 dans la zone d'accumulation d'énergie potentielle magnétique 92A, 94A est orientée selon une direction sensiblement parallèle audit axe d'oscillation, comme c'est le cas dans toutes les réalisations correspondant au deuxième mode de réalisation principal représentées aux figures. Cette caractéristique est avantageuse pour obtenir des lignes équipotentielles 60 sensiblement radiales dans les secteurs d'accumulation d'énergie potentielle magnétique. Dans une variante proche, la ligne de pénétration susmentionnée définit un chemin selon le degré de liberté. Ces deux variantes sont confondues lorsque le degré de liberté est linéaire. On notera que la zone d'accumulation considérée ici est celle qui est déterminante dans la plage utile du couple moteur, c'est-à-dire sensiblement une zone correspondant à la zone globale de superposition entre chaque aimant de la piste magnétique et la partie d'extrémité active considérée au cours de l'oscillation de cette dernière.According to a preferred variant, the penetration line 126, 128 in the magnetic potential energy accumulation zone 92A, 94A is oriented in a direction substantially parallel to said axis of oscillation, as is the case in all the corresponding embodiments in the second main embodiment shown in the figures. This characteristic is advantageous for obtaining substantially radial equipotential lines 60 in the areas of potential magnetic energy accumulation. In a close variant, the aforementioned penetration line defines a path according to the degree of freedom. These two variants are confused when the degree of freedom is linear. It will be noted that the accumulation zone considered here is that which is decisive in the useful range of the motor torque, that is to say substantially a zone corresponding to the global superposition zone between each magnet of the magnetic track and the part active end considered during the oscillation of the latter.

Selon une variante de réalisation, la deuxième dimension L3 de chaque deuxième zone 106 est au moins deux fois plus grande que sa première dimension W3, et la longueur L4 de la ligne de sortie est au moins deux fois plus grande que cette première dimension W3. Dans une variante préférée, cette deuxième dimension de chaque deuxième zone est au moins quatre fois plus grande que sa première dimension, et la longueur de la ligne de sortie est alors au moins quatre fois plus grande que cette première dimension. Selon une autre variante de réalisation, la dimension W4 de la ligne de pénétration de la zone d'accumulation d'énergie potentielle magnétique 92A, 94A, le long de l'axe d'oscillation de la partie d'extrémité correspondante, est au moins cinq fois plus grande que la dimension transversale W3 de la piste magnétique annulaire le long de cet axe d'oscillation en projection orthogonale. Dans une variante préférée, cette dimension W4 de la ligne de pénétration est au moins huit fois plus grande que la dimension transversale W3.According to an alternative embodiment, the second dimension L3 of each second area 106 is at least twice as large as its first dimension W3, and the length L4 of the outlet line is at least twice as large as this first dimension W3. In a preferred variant, this second dimension of each second zone is at least four times greater than its first dimension, and the length of the exit line is then at least four times greater than this first dimension. According to another alternative embodiment, the dimension W4 of the penetration line of the magnetic potential energy accumulation zone 92A, 94A, along the axis of oscillation of the corresponding end part, is at least five times greater than the transverse dimension W3 of the annular magnetic track along this axis of oscillation in orthogonal projection. In a preferred variant, this dimension W4 of the penetration line is at least eight times greater than the transverse dimension W3.

Les Figures 11 et 11A montrent schématiquement une variante du mode de réalisation des Figures 7 à 10. Ce dispositif régulateur 126 se distingue essentiellement par le fait que le couplage magnétique est prévu en attraction. La structure magnétique 82 est identique à celle de la Figure 7, seule la piste magnétique 86 étant représentée avec deux aimants 102A et 102B sélectionnés parmi les aimants 102 pour expliquer l'interaction magnétique de cette variante en attraction. Le résonateur est représenté seulement par la partie d'extrémité active d'un élément de couplage magnétique qui comprend ici deux parties magnétiques distinctes 128 et 130 formées par un matériau ferromagnétique, ce résonateur n'étant pas muni d'un générateur de flux magnétique de sorte que les deux parties sont soumises à une force d'attraction de la part des aimants de la piste magnétique. On notera que les deux parties 128 et 130 ont, dans le plan géométrique général dans lequel elles s'étendent, une même forme et un même degré de liberté linéaire que les deux parties d'extrémité actives de la variante en répulsion décrite précédemment, mais elles ne sont pas indépendantes et toutes deux nécessaires au fonctionnement de l'oscillateur ; alors que dans la variante en répulsion chaque partie 92 et 94 (Figure 7) est indépendante et l'oscillateur en répulsion magnétique peut fonctionner avec seulement une seule des deux parties 92 et 94. Dans la présente variante, l'axe central 100 entre les deux parties 128 et 130 correspond à l'axe d'oscillation de la partie d'extrémité active. Il a une direction radiale et est perpendiculaire au cercle géométrique médian de la piste 86.The Figures 11 and 11A schematically show a variant of the embodiment of the Figures 7 to 10 . This regulating device 126 is essentially distinguished by the fact that the magnetic coupling is provided in attraction. The magnetic structure 82 is identical to that of the Figure 7 , only the magnetic track 86 being shown with two magnets 102A and 102B selected from the magnets 102 to explain the magnetic interaction of this variant in attraction. The resonator is represented only by the active end part of a magnetic coupling element which here comprises two separate magnetic parts 128 and 130 formed by a ferromagnetic material, this resonator not being provided with a magnetic flux generator of so that the two parts are subjected to a force of attraction on the part of the magnets of the magnetic track. It will be noted that the two parts 128 and 130 have, in the general geometric plane in which they extend, the same shape and the same linear degree of freedom as the two active end parts of the repulsion variant described above, but they are not independent and both necessary for the operation of the oscillator; whereas in the repulsive variant each part 92 and 94 ( Figure 7 ) is independent and the oscillator in magnetic repulsion can operate with only one of the two parts 92 and 94. In the present variant, the central axis 100 between the two parts 128 and 130 corresponds to the axis of oscillation of the active end part. He has one radial direction and is perpendicular to the center geometric circle of runway 86.

La différence surprenante entre les oscillateurs 80 et 126 (deux éléments de couplage distincts dans le premier cas et un seul élément de couplage dans le second cas) découle du fait que les deux parties 128 et 130 engendrent pour les aimants 102, lorsqu'ils sont superposés à ces deux parties, une situation où l'énergie potentielle magnétique est inférieure relativement aux régions environnantes remplies d'air. Ainsi, l'accumulation d'énergie potentielle magnétique intervient dans une région non magnétique environnante située en aval des parties 128 et 130. Le tracé 122A de l'oscillation de la partie d'extrémité relativement à la piste magnétique est décalé angulairement d'une demi-période angulaire θP/2 (déphasage de 180°), tout comme les courbes équipotentielles de l'énergie potentielle magnétique dans une représentation similaire à celle de la Figure 8. Dans la plage utile du couple moteur, les parties magnétiques 128 et 130 définissent magnétiquement en projection orthogonale dans leur plan géométrique général :

  • une première zone d'entrée 128A et une deuxième zone d'entrée 130A successivement pour les deuxièmes zones 106 de la piste magnétique en projection orthogonale au plan géométrique général,
  • une première zone 132 et une deuxième zone 134 d'accumulation d'énergie potentielle magnétique dans l'oscillateur dans lesquelles chaque deuxième zone 106 de la piste magnétique pénètre au moins partiellement en projection orthogonale respectivement dans une première alternance et une deuxième alternance d'une période d'oscillation depuis respectivement les première et deuxième zones d'entrée, et
  • une première zone de sortie 130A qui reçoit en projection orthogonale au moins la majeure partie de chaque deuxième zone 106A sortant de la première zone d'accumulation 132, et une deuxième zone de sortie 128A qui reçoit en projection orthogonale au moins la majeure partie d'une deuxième zone suivante 106B de la piste magnétique, cette deuxième zone suivante 106B sortant d'une zone 135 complémentaire à la deuxième zone d'accumulation 134 alors que la deuxième zone 106A qui la précède entre entièrement dans une zone 136 équivalente à la deuxième zone d'accumulation et à la zone complémentaire 135.
The surprising difference between oscillators 80 and 126 (two separate coupling elements in the first case and a single coupling element in the second case) stems from the fact that the two parts 128 and 130 generate for the magnets 102, when they are superimposed on these two parts, a situation where the magnetic potential energy is lower relative to the surrounding regions filled with air. Thus, the accumulation of potential magnetic energy occurs in a surrounding non-magnetic region located downstream of the parts 128 and 130. The line 122A of the oscillation of the end part relative to the magnetic track is angularly offset by one angular half-period θ P / 2 (180 ° phase shift), just like the equipotential curves of the potential magnetic energy in a representation similar to that of the Figure 8 . In the useful range of the motor torque, the magnetic parts 128 and 130 define magnetically in orthogonal projection in their general geometric plane:
  • a first entry area 128A and a second entry area 130A successively for the second areas 106 of the magnetic track in projection orthogonal to the general geometric plane,
  • a first zone 132 and a second zone 134 for accumulating potential magnetic energy in the oscillator into which each second zone 106 of the magnetic track penetrates at least partially in orthogonal projection respectively in a first half-wave and a second half-wave of a oscillation period from the first and second entry zones respectively, and
  • a first exit zone 130A which receives in orthogonal projection at least the major part of each second zone 106A leaving the first accumulation zone 132, and a second exit zone 128A which receives in orthogonal projection at least the major part of a second next zone 106B of the magnetic track, this second following zone 106B leaving a zone 135 complementary to the second accumulation zone 134 while the second zone 106A which precedes it entirely enters a zone 136 equivalent to the second accumulation zone and to the complementary zone 135.

La terminologie utilisée ici est choisie par analogie avec la variante en répulsion magnétique de la Figure 7. Cependant, les deux zones d'accumulation 132 et 134 ainsi que la zone complémentaire 135 et la zone équivalente 136 sont toutes formées par la région vide ou remplie d'air environnant la partie d'extrémité active et sont toutes magnétiquement équivalente. Les parties magnétiques 128 et 130 forment des plages magnétiques 128A et 130A dans leur plan général qui constituent chacune une zone d'entrée et également une zone de sortie. L'agencement de ces deux plages est prévu pour qu'elles soient magnétiquement actives dans chacune des deux alternances de chaque période d'oscillation, une première fois comme zone d'entrée et une seconde fois comme zone de sortie, et pour engendrer une impulsion autour de la position de repos de l'élément de couplage en fin de chaque alternance. Pour l'unité terminologique, la zone d'accumulation 134 et la zone complémentaire 135 sont considérée ensemble comme une zone d'accumulation d'énergie potentielle magnétique et la deuxième zone suivante (aimant 102B) de la piste magnétique se substitue à la deuxième zone qui la précède (aimant 102A précédent) pour engendrer une impulsion (situation représentée à la Figure 11A) suite à l'accumulation d'énergie découlant du passage de la plage magnétique 130A dans une zone de sortie 134 située dans une région environnante non magnétique, laquelle définit pour cette deuxième zone une région d'énergie potentielle magnétique supérieure relativement à la plage magnétique 130A pour une portion de cette deuxième zone superposée à cette plage magnétique, respectivement à la zone de sortie 134. La situation représentée à la Figure 11 correspond à une position relative de l'élément de couplage et de la piste magnétique pour laquelle l'énergie potentielle magnétique est minimale.The terminology used here is chosen by analogy with the variant in magnetic repulsion of the Figure 7 . However, the two accumulation zones 132 and 134 as well as the complementary zone 135 and the equivalent zone 136 are all formed by the empty or air-filled region surrounding the active end part and are all magnetically equivalent. The magnetic parts 128 and 130 form magnetic pads 128A and 130A in their general plane which each constitute an entry area and also an exit area. The arrangement of these two ranges is provided so that they are magnetically active in each of the two half-waves of each oscillation period, a first time as an entry area and a second time as an exit area, and to generate a pulse around the rest position of the coupling element at the end of each half cycle. For the terminological unit, the accumulation zone 134 and the complementary zone 135 are considered together as a zone of accumulation of potential magnetic energy and the next second zone (magnet 102B) of the magnetic strip replaces the second zone. which precedes it (magnet 102A above) to generate a pulse (situation shown in the Figure 11A ) following the accumulation of energy resulting from the passage of the magnetic area 130A in an exit area 134 located in a surrounding non-magnetic region, which defines for this second area a region of higher potential magnetic energy relative to the magnetic area 130A for a portion of this second zone superimposed on this magnetic area, respectively on the exit zone 134. The situation shown in the Figure 11 corresponds to a relative position of the coupling element and of the magnetic track for which the potential magnetic energy is minimum.

Le résonateur du dispositif régulateur 126 est agencé relativement à la structure magnétique 82 de manière que chaque zone d'accumulation d'énergie potentielle magnétique 132, 134 est traversée en projection orthogonale par le cercle géométrique médian passant par le milieu de la piste magnétique annulaire durant une première alternance, respectivement une deuxième alternance dans chaque période d'oscillation du résonateur. Dans ce cas, les zones 132 et 134 sont délimitées spatialement par un cercle géométrique passant par le point central entre les deux plages magnétiques 128A et 130A le long de l'axe d'oscillation 100 et centré sur l'axe de rotation 20 quand l'élément de couplage est dans sa position de repos. Chaque zone d'accumulation 132, 134 présente partiellement un contour général, déterminé par la partie d'extrémité active, qui définit des première et deuxième lignes de pénétration 138 et 139 et des première et deuxième lignes de sortie 140 et 141, par analogie avec la terminologie utilisée précédemment.The resonator of the regulating device 126 is arranged relative to the magnetic structure 82 so that each zone of potential magnetic energy accumulation 132, 134 is crossed in orthogonal projection by the median geometric circle passing through the middle of the annular magnetic track during a first half-wave, respectively a second half-wave in each period of oscillation of the resonator. In this case, the areas 132 and 134 are delimited spatially by a geometric circle passing through the central point between the two magnetic ranges 128A and 130A along the axis of oscillation 100 and centered on the axis of rotation 20 when l the coupling element is in its rest position. Each accumulation zone 132, 134 partially has a general contour, determined by the active end part, which defines first and second penetration lines 138 and 139 and first and second output lines 140 and 141, by analogy with the terminology used previously.

A la Figure 12 est représentée partiellement une deuxième variante du deuxième mode de réalisation principal. Cette variante se distingue essentiellement par le fait que le degré de liberté est circulaire, l'élément de couplage à la piste magnétique 86 oscillant autour d'un propre axe de rotation C. La partie d'extrémité active 144 est en répulsion magnétique avec les aimants 102, comme dans la variante de la Figure 7. Les enseignements donnés pour cette dernière variante s'appliquent aussi à cette deuxième variante. La partie 144 suit un axe d'oscillation circulaire 150 passant par son centre de masse. Elle est représentée dans la position de repos de l'élément de couplage correspondant du résonateur. Dans cette variante, par souci d'une description générale de l'invention, l'axe d'oscillation n'est pas prévu perpendiculaire à une projection orthogonale du cercle géométrique médian 120. Pour cette configuration particulière, la ligne de pénétration 145 et la ligne de sortie 146 sont optimales. La ligne de sortie est confondue avec la projection orthogonale du cercle géométrique médian 120 de manière à minimiser les zones d'impulsion autour de la position de repos. La ligne de pénétration dans la zone d'accumulation d'énergie potentielle magnétique 148 définit un chemin selon le degré de liberté.To the Figure 12 a second variant of the second main embodiment is partially represented. This variant is essentially distinguished by the fact that the degree of freedom is circular, the coupling element to the magnetic track 86 oscillating around its own axis of rotation C. The active end part 144 is in magnetic repulsion with the magnets 102, as in the variant of the Figure 7 . The lessons given for this last variant also apply to this second variant. Part 144 follows a circular oscillation axis 150 passing through its center of mass. It is shown in the rest position of the corresponding coupling element of the resonator. In this variant, for the sake of a general description of the invention, the axis of oscillation is not provided perpendicular to an orthogonal projection of the median geometric circle 120. For this particular configuration, the penetration line 145 and the output line 146 are optimal. The exit line merges with the orthogonal projection of the median geometric circle 120 so as to minimize the pulse zones around the rest position. The penetration line in the magnetic potential energy accumulation zone 148 defines a path according to the degree of freedom.

On remarquera que la zone 148 est ici représentée avec une surface inférieure à la projection de la partie 144. Cette zone 148 délimitée par une courbe 149 en trait interrompu correspond effectivement à la zone d'accumulation active. Ainsi, dans une variante, la partie 144 peut avoir un contour extérieur qui suit la courbe 149 ou qui lui est parallèle en passant par le point d'extrémité de la ligne de sortie représentée. Pour une position donnée de la piste magnétique, correspondant à une superposition partielle entre un aimant 102 et la partie 144, la zone 148 (respectivement la partie 144) peut se déplacer le long de l'axe d'oscillation hors de la zone d'impulsion sans subir dans l'alternance considérée de variation d'énergie potentielle. Ainsi, quelle que soit l'amplitude d'oscillation, l'interaction magnétique reste identique avec une zone de pure accumulation d'énergie potentielle dans cette alternance qui se termine par une impulsion localisée à la position de repos de la partie 144. Les dimensions de cette partie 144 et des aimants 102 ont été définies précédemment et ne seront pas décrites à nouveau ici. Elles sont indiquées sur les dessins. La ligne de sortie 146 s'étend angulairement sur une demi-période angulaire alors que les aimants 102 s'étendent sur une distance angulaire un peu inférieure.It will be noted that the zone 148 is here represented with a surface less than the projection of the part 144. This zone 148 delimited by a curve 149 in broken lines effectively corresponds to the zone of active accumulation. Thus, in a variant, the part 144 may have an external contour which follows the curve 149 or which is parallel thereto passing through the end point of the outlet line shown. For a given position of the magnetic track, corresponding to a partial superposition between a magnet 102 and the part 144, the zone 148 (respectively the part 144) can move along the axis of oscillation outside the zone of pulse without undergoing in the alternation considered of potential energy variation. Thus, whatever the amplitude of oscillation, the magnetic interaction remains identical with a zone of pure accumulation of potential energy in this alternation which ends with a pulse localized in the rest position of the part 144. The dimensions of this part 144 and magnets 102 have been defined previously and will not be described again here. They are indicated on the drawings. The output line 146 extends angularly over an angular half-period while the magnets 102 extend over a slightly smaller angular distance.

La Figure 12A montre une alternative simplifiée de la Figure 12 dans laquelle les aimants 103 de la piste magnétique 86A définissent des deuxièmes zones 106A de forme rectangulaire, orientées tangentiellement au cercle géométrique médian 120, et des premières zones 104A non magnétiques entre ces deuxièmes zones. La partie d'extrémité active 144A présente un contour de forme parallélépipédique, avec une ligne de pénétration 145A et une ligne de sortie 146A formées par des segments linéaires. Ces segments linéaires sont orientés de manière optimale pour cette configuration particulière. Les segments 145A et 146A sont formés respectivement par les cordes des segments circulaires 145 et 146 de la Figure 12. En d'autres termes, chacun de ces segments linéaires est parallèle à la tangente au point milieu du segment circulaire correspondant. L'axe d'oscillation 150 passe par le centre de la partie 144A.The Figure 12A shows a simplified alternative of the Figure 12 wherein the magnets 103 of the magnetic track 86A define second areas 106A of rectangular shape, oriented tangentially to the median geometric circle 120, and first non-magnetic areas 104A between these second areas. The active end portion 144A has a contour of parallelepiped shape, with a penetration line 145A and an outlet line 146A formed by linear segments. These linear segments are optimally oriented for this particular configuration. The 145A and 146A segments are formed respectively by the strings of circular segments 145 and 146 of the Figure 12 . In other words, each of these linear segments is parallel to the tangent at the midpoint of the corresponding circular segment. The axis of oscillation 150 passes through the center of the part 144A.

A la Figure 13 est montrée partiellement une troisième variante du deuxième mode de réalisation principal qui peut être prévue en répulsion magnétique ou en attraction magnétique selon l'enseignement donné précédemment. Pour l'exposé ci-après de cette troisième variante, on considère le cas en répulsion. La structure magnétique comprend une piste magnétique 86A déjà décrite. On notera aussi que cette variante est représentée avec deux organes de couplage oscillant autour d'un propre axe C. Toutefois, la forme spécifique et le positionnement de ces deux organes de couplage dans leur position de repos s'appliquent également à une variante où le degré de liberté est linéaire, comme à la Figure 7. Dans cette troisième variante, l'axe central 154 passant par le point central entre les deux parties d'extrémité actives 156 et 158 est orthogonal au cercle médian 120 à leur point d'intersection. En prenant l'axe central 154 comme axe d'oscillation moyen et commun aux deux parties d'extrémité, on définit un premier axe rectiligne, perpendiculaire au cercle médian 120 et passant par ce point d'intersection et un deuxième axe rectiligne, perpendiculaire au premier axe et passant par également par ce point. Dans ce système d'axes orthogonaux, les parties 156 et 158 définissent dans leur plan général des plages magnétiques rectangulaires avec chacune une ligne de sortie 160, 162 sur le deuxième axe. Les lignes de pénétration 164 et 166 de ces deux plages magnétiques sont parallèles au premier axe. La zone d'accumulation d'énergie potentielle magnétique 148B montre qu'une partie des plages magnétiques n'est pas active. Toutefois, la forme rectangulaire simplifie la construction du résonateur.To the Figure 13 is shown partially a third variant of the second main embodiment which can be provided in magnetic repulsion or magnetic attraction according to the teaching given above. For the description below of this third variant, the case of repulsion is considered. The magnetic structure comprises a magnetic track 86A already described. It will also be noted that this variant is shown with two coupling members oscillating about a proper axis C. However, the specific shape and positioning of these two coupling members in their rest position also apply to a variant where the degree of freedom is linear, like at Figure 7 . In this third variant, the central axis 154 passing through the central point between the two active end parts 156 and 158 is orthogonal to the median circle 120 at their point of intersection. By taking the central axis 154 as the middle oscillation axis common to the two end parts, a first rectilinear axis is defined, perpendicular to the median circle 120 and passing through this point of intersection, and a second rectilinear axis, perpendicular to the first axis and also passing through this point. In this system of orthogonal axes, the parts 156 and 158 define in their general plane rectangular magnetic pads each with an output line 160, 162 on the second axis. The penetration lines 164 and 166 of these two magnetic pads are parallel to the first axis. The magnetic potential energy accumulation zone 148B shows that part of the magnetic ranges is not active. However, the rectangular shape simplifies the construction of the resonator.

On notera que, dans le cadre de l'invention, les lignes de sortie 160 et 162 sont considérées comme étant orientées, lorsque l'élément de couplage magnétique est dans sa position de repos comme représenté à la Figure 13, sensiblement selon une direction angulaire parallèle à la projection orthogonale du cercle géométrique médian 120 dans la surface géométriques générale des parties d'extrémité 156 et 158. Elles sont de fait tangentes à la projection orthogonale du cercle 120 au point d'intersection de l'axe central 154 avec cette projection orthogonale, ce point d'intersection correspondant à un coin intérieur de chaque plage magnétique. Dans une variante représentée à la Figure 13 en traits interrompus, les formes rectangulaires sont remplacées par des secteurs annulaires de centre C sur l'axe de rotation du résonateur. Les lignes de sortie respectives des plages magnétiques de cette variante sont identiques à celles des plages rectangulaires. Par contre les lignes de pénétration sont circulaires selon le degré de liberté des éléments de couplage correspondants. Elles définissent chacune un chemin selon le degré de liberté et sont donc orientées selon une direction sensiblement parallèle aux axes d'oscillation respectifs. Ensuite, chacune des deuxièmes zones 103 a en projection orthogonale, lorsque le centre de cette deuxième zone est superposé à l'axe central, une première dimension W3, selon le premier axe susmentionné, et une deuxième dimension L3, selon le deuxième axe susmentionné, qui est supérieure à la première dimension. Finalement, lorsque les éléments de couplage magnétiques sont dans leur position de repos, leur ligne de sortie respective 160, 162 a une longueur, le long de la zone de sortie et selon ledit deuxième axe, qui est supérieure à la première dimension W3 des deuxièmes zones.It will be noted that, in the context of the invention, the output lines 160 and 162 are considered to be oriented, when the element of magnetic coupling is in its rest position as shown in the Figure 13 , substantially in an angular direction parallel to the orthogonal projection of the median geometric circle 120 in the general geometric surface of the end portions 156 and 158. They are in fact tangent to the orthogonal projection of the circle 120 at the point of intersection of the central axis 154 with this orthogonal projection, this point of intersection corresponding to an interior corner of each magnetic range. In a variant shown in Figure 13 in broken lines, the rectangular shapes are replaced by annular sectors of center C on the axis of rotation of the resonator. The respective output lines of the magnetic pads of this variant are identical to those of the rectangular pads. On the other hand, the penetration lines are circular according to the degree of freedom of the corresponding coupling elements. They each define a path according to the degree of freedom and are therefore oriented in a direction substantially parallel to the respective axes of oscillation. Then, each of the second zones 103 has in orthogonal projection, when the center of this second zone is superimposed on the central axis, a first dimension W3, according to the first axis mentioned above, and a second dimension L3, according to the second axis mentioned above, which is greater than the first dimension. Finally, when the magnetic coupling elements are in their rest position, their respective exit line 160, 162 has a length, along the exit zone and along said second axis, which is greater than the first dimension W3 of the second zones.

Par la suite on décrira plusieurs dispositifs régulateurs selon l'invention. Le principe de fonctionnement ainsi que les relations spatiales et dimensionnelles spécifiques à l'invention déjà exposés précédemment s'appliquent également à ces dispositifs régulateurs et ne seront pas à nouveau décrits dans la description de ces dispositifs régulateurs.In the following, several regulating devices according to the invention will be described. The operating principle as well as the spatial and dimensional relationships specific to the invention already described previously also apply to these regulating devices and will not be described again in the description of these regulating devices.

Le dispositif régulateur 170 de la Figure 14 comprend un mobile d'échappement magnétique 82 supportant une piste magnétique 86 déjà décrite et un résonateur 174 formé par un balancier 176 (représenté schématiquement) oscillant autour de l'axe C parallèle à l'axe de rotation 20. Le balancier est associé à des moyens élastiques 178, 179 exerçant une force de rappel lorsqu'il s'écarte de sa position de repos (position zéro représentée à la Figure 14). Le balancier comprend deux parties d'extrémité actives 92 et 94 correspondant essentiellement à celles déjà décrites aux Figures 7 et 9, à l'exception du fait que les lignes de sortie 127A et 129A des plages magnétiques 92A et 94A ne sont pas superposées au cercle médian 120, mais sont situés à courte distance de ce cercle de part et d'autre de sorte que ce cercle est situé au milieu d'une zone intermédiaire annulaire entre les deux plages magnétiques. Cette zone intermédiaire est magnétiquement homogène, ici non magnétique.The regulating device 170 of the Figure 14 comprises a magnetic escapement mobile 82 supporting a magnetic track 86 already described and a resonator 174 formed by a balance 176 (shown diagrammatically) oscillating around the axis C parallel to the axis of rotation 20. The balance is associated with elastic means 178, 179 exerting a restoring force when it deviates from its rest position (zero position shown in the Figure 14 ). The balance comprises two active end parts 92 and 94 corresponding essentially to those already described in Figures 7 and 9 , except for the fact that the output lines 127A and 129A of the magnetic pads 92A and 94A are not superimposed on the middle circle 120, but are located a short distance from this circle on either side so that this circle is located in the middle of an annular intermediate zone between the two magnetic pads. This intermediate zone is magnetically homogeneous, here non-magnetic.

Selon un troisième mode de réalisation, le dispositif régulateur 180 de la Figure 15 comprend un mobile d'échappement magnétique 182, avec deux pistes magnétiques concentriques 86A et 186, et un résonateur 184. La première piste 86A a déjà été décrite et la deuxième piste 186 formée d'une pluralité d'aimants 188 lui est semblable, mais avec un diamètre inférieur. L'énergie potentielle magnétique de l'oscillateur 180 varie angulairement le long de cette deuxième piste avec la même période angulaire θP et de manière similaire à la variation de la première piste. Les première et deuxième pistes magnétiques présentent un décalage angulaire égal à la moitié de la période angulaire. Le résonateur 184 comprend un élément de couplage avec une partie d'extrémité active 190 formée d'un aimant agencé en répulsion et définissant dans son plan général une zone d'accumulation d'énergie potentielle magnétique 190A de forme tronconique. Cette partie 190 est agencée dans un support non magnétique 192 fixé au mouvement horloger par deux lames élastiques 193 et 194 permettant une oscillation du support 192. La partie d'extrémité active est couplée aux deux pistes magnétiques. La zone d'accumulation 190A définie par cette partie a une ligne de pénétration 196 commune pour les aimants des deux pistes et deux lignes de sortie 197 et 198 définissant respectivement les deux portions parallèles et sensiblement angulaires de cette zone tronconique. Ces deux lignes ont des longueurs différentes puisqu'elles s'étendent sensiblement sur une même distance angulaire légèrement inférieure à une demi-période angulaire le long de cercles géométriques médians 120 et 121 de diamètres différents. Dans une première alternance de chaque période d'oscillation, la partie 190 est couplée à la première piste 86A. De manière similaire, elle est couplée à la deuxième piste 186 dans la deuxième alternance de chaque période d'oscillation. Le structure oscillante 192 reçoit une impulsion à la fin de chaque alternance autour de sa position de repos (position représentée).According to a third embodiment, the regulating device 180 of the Figure 15 includes a magnetic exhaust mobile 182, with two concentric magnetic tracks 86A and 186, and a resonator 184. The first track 86A has already been described and the second track 186 formed of a plurality of magnets 188 is similar to it, but with a smaller diameter. The potential magnetic energy of the oscillator 180 varies angularly along this second track with the same angular period θ P and similarly to the variation of the first track. The first and second magnetic tracks have an angular offset equal to half of the angular period. The resonator 184 comprises a coupling element with an active end portion 190 formed of a magnet arranged in repulsion and defining in its general plane a zone of accumulation of potential magnetic energy 190A of frustoconical shape. This part 190 is arranged in a non-magnetic support 192 fixed to the watch movement by two elastic blades 193 and 194 allowing oscillation of the support 192. The active end part is coupled to the two magnetic tracks. The 190A accumulation zone defined by this part has a common penetration line 196 for the magnets of the two tracks and two output lines 197 and 198 respectively defining the two parallel and substantially angular portions of this frustoconical area. These two lines have different lengths since they extend substantially over the same angular distance slightly less than an angular half-period along median geometric circles 120 and 121 of different diameters. In a first alternation of each oscillation period, the part 190 is coupled to the first track 86A. Similarly, it is coupled to the second track 186 in the second half-wave of each oscillation period. The oscillating structure 192 receives a pulse at the end of each alternation around its rest position (position shown).

Selon un quatrième mode de réalisation, le dispositif régulateur 200 de la Figure 16 comprend un mobile d'échappement magnétique 202 avec une piste magnétique 204 radialement étendue, tel que décrit dans le premier mode de réalisation principal. Les aimants 206 de cette piste ont une forme tronconique avec les deux côtés parallèles selon une direction tangentielle relativement à l'axe de rotation 20. L'oscillateur 200 comprend également un résonateur 210 du même type que celui de la Figure 14, ce résonateur comprenant également deux éléments de couplage portés par un balancier 212 en matériau non magnétique, mais s'en distinguant par le fait que les deux parties d'extrémité actives 46A et 46B correspondantes sont radialement étroites relativement aux aimants 206 dans la position de repos des éléments de couplage (position représentée). Les deux parties 46A et 46B sont situées de part et d'autre d'une droite perpendiculaire à leur direction longitudinale et sensiblement radiale relativement à l'axe de rotation 20 du mobile d'échappement. Relativement à cet axe, ils s'étendent tous deux sur une distance angulaire sensiblement égale à une demi-période angulaire des pistes magnétiques, avec un décalage angulaire d'une demi-période. L'axe longitudinal de chaque partie 46A et 46B est sensiblement perpendiculaire à l'axe d'oscillation du balancier 212. La ligne de pénétration 214 définie par chaque aimant de la piste magnétique est commune aux deux parties d'extrémité actives. Dans une position angulaire d'un aimant 206 où son axe central est perpendiculaire aux deux axes longitudinaux des deux parties 46A et 46B dans la position de repos des éléments de couplage correspondants, l'axe longitudinal de la partie 46A est sensiblement superposé à la ligne de sortie 215 définie par le bord extérieur de cet aimant alors que l'axe longitudinal de la partie 46B est sensiblement superposé à la ligne de sortie 216 définie par le bord intérieur de cet aimant. Le balancier 212 reçoit ainsi deux impulsions par période d'oscillation localisées sensiblement autour de sa position de repos.According to a fourth embodiment, the regulating device 200 of the Figure 16 comprises a magnetic exhaust mobile 202 with a radially extended magnetic track 204, as described in the first main embodiment. The magnets 206 of this track have a frustoconical shape with the two sides parallel in a tangential direction relative to the axis of rotation 20. The oscillator 200 also includes a resonator 210 of the same type as that of the Figure 14 , this resonator also comprising two coupling elements carried by a balance 212 made of non-magnetic material, but being distinguished by the fact that the two corresponding active end parts 46A and 46B are radially narrow relative to the magnets 206 in the position of rest of the coupling elements (position shown). The two parts 46A and 46B are located on either side of a straight line perpendicular to their longitudinal direction and substantially radial relative to the axis of rotation 20 of the exhaust mobile. Relative to this axis, they both extend over an angular distance substantially equal to an angular half-period of the magnetic tracks, with an angular offset of half a period. The longitudinal axis of each part 46A and 46B is substantially perpendicular to the axis of oscillation of the pendulum 212. The line penetration 214 defined by each magnet of the magnetic track is common to the two active end parts. In an angular position of a magnet 206 where its central axis is perpendicular to the two longitudinal axes of the two parts 46A and 46B in the rest position of the corresponding coupling elements, the longitudinal axis of the part 46A is substantially superimposed on the line outlet 215 defined by the outer edge of this magnet while the longitudinal axis of the part 46B is substantially superimposed on the outlet line 216 defined by the inner edge of this magnet. The balance 212 thus receives two pulses per period of oscillation located substantially around its rest position.

A l'aide des Figures 17 et 18, on décrira ci-après un cinquième mode de réalisation de l'invention. Le dispositif régulateur 220 comprend une première roue d'échappement magnétique 222 et une deuxième roue d'échappement magnétique 224 qui sont identiques et agencées dans un même plan général. Ces deux roues d'échappement forment deux structures magnétiques définissant chacune une piste magnétique 86A radialement étroite avec une pluralité d'aimants 103. L'énergie potentielle magnétique de l'oscillateur varie donc angulairement de manière similaire le long de ces deux pistes 86A. Les deux roues d'échappement engrènent directement l'une avec l'autre via leurs dentures respectives 226 et 228. Les deux pistes magnétiques sont couplées à un même élément de couplage 234 du résonateur 230 qui comprend en outre un support non magnétique 232 en forme de T et deux lames flexibles 233A, 233B aux deux extrémités de la barre transversale de ce support. L'aimant 234 est agencé à l'extrémité libre de la barre centrale du support. Les lames flexibles sont agencées de manière que l'aimant 234 peut osciller selon un axe d'oscillation légèrement courbe. On remarquera que dans une variante, le résonateur peut avoir deux éléments de couplage distincts et couplés respectivement aux deux pistes magnétiques supportées respectivement par les deux roues 222, 224. L'aimant 234 est agencé en répulsion magnétique des aimants 103. Le dispositif régulateur 220 comprend en outre deux structures magnétiques supplémentaires situées respectivement en regard des deux roues 222, 224 et coaxiales à celles-ci. Ces deux structures complémentaires sont agencées de l'autre côté de l'aimant 234 formant un élément de couplage commun pour les deux pistes magnétiques situées de part et d'autre de l'aimant selon une direction axiale. Une seule structure magnétique supplémentaire 236 est représentée à la Figure 18, mais la deuxième lui est semblable.Using the Figures 17 and 18 , a fifth embodiment of the invention will be described below. The regulating device 220 comprises a first magnetic escape wheel 222 and a second magnetic escape wheel 224 which are identical and arranged in the same general plane. These two escape wheels form two magnetic structures each defining a radially narrow magnetic track 86A with a plurality of magnets 103. The potential magnetic energy of the oscillator therefore varies angularly in a similar fashion along these two tracks 86A. The two escape wheels mesh directly with each other via their respective teeth 226 and 228. The two magnetic tracks are coupled to the same coupling element 234 of the resonator 230 which further comprises a non-magnetic support 232 in the form of T and two flexible blades 233A, 233B at the two ends of the crossbar of this support. The magnet 234 is arranged at the free end of the central bar of the support. The flexible blades are arranged so that the magnet 234 can oscillate along a slightly curved axis of oscillation. It will be noted that in a variant, the resonator may have two separate coupling elements and coupled respectively to the two magnetic tracks supported respectively by the two wheels 222, 224. The magnet 234 is arranged in magnetic repulsion of the magnets 103. The regulating device 220 includes in in addition to two additional magnetic structures situated respectively opposite the two wheels 222, 224 and coaxial with them. These two complementary structures are arranged on the other side of the magnet 234 forming a common coupling element for the two magnetic tracks located on either side of the magnet in an axial direction. A single additional magnetic structure 236 is shown in the Figure 18 , but the second is similar to it.

Dans la variante représentée, la structure 236 comprend un plateau 237 supportant une piste magnétique 86A identique à celle de la roue d'échappement 224 et agencées angulairement de manière également identique. Par contre, on notera que les deux roues engrènent de manière que, le long d'un axe transversal passant par leurs deux axes de rotation respectifs et correspondant sensiblement à l'axe d'oscillation de l'aimant 234, les deux pistes magnétiques présentent un déphasage magnétique de 180°, la première piste étant couplée dans une première alternance alors que la deuxième piste est couplée dans une deuxième alternance de chaque période d'oscillation, l'élément de couplage 234 recevant une impulsion à la fin de chaque alternance, laquelle est localisée autour de la position de repos de la structure oscillante selon le concept de la présente invention. Dans la variante représentée, les pistes magnétiques 86A des structures magnétiques superposées sont solidaires en rotation, le plateau 237 étant relié à la roue 224 par un tube central 238. Dans une autre variante, ces deux pistes superposées et agencées de part et d'autre du plan général de l'aimant 234 ne sont pas solidaires en rotation.In the variant shown, the structure 236 comprises a plate 237 supporting a magnetic track 86A identical to that of the escape wheel 224 and angularly arranged in an equally identical manner. On the other hand, it will be noted that the two wheels mesh so that, along a transverse axis passing through their two respective axes of rotation and corresponding substantially to the axis of oscillation of the magnet 234, the two magnetic tracks have a 180 ° magnetic phase shift, the first track being coupled in a first half-wave while the second track is coupled in a second half-wave of each oscillation period, the coupling element 234 receiving a pulse at the end of each half-wave, which is located around the rest position of the oscillating structure according to the concept of the present invention. In the variant shown, the magnetic tracks 86A of the superimposed magnetic structures are integral in rotation, the plate 237 being connected to the wheel 224 by a central tube 238. In another variant, these two tracks superimposed and arranged on either side of the general plane of the magnet 234 are not integral in rotation.

A l'aide des Figures 19 et 20, on décrira ci-après un sixième mode de réalisation de l'invention. Le dispositif régulateur 240 est basé sur un même concept que le mode de réalisation précédent. Dans la variante proposée ici, le dimensionnement relatif de chaque organe de couplage et des pistes magnétiques correspond au premier mode de réalisation principal, alors que la variante proposée dans le mode de réalisation précédent correspond au deuxième mode de réalisation principal. Hormis cette différence de base, les variantes de chacun des deux modes peuvent s'appliquer à l'autre mode en adaptant certains éléments constructifs. L'oscillateur 240 comprend un résonateur 242 et deux structures magnétiques 244 et 246 situées dans un même plan général et solidaires respectivement de deux roues 248 et 250 qui engrènent l'une avec l'autre de manière indirecte via deux roues intermédiaires 252 et 254 agencés pour que les deux structures magnétiques tournent à même vitesse mais dans un sens opposé. La roue intermédiaire 252 comprend un pignon 253 pour l'entrée d'un couple moteur fourni au dispositif régulateur. Le résonateur est formé de deux lames flexibles 260 et 264 en matériau à haute perméabilité magnétique et comprenant deux parties d'extrémité respectives 262 et 266 situées respectivement de part et d'autre du plan général des deux structures magnétiques. De plus, le résonateur comprend un générateur de flux magnétique 256 formé par un aimant 258 logé dans une structure rigide 257, laquelle est agencée pour permettre la fixation des deux lames flexibles de part et d'autre de l'aimant 258 de manière à engendrer un chemin magnétique fermé pour le flux d'aimant passant par les lames flexibles, en particulier par les parties d'extrémité 262 et 266 et l'entrefer entre ces deux extrémités. Au niveau de l'aimant 258, les lames flexibles peuvent présenter un élargissement de manière à canaliser la totalité du flux magnétique de cet aimant.Using the Figures 19 and 20 , a sixth embodiment of the invention will be described below. The regulating device 240 is based on the same concept as the previous embodiment. In the variant proposed here, the relative dimensioning of each coupling member and the magnetic tracks corresponds to the first main embodiment, while the variant proposed in the previous embodiment corresponds to second main embodiment. Apart from this basic difference, the variants of each of the two modes can be applied to the other mode by adapting certain constructive elements. The oscillator 240 comprises a resonator 242 and two magnetic structures 244 and 246 situated in the same general plane and integral respectively with two wheels 248 and 250 which mesh with each other indirectly via two intermediate wheels 252 and 254 arranged so that the two magnetic structures rotate at the same speed but in an opposite direction. The intermediate wheel 252 comprises a pinion 253 for the input of a motor torque supplied to the regulating device. The resonator is formed by two flexible blades 260 and 264 made of material with high magnetic permeability and comprising two respective end parts 262 and 266 situated respectively on either side of the general plane of the two magnetic structures. In addition, the resonator comprises a magnetic flux generator 256 formed by a magnet 258 housed in a rigid structure 257, which is arranged to allow the fixing of the two flexible blades on either side of the magnet 258 so as to generate a closed magnetic path for the flux of magnet passing through the flexible blades, in particular through the end parts 262 and 266 and the air gap between these two ends. At the magnet 258, the flexible blades can have an enlargement so as to channel the entire magnetic flux of this magnet.

Les deux structures magnétiques sont formées par deux disques ayant chacun à leur périphérie un anneau aimanté définissant une pluralité de zones aimantées 10A, lesquelles sont prévues sur la hauteur du disque de manière à produire un flux magnétique axial des deux côtés de l'anneau aimanté. Ainsi, ces zones aimantées forment au niveau de la surface supérieure de la structure magnétique une première piste magnétique 11A1 et au niveau de la surface inférieure une deuxième piste magnétique équivalente 11A2. Ces deux pistes magnétiques sont respectivement couplées avec les deux parties d'extrémité actives 262 et 266. On remarquera que les zones aimantées peuvent être formées par une pluralité d'aimants distincts ou par un anneau formé d'un même matériau dont seules les zones 10A sont aimantées. Dans une autre variante intéressante, cet anneau est magnétisé avec une alternance du sens de polarité dans chaque période angulaire. On a ainsi une alternance de zones aimantées Nord et Sud dans chaque piste magnétique. On passe donc d'un couplage magnétique en attraction et en répulsion dans chaque période angulaire; ce qui permet avantageusement d'augmenter la différence d'énergie potentielle entre les zones d'énergie potentielle minimales et maximales. Cette variante dans un couplage aimant-aimant s'applique d'ailleurs à tous les modes de réalisation.The two magnetic structures are formed by two discs each having at their periphery a magnetic ring defining a plurality of magnetic zones 10A, which are provided over the height of the disc so as to produce an axial magnetic flux on both sides of the magnetic ring. Thus, these magnetized areas form at the upper surface of the magnetic structure a first magnetic track 11A1 and at the lower surface a second equivalent magnetic track 11A2. These two magnetic tracks are respectively coupled with the two active end parts 262 and 266. We note that the magnetized zones can be formed by a plurality of distinct magnets or by a ring formed of the same material of which only the zones 10A are magnetized. In another interesting variant, this ring is magnetized with an alternation of the direction of polarity in each angular period. There is thus an alternation of magnetic zones North and South in each magnetic track. One thus passes from a magnetic coupling in attraction and repulsion in each angular period; which advantageously makes it possible to increase the potential energy difference between the minimum and maximum potential energy zones. This variant in a magnet-magnet coupling also applies to all the embodiments.

Dans d'autres variantes de réalisation des deux derniers modes de réalisation (non représentées), les deux pistes magnétiques couplées au résonateur sont respectivement solidaires de deux mobiles en rotation n'ayant pas de relation d'engrènement l'un avec l'autre. Ces deux mobiles peuvent être coaxiaux ou situés l'un à côté de l'autre avec deux axes de rotation distincts. Selon deux variantes particulières, ces deux mobiles sont couplées à un même élément de couplage ou respectivement à deux éléments de couplage du résonateur. Les deux mobiles en rotation peuvent être chacun entraînés par une propre source d'énergie mécanique. Toutefois, il est aussi possible que seul un premier mobile soit entraîné en rotation par un couple moteur alors que le second mobile est de fait entraîné en rotation par le résonateur excité par le premier mobile, c'est-à-dire entraîné au travers du résonateur qui lui transmet de l'énergie reçue. L'homme du métier comprend ainsi que plusieurs réalisations peuvent être envisagées sur la base du concept du cinquième ou sixième mode de réalisation.In other alternative embodiments of the last two embodiments (not shown), the two magnetic tracks coupled to the resonator are respectively secured to two rotating mobiles having no engagement relationship with each other. These two mobiles can be coaxial or located one next to the other with two distinct axes of rotation. According to two particular variants, these two mobiles are coupled to the same coupling element or respectively to two coupling elements of the resonator. The two rotating mobiles can each be driven by their own source of mechanical energy. However, it is also possible that only a first mobile is rotated by a motor torque while the second mobile is in fact rotated by the resonator excited by the first mobile, that is to say driven through the resonator which transmits received energy to it. Those skilled in the art thus understand that several embodiments can be envisaged on the basis of the concept of the fifth or sixth embodiment.

A la Figure 21 est représenté un septième mode de réalisation d'un dispositif régulateur 270 selon l'invention. La structure magnétique 4B est semblable à celle décrite à la Figure 5. Elle comprend deux pistes 11A et 13A qui sont concentriques. Le résonateur 272 est du type balancier-spiral avec un balancier rigide 274 associé à un ressort-spiral 276. Le balancier peut prendre diverses formes, notamment circulaire comme dans un mouvement horloger classique. Le balancier pivote autour d'un axe 278 et il comprend deux organes de couplage magnétique 280 et 282 selon l'invention qui sont décalés angulairement relativement à l'axe de rotation 20 de la structure magnétique 4B. Ces deux organes sont formés par deux aimants. Le décalage angulaire des deux aimants et leur positionnement relativement à la structure 4B sont prévus pour que ces deux aimants définissent un même cercle de position zéro 44 et qu'ils présentent dans leur position de repos un décalage angulaire θD égal à un nombre entier de période angulaire θP augmenté d'une demi-période. Ainsi ces deux aimants présentent un déphasage de π. Le cercle 44 correspond sensiblement au cercle d'interface (limite commune) des deux pistes magnétiques 11A et 13A. De préférence, l'axe de rotation 278 du balancier est positionné à l'intersection des deux tangentes au cercle de position zéro 44 respectivement aux deux points d'intersection de ce cercle avec les deux axes d'oscillation respectifs des deux aimants du résonateur. On notera qu'il est préférable que le balancier soit équilibré, plus précisément que son centre de masse se trouve sur l'axe du balancier. L'homme du métier saura facilement configurer des balanciers de diverses formes présentant cette caractéristique importante. On comprend donc que les diverses variantes représentées aux figures sont schématiques et la problématique liée à l'inertie du résonateur n'est pas traitée concrètement sur ces figures. De plus, des agencements garantissant une résultante nulle des forces magnétiques agissant radialement et axialement sur l'axe du balancier sont préférés. On notera que, dans une variante, il est prévu un balancier à lames flexibles définissant un axe de rotation fictif, c'est-à-dire sans pivotement, en lieu et place du balancier-spiral. Lors du passage dans la zone centrale d'impulsions localisée autour du cercle d'interface 44, chacun des aimants 280 et 282 reçoit une impulsion dans chaque alternance de chaque période d'oscillation. On a donc ici une double impulsion. Dans une variante avec deux structures magnétiques 4B agencées de manière coaxiale des deux côtés des aimants 280 et 282, on obtient quatre impulsions simultanées à la fin de la première alternance et de la deuxième alternance dans chaque période d'oscillation. Un tel système présente un fort couplage entre le résonateur et les structures magnétiques entraînées en rotation par un couple moteur dans une plage utile, cette dernière pouvant ainsi être relativement étendue.To the Figure 21 a seventh embodiment is shown of a regulating device 270 according to the invention. The magnetic structure 4B is similar to that described in Figure 5 . It includes two tracks 11A and 13A which are concentric. The resonator 272 is of the balance-spring type with a rigid balance 274 associated with a balance spring 276. The balance can take various forms, in particular circular as in a classic watch movement. The balance pivots about an axis 278 and it comprises two magnetic coupling members 280 and 282 according to the invention which are angularly offset relative to the axis of rotation 20 of the magnetic structure 4B. These two organs are formed by two magnets. The angular offset of the two magnets and their positioning relative to the structure 4B are provided so that these two magnets define the same circle of zero position 44 and that they have in their rest position an angular offset θ D equal to an integer of angular period θ P increased by half a period. Thus these two magnets have a phase shift of π. The circle 44 corresponds substantially to the interface circle (common limit) of the two magnetic tracks 11A and 13A. Preferably, the axis of rotation 278 of the balance wheel is positioned at the intersection of the two tangents to the zero position circle 44 respectively at the two points of intersection of this circle with the two respective axes of oscillation of the two magnets of the resonator. Note that it is preferable that the balance is balanced, more precisely that its center of mass is on the axis of the balance. Those skilled in the art will easily be able to configure pendulums of various shapes having this important characteristic. It is therefore understood that the various variants shown in the figures are schematic and the problem linked to the inertia of the resonator is not dealt with concretely in these figures. In addition, arrangements guaranteeing a zero result of the magnetic forces acting radially and axially on the axis of the balance are preferred. It will be noted that, in a variant, there is provided a balance with flexible blades defining a fictitious axis of rotation, that is to say without pivoting, in place of the balance spring. When passing through the central pulse zone located around the interface circle 44, each of the magnets 280 and 282 receives a pulse in each alternation of each oscillation period. So here we have a double impulse. In a variant with two magnetic structures 4B arranged coaxially on the two sides of the magnets 280 and 282, four simultaneous pulses are obtained at the end of the first half-wave and of the second half-wave in each period of oscillation. Such a system has a strong coupling between the resonator and the magnetic structures driven in rotation by a motor torque in a useful range, the latter thus being able to be relatively extended.

La Figure 22 est une alternative au dispositif de la Figure 21, le dispositif de la Figure 22 étant basé sur le deuxième mode de réalisation principal alors que le dispositif de la Figure 21 est basé sur le premier mode de réalisation principal. Cette alternative concerne un dispositif régulateur 290 avec deux pistes magnétiques concentriques 86A et 186 de faible dimension radiale formant la structure magnétique 182, laquelle est semblable à celle déjà décrite à la Figure 15 (la seule différence est la forme arquée des aimants 103 et 188 à la Figure 22). Ce dispositif régulateur comprend en outre un résonateur 292 du type balancier-spiral décrit précédemment. Le résonateur a donc un spiral 276 ou un autre élément élastique approprié et un balancier 274A ayant deux bras dont les deux extrémités libres respectives portent respectivement deux éléments de couplage 294 et 296 formés par deux aimants agencés en répulsion des aimants des pistes magnétiques. Chaque élément de couplage est formé par une zone aimantée similaire à l'élément 190 de la Figure 15. Le fonctionnement de l'oscillateur 290 est donc semblable à celui de cette Figure 15 pour chacune des deux zones aimantées 294 et 296. Ces deux zones aimantées sont décalées d'un angle θD = θP·(2N+1)/2, N étant un nombre entier. Lorsqu'une première plage aimantée du résonateur 292 est couplée à une première piste magnétique, la deuxième plage aimantée est alors couplée à la deuxième piste magnétique. On double ainsi le couplage magnétique entre le résonateur et la structure magnétique relativement à la réalisation de la Figure 15. Diverses remarques et variantes mentionnées pour la Figure 21 s'appliquent également ici.The Figure 22 is an alternative to the device of the Figure 21 , the device of the Figure 22 being based on the second main embodiment while the device of the Figure 21 is based on the first main embodiment. This alternative relates to a regulating device 290 with two concentric magnetic tracks 86A and 186 of small radial dimension forming the magnetic structure 182, which is similar to that already described in Figure 15 (the only difference is the arched shape of magnets 103 and 188 on the Figure 22 ). This regulating device further comprises a resonator 292 of the balance-spring type described above. The resonator therefore has a hairspring 276 or another suitable elastic element and a balance 274A having two arms, the respective free ends of which carry two coupling elements 294 and 296 respectively formed by two magnets arranged in repulsion of the magnets of the magnetic tracks. Each coupling element is formed by a magnetic zone similar to element 190 of the Figure 15 . The operation of oscillator 290 is therefore similar to that of this Figure 15 for each of the two magnetized zones 294 and 296. These two magnetized zones are offset by an angle θ D = θ P · (2N + 1) / 2, N being an integer. When a first magnetic pad of the resonator 292 is coupled to a first magnetic track, the second magnetic pad is then coupled to the second magnetic track. This doubles the magnetic coupling between the resonator and the magnetic structure relative to the realization of the Figure 15 . Various remarks and variants mentioned for the Figure 21 also apply here.

A la Figure 23 est représenté schématiquement un huitième mode de réalisation. Le dispositif régulateur 300 comprend une structure magnétique 82A similaire à celle décrite aux Figures 12A et 13 et un résonateur 302 formé par un diapason à deux branches 308 et 309 (représenté schématiquement) qui présentent à leur deux extrémités libres deux plaquettes magnétiques 304A et 304B identiques. Chaque plaquette magnétique est formées de deux plages magnétiques 156 et 158 et de deux parties complémentaires non magnétiques 305 et 306. Les plages magnétiques 156 et 158 sont agencées de manière identique aux deux parties d'extrémité actives qui sont décrites à la Figure 13. Le fonctionnement magnétique est ici équivalent à celui décrit à l'aide des Figures 9 à 11A et 13, et ne sera donc pas à nouveau exposé ici. On remarquera que le couplage magnétique peut être prévu en répulsion (voir Figures 9 et 10) ou en attraction (voir Figures 11 et 11A). La piste magnétique a un nombre pair d'aimants et donc de périodes angulaires de sorte que les deux plaquettes 304A, 304B oscillent avantageusement en sens opposé. Dans une autre variante avec un diapason parfaitement symétrique (en faisant subir une symétrie axiale à l'une des deux plaquettes selon un axe de symétrie sensiblement tangent au cercle médian 120), il faut prévoir un nombre impair d'aimants le long de la piste magnétique 86A. Ainsi, le résonateur est formé par un diapason dont deux extrémités libres de sa structure résonnante portent respectivement les premier et deuxième éléments de couplage magnétique.To the Figure 23 schematically shown is an eighth embodiment. The regulating device 300 comprises a magnetic structure 82A similar to that described in Figures 12A and 13 and a resonator 302 formed by a tuning fork with two branches 308 and 309 (shown diagrammatically) which have at their two free ends two identical magnetic plates 304A and 304B. Each magnetic plate is formed by two magnetic pads 156 and 158 and by two non-magnetic complementary parts 305 and 306. The magnetic pads 156 and 158 are arranged identically to the two active end parts which are described in Figure 13 . The magnetic operation here is equivalent to that described using the Figures 9 to 11A and 13 , and will therefore not be discussed again here. Note that the magnetic coupling can be provided in repulsion (see Figures 9 and 10 ) or as an attraction (see Figures 11 and 11A ). The magnetic track has an even number of magnets and therefore of angular periods so that the two plates 304A, 304B advantageously oscillate in opposite directions. In another variant with a perfectly symmetrical tuning fork (by subjecting one of the two plates to an axial symmetry along an axis of symmetry substantially tangent to the median circle 120), an odd number of magnets must be provided along the track magnetic 86A. Thus, the resonator is formed by a tuning fork, two free ends of its resonant structure of which carry the first and second magnetic coupling elements, respectively.

A la Figure 24 est représenté un neuvième mode de réalisation de l'invention. Le dispositif régulateur 310 se distingue essentiellement des modes de réalisation précédents par trois caractéristiques particulières. Premièrement, il comprend deux résonateurs 312 et 314 indépendants, c'est-à-dire n'ayant pas un mode de résonance commun. Toutefois, ces deux résonateurs sont identiques. Deuxièmement, la structure magnétique 316 est prévue fixe sur un support ou une platine 318 d'un mouvement horloger, alors que les deux résonateurs 312 et 314 sont entraînés en rotation à la vitesse angulaire ω par un couple moteur fourni à un rotor 320 qui comprend deux bras rigides 322 et 323 aux extrémités libres respectives desquelles sont agencés respectivement les deux résonateurs. Ces deux résonateurs comprennent chacun une lame élastique à l'extrémité libre de laquelle est agencé un aimant allongé 325, 326. Ces aimants sont agencés selon l'invention tangentiellement à un cercle d'interface 44 entre les deux pistes magnétiques 328 et 330 lorsque les résonateurs respectifs sont dans leur position de repos, de sorte que ce cercle d'interface correspond à un cercle de position zéro pour les deux parties d'extrémité actives définies par les aimants 325 et 326. Chaque piste magnétique comprend des premières zones 332 et des deuxièmes zones 334 ayant des propriétés déjà décrites dans l'exposé du premier mode de réalisation principal. Chacun des deux aimants définit avec les deux pistes magnétiques un oscillateur. On remarquera que l'inversion de l'entraînement au niveau du système 'résonateur - piste magnétique' avec un couple moteur appliqué au résonateur pour l'entraîner en rotation autour d'un axe de rotation 20A confondu avec l'axe central de la structure magnétique ne change rien à l'interaction magnétique entre le résonateur et la structure magnétique qui a été exposée précédemment, de sorte que cette inversion peut être implémentée à titre de variante dans les autres modes de réalisation.To the Figure 24 depicted is a ninth embodiment of the invention. The regulating device 310 differs essentially from the previous embodiments by three particular characteristics. Firstly, it includes two independent resonators 312 and 314, that is to say not having a common resonance mode. However, these two resonators are identical. Secondly, the magnetic structure 316 is provided fixed on a support or a plate 318 of a timepiece movement, while the two resonators 312 and 314 are driven in rotation at the angular speed ω by a motor torque supplied to a rotor 320 which comprises two rigid arms 322 and 323 at the respective free ends of which the two resonators are arranged respectively. These two resonators each comprise an elastic strip at the free end of which is arranged an elongated magnet 325, 326. These magnets are arranged according to the invention tangentially to an interface circle 44 between the two magnetic tracks 328 and 330 when the respective resonators are in their rest position, so that this interface circle corresponds to a zero position circle for the two active end parts defined by the magnets 325 and 326. Each magnetic track comprises first zones 332 and second zones 334 having properties already described in the description of the first main embodiment. Each of the two magnets defines with the two magnetic tracks an oscillator. It will be noted that the inversion of the drive at the level of the 'resonator - magnetic track' system with a motor torque applied to the resonator to drive it in rotation around an axis of rotation 20A coincident with the central axis of the structure magnetic does not change the magnetic interaction between the resonator and the magnetic structure which has been exposed previously, so that this inversion can be implemented as a variant in the other embodiments.

La troisième caractéristique particulière de ce mode de réalisation vient du fait que, dans un mode de réalisation correspondant au premier mode de réalisation principal, l'oscillation des éléments de couplage n'est pas radiale relativement à l'axe de rotation 20A du rotor 320, à savoir que l'axe d'oscillation intercepte le cercle de position zéro 44 de manière non perpendiculaire. Le degré de liberté de l'élément de couplage de chaque résonateur se trouve sensiblement sur un cercle dont le rayon est sensiblement égal à la longueur L de la lame élastique et centré au point d'ancrage de cette lame. De manière à obtenir, selon une variante préférée de l'invention, un gradient de l'énergie potentielle magnétique sensiblement nul selon le degré de liberté de chaque résonateur (les deux résonateurs présentant une symétrie axiale d'axe géométrique 20A) dans les zones utiles d'accumulation d'énergie potentielle magnétique, il est prévu que les lignes de pénétration 336 des deuxièmes zones 334 de chacune des deux pistes 328 et 330 suivent des arcs de cercle selon l'axe d'oscillation de chacun des éléments de couplage lorsque la ligne de pénétration considérée et un axe d'oscillation sont superposés. Cette troisième caractéristique particulière correspond par analogie à la situation décrite aux Figures 12 et 12A dans le cadre du deuxième mode de réalisation principal.The third particular characteristic of this embodiment comes from the fact that, in an embodiment corresponding to the first main embodiment, the oscillation of the coupling elements is not radial relative to the axis of rotation 20A of the rotor 320 , namely that the axis of oscillation intercepts the zero position circle 44 in a non-perpendicular manner. The degree of freedom of the coupling element of each resonator is located substantially on a circle whose radius is substantially equal to the length L of the elastic blade and centered at the anchor point of this blade. In order to obtain, according to a preferred variant of the invention, a gradient of the magnetic potential energy substantially zero according to the degree of freedom of each resonator (the two resonators having an axial symmetry of geometric axis 20A) in the useful zones accumulation of potential magnetic energy, it is expected that the penetration lines 336 of the second zones 334 of each of the two tracks 328 and 330 follow arcs of circle along the axis of oscillation of each of the coupling elements when the penetration line considered and an oscillation axis are superimposed. This third particular characteristic corresponds by analogy to the situation described in Figures 12 and 12A as part of the second main embodiment.

En référence aux Figures 25A à 25D, on décrira ci-après un dixième mode de réalisation, lequel est basé sur la réalisation de la Figure 22 pour ce qui concerne le couplage magnétique entre les éléments de couplage du résonateur 346 et une piste magnétique annulaire 344 d'un mobile d'échappement 342. Dans ce mode de réalisation que l'on peut nommer 'échappement à cylindre magnétique', le dispositif régulateur 340 se distingue par le fait que le résonateur comprend un aimant annulaire tronqué 352 relié rigidement à un balancier 348 qui est associé à un spiral 350. L'aimant annulaire tronqué définit la paroi d'une section de tube cylindrique ouverte latéralement. Cet aimant annulaire tronqué est situé dans un premier plan général parallèle à un deuxième plan général définit par la piste magnétique annulaire, de sorte que cet aimant annulaire passe au-dessus du mobile d'échappement pour être couplé magnétiquement en répulsion, et donc sans contact, à la piste annulaire 344 entraînée en rotation par un couple moteur. On remarquera que dans une variante aucun balancier autre que la section de tube cylindrique avec ses moyens de pivotement n'est prévu. L'aimant annulaire tronqué est agencé pour tourner autour de l'axe C. Un arbre peut être prévu dans cette variante, cet arbre étant relié à l'aimant annulaire par exemple par un plateau supportant cet aimant et monté fixement sur l'arbre. Le plateau est prévu de l'autre côté du mobile d'échappement relativement à cet aimant annulaire.With reference to Figures 25A to 25D , a tenth embodiment will be described below, which is based on the realization of the Figure 22 as regards the magnetic coupling between the coupling elements of the resonator 346 and an annular magnetic track 344 of an exhaust mobile 342. In this embodiment which can be called 'magnetic cylinder exhaust', the device regulator 340 is distinguished by the fact that the resonator comprises a truncated annular magnet 352 rigidly connected to a balance 348 which is associated with a hairspring 350. The truncated annular magnet defines the wall of a section of cylindrical tube open laterally. This truncated annular magnet is located in a first general plane parallel to a second general plane defined by the annular magnetic track, so that this annular magnet passes over the exhaust mobile to be magnetically repelled, and therefore contactless. , to the annular track 344 driven in rotation by a motor torque. It will be noted that in a variant, no pendulum other than the section of cylindrical tube with its pivoting means is provided. The truncated annular magnet is arranged to rotate around the axis C. A shaft can be provided in this variant, this shaft being connected to the annular magnet for example by a plate supporting this magnet and fixedly mounted on the shaft. The plate is provided on the other side of the exhaust mobile relative to this annular magnet.

Selon le concept exposé notamment à l'aide des Figures 9 et 10, l'aimant annulaire 352 forme deux parties d'extrémité active de deux éléments de couplage, ces deux extrémités étant dans la variante représentée formées par un seul et même aimant annulaire tronqué. En effet, dans une variante limitant les amplitudes d'oscillation, on peut prévoir deux aimants arqués de même rayon et reliés par une partie de fixation non magnétique. De plus, l'aimant annulaire tronqué définit dans son plan général une première ligne de pénétration 354, correspondant à sa paroi extérieure et une première ligne de sortie 356 à une première extrémité de cet aimant annulaire dans son plan général. La deuxième extrémité définit une deuxième ligne de sortie 357 alors qu'une deuxième ligne de pénétration 355 est définie par la paroi intérieure de cet aimant annulaire. Dans ce mode de couplage en répulsion, comme exposé précédemment, l'aimant annulaire correspond en projection orthogonale à une zone d'accumulation d'énergie potentielle magnétique. On remarquera que les lignes de pénétration sont orientées selon le degré de liberté du résonateur puisqu'elles sont circulaires et centrées sur l'axe d'oscillation C. Elles définissent des chemins selon ce degré de liberté de sorte que, pour une position angulaire donnée de la piste magnétique 344, l'énergie potentielle magnétique d'un aimant 343 partiellement superposé à l'aimant annulaire 352 ne varie pas lorsque cet aimant oscille dans une première alternance de la période d'oscillation du balancier-spiral (Figures 25A et 25C) avant d'atteindre la ligne de sortie (Figures 25B et 25D) où une impulsion P est fournie au balancier via l'aimant annulaire.According to the concept exposed in particular using Figures 9 and 10 , the annular magnet 352 forms two active end parts of two coupling elements, these two ends being in the variant shown formed by a single truncated annular magnet. Indeed, in a variant limiting the amplitudes of oscillation, one can provide two arcuate magnets of the same radius and connected by a non-magnetic fixing part. In addition, the truncated annular magnet defines in its general plane a first penetration line 354, corresponding to its outer wall and a first outlet line 356 at a first end of this annular magnet in its general plane. The second end defines a second outlet line 357 while a second penetration line 355 is defined by the interior wall of this annular magnet. In this repulsion coupling mode, as explained above, the annular magnet corresponds in orthogonal projection to a zone of accumulation of potential magnetic energy. It will be noted that the penetration lines are oriented according to the degree of freedom of the resonator since they are circular and centered on the axis of oscillation C. They define paths according to this degree of freedom so that, for a given angular position from the magnetic track 344, the potential magnetic energy of a magnet 343 partially superimposed on the annular magnet 352 does not vary when this magnet oscillates in a first alternation of the period of oscillation of the balance spring ( Figures 25A and 25C ) before reaching the exit line ( Figures 25B and 25D ) where a pulse P is supplied to the balance via the annular magnet.

L'aimant 352 définit dans son plan général une surface annulaire tronquée. Dans la variante proposée ici, l'ouverture θA de cette surface annulaire tronquée, définie comme l'angle à l'axe de rotation 20 depuis le milieu des deux lignes de sortie, est sensiblement égale à 150% de la période angulaire de la piste magnétique, soit θA = 3·θP/2. Dans une première alternance d'oscillation du balancier 348, un premier aimant 343 de la piste magnétique pénètre sous l'aimant annulaire par la ligne de pénétration extérieure 354. Dans la plage utile du couple moteur, grâce à l'agencement d'une butée magnétique 345 à la suite de chaque aimant 343 (interaction significativement plus forte avec l'aimant annulaire pour cette butée magnétique), le premier aimant reste finalement dans une certaine position de pénétration maximale ou position de superposition finale. Dans cette position de superposition finale, le balancier peut tourner librement sensiblement durant toute la première alternance (Figure 25A) jusqu'à ce qu'il arrive sensiblement à sa position de repos autour de laquelle il reçoit une première impulsion P (Figure 25B). Le balancier continue sa rotation à vitesse sensiblement maximale et un deuxième aimant précédent le premier aimant, relativement au sens de rotation du mobile d'entrainement, pénètre après une certaine rotation du mobile d'échappement sous l'aimant annulaire par la ligne de pénétration intérieure 355. Ce deuxième aimant reste également dans une position de pénétration maximale correspondant à une certaine superposition partielle avec l'aimant annulaire durant la majeure partie de la deuxième alternance (Figure 25C) avant de sortir par la ligne de sortie 357 autour de la position de repos du résonateur (Figure 25D) en fournissant une deuxième impulsion P au balancier-spiral. On remarquera que, selon le positionnement de la butée magnétique 345 relativement à l'aimant 343 et du couple moteur, l'aimant 343 peut être totalement superposé à l'aimant annulaire dans sa position de pénétration maximale. L'aimant annulaire forme la partie d'extrémité active commune au couplage de la piste magnétique au résonateur dans les deux alternances de chaque période d'oscillation. On remarquera que dans sa position de repos (Figures 25B et 25D), les lignes de sortie définies par cette partie d'extrémité active commune présentent chacune une orientation selon la présente invention, car ces lignes de sortie sont sensiblement tangentielles au cercle géométrique médian 120.The magnet 352 defines in its general plane a truncated annular surface. In the variant proposed here, the opening θ A of this truncated annular surface, defined as the angle to the axis of rotation 20 from the middle of the two output lines, is substantially equal to 150% of the angular period of the magnetic strip, ie θ A = 3 · θ P / 2. In a first alternation of oscillation of the balance 348, a first magnet 343 of the magnetic track penetrates under the annular magnet by the external penetration line 354. In the useful range of the motor torque, thanks to the arrangement of a stop magnetic 345 following each magnet 343 (significantly stronger interaction with the annular magnet for this magnetic stop), the first magnet ultimately remains in a certain position of maximum penetration or final superposition position. In this final overlapping position, the balance can rotate freely substantially throughout the first half-cycle ( Figure 25A ) until it substantially reaches its rest position around which it receives a first pulse P ( Figure 25B ). The balance continues its rotation at substantially maximum speed and a second magnet preceding the first magnet, relative to the direction of rotation of the driving mobile, penetrates after a certain rotation of the exhaust mobile under the annular magnet by the internal penetration line. 355. This second magnet also remains in a position of maximum penetration corresponding to a certain partial superposition with the annular magnet during most of the second half-wave ( Figure 25C ) before exiting via the output line 357 around the rest position of the resonator ( Figure 25D ) by providing a second pulse P to the balance spring. It will be noted that, depending on the positioning of the magnetic stop 345 relative to the magnet 343 and of the motor torque, the magnet 343 can be completely superimposed on the annular magnet in its position of maximum penetration. The annular magnet forms the active end part common to the coupling of the magnetic track to the resonator in the two half-waves of each period of oscillation. Note that in its rest position ( Figures 25B and 25D ), the output lines defined by this common active end part each have an orientation according to the present invention, because these output lines are substantially tangential to the median geometric circle 120.

On remarquera donc que ce mode de réalisation, dans son mode de fonctionnement principal, est caractérisé par une avance saccadée du mobile d'échappement avec une grande amplitude d'oscillation. En effet, l'anneau annulaire tronqué forme une barrière magnétique pour les butées magnétiques de la piste magnétique, permettant d'arrêter momentanément le mobile d'échappement, lequel avance alors par pas (deux pas pour une rotation d'une période angulaire). Dans un mode de fonctionnement spécifique, on peut toutefois obtenir une avance quasi continue ou continue. Dans ce dernier cas, les butées magnétiques ne sont plus nécessaires. On notera qu'une telle avance quasi continue ou continue est prévue principalement dans les autres modes de réalisation. Cependant, certains modes de réalisation, selon le dimensionnement du résonateur et de la structure magnétique, peuvent aussi fonctionner dans un mode saccadé.It will therefore be noted that this embodiment, in its main operating mode, is characterized by a jerky advance of the exhaust mobile with a large amplitude of oscillation. Indeed, the truncated annular ring forms a magnetic barrier for the magnetic stops of the magnetic track, making it possible to stop the exhaust mobile momentarily, which then advances in steps (two steps for a rotation of an angular period). In a specific operating mode, it is however possible to obtain an almost continuous or continuous advance. In the latter case, the magnetic stops are no longer necessary. It will be noted that such an almost continuous or continuous advance is mainly provided for in the other embodiments. However, certain embodiments, depending on the dimensioning of the resonator and of the magnetic structure, can also operate in a jerky mode.

A la Figure 26 est montrée une variante particulière du dixième mode de réalisation (représentée dans un mode de fonctionnement continu du mobile d'échappement). Le dispositif régulateur 360 du type 'échappement à cylindre magnétique' se distingue de la variante précédente essentiellement par le fait qu'il est prévu qu'un même aimant 343A qui est premièrement couplé magnétiquement à l'aimant annulaire 352A du résonateur dans une première alternance d'une période d'oscillation, en pénétrant sous cet aimant annulaire par la ligne de pénétration extérieure 354 (sensiblement même rayon RE que dans la variante précédente) et sortant par la ligne de sortie 356A en fournissant une première impulsion, est ensuite directement couplé magnétiquement à l'aimant annulaire dans la deuxième alternance de cette période d'oscillation en pénétrant sous cet aimant annulaire par la ligne de pénétration intérieure 355A avant de sortir finalement par la ligne de sortie 357A en fournissant une deuxième impulsion au balancier-spiral (non représenté à la Figure 26). Une telle configuration permet, pour un diamètre extérieur donné de l'aimant annulaire du résonateur, d'augmenter considérablement l'épaisseur ET de la paroi de ce tube cylindrique et donc la longueur L4 des lignes de sortie, ainsi que la dimension longitudinale L3 (dimension angulaire ou tangentielle) des aimants 343A de la piste magnétique. Ceci permet d'augmenter l'accumulation d'énergie potentielle magnétique dans l'oscillateur puisque, pour une première dimension W3 donnée, la deuxième dimension L3 de ces aimants peut être agrandie, ce qui augmente ainsi le rapport entre ces deux dimensions. L'ouverture de l'aimant annulaire 352A, définie précédemment, est inférieure à une période angulaire de la piste magnétique 342A.To the Figure 26 a particular variant of the tenth embodiment is shown (shown in a continuous mode of operation of the exhaust mobile). The regulating device 360 of the “magnetic cylinder exhaust” type differs from the previous variant essentially by the fact that it is intended that the same magnet 343A which is first magnetically coupled to the annular magnet 352A of the resonator in a first alternation a period of oscillation, by entering under this annular magnet by the external penetration line 354 (substantially same radius R E as in the previous variant) and leaving by the output line 356A by providing a first pulse, is then directly magnetically coupled to the annular magnet in the second alternation of this oscillation period by penetrating under this annular magnet by the interior penetration line 355A before finally exiting by the output line 357A by providing a second impulse to the balance-spring ( no shown in the Figure 26 ). Such a configuration makes it possible, for a given external diameter of the annular magnet of the resonator, to considerably increase the thickness E T of the wall of this cylindrical tube and therefore the length L4 of the outlet lines, as well as the longitudinal dimension L3 (angular or tangential dimension) of the magnets 343A of the magnetic track. This makes it possible to increase the accumulation of potential magnetic energy in the oscillator since, for a given first dimension W3, the second dimension L3 of these magnets can be enlarged, which thus increases the ratio between these two dimensions. The opening of the annular magnet 352A, defined above, is less than an angular period of the magnetic track 342A.

Dans une réalisation particulière de cette variante, l'aimant annulaire est monté sur ou suspendu à une structure comprenant deux lames flexibles croisées définissant un axe géométrique d'oscillation C pour l'aimant annulaire. Cette structure élastiquement déformable est agencée de l'autre côté de cet aimant annulaire relativement à la structure magnétique du mobile d'échappement. Ainsi, aucun axe matériel n'est nécessaire au niveau de l'aimant annulaire et du mobile d'échappement.In a particular embodiment of this variant, the annular magnet is mounted on or suspended from a structure comprising two crossed flexible blades defining a geometric axis of oscillation C for the annular magnet. This elastically deformable structure is arranged on the other side of this annular magnet relative to the magnetic structure of the exhaust mobile. Thus, no material axis is necessary at the level of the annular magnet and the exhaust mobile.

Dans une variante particulière incorporant la variante représentée, le diamètre (2·RI) du contour intérieur de l'aimant annulaire tronqué est inférieur ou sensiblement égal à la deuxième dimension L3 des deuxièmes zones définies par les aimants de la piste magnétique. La différence entre les rayons des première et deuxième lignes de pénétration circulaires 354 et 355A, correspondant environ à la longueur L4 des première et deuxième lignes de sortie, est sensiblement égale à la deuxième dimension L3 ou compris entre quatre-vingt et cent vingt pourcents (80% à 120%) de cette deuxième dimension.In a particular variant incorporating the variant shown, the diameter (2 · R I ) of the internal contour of the truncated annular magnet is less than or substantially equal to the second dimension L3 of the second zones defined by the magnets of the magnetic track. The difference between the radii of the first and second circular penetration lines 354 and 355A, corresponding approximately to the length L4 of the first and second outlet lines, is substantially equal to the second dimension L3 or between eighty and one hundred and twenty percent ( 80% to 120%) of this second dimension.

A la Figure 27 est représenté un onzième mode de réalisation. Le dispositif régulateur 370 est particulier par deux caractéristiques principales. Premièrement, il comprend un mobile d'échappement magnétique 372 formé par un disque 374 avec une partie centrale non magnétique et un anneau périphérique 376 aimanté radialement de manière à définir deux pistes magnétiques latérales 378 et 380 formées chacune par des pôles magnétiques alternés 382 et 384, ces pôles magnétiques générant un flux magnétique correspondant à des axes d'aimantation radiaux de sens alternés. Ils définissent des première et deuxième zones de chaque piste magnétique. Les deuxièmes zones sont en répulsion magnétique avec les aimants 392 et 394 du résonateur alors que les premières zones sont en attraction magnétique avec ces aimants. La surface géométrique générale des deux pistes magnétiques est une surface cylindrique de sorte que les lignes de pénétration en face des deuxièmes zones pour les aimants du résonateur sont des segments de droites axiales. Les lignes de sortie suivent le cercle d'interface des deux pistes magnétiques, ce cercle d'interface étant de préférence confondu avec le cercle de position zéro 44A défini par la projection orthogonale dans la surface cylindrique du centre de masse de la partie d'extrémité active de chacun des aimants 394 et 396 dans leur position de repos. En d'autres termes, dans ce cas-ci, chacun des centres de masse est sur un axe radial du disque 374 interceptant le cercle d'interface des deux pistes magnétiques lorsque les premier et deuxième éléments de couplage sont dans leur position de repos.To the Figure 27 an eleventh embodiment is shown. The regulating device 370 is particular in two main characteristics. First, it includes a magnetic exhaust mobile 372 formed by a disc 374 with a non-magnetic central part and a peripheral ring 376 magnetized radially so as to define two lateral magnetic tracks 378 and 380 each formed by alternating magnetic poles 382 and 384, these magnetic poles generating a magnetic flux corresponding to radial magnet axes in alternating directions. They define first and second zones of each magnetic strip. The second zones are in magnetic repulsion with the magnets 392 and 394 of the resonator while the first zones are in magnetic attraction with these magnets. The general geometric surface of the two magnetic tracks is a cylindrical surface so that the penetration lines opposite the second zones for the magnets of the resonator are segments of axial lines. The output lines follow the interface circle of the two magnetic tracks, this interface circle preferably being merged with the zero position circle 44A defined by the orthogonal projection in the cylindrical surface of the center of mass of the end part. active of each of the magnets 394 and 396 in their rest position. In other words, in this case, each of the centers of mass is on a radial axis of the disc 374 intercepting the interface circle of the two magnetic tracks when the first and second coupling elements are in their rest position.

Ensuite, le résonateur 386 est du type à torsion avec deux extrémités libres de sa structure résonnante portant respectivement les premier et deuxième éléments de couplage. Ce résonateur a une structure résonante en H avec deux barrettes longitudinales 387 et 388, chacune portant un aimant de couplage 392, 394. Ces deux barrettes longitudinales sont reliées par une barrette transversale 390 qui présente une capacité de déformation en torsion. En effet, il est prévu que les barrettes longitudinales oscillent avec un déphasage de 180° de sorte que la barrette transversale se déforme élastiquement en torsion autour de son axe longitudinale. A cet effet, le nombre de périodes angulaires des pistes magnétiques, donnés par le nombre de paires de pôles magnétiques inversés, est impair et, comme dans les autres modes de réalisation avec deux pistes magnétiques, ces deux pistes magnétiques sont décalées angulairement d'une demi-période angulaire, c'est-à-dire déphasée de 180°.Next, the resonator 386 is of the torsion type with two free ends of its resonant structure carrying the first and second coupling elements respectively. This resonator has a resonant structure in H with two longitudinal bars 387 and 388, each carrying a coupling magnet 392, 394. These two longitudinal bars are connected by a transverse bar 390 which has a capacity of deformation in torsion. Indeed, it is expected that the longitudinal bars oscillate with a phase shift of 180 ° so that the transverse bar deforms elastically in torsion around its longitudinal axis. For this purpose, the number of angular periods of the magnetic tracks, given by the number of pairs of reversed magnetic poles, is odd and, as in the other embodiments with two magnetic tracks, these two magnetic tracks are angularly offset by an angular half-period, that is to say phase shifted by 180 °.

Deux parties de fixation 395 et 396 du résonateur sont reliées au milieu de la barrette transversale par deux ponts 398 relativement étroits, car la matière ne subit pas dans cette zone médiane de rotation autour de l'axe longitudinal de la barrette transversale lors des mouvements d'oscillation sensiblement axiaux, dans des sens opposés, des deux barrettes longitudinales. Les premières et deuxièmes zones 382 et 384 des deux pistes magnétiques 378 et 380 de la structure magnétique tournante et les deux éléments de couplage magnétique 392 et 394 du résonateur sont dimensionnés et agencés selon les critères de l'invention.Two fixing parts 395 and 396 of the resonator are connected in the middle of the transverse bar by two relatively narrow bridges 398, because the material does not undergo in this median zone of rotation around the longitudinal axis of the transverse bar during movements d substantially axial oscillation, in opposite directions, of the two longitudinal bars. The first and second zones 382 and 384 of the two magnetic tracks 378 and 380 of the rotating magnetic structure and the two magnetic coupling elements 392 and 394 of the resonator are dimensioned and arranged according to the criteria of the invention.

Claims (33)

  1. Device (36, 56, 200, 240, 270, 310, 370) for regulating the relative angular frequency (w) between a magnetic structure (4, 4A, 202, 244, 246, 4B, 316, 372) and a resonator (38, 38A, 210, 242, 312, 314, 386) magnetically coupled so as to define together an oscillator forming said regulating device, the magnetic structure comprising at least one annular magnetic track (11, 13, 11A, 13A, 204, 11A1, 328, 330, 378, 380) centred on an axis of rotation (20, 20A) of said magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to rotate in relation to one another about said axis of rotation when a torque is applied to the magnetic structure or to the resonator; the resonator comprising at least one magnetic element for a magnetic coupling to said annular magnetic track, said magnetic coupling element having an active end portion (46, 46A, 46B, 262, 266, 280, 282, 325, 326) made of a first magnetic material and situated on the same side as said annular magnetic track; said annular magnetic track being made at least in part of a second magnetic material arranged such that the potential magnetic energy of the oscillator varies angularly and periodically along the annular magnetic track, thus defining an angular period (θP) of said annular magnetic track, and such that it defines magnetically first zones (40, 42, 40A, 42A, 382) and second zones (10, 12, 10A, 12A, 206, 334, 384) angularly alternating with a first zone and an adjacent second zone in each angular period; each second zone producing, relative to an adjacent first zone, a stronger repulsion force or a weaker attraction force for any same zone of said active end portion when said any same zone is superimposed, in orthogonal projection to a general geometric surface in which the annular magnetic track extends, respectively on said second zone or on said adjacent first zone; said magnetic coupling element being magnetically coupled to said annular magnetic track such that an oscillation by a degree of freedom of a resonant mode of the resonator is maintained within a useful range for the torque applied to the magnetic structure or to the resonator and that a such period of said oscillation occurs during said relative rotation in each angular period of said annular magnetic track, the frequency of said oscillation thus determining said relative angular frequency, said degree of freedom defining an axis of oscillation (48) of said active end portion passing through its centre of mass; said resonator being arranged relative to said magnetic structure such that said active end portion is at least for the most part superimposed in orthogonal projection on said annular magnetic track during substantially a first alternation in each period of said oscillation, and such that the course taken by the magnetic coupling element during said first alternation is substantially parallel to said general geometric surface, the annular magnetic track having in said general geometric surface a dimension along the orthogonal projection of said axis of oscillation which is greater than the dimension of said active end portion along said axis of oscillation;
    each of said second zones having in orthogonal projection a general contour with a first portion, defining a line of penetration (10a, 12a, 214, 336) above said second zone for said active end portion of the magnetic coupling element during said oscillation, and with a second portion defining an exit line (10b, 12b, 216) above said second zone for said active end portion during said oscillation, said exit line being oriented substantially in an angular direction parallel to a zero position circle (44, 44A) which is centred on said axis of rotation and which passes through the orthogonal projection of the centre of mass of said active end portion in its rest position; the magnetic structure also defining for the active end portion at least one exit zone which extends in said general geometric surface, said at least one exit zone receiving in orthogonal projection at least the greater part of said active end portion when it exits, during said oscillation, successively from the annular magnetic track by the respective exit lines of the second zones, said at least one exit zone producing, relative to said second zones, a weaker repulsion force or a stronger attraction force for any same zone of said active end portion when said any same zone is superimposed in orthogonal projection respectively on said at least one exit zone or on said second zones; the active end portion of said coupling element in its rest position having, in orthogonal projection in said general geometric surface, a first dimension (W2), along a first axis perpendicular to said zero position circle and passing through the orthogonal projection of the centre of mass of said active end portion, and a second dimension (L2), along a second axis defined by said zero position circle, which is greater than said first dimension; said exit line of each of the two zones having a length (L1), along said at least one exit zone and along said second axis, which is greater than the first dimension (W2) of the active end portion.
  2. Regulating device according to claim 1, characterised in that said exit line of each second zone is substantially merged with said zero position circle.
  3. Regulating device according to claim 2, characterised in that, in said useful torque range, said annular magnetic track, said at least one exit zone and said magnetic coupling element define in each angular period, depending on the relative position of said annular magnetic track and of said active end portion, an accumulation sector (70, 72) in which said oscillator basically accumulates potential magnetic energy and a pulse sector (76), adjacent to said accumulation sector, in which the magnetic coupling element basically receives a pulse, the pulse sectors being situated in a central pulse zone comprising the relative positions corresponding to said zero position circle.
  4. Regulating device according to either claim 2 or claim 3, characterised in that said zero position circle and said axis of oscillation are substantially orthogonal at their point of intersection.
  5. Regulating device according to any of the preceding claims, characterised in that the second dimension (L2) of said active end portion is at least twice as great as its first dimension (W2) and said length (L1) of the exit line is at least twice as great as said first dimension.
  6. Regulating device according to any of claims 1 to 4, characterised in that the second dimension (L2) of said active end portion is at least four times greater than its first dimension (W2) and said length (L1) of the exit line is at least four times greater than said first dimension.
  7. Regulating device according to any of the preceding claims, characterised in that, in orthogonal projection in said general geometric surface, said penetration line of each second zone is oriented substantially along said axis of oscillation when this penetration line is aligned with the centre of mass of said active end portion.
  8. Regulating device according to any of the preceding claims, characterised in that the exit line of said second zones along said at least one exit zone and said active end portion extend angularly relative to said axis of rotation over substantially half an angular period (θP).
  9. Regulating device according to any of the preceding claims, characterised in that the dimension (W1) of each of said second zones, along an axis perpendicular to said zero position circle at a mid-point of said exit line, is at least three times as great as the first dimension (W2) of said active end portion.
  10. Regulating device according to any of claims 1 to 8, characterised in that the dimension (W1) of each of said second zones, along an axis perpendicular to said zero position circle at a mid-point of said exit line, is at least six times greater than the first dimension (W2) of said active end portion.
  11. Device (80, 126, 170, 180, 220, 290, 300, 340, 360) for regulating the relative angular frequency (w) between a magnetic structure (82, 182, 342) and a resonator (84, 174, 184, 230, 292, 302, 346) magnetically coupled so as to define together an oscillator forming said regulating device, the magnetic structure comprising at least one annular magnetic track (86, 86A, 186, 344) centred on an axis of rotation (20) of said magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to rotate in relation to one another about said axis of rotation when a torque is applied to the magnetic structure or to the resonator; the resonator comprising at least one element for a magnetic coupling to said annular magnetic track, said magnetic coupling element having an active end portion (92, 94, 128, 130, 144, 144A, 156, 158, 92A, 94A, 190A, 234, 294, 296, 156, 158, 352) made of a first magnetic material and situated on the same side as said annular magnetic track; said annular magnetic track being made at least in part of a second magnetic material arranged such that the potential magnetic energy of the oscillator varies angularly and periodically along the annular magnetic track, thus defining an angular period (θP) of said annular magnetic track; said magnetic coupling element being magnetically coupled to the annular magnetic track such that an oscillation by a degree of freedom of a resonant mode of the resonator is maintained within a useful range for the torque applied to the magnetic structure or to the resonator and that a period of said oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of said oscillation thus determining said relative angular frequency, said degree of freedom defining an axis of oscillation (94, 96, 100, 150, 154) of said active end portion passing through its centre of mass;
    said second magnetic material being arranged along the annular magnetic track such that it defines magnetically first zones (104, 104A) and second zones (102, 106, 103, 106A, 343) angularly alternating with a first zone and an adjacent second zone in each angular period; and in which, during said oscillation in said useful torque range, said active end portion of said magnetic coupling element defines magnetically, in orthogonal projection in a general geometric surface in which said active end portion extends overall and comprising said axis of oscillation,:
    - an entry zone successively for said second zones in orthogonal projection to the general geometric surface,
    - a potential magnetic energy accumulation zone in the oscillator, which is angularly adjacent to the entry zone and in which penetrates in orthogonal projection at least in part each second zone from said entry zone, and
    - an exit zone adjacent to the potential magnetic energy accumulation zone, said exit zone receiving in orthogonal projection at least the greater part of each second zone exiting from said accumulation zone or from a following second zone;
    each second zone producing per unit of angular length, relative to a first zone, a stronger repulsion force for said potential magnetic energy accumulation zone or a stronger attraction force for said entry zone and said exit zone; said potential magnetic energy accumulation zone producing, relative to said entry zone and said exit zone, a stronger repulsion force or a weaker attraction force for any same zone of each second zone when said any same zone is superimposed respectively on said potential magnetic energy accumulation zone, on the entry zone or on the exit zone; said annular magnetic track having, in orthogonal projection in said general geometric surface, a dimension along said axis of oscillation that is smaller than the dimension along said axis of oscillation of said active end portion; the resonator being arranged relative to the magnetic structure such that the potential magnetic energy accumulation zone is traversed in orthogonal projection by a median geometric circle (120, 121), passing through the middle of the annular magnetic track, during substantially a given alternation in each period of said oscillation; said potential magnetic energy accumulation zone having a general contour with a first portion, defining a line of penetration (126, 128, 138, 139, 145, 145A, 164, 166, 196, 354, 355) beneath said accumulation zone successively for each of said second zones during said oscillation, and with a second portion defining an exit line (127, 129, 140, 141, 146, 146A, 160, 162, 127A, 129A, 197, 198, 356, 357) from beneath said accumulation zone for said second zone or a following second zone during said oscillation, the exit line being oriented, when said magnetic coupling element is in its rest position, substantially in an angular direction parallel to the orthogonal projection of said median geometric circle; each of said second zones having in orthogonal projection, when the centre of said second zone is superimposed on said axis of oscillation, a first dimension (W3), along a first axis perpendicular to the orthogonal projection of the median geometric circle and passing through the point of intersection of said orthogonal projection of the median geometric circle with the axis of oscillation, and a second dimension (L3), along a second axis perpendicular to the first axis and passing through said point of intersection, which is greater than the first dimension; and in which, when the magnetic coupling element is in its rest position, said exit line has a length (L4), along said exit zone and along said second axis, which is greater than the first dimension (W3) of the second zones.
  12. Regulating device according to claim 11, characterised in that said exit line of said potential magnetic energy accumulation zone is substantially merged with said orthogonal projection of said median geometric circle when said coupling element is in its rest position.
  13. Regulating device according to either claim 11 or claim 12, characterised in that, in said useful torque range, said annular magnetic track and said magnetic coupling element define in each angular period, depending on the relative position of said annular magnetic track and of said active end portion, an accumulation sector (70A, 72A) in which said oscillator basically accumulates potential magnetic energy and a pulse sector (76A, 77A), adjacent to said accumulation zone, in which the coupling element basically receives a pulse, the pulse sectors being situated in a central pulse zone corresponding substantially to the annular magnetic track.
  14. Regulating device according to any of claims 11 to 13, characterised in that said axis of oscillation and said median geometric circle are, in orthogonal projection to said general geometric surface, substantially orthogonal at their point of intersection.
  15. Regulating device according to any of claims 11 to 14, characterised in that the second dimension (L3) of each second zone is at least twice as great as its first dimension (W3), and said length (L4) of the exit line is at least twice as great as said first dimension.
  16. Regulating device according to any of claims 11 to 14, characterised in that the second dimension (L3) of each second zone is at least four times greater than its first dimension (W3), and said length (L4) of the exit line is at least four times greater than said first dimension.
  17. Regulating device according to any of claims 11 to 16, characterised in that said line of penetration in said potential magnetic energy accumulation zone is oriented in a direction substantially parallel to said axis of oscillation.
  18. Regulating device according to any of claims 11 to 16, characterised in that said line of penetration in said potential magnetic energy accumulation zone defines a path along said degree of freedom.
  19. Regulating device according to any of claims 11 to 18, characterised in that the exit line of said potential magnetic energy accumulation zone along said exit zone and each second zone extends angularly over substantially half an angular period.
  20. Regulating device according to any of claims 11 to 19, characterised in that the dimension (W4) of said line of penetration in said potential magnetic energy accumulation zone along said axis of oscillation is at least five times greater than the dimension (W3), in orthogonal projection in said general geometric surface, of the annular magnetic track along said axis of oscillation.
  21. Regulating device according to any of claims 11 to 19, characterised in that the dimension (W4) of said line of penetration in said potential magnetic energy accumulation zone along said axis of oscillation is at least eight times greater than the dimension (W3), in orthogonal projection in said general geometric surface, of the annular magnetic track along said axis of oscillation.
  22. Regulating device according to any of the preceding claims, characterised in that said general geometric surface is a cylindrical surface having as its central axis said axis of rotation, said degree of freedom being substantially oriented along said axis of rotation.
  23. Regulating device (180) according to any of the preceding claims and in which said annular magnetic track defines a first track (86A), characterised in that said magnetic structure further comprises a second annular magnetic track (186) also coupled to said coupling element in a similar way as said coupling element is coupled to the first track; the second track being made at least in part of a magnetic material that has a variation along said second track such that the potential magnetic energy of the oscillator varies angularly, with said angular period and in a similar way to the variation of the first track, along said second track, the first and second tracks having an angular displacement equal to half said angular period.
  24. Regulating device (220) according to any of claims 1 to 22 and in which said annular magnetic track defines a first track, characterised in that it also comprises a second annular magnetic track made at least in part of a magnetic material and coupled to said coupling element or to another coupling element in a similar way as said coupling element is coupled to the first track; the second track being made at least in part of a magnetic material that has a variation along said track such that the potential magnetic energy of the oscillator varies angularly, in a similar way to the variation for the first track, also along said second track; and in that the first and second tracks are respectively rigidly connected in rotation to two mobiles (222, 224) having separate axes of rotation.
  25. Regulating device according to claim 24, characterised in that the two mobiles have at their periphery respectively two sets of teeth (226, 228) that mesh directly with one another.
  26. Regulating device according to any of the preceding claims, in which said magnetic coupling element is a first coupling element (92, 156, 294) characterised in that it comprises at least a second coupling element (94, 158, 296) also magnetically coupled to said magnetic track in a similar way to the first coupling element.
  27. Regulating device according to claim 26, characterised in that said resonator is of the balance wheel-spiral spring type or of the balance wheel with spring rods type, the balance wheel carrying the first and second coupling elements.
  28. Regulating device according to claim 26, characterised in that said resonator is formed by diapason of which two free ends of its resonant structure carry respectively the first and second magnetic coupling elements.
  29. Regulating device according to claim 26 depending on claim 22, characterised in that said resonator is of the torsion type with two free ends of its resonant structure carrying respectively the first and second magnetic coupling elements.
  30. Regulating device (340, 360) according to any of claims 11 to 21, characterised in that said active end portion of said coupling element is formed substantially by a truncated annular magnet (352) having a central axis merged with an axis of rotation of the resonator, said degree of freedom being angular and said axis of oscillation being circular, said truncated annular magnet defining in said general geometric surface a truncated annular surface corresponding to the potential magnetic energy accumulation zone successively in the two alternations of each period of oscillation, said truncated annular surface having a first end and a second end as well as an outer contour defining said line of penetration, which is a first circular line of penetration (354), and an inner contour defining a second circular line of penetration (355); in that the first end defines said exit line, which is a first exit line (356), and the second end defines a second exit line (357) having similar characteristics to the first exit line; and in that the outer contour is associated with the first exit line in a first alternation of the periods of oscillation of the resonator in order to provide successively the magnetic coupling in repulsion with said second zones of the magnetic track and to produce a first pulse at the end of each first alternation, whereas the inner contour is associated with the second exit line in order to provide successively the magnetic coupling in repulsion with said second zones in the second alternation of the periods of oscillation and to produce a second pulse at the end of each second alternation.
  31. Regulating device (360) according to claim 30, characterised in that the opening of said truncated annular surface is smaller than said angular period, and in that the diameter of the inner contour of said truncated annular surface is substantially equal to said second dimension of the second zones or less than this second dimension.
  32. Regulating device according to any of the preceding claims, characterised in that said first and second magnetic materials are materials that are magnetised in repulsion.
  33. Horological movement characterised in that it comprises a regulating device according to any of the preceding claims, said regulating device defining a resonator and a magnetic escapement, and serving to regulate the operation of at least one mechanism of said horological movement.
EP14821180.8A 2013-12-23 2014-12-22 Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement Active EP3087435B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14821180.8A EP3087435B1 (en) 2013-12-23 2014-12-22 Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP13199427.9A EP2887157B1 (en) 2013-12-23 2013-12-23 Optimised escapement
EP13199428 2013-12-23
EP14176816 2014-07-11
EP14186261.5A EP2889704B1 (en) 2013-12-23 2014-09-24 Contactless cylinder escapement mechanism
EP14821180.8A EP3087435B1 (en) 2013-12-23 2014-12-22 Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement
PCT/EP2014/079036 WO2015097172A2 (en) 2013-12-23 2014-12-22 Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement

Publications (2)

Publication Number Publication Date
EP3087435A2 EP3087435A2 (en) 2016-11-02
EP3087435B1 true EP3087435B1 (en) 2020-04-22

Family

ID=53479736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14821180.8A Active EP3087435B1 (en) 2013-12-23 2014-12-22 Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement

Country Status (4)

Country Link
US (1) US9715217B2 (en)
EP (1) EP3087435B1 (en)
CN (1) CN106030422B (en)
WO (1) WO2015097172A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998801A1 (en) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Magnetic clock escapement and device for controlling the operation of a clock movement
EP3179316B1 (en) * 2015-12-10 2021-09-15 Nivarox-FAR S.A. Contactless cylinder escapement
CH712105A2 (en) * 2016-02-10 2017-08-15 Swatch Group Res & Dev Ltd Resonator clock mechanism.
EP3208667A1 (en) * 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Magnetic escapement mobile for timepiece
EP3316046B1 (en) 2016-10-25 2019-07-31 The Swatch Group Research and Development Ltd Optimised clock movement
EP3324247B1 (en) * 2016-11-16 2019-11-27 The Swatch Group Research and Development Ltd Protection of blades of a mechanical watch resonator
EP3327518B1 (en) * 2016-11-29 2020-03-18 Montres Breguet S.A. Timepiece comprising a switching device of a clockwork mechanism
EP3339982B1 (en) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Regulation by mechanical breaking of a horological mechanical oscillator
EP3525046B1 (en) 2018-02-12 2024-07-10 The Swatch Group Research and Development Ltd Clock oscillator not sensitive to the angular accelerations of the wearing
CH715091A2 (en) * 2018-06-07 2019-12-30 Swatch Group Res & Dev Ltd Timepiece comprising a mechanical movement, the progress of which is regulated by an electromechanical device.
US11454932B2 (en) * 2018-07-24 2022-09-27 The Swatch Group Research And Development Ltd Method for making a flexure bearing mechanism for a mechanical timepiece oscillator
EP3627242B1 (en) 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Optimised magneto-mechanical timepiece escapement mechanism
EP3663868B1 (en) * 2018-12-07 2021-09-08 Montres Breguet S.A. Clock movement including a tourbillon with a fixed magnetic wheel
EP3767397B1 (en) 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Clock movement comprising a rotary element provided with a magnetic structure having a periodic configuration

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946183A (en) 1955-06-14 1960-07-26 Horstmann Magnetics Ltd Self-starting magnetic escapement mechanisms
CH457295A (en) * 1965-07-29 1968-07-31 Centre Electron Horloger Device for transforming the oscillating movement of an electromechanical watch resonator
US3410083A (en) * 1966-02-04 1968-11-12 Army Usa Timing mechanism
DE1815728C3 (en) 1967-12-30 1980-04-30 K.K. Hattori Tokeiten, Tokio Magnetic drive with an escapement wheel
CH953070A4 (en) * 1970-06-24 1974-10-15
CH533867A (en) * 1971-04-27 1972-08-31 Omega Brandt & Freres Sa Louis Vibration motor for timing device
JPS5240366B2 (en) 1972-12-14 1977-10-12
JPS5240366A (en) 1975-09-27 1977-03-29 Jeco Co Ltd Escapement wheel for magnetic escapement
JPS5245468U (en) 1975-09-27 1977-03-31
JPS5263453U (en) 1975-11-04 1977-05-11
JPS5262062A (en) * 1975-11-18 1977-05-23 Jiekoo Kk Magnetic escaping wheel for magnetic escapement device
EP2463732B1 (en) * 2010-12-10 2016-03-30 Montres Breguet SA Chiming mechanism of a watch or a music box
EP2466401B1 (en) * 2010-12-15 2013-08-14 Asgalium Unitec SA Magnetic resonator for mechanical timepiece

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015097172A2 (en) 2015-07-02
US20160357155A1 (en) 2016-12-08
US9715217B2 (en) 2017-07-25
EP3087435A2 (en) 2016-11-02
WO2015097172A3 (en) 2016-01-07
CN106030422A (en) 2016-10-12
CN106030422B (en) 2018-10-16

Similar Documents

Publication Publication Date Title
EP3087435B1 (en) Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement
EP2891930B1 (en) Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement
EP3130966B1 (en) Mechanical clockwork provided with a motion feedback system
EP2466401B1 (en) Magnetic resonator for mechanical timepiece
EP3191899B1 (en) Magnetic clock escapement and device for controlling the operation of a clock movement
EP3030938B1 (en) Regulator system for mechanical watch
WO2015096974A2 (en) Timepiece synchronization mechanism
EP2911015B1 (en) Natural escapement
CH715049A2 (en) Timepiece including a tourbillon.
EP2908187A1 (en) Adjustment of a clock piece resonator by changing the active length of a hairspring
EP3579058A1 (en) Timepiece comprising a tourbillon
EP2808745A1 (en) Ringing mechanism provided with means for selecting chime vibration mode
EP2889701B1 (en) Clock synchronisation mechanism
EP3191898B1 (en) Regulator device for the operation of a mechanical timepiece movement
FR2928015A1 (en) Tangential impulse pallet escapement device for mechanical watch, has escape wheel with teeth, pallet and two spiral-timed balance motors, and forks using driven force on ellipses of large plates in corresponding motors
WO2018215284A1 (en) Adjustment device for timepiece with isotropic harmonic oscillator having rotating masses and a common return force
EP2515185A1 (en) Engine with constant torque
EP3944027B1 (en) Portable object, in particular a wristwatch, comprising a power supply device provided with an electromechanical converter
CH720388A2 (en) Piezoelectric resonator, piezoelectric motor and timepiece
EP4391347A1 (en) Piezoelectric resonator with flexible guide, in particular for rotary motors in horology
CH717674A2 (en) Portable object, in particular wristwatch, comprising a power supply device fitted with an electromechanical converter.
CH710132A2 (en) Watchmaker magnetic escapement and device regulating the movement of a watch movement.
CH710160A2 (en) Device controller of walking a mechanical watch movement.
CH720393A2 (en) Piezoelectric resonator, piezoelectric motor and timepiece
CH720391A2 (en) Piezoelectric resonator, piezoelectric motor and timepiece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191119

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DI DOMENICO, GIANNI

Inventor name: WINKLER, PASCAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014064229

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1260943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014064229

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 10

Ref country code: DE

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 10