EP3087435B1 - Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk - Google Patents

Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk Download PDF

Info

Publication number
EP3087435B1
EP3087435B1 EP14821180.8A EP14821180A EP3087435B1 EP 3087435 B1 EP3087435 B1 EP 3087435B1 EP 14821180 A EP14821180 A EP 14821180A EP 3087435 B1 EP3087435 B1 EP 3087435B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
zone
oscillation
axis
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14821180.8A
Other languages
English (en)
French (fr)
Other versions
EP3087435A2 (de
Inventor
Gianni Di Domenico
Pascal Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP13199427.9A external-priority patent/EP2887157B1/de
Priority claimed from EP14186261.5A external-priority patent/EP2889704B1/de
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP14821180.8A priority Critical patent/EP3087435B1/de
Publication of EP3087435A2 publication Critical patent/EP3087435A2/de
Application granted granted Critical
Publication of EP3087435B1 publication Critical patent/EP3087435B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/107Controlling frequency or amplitude of the oscillating system
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance

Definitions

  • the present invention relates to the field of devices regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled so as to define together an oscillator.
  • the regulating device of the present invention sets the pace of a mechanical watch movement. More particularly, the invention relates to magnetic escapements for mechanical watch movements in which there is provided a direct magnetic coupling between a resonator and a magnetic structure. In general, their function is to subject the frequencies of rotation of the mobiles of a counter gear train of such a watch movement to the resonant frequency of the resonator.
  • the regulating device therefore comprises a resonator, an oscillating part of which is provided with at least one magnetic coupling element, and a magnetic escapement arranged so as to control the relative angular speed between a magnetic structure forming this magnetic escapement and this resonator. It replaces the balance-spring and the classic escapement mechanism, in particular the escapement with a Swiss type anchor and a toothed escape wheel.
  • the resonator or the magnetic structure is integral in rotation with a mobile driven in rotation with a certain motor torque which maintains an oscillation of the resonator.
  • the mobile is incorporated in a train or more generally a kinematic chain of a mechanism. This oscillation makes it possible to adjust the relative angular speed between the magnetic structure and the resonator thanks to the magnetic coupling between them.
  • the devices for regulating the speed of a wheel, also called a rotor, by a magnetic coupling, also called a magnetic coupling, between a resonator and a magnetic wheel have been known for many years in the watchmaking field.
  • a magnetic coupling also called a magnetic coupling
  • Several patents relating to this field have been granted to Horstmann Clifford Magnetics for inventions of CF Clifford.
  • the regulation device described in this document has various drawbacks, in particular an anisochronism problem (a non-isochronism, that is to say an absence of isochronism), namely a significant variation of the pulsation (angular speed ) of the rotor as a function of the engine torque applied to this rotor.
  • Such an anisochronism results from an anisochronism of the oscillator formed by the resonator and the magnetic wheel.
  • the reasons for this anisochronism have been understood in the context of the developments which have led to the present invention. These reasons will emerge later on reading the description of the invention.
  • JPS 5240366 (request No JP19750116941 ) and Japanese utility models JPS 5245468U (request No JP19750132614U ) and JPS 5263453U (request No JP19750149018U ) magnetic escapements with direct magnetic coupling between a resonator and a wheel formed by a disc.
  • JPS 5245468U (request No JP19750132614U )
  • JPS 5263453U (request No JP19750149018U ) magnetic escapements with direct magnetic coupling between a resonator and a wheel formed by a disc.
  • FIG. 1 To the Figure 1 is schematically shown a regulator or oscillator device 2 of the prior art comprising a magnetic escapement of the type described in the above-mentioned Japanese documents.
  • This device comprises a magnetic structure 4 and a resonator 6.
  • the magnetic structure is supported by a mobile 8 made of non-magnetic material on the surface of which are arranged two pluralities of rectangular magnets with axial magnetization, the first and second pluralities of magnets 10 and 12 respectively forming first and second annular magnetic tracks 11 and 13 which are adjacent and concentric.
  • Each of the two pluralities of magnets has the same number of magnets distributed angularly in a regular manner and defining the same angular period ⁇ P , the first track being phase shifted by half a period (corresponding to a phase shift of 180 °).
  • the resonator 6 is symbolically represented by a spring 15, corresponding to its elastic deformation capacity defined by an elastic constant, and by an inertia 16 (symbol 'I') defined by its mass and its structure.
  • This resonator comprises a magnet 18 having a rectangular shape and defining a coupling element to the magnetic structure.
  • This magnet has an axial magnetization in the opposite direction to that of magnets 10 and 12, so that it is arranged in repulsion of the latter.
  • the magnet 18 is located above the mobile 8 so that its center of mass is axially superimposed on an intermediate geometric circle defining a common limit or interface of the two concentric and contiguous annular tracks when the resonator is in its rest position.
  • the magnets 10 and 12 form zones of magnetic interaction with the magnet 18 of the resonator and they are located alternately on one side and the other of the above-mentioned intermediate geometric circle, they define a sinuous magnetic path (sinusoidal ) with a determined angular period ⁇ P , which corresponds to the angular period of each of the first and second annular tracks 11 and 13.
  • ⁇ P angular period of each of the first and second annular tracks 11 and 13
  • the magnet 18 oscillates along this path magnetic winding and the angular speed ⁇ of the wheel is defined substantially by the oscillation frequency of the resonator. There is therefore a synchronization between the frequency of the resonator and the frequency of rotation or pulsation of the mobile 8.
  • the geometric shape of the magnet 18 whose active end part (shown in the Figure 1 ) defines, in axial projection in the general geometric plane of the magnetic structure, a rectangular surface.
  • this active end part has a general and average external contour or profile, in a plane parallel to that of the magnetic structure, which is substantially rectangular.
  • the length of said rectangular surface is radial while its width, less than the length, is angular relative to the central axis of the annular or tangential magnetic structure relative to the above-mentioned intermediate geometric circle. In the example described here, this length is approximately twice the width.
  • the magnetic potential energy (also called potential magnetic interaction energy) of the oscillator 2 which varies angularly and radially.
  • the level curves 22 correspond to different levels of the potential magnetic energy. They define equipotential curves.
  • the potential magnetic energy of the oscillator at a given point corresponds to a state of the oscillator when the magnetic coupling element of the resonator is in a given position (its center of mass or geometric being located at this given point) . It is defined to the nearest constant.
  • the magnetic potential energy is defined relative to a reference energy which corresponds to the minimum potential energy of the oscillator.
  • this potential energy corresponds to the work necessary to bring the magnet from a position of minimum energy to a given position.
  • this work is provided by the motor torque applied to the mobile 8.
  • the potential energy accumulated in the oscillator is transferred to the resonator when the coupling member of the resonator returns to an energy position lower potential, in particular minimum potential energy, by a radial movement relative to the axis of rotation of the mobile (that is to say according to the degree of freedom of the useful resonance mode).
  • this potential energy is transformed into kinetic energy and elastic energy in the resonator by the work of the magnetic force between the coupling element of the resonator and the magnetic structure. This is how the motor torque supplied to the wheel is used maintain the oscillation of the resonator which in turn brakes the wheel by adjusting its angular speed.
  • the outer annular track 11 defines an alternation of low potential energy zones 24 and high potential energy zones 26 while the inner annular track 13 defines, with an angular offset of an angular half-period ⁇ P / 2 relatively at the first track (that is to say a phase shift of 180 °), an alternation of low potential energy zones 28 and high potential energy zones 30.
  • the layout 32 gives the position of the center of the magnet 18 when the oscillator 2 is energized and the mobile 8 is therefore driven in rotation with a certain motor torque.
  • This line is a representation of the oscillation of the magnet of the resonator 6 in a frame of reference linked to the mobile.
  • the areas of low potential energy correspond to the areas between the magnets of the magnetic structure while the areas of high potential energy correspond to the areas of these magnets, ie in situations where the magnet 18 is at least partially superimposed on the magnets of the magnetic structure.
  • the magnets are arranged in attraction, alternatively in the case where the magnetic structure or the coupling member of the resonator is made of ferromagnetic material, there is a spatial inversion between the zones of low potential energy and the high potential energy zones relative to the case of repellant magnets.
  • the oscillator accumulates magnetic potential energy at each alternation of the oscillation essentially when the magnet 18 has reached its maximum amplitude. and it begins to return to its zero position.
  • the potential energy of the oscillator decreases over a large part of each half-wave.
  • the force F exerted on the magnet of the resonator is given by the gradient of the potential magnetic energy, which is perpendicular to the level curves 22.
  • the angular component degrees of freedom of the magnetic structure
  • the radial component degrees of freedom of the resonator
  • the angular force corresponds on average to a braking force of the mobile because the angular reaction force mainly opposes the direction of rotation of this mobile over a period of oscillation.
  • the radial force corresponds to a pushing force on the oscillating structure of the resonator.
  • the force F (see Figure 2 ) has a radial component over a significant distance between the extremes of oscillation 32. A thrust force therefore acts on the magnet of the resonator in most of each half-wave.
  • the inventors have thus found that a pushing force on a relatively extended path outside of a zone located around the zero position disturbs the oscillator; which varies its frequency as a function of the torque supplied, and thus of the amplitude of oscillation, and is therefore a source of anisochronism.
  • the present invention provides a device for regulating the relative angular speed between a magnetic structure and a resonator, magnetically coupled so as to define together an oscillator forming this regulating device, as defined in claim 1 for a first main embodiment and in claim 11 for a second main embodiment.
  • the regulating device determines the relative angular speed between a magnetic structure and a resonator magnetically coupled so as to define together an oscillator forming this regulating device, the magnetic structure comprising at minus an annular magnetic track centered on the axis of rotation of this magnetic structure or of the resonator.
  • the magnetic structure and the resonator are arranged to rotate relative to each other about the axis of rotation when a driving torque is applied to the structure magnetic or resonator.
  • the resonator comprises at least one magnetic coupling element to the annular magnetic track, this coupling element having an active end part formed of a first magnetic material and situated on the side of this magnetic track, the latter being formed at least partially.
  • ⁇ P angular period
  • Each second zone generates, relative to a first adjacent zone, a higher repulsion force or a lower attraction force for any one zone of said active end portion when this same any zone is superimposed, in projection orthogonal to a surface.
  • the magnetic coupling element is magnetically coupled to the magnetic track so that an oscillation according to a degree of freedom of a resonance mode of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator and that a period of this oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of the oscillation thus determining the relative angular speed.
  • the degree of freedom defines an axis of oscillation of the active end part passing through its center of mass.
  • the resonator is arranged relative to the magnetic structure so that the active end part is at least for the most part superimposed, in projection orthogonal to the general geometric surface, to this annular magnetic track during substantially a first alternation in each period of said oscillation, and so that the path of the magnetic coupling element during this first alternation is substantially parallel to the general geometric surface.
  • the annular magnetic track has in this general geometric surface a dimension according to the orthogonal projection of the axis of oscillation which is greater than the dimension of the active end part along this axis of oscillation. Note that the axis of oscillation can be straight or curvilinear.
  • the first zones in a magnetic coupling in repulsion or the second zones in a magnetic coupling in attraction can be formed by a non-magnetic material or air.
  • the term “magnetic material” is understood to mean a material having a magnetic property generating an external magnetic field (magnet) or a good conductor of the magnetic flux (in particular a material having a high magnetic permeability, for example a ferromagnetic material).
  • magnet an external magnetic field
  • a good conductor of the magnetic flux in particular a material having a high magnetic permeability, for example a ferromagnetic material.
  • By 'active end part' is understood the end part of the coupling element, situated on the side of the magnetic structure considered, through which passes the essential part of the magnetic coupling flux between this coupling element. and the magnetic structure.
  • the second dimension of the active end part is at least twice as large as its first dimension.
  • the dimension of each of the second zones, along an axis perpendicular to said position circle zero at a midpoint of its exit line, is at least three times larger than the first dimension of the active end portion.
  • the output line of each second zone is substantially coincident with the zero position circle.
  • a superposition in particular 'above', 'below', 'in front' or 'facing'
  • the expression 'in projection' or 'in orthogonal projection' we comprises respectively an orthogonal projection in the surface in question, a superposition in orthogonal projection on a geometric surface considered in the context or mentioned previously, or 'in orthogonal projection to such a geometric surface'. This is to be taken into account in the remainder of the present description and in particular in the claims.
  • the invention also relates, according to a second main embodiment, a regulating device which determines the relative angular speed between a magnetic structure and a magnetically coupled resonator so as to define together an oscillator forming this regulating device, the magnetic structure comprising at least an annular magnetic track centered on an axis of rotation of this magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to undergo rotation relative to each other about said axis of rotation when a driving torque is applied to the magnetic structure or to the resonator.
  • the resonator comprises at least one magnetic coupling element to the annular magnetic track, this coupling element having an active end part formed from a first magnetic material and situated on the side of the annular magnetic track.
  • This annular magnetic track is formed at least partially from a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along the annular magnetic track, defining thus an angular period ( ⁇ P ) of this annular magnetic track.
  • the magnetic coupling element is magnetically coupled to the annular magnetic track so that an oscillation according to a degree of freedom of a resonator resonance mode is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator. and that a period of this oscillation occurs during said relative rotation in each angular period of the annular magnetic track, the frequency of the oscillation thus determining the relative angular speed.
  • the degree of freedom defines an axis of oscillation of the active end part passing through its center of mass.
  • the zone of accumulation of potential magnetic energy in a magnetic coupling in attraction or the zone of entry and the exit zone in a magnetic coupling in repulsion can be defined by a nonmagnetic material integral with the coupling element or correspond to regions with air at the periphery of the active end portion of the coupling element.
  • the first zones (repulsion coupling) or the second zones (attraction coupling) can be formed by a non-magnetic material or air.
  • the exit line from the magnetic potential energy accumulation zone is substantially combined, in orthogonal projection to the general geometric surface, with the median geometric circle when the coupling element is in its rest position.
  • the second dimension of each second zone is at least twice as large as its first dimension.
  • the length of the penetration line of the zone of accumulation of potential magnetic energy along the axis of oscillation is at least five times greater than the dimension of the annular magnetic track along this axis of oscillation in orthogonal projection in the general geometric surface.
  • the general geometric surface is a plane perpendicular to the axis of rotation, the degree of freedom being substantially parallel to this plane.
  • the general geometric surface is a cylindrical surface having as its central axis the axis of rotation, the degree of freedom being substantially oriented along this axis of rotation.
  • the regulating device forms an oscillator with an escapement with a cylinder of the magnetic type.
  • this regulating device is characterized in that an active end part of the coupling element is formed substantially by a section of truncated cylindrical tube and having a central axis coincident with an axis of rotation of the resonator, the degree of freedom of the latter being angular and the axis of circular oscillation.
  • This section of truncated cylindrical tube defines in the general geometrical surface a truncated annular surface, corresponding to said zone of accumulation of potential magnetic energy successively in the two half-waves of each period of oscillation.
  • This truncated annular surface has a first end and a second end, as well as an exterior contour defining a first circular penetration line and an interior contour defining a second circular penetration line.
  • the first end defines a first output line
  • the second end defines a second output line having characteristics similar to the first output line.
  • the outer contour is associated with the first output line in a first alternation of the oscillation periods of the resonator to successively ensure magnetic coupling with the second zones of the magnetic track and generate a first pulse at the end of each first alternation, then that the interior contour is associated with the second output line to successively ensure magnetic coupling with these second zones in the second half-wave of the oscillation periods and generate a second pulse at the end of each second half-wave.
  • the regulating device 36 of the Figure 3 determines the relative angular speed ⁇ between the magnetic structure 4 and a resonator 38 which are magnetically coupled so as to define together a clock oscillator forming this regulating device.
  • the magnetic structure 4 is secured to a mobile with an axis of rotation 20. It is similar to the magnetic structure of the Figure 1 and comprises a first annular magnetic track and a second annular magnetic track centered on the axis of rotation 20 and contiguous.
  • the magnetic structure and the resonator are arranged to rotate relative to each other when a driving torque is applied to the magnetic structure or to the resonator.
  • the resonator is integral with the watch movement while the magnetic structure is pivotally arranged and defines a magnetic escape wheel.
  • the resonator comprises a coupling element magnetically coupled to the annular magnetic tracks 11 and 13, this coupling element having an active end portion 46 formed by a first magnetic material and located on the side of said magnetic structure.
  • Each magnetic track is partially formed of a second magnetic material arranged so that the potential magnetic energy of the oscillator varies angularly periodically along this annular magnetic track, thus defining the same angular period ( ⁇ P ) for the two magnetic tracks.
  • each magnetic track is formed of first zones 40, respectively 42 and second zones 10, respectively 12 which are angularly alternated with a first zone and a second adjacent zone in each angular period.
  • each second zone generates, relative to a first adjacent zone, a higher repulsion force (in the case of a magnetic repulsion coupling between the end portion 46 and the magnetic tracks 11 and 13, as is the case in the examples of Figures 3 to 6 ) or a lower attraction force (in the case of a magnetic coupling in attraction in a variant where either the coupled magnets are arranged in attraction, or the active end part or the magnetic tracks is / are formed) of a material with high magnetic permeability without a magnetic flux generator) for the same arbitrary zone 50 of the active end part 46 when this same arbitrary zone is superimposed, in projection orthogonal to a general geometric surface in which the annular magnetic track, at this second zone, respectively at this first adjacent zone.
  • the general geometric surface is here a general plane of the magnetic structure perpendicular to the axis of
  • the magnetic coupling element is magnetically coupled to each annular magnetic track, via the active end portion 46, so that an oscillation according to a degree of freedom of a mode of resonance of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or to the resonator and that a period of this oscillation occurs during the relative rotation between the resonator and the magnetic structure in each angular period ⁇ P of each track magnetic ring.
  • the frequency of this oscillation thus determines the relative angular speed ⁇ .
  • the degree of freedom is linear in the schematic examples of Figures 3 and 5 , and it defines an axis of oscillation 48 of the active end part 46 passing through the center of mass of this active end part.
  • This axis of oscillation here has a radial direction relative to the axis of rotation 20. It will be noted that when the degree of freedom follows a curve, in particular when this degree of freedom is a rotation around a given axis, the oscillation axis is curvilinear, in particular circular.
  • the first main embodiment is characterized in that the annular magnetic tracks each have a dimension according to the degree of freedom, that is to say along an orthogonal projection of the axis of oscillation 48 in the general plane of the magnetic tracks, which is greater than the dimension of the active end portion 46 according to this degree of freedom, that is to say along the axis of oscillation.
  • Each of the second zones 10, 12 of each annular magnetic track has in orthogonal projection a general contour with a first portion, defining a penetration line 10a, 12a above this second zone for the active end part 46 leaving the first adjacent zone 40, 42 during the oscillation of this active end part, and a second portion defining an exit line 10b, 12b from above this second zone for at least a major part of this active end part passing directly from this second zone to an exit zone 42, 40 during this oscillation.
  • This exit zone is defined by the magnetic structure and it extends in the general plane of the magnetic tracks.
  • the entry zones 40, 42 of a magnetic track defined by the first zones of this track, correspond to the exit zones for the other magnetic track.
  • the exit zones or the annular exit zone are / is arranged so as to generate, relative to the second zones, a lower repulsive force or a greater attractive force for any same zone 50 of the active end part when this same arbitrary zone is superimposed in orthogonal projection on these / this exit zone (s), respectively on these second zones.
  • This condition is fulfilled when the input zones and the output zones are both defined by the first zones of the two magnetic tracks coupled to the active end part, as is the case with Figures 3 and 5 .
  • each output line is oriented substantially in an angular direction parallel to a zero position circle 44 which is centered on the axis of rotation 20 and passes through a projection of the center of mass of the active end part 46 in the general geometric surface when this active end part is in its rest position (position in which the elastic energy of the resonator is minimum and around which it oscillates).
  • the orthogonal projection 54 of the active end part is shown in its rest position.
  • the angular direction gives substantially the orientation of the exit line of each second zone; which notably includes the directions tangential to the zero position circle 44 for the portion of this circle located in an angular sector defined by this second zone.
  • the exit line is parallel to the tangent to the circle 44 at the point of intersection with a radial straight line passing through the middle of this exit line.
  • the active end portion 46 of the coupling element in its rest position has, in orthogonal projection in the general plane of the magnetic tracks, a first dimension W2 along a first axis in this general plane which is perpendicular to the position circle zero 44 and passes through the orthogonal projection of the center of mass of this active end part.
  • this first axis is rectilinear and coincides with an orthogonal projection of the axis of oscillation 48 in the general plane, and it has a radial direction relative to the axis of rotation 20.
  • the orthogonal projection of the part of active end 46 has a second dimension L2, along a second axis defined by the zero position circle, which is greater than the first dimension W2.
  • each of the second zones 10, 12 has a length L1, along said at least one exit zone and along the second axis defined by the circle of position zero, which is greater than the first dimension. W2 of the active end part 46.
  • the angular position of the second zone considered is immaterial.
  • the length L1 of a second zone is measured along this tangential axis when the middle of this length is positioned on the first axis.
  • the second dimension L2 of the active end portion is at least twice as large as its first dimension W2 and the length L1 of the outlet line is at least twice as large as this first dimension W2.
  • the length to width ratio of the end portion 46 is approximately equal to three.
  • the resonator is arranged relative to the magnetic structure so that the active end part is at least for the most part superimposed on this annular magnetic track during substantially a first half-wave in each period of the oscillation of this active end part, and so that the path of the magnetic coupling element during this first alternation is substantially parallel to the general geometric surface. It can be considered that this condition is generally satisfied when the orthogonal projection zone 54 of the active end part according to the invention, in its rest position, is crossed by the inner circle of the outer magnetic track 11 and the outer circle of the inner magnetic track 13. It will be noted that these two circles are merged when the two magnetic tracks are contiguous, as is substantially the case in the preferred variants of the invention. They then define an interface circle for the two tracks. Preferably, the zero position circle 44 is substantially coincident with the interface circle of the two magnetic tracks.
  • the output line of each second zone 10, 12 is substantially coincident with the zero position circle, as is the case in the variants of the Figures 3 and 5 .
  • the zero position circle is located between these two tracks, preferably substantially in the middle of the intermediate zone.
  • Such an intermediate zone which will be kept small for various reasons, can be useful for ensuring easy start-up of the oscillator.
  • a first reason relates to the small dimension provided for the active end part of the coupling element along the oscillation axis, since it is necessary to prevent the oscillator from turning 'idle' with this part. active end remaining substantially on the zero position circle.
  • Another reason relates to an objective of the present invention, namely to obtain localized pulses which are close and preferably substantially centered on the zero position circle.
  • the condition discussed here is also verified as long as the width of the intermediate zone has a dimension much less than the width of each magnetic strip; which is the case in the context of the invention.
  • the zero position circle 44 and the axis of oscillation 48 are, in orthogonal projection to the general geometric surface, substantially orthogonal to their point of intersection. This is the case in the variants shown in Figures 3 and 5 .
  • the dimension W1 of each of the second zones, along an axis perpendicular to the circle of position zero at a midpoint of its exit line is at least three times greater than the first dimension W2 of the part of active end. In another preferred variant, this dimension of the second zones is at least six times larger than the first dimension of the active end part.
  • the variant of Figures 5 and 5A differs from that of the Figure 3 firstly by the fact that the second zones 10A and 12A as well as the first zones 40A and 42A of the annular tracks 11A and 13A define annular sectors.
  • the zero position circle 44 is coincident, in orthogonal projection in the general plane of the magnetic structure 4A, with the output lines 10b, 12b. These outlet lines therefore have an angular direction and the penetration lines 10a, 12a are radial.
  • the variant of the Figure 5 is distinguished by the dimensions W2 and L2 of the active end part 46A of the coupling element of the resonator 38A.
  • the second dimension L2 of the active end portion is at least four times greater than its first dimension W2 and the length L1 of the outlet line is at least four times greater than this first dimension.
  • the length to width ratio of the end portion 46A is approximately equal to five.
  • the penetration line 10a, 12a of each second zone is oriented along the axis of oscillation 48, projected orthogonally into the general plane of the magnetic tracks, when this penetration line is aligned with the center of mass of the part of active end 46A projected orthogonally into this general plane.
  • this is substantially the case.
  • the exit line of the second zones, along the exit zones defined by the second zones of the other magnetic track, and the active end part extend angularly over half of an angular period ⁇ P / 2 at Figure 5 , and this is about the case at the Figure 3 .
  • the degree of freedom of the resonator is entirely in a plane parallel to the general plane of the magnetic tracks and therefore of the magnetic structure.
  • the entire path taken by the magnetic coupling element during its oscillation is, in these variants, parallel to the general plane of the magnetic structure.
  • the path of the oscillating element is substantially parallel to the general geometric surface defined by the magnetic structure.
  • this path, and therefore the axis of oscillation can deviate somewhat from a surface parallel to the general geometric surface, in particular at the end points of the oscillation and this all the more that the amplitude is great.
  • Such a situation occurs for example when the coupling element of the resonator oscillates along a substantially circular path with an axis of rotation parallel to the general plane of the magnetic structure.
  • the direction defined by the degree of freedom of the coupling element in its rest position is parallel to a plane tangent to said general geometric surface at a point corresponding to the orthogonal projection of the center of mass of the active end part of the coupling element in its rest position.
  • the potential magnetic energy of the oscillator as a function of the relative position of the active end part 46 and of the magnetic structure 4, in particular of each of its two magnetic tracks.
  • This relative position is defined by the relative angular position in a frame of reference linked to the magnetic tracks and by the position of the end part along the axis of oscillation 48.
  • the equipotential lines 60 are given for relative positions corresponding to the two magnetic tracks. We can easily observe a big difference with the distribution of the potential magnetic energy of the Figure 2 .
  • each low potential energy zone 62, 66 and a next high potential energy zone 64, 68 there is between each low potential energy zone 62, 66 and a next high potential energy zone 64, 68 a sector 70, 72 of accumulation of magnetic potential energy in the oscillator, this sector being well defined and extending angularly over a certain relatively large range, namely approximately half a period for the inner magnetic track 13 and a little less for the outer magnetic track 11 of larger diameter.
  • These sectors 70 and 72 respectively define two annular zones ZA1 and ZA2 for the accumulation of potential magnetic energy in which the equipotential curves are substantially radial.
  • the force is essentially tangential and therefore corresponds to a braking force for the magnetic structure 4.
  • the force exerted on the coupling element according to its degree freedom is low or almost nil.
  • each annular magnetic track, at least one output zone described above and the magnetic coupling element define in each angular period, depending the relative position of this annular magnetic track and the active end part (in a reference frame linked to the magnetic track), an accumulation sector 70, 72 in which the oscillator essentially accumulates potential magnetic energy and a pulse sector 76, adjacent to this accumulation sector, in which the magnetic coupling element receives essentially a pulse, the pulse sectors being located in a central pulse zone ZC comprising the zero position circle 44
  • the magnetic structure is arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the sectors of accumulation of magnetic potential energy is less than the average gradient of this magnetic potential energy in the sectors of pulse according to the degree of freedom of the coupling element of the resonator and in the same unit.
  • This condition is clearly visible on Figure 4 and results from the features of the invention.
  • the relatively large angular extent of the accumulation sectors and the relatively small radial distance of the pulse sectors originate in particular from the first and second dimensions W2 and L2 of the active end part as well as from the orientations of the penetration lines and of the output lines of potential magnetic energy accumulation zones.
  • the motor torque supplied by a barrel varies significantly as a function of the tension level of the barrel spring. To ensure that the watch movement continues over a sufficiently long period, it is generally necessary that this movement can be caused by a torque varying between a maximum torque and approximately half of this maximum torque. In addition, it is obviously necessary to ensure proper operation at maximum torque. In practice, to ensure such operation and in particular to prevent the oscillator from picking up at a relatively large amplitude of oscillation, it is necessary that the braking sectors extend over a certain angular distance and that braking is thus progressive. This is one of the benefits obtained by the regulating device according to the invention.
  • the annular magnetic track of the magnetic structure has a dimension, along the axis of oscillation of each active end part coupled to this track and in orthogonal projection, which is less than the dimension according to this axis of oscillation of this active end part.
  • This second embodiment constitutes to a certain extent a technical inversion of the first embodiment. However, it has its own advantages, like this will appear later.
  • this second embodiment is not a priori obvious, the person skilled in the art having generally provided magnetic pads extended radially on an escape wheel and magnetic coupling elements of smaller extent associated with the resonator .
  • the sinuous (sinusoidal) magnetic path is arranged in a circular fashion on a mobile.
  • these two tracks extend in a general plan with an interior track and an exterior track. These two tracks therefore do not have the same dimensions, the inner track having at least some smaller areas relative to the corresponding areas of the outer track, while the dimensions of the coupling element are by definition constant.
  • the second main embodiment resolves this disadvantage in a surprising manner by arranging at least one extended magnetic range at the level of the coupling element of the resonator while the magnetic track is radially reduced and narrower than this coupling range.
  • the winding magnetic track is no longer defined by the escape wheel, but by one or preferably two coupling elements secured to an oscillating structure of the resonator.
  • the device 80 regulating the angular speed ⁇ of an escapement mobile comprises a magnetic structure 82 integral with this mobile and a resonator 84 magnetically coupled so as to define together an oscillator.
  • the magnetic structure comprises an annular magnetic track 86 centered on the axis of rotation 20.
  • the magnetic structure and the resonator are arranged to be rotated relative to each other about the axis of rotation 20 when a couple engine is applied to the exhaust mobile and therefore to the magnetic structure.
  • the resonator is shown schematically. It comprises two magnetic coupling elements to the magnetic track which are arranged on a non-magnetic support 88, which has two arms associated respectively with two identical elastic structures 90 and 91 allowing a linear oscillation of the support 88 along a radial straight line 100.
  • the elements coupling are formed in the variant described here by two elongated magnets which have first and second active end portions 92 and 94 respectively located on the side of the magnetic track 86, these magnets having a direction of magnetization generally along the axis of rotation (direction of axial magnetization).
  • the degree of freedom of the resonator defines a first axis of oscillation 96 and a second axis of oscillation 98 for the two active end parts respectively passing through their center of mass.
  • These first and second axes of oscillation are parallel to a central axis 100 passing longitudinally between the two active end parts, this central axis being provided for radial, that is to say that it intercepts the axis of rotation 20 .
  • the magnetic strip 86 comprises a plurality of magnets 102, of angularly elongated shape, which are arranged along this magnetic strip so that they define first non-magnetic zones 104 and second magnetic zones 106 angularly alternated with a first zone. and a second adjacent zone in each angular period ⁇ P , which is defined by the alternation of the first non-magnetic zones and the second magnetized zones.
  • the coupling elements are magnetically coupled to the magnetic track 86 so that an oscillation according to the degree of freedom of the useful resonance mode of the resonator 84 is maintained within a useful range of the motor torque applied to the magnetic structure, and so that '' a period of this oscillation occurs during a rotation of the magnetic structure, resulting from this motor torque, in each angular period ⁇ P of the magnetic strip.
  • the magnets 102 are arranged with an axial magnetization direction, repelling the magnets forming the coupling elements.
  • the surface in which the active end portions of the resonator generally coupled to the annular magnetic track considered and comprising their respective axes of oscillation are considered as the determining general geometric surface , these active end parts defining magnetic areas in this surface.
  • the Figure 10 has been shown, in orthogonal projection in the general plane of the active end parts 92 and 94, the relative movement between the annular magnetic track and these active end parts during a period of oscillation during which the magnetic track 86 turns by an angular period. So this Figure 10 shows a succession of images a) to i) which follow the oscillation movement of a magnet 102A, among the magnets 102 of the magnetic track 86.
  • magnetic ranges 92 and 94 we put in the magnetic ranges, defined by the orthogonal projection of the active end parts (hereinafter also called magnetic ranges 92 and 94), arrows indicating the direction of the oscillation movement and we have indicated approximately the speed of movement by the length of these arrows, the absence of arrow corresponding to an extreme position where there is inversion of the direction of the linear movement of the coupling elements. Then, the magnets of the magnetic track are projected in the general plane and are not shown as passing under the two coupling elements.
  • the magnet 102A is firstly upstream of the magnetic area 92 (drawing 10a), before gradually penetrating into this area 92 (drawing 10b-10c) and then leaving it (drawing10d) and being coupled magnetically similarly to magnetic pad 94 (drawings 10e-10g). Finally, the magnet 102A leaves the magnetic area 94 (drawing 10h) while a following magnet 102 is presented in front of the area 92; which corresponds to the situation in drawing 10a for this following magnet 102, which in turn will undergo the same magnetic coupling with the two coupling elements of the resonator.
  • each second zone generates per unit of angular length, relative to a first adjacent zone, a force higher repulsion for the magnetic potential energy accumulation zone (case of magnetic repulsion coupling described here) or a higher attraction force for the entry and exit zone (case of magnetic coupling in attraction described below).
  • the magnetic potential energy accumulation zone 92A, 94A generates, relative to the entry zone 110, 114 and the exit zone 112, 116, a higher repulsion force (case of magnetic coupling in repulsion) or a lower attraction force (case of magnetic coupling in attraction) for the same arbitrary zone of each second zone 106 when this same arbitrary zone is superimposed on this zone of accumulation of potential magnetic energy, respectively on the entry zone or to the exit area.
  • the magnetic potential energy accumulation zone 92A, 94A associated with an active end part corresponds to the magnetic area 92, 94 formed materially by this active end part, c ' that is to say to an orthogonal projection of this active end part in its general geometric plane.
  • the entry and exit zones do not have to be formed physically by a part of the coupling element. In a general variant, these zones correspond to free peripheral regions of the active end part, that is to say filled with air.
  • the two end parts in the variant described here are arranged on either side of a circular arc, centered on the axis of rotation when the coupling elements are at rest, and have a width (angular direction) corresponding approximately to an angular half-period ⁇ P / 2.
  • the two magnetic pads 92 and 94 are angularly offset by an angular half-period.
  • the output zone 112 associated with the first coupling element corresponds to the input zone 114 associated with the second coupling element.
  • the resonator is arranged relative to the magnetic structure 82 so that the first and second areas of potential magnetic energy accumulation 92A and 94A are crossed in orthogonal projection by a median geometric circle 120, passing through the middle of the annular magnetic track , respectively during the first and second half-waves in each period of the oscillation of the two coupling elements considered.
  • each magnetic potential energy accumulation zone has a general outline 123, 124 with: i) a first portion, defining a penetration line 126, 128 under this accumulation zone successively for each of said second zones 106 during the oscillation of the coupling elements, and ii) a second portion defining an output line 127, 129 from below this accumulation zone for this second zone (case in magnetic repulsion described here) or a second following zone (case in attraction magnetic) during this oscillation.
  • the output line is oriented, when the magnetic coupling element considered is in its rest position, substantially in an angular direction parallel to the orthogonal projection of the median geometric circle 120.
  • each of the second zones has in orthogonal projection a first dimension W3 along a first axis which is perpendicular to the orthogonal projection of the median geometric circle and passes through the center of this second zone.
  • a first axis is a straight line having a radial direction relative to the axis of rotation 20.
  • Each second zone still has a second dimension L3, along a second axis defined by the orthogonal projection of the geometric circle median 120 in said general plane, which is greater than the first dimension W3.
  • the second dimension is preferably measured along a second axis perpendicular to the first axis and passing through the point of intersection of the orthogonal projection of the median geometric circle with the axis of oscillation of the coupling element considered. 96, 98 or by the central axis 100 in the case of two neighboring coupling elements as described here.
  • the dimensions of the second zones are measured when the center of the second zone considered is superimposed on an axis of oscillation or on the central axis 100.
  • the exit line 127, 129 has a length L4, along the exit zone 112, 116 and along the second axis mentioned above, which is greater than the first dimension W3 of the second zones.
  • the axis of oscillation of each active end part is substantially orthogonal to the median geometric circle 120, in orthogonal projection, at their point of intersection.
  • the central axis 100 which is radial and therefore exactly orthogonal to the circle 120 centered on the axis of rotation.
  • the exit line of the magnetic potential energy accumulation zone along the exit zone and each second zone extend angularly over substantially half of an angular period.
  • the annular magnetic track and each active end portion 92, 94 thus define in each period angular, as a function of the relative position of this annular magnetic track and of this active end part, an accumulation sector 70A, 72A in which the oscillator essentially accumulates magnetic potential energy and a pulse sector 76A , 77A, adjacent to this accumulation zone, in which the coupling element essentially receives a pulse.
  • the accumulation sectors are radially extended and define for the two active end parts respectively two annular zones of accumulation ZA1 * and ZA2 *.
  • the radial width of these annular accumulation zones depends essentially on the extent of the active end parts along their axis of oscillation and no longer on the radial width of the annular magnetic tracks as in the first main embodiment .
  • the equipotential lines are substantially radial, which indicates that the resulting force is angular (more precisely tangential) and that the component of this force along the axis of oscillation of each active end part is very weak. In this case, we can speak of pure accumulation of potential energy.
  • the pulse sectors are located in a central zone of pulses ZC * corresponding substantially to the annular magnetic track, that is to say having the same spatial coordinates as this magnetic track in its general geometric plane.
  • the smaller the first dimension W3 of the magnets 102 and therefore the transverse dimension of the magnetic track the more the pulses supplied to the coupling elements are located around their rest position. Then the higher the second dimension L3 of the magnets 102 is large, the greater the angular distance of the accumulation sectors.
  • the penetration line 126, 128 in the magnetic potential energy accumulation zone 92A, 94A is oriented in a direction substantially parallel to said axis of oscillation, as is the case in all the corresponding embodiments in the second main embodiment shown in the figures.
  • This characteristic is advantageous for obtaining substantially radial equipotential lines 60 in the areas of potential magnetic energy accumulation.
  • the aforementioned penetration line defines a path according to the degree of freedom.
  • the second dimension L3 of each second area 106 is at least twice as large as its first dimension W3, and the length L4 of the outlet line is at least twice as large as this first dimension W3.
  • this second dimension of each second zone is at least four times greater than its first dimension, and the length of the exit line is then at least four times greater than this first dimension.
  • the dimension W4 of the penetration line of the magnetic potential energy accumulation zone 92A, 94A, along the axis of oscillation of the corresponding end part is at least five times greater than the transverse dimension W3 of the annular magnetic track along this axis of oscillation in orthogonal projection.
  • this dimension W4 of the penetration line is at least eight times greater than the transverse dimension W3.
  • FIGS. 11 and 11A schematically show a variant of the embodiment of the Figures 7 to 10 .
  • This regulating device 126 is essentially distinguished by the fact that the magnetic coupling is provided in attraction.
  • the magnetic structure 82 is identical to that of the Figure 7 , only the magnetic track 86 being shown with two magnets 102A and 102B selected from the magnets 102 to explain the magnetic interaction of this variant in attraction.
  • the resonator is represented only by the active end part of a magnetic coupling element which here comprises two separate magnetic parts 128 and 130 formed by a ferromagnetic material, this resonator not being provided with a magnetic flux generator of so that the two parts are subjected to a force of attraction on the part of the magnets of the magnetic track.
  • the two parts 128 and 130 have, in the general geometric plane in which they extend, the same shape and the same linear degree of freedom as the two active end parts of the repulsion variant described above, but they are not independent and both necessary for the operation of the oscillator; whereas in the repulsive variant each part 92 and 94 ( Figure 7 ) is independent and the oscillator in magnetic repulsion can operate with only one of the two parts 92 and 94.
  • the central axis 100 between the two parts 128 and 130 corresponds to the axis of oscillation of the active end part. He has one radial direction and is perpendicular to the center geometric circle of runway 86.
  • the two accumulation zones 132 and 134 as well as the complementary zone 135 and the equivalent zone 136 are all formed by the empty or air-filled region surrounding the active end part and are all magnetically equivalent.
  • the magnetic parts 128 and 130 form magnetic pads 128A and 130A in their general plane which each constitute an entry area and also an exit area. The arrangement of these two ranges is provided so that they are magnetically active in each of the two half-waves of each oscillation period, a first time as an entry area and a second time as an exit area, and to generate a pulse around the rest position of the coupling element at the end of each half cycle.
  • the accumulation zone 134 and the complementary zone 135 are considered together as a zone of accumulation of potential magnetic energy and the next second zone (magnet 102B) of the magnetic strip replaces the second zone. which precedes it (magnet 102A above) to generate a pulse (situation shown in the Figure 11A ) following the accumulation of energy resulting from the passage of the magnetic area 130A in an exit area 134 located in a surrounding non-magnetic region, which defines for this second area a region of higher potential magnetic energy relative to the magnetic area 130A for a portion of this second zone superimposed on this magnetic area, respectively on the exit zone 134.
  • the situation shown in the Figure 11 corresponds to a relative position of the coupling element and of the magnetic track for which the potential magnetic energy is minimum.
  • the resonator of the regulating device 126 is arranged relative to the magnetic structure 82 so that each zone of potential magnetic energy accumulation 132, 134 is crossed in orthogonal projection by the median geometric circle passing through the middle of the annular magnetic track during a first half-wave, respectively a second half-wave in each period of oscillation of the resonator.
  • the areas 132 and 134 are delimited spatially by a geometric circle passing through the central point between the two magnetic ranges 128A and 130A along the axis of oscillation 100 and centered on the axis of rotation 20 when l the coupling element is in its rest position.
  • Each accumulation zone 132, 134 partially has a general contour, determined by the active end part, which defines first and second penetration lines 138 and 139 and first and second output lines 140 and 141, by analogy with the terminology used previously.
  • a second variant of the second main embodiment is partially represented.
  • This variant is essentially distinguished by the fact that the degree of freedom is circular, the coupling element to the magnetic track 86 oscillating around its own axis of rotation C.
  • the active end part 144 is in magnetic repulsion with the magnets 102, as in the variant of the Figure 7 .
  • the lessons given for this last variant also apply to this second variant.
  • Part 144 follows a circular oscillation axis 150 passing through its center of mass. It is shown in the rest position of the corresponding coupling element of the resonator.
  • the axis of oscillation is not provided perpendicular to an orthogonal projection of the median geometric circle 120.
  • the penetration line 145 and the output line 146 are optimal.
  • the exit line merges with the orthogonal projection of the median geometric circle 120 so as to minimize the pulse zones around the rest position.
  • the penetration line in the magnetic potential energy accumulation zone 148 defines a path according to the degree of freedom.
  • the zone 148 is here represented with a surface less than the projection of the part 144.
  • This zone 148 delimited by a curve 149 in broken lines effectively corresponds to the zone of active accumulation.
  • the part 144 may have an external contour which follows the curve 149 or which is parallel thereto passing through the end point of the outlet line shown.
  • the zone 148 (respectively the part 144) can move along the axis of oscillation outside the zone of pulse without undergoing in the alternation considered of potential energy variation.
  • the magnetic interaction remains identical with a zone of pure accumulation of potential energy in this alternation which ends with a pulse localized in the rest position of the part 144.
  • the dimensions of this part 144 and magnets 102 have been defined previously and will not be described again here. They are indicated on the drawings.
  • the output line 146 extends angularly over an angular half-period while the magnets 102 extend over a slightly smaller angular distance.
  • the Figure 12A shows a simplified alternative of the Figure 12 wherein the magnets 103 of the magnetic track 86A define second areas 106A of rectangular shape, oriented tangentially to the median geometric circle 120, and first non-magnetic areas 104A between these second areas.
  • the active end portion 144A has a contour of parallelepiped shape, with a penetration line 145A and an outlet line 146A formed by linear segments. These linear segments are optimally oriented for this particular configuration.
  • the 145A and 146A segments are formed respectively by the strings of circular segments 145 and 146 of the Figure 12 . In other words, each of these linear segments is parallel to the tangent at the midpoint of the corresponding circular segment.
  • the axis of oscillation 150 passes through the center of the part 144A.
  • FIG. 13 To the Figure 13 is shown partially a third variant of the second main embodiment which can be provided in magnetic repulsion or magnetic attraction according to the teaching given above.
  • the magnetic structure comprises a magnetic track 86A already described.
  • this variant is shown with two coupling members oscillating about a proper axis C.
  • the specific shape and positioning of these two coupling members in their rest position also apply to a variant where the degree of freedom is linear, like at Figure 7 .
  • the central axis 154 passing through the central point between the two active end parts 156 and 158 is orthogonal to the median circle 120 at their point of intersection.
  • a first rectilinear axis is defined, perpendicular to the median circle 120 and passing through this point of intersection, and a second rectilinear axis, perpendicular to the first axis and also passing through this point.
  • the parts 156 and 158 define in their general plane rectangular magnetic pads each with an output line 160, 162 on the second axis.
  • the penetration lines 164 and 166 of these two magnetic pads are parallel to the first axis.
  • the magnetic potential energy accumulation zone 148B shows that part of the magnetic ranges is not active. However, the rectangular shape simplifies the construction of the resonator.
  • the output lines 160 and 162 are considered to be oriented, when the element of magnetic coupling is in its rest position as shown in the Figure 13 , substantially in an angular direction parallel to the orthogonal projection of the median geometric circle 120 in the general geometric surface of the end portions 156 and 158. They are in fact tangent to the orthogonal projection of the circle 120 at the point of intersection of the central axis 154 with this orthogonal projection, this point of intersection corresponding to an interior corner of each magnetic range.
  • the rectangular shapes are replaced by annular sectors of center C on the axis of rotation of the resonator.
  • the respective output lines of the magnetic pads of this variant are identical to those of the rectangular pads.
  • the penetration lines are circular according to the degree of freedom of the corresponding coupling elements. They each define a path according to the degree of freedom and are therefore oriented in a direction substantially parallel to the respective axes of oscillation. Then, each of the second zones 103 has in orthogonal projection, when the center of this second zone is superimposed on the central axis, a first dimension W3, according to the first axis mentioned above, and a second dimension L3, according to the second axis mentioned above, which is greater than the first dimension. Finally, when the magnetic coupling elements are in their rest position, their respective exit line 160, 162 has a length, along the exit zone and along said second axis, which is greater than the first dimension W3 of the second zones.
  • the regulating device 170 of the Figure 14 comprises a magnetic escapement mobile 82 supporting a magnetic track 86 already described and a resonator 174 formed by a balance 176 (shown diagrammatically) oscillating around the axis C parallel to the axis of rotation 20.
  • the balance is associated with elastic means 178, 179 exerting a restoring force when it deviates from its rest position (zero position shown in the Figure 14 ).
  • the balance comprises two active end parts 92 and 94 corresponding essentially to those already described in Figures 7 and 9 , except for the fact that the output lines 127A and 129A of the magnetic pads 92A and 94A are not superimposed on the middle circle 120, but are located a short distance from this circle on either side so that this circle is located in the middle of an annular intermediate zone between the two magnetic pads.
  • This intermediate zone is magnetically homogeneous, here non-magnetic.
  • the regulating device 180 of the Figure 15 includes a magnetic exhaust mobile 182, with two concentric magnetic tracks 86A and 186, and a resonator 184.
  • the first track 86A has already been described and the second track 186 formed of a plurality of magnets 188 is similar to it, but with a smaller diameter.
  • the potential magnetic energy of the oscillator 180 varies angularly along this second track with the same angular period ⁇ P and similarly to the variation of the first track.
  • the first and second magnetic tracks have an angular offset equal to half of the angular period.
  • the resonator 184 comprises a coupling element with an active end portion 190 formed of a magnet arranged in repulsion and defining in its general plane a zone of accumulation of potential magnetic energy 190A of frustoconical shape.
  • This part 190 is arranged in a non-magnetic support 192 fixed to the watch movement by two elastic blades 193 and 194 allowing oscillation of the support 192.
  • the active end part is coupled to the two magnetic tracks.
  • the 190A accumulation zone defined by this part has a common penetration line 196 for the magnets of the two tracks and two output lines 197 and 198 respectively defining the two parallel and substantially angular portions of this frustoconical area.
  • the part 190 is coupled to the first track 86A. Similarly, it is coupled to the second track 186 in the second half-wave of each oscillation period.
  • the oscillating structure 192 receives a pulse at the end of each alternation around its rest position (position shown).
  • the regulating device 200 of the Figure 16 comprises a magnetic exhaust mobile 202 with a radially extended magnetic track 204, as described in the first main embodiment.
  • the magnets 206 of this track have a frustoconical shape with the two sides parallel in a tangential direction relative to the axis of rotation 20.
  • the oscillator 200 also includes a resonator 210 of the same type as that of the Figure 14 , this resonator also comprising two coupling elements carried by a balance 212 made of non-magnetic material, but being distinguished by the fact that the two corresponding active end parts 46A and 46B are radially narrow relative to the magnets 206 in the position of rest of the coupling elements (position shown).
  • the two parts 46A and 46B are located on either side of a straight line perpendicular to their longitudinal direction and substantially radial relative to the axis of rotation 20 of the exhaust mobile. Relative to this axis, they both extend over an angular distance substantially equal to an angular half-period of the magnetic tracks, with an angular offset of half a period.
  • the longitudinal axis of each part 46A and 46B is substantially perpendicular to the axis of oscillation of the pendulum 212.
  • the line penetration 214 defined by each magnet of the magnetic track is common to the two active end parts.
  • the longitudinal axis of the part 46A is substantially superimposed on the line outlet 215 defined by the outer edge of this magnet while the longitudinal axis of the part 46B is substantially superimposed on the outlet line 216 defined by the inner edge of this magnet.
  • the balance 212 thus receives two pulses per period of oscillation located substantially around its rest position.
  • the regulating device 220 comprises a first magnetic escape wheel 222 and a second magnetic escape wheel 224 which are identical and arranged in the same general plane. These two escape wheels form two magnetic structures each defining a radially narrow magnetic track 86A with a plurality of magnets 103. The potential magnetic energy of the oscillator therefore varies angularly in a similar fashion along these two tracks 86A.
  • the two escape wheels mesh directly with each other via their respective teeth 226 and 228.
  • the two magnetic tracks are coupled to the same coupling element 234 of the resonator 230 which further comprises a non-magnetic support 232 in the form of T and two flexible blades 233A, 233B at the two ends of the crossbar of this support.
  • the magnet 234 is arranged at the free end of the central bar of the support.
  • the flexible blades are arranged so that the magnet 234 can oscillate along a slightly curved axis of oscillation.
  • the resonator may have two separate coupling elements and coupled respectively to the two magnetic tracks supported respectively by the two wheels 222, 224.
  • the magnet 234 is arranged in magnetic repulsion of the magnets 103.
  • the regulating device 220 includes in in addition to two additional magnetic structures situated respectively opposite the two wheels 222, 224 and coaxial with them. These two complementary structures are arranged on the other side of the magnet 234 forming a common coupling element for the two magnetic tracks located on either side of the magnet in an axial direction.
  • a single additional magnetic structure 236 is shown in the Figure 18 , but the second is similar to it.
  • the structure 236 comprises a plate 237 supporting a magnetic track 86A identical to that of the escape wheel 224 and angularly arranged in an equally identical manner.
  • the two wheels mesh so that, along a transverse axis passing through their two respective axes of rotation and corresponding substantially to the axis of oscillation of the magnet 234, the two magnetic tracks have a 180 ° magnetic phase shift, the first track being coupled in a first half-wave while the second track is coupled in a second half-wave of each oscillation period, the coupling element 234 receiving a pulse at the end of each half-wave, which is located around the rest position of the oscillating structure according to the concept of the present invention.
  • the magnetic tracks 86A of the superimposed magnetic structures are integral in rotation, the plate 237 being connected to the wheel 224 by a central tube 238.
  • these two tracks superimposed and arranged on either side of the general plane of the magnet 234 are not integral in rotation.
  • the regulating device 240 is based on the same concept as the previous embodiment.
  • the relative dimensioning of each coupling member and the magnetic tracks corresponds to the first main embodiment
  • the variant proposed in the previous embodiment corresponds to second main embodiment.
  • the variants of each of the two modes can be applied to the other mode by adapting certain constructive elements.
  • the oscillator 240 comprises a resonator 242 and two magnetic structures 244 and 246 situated in the same general plane and integral respectively with two wheels 248 and 250 which mesh with each other indirectly via two intermediate wheels 252 and 254 arranged so that the two magnetic structures rotate at the same speed but in an opposite direction.
  • the intermediate wheel 252 comprises a pinion 253 for the input of a motor torque supplied to the regulating device.
  • the resonator is formed by two flexible blades 260 and 264 made of material with high magnetic permeability and comprising two respective end parts 262 and 266 situated respectively on either side of the general plane of the two magnetic structures.
  • the resonator comprises a magnetic flux generator 256 formed by a magnet 258 housed in a rigid structure 257, which is arranged to allow the fixing of the two flexible blades on either side of the magnet 258 so as to generate a closed magnetic path for the flux of magnet passing through the flexible blades, in particular through the end parts 262 and 266 and the air gap between these two ends.
  • the flexible blades can have an enlargement so as to channel the entire magnetic flux of this magnet.
  • the two magnetic structures are formed by two discs each having at their periphery a magnetic ring defining a plurality of magnetic zones 10A, which are provided over the height of the disc so as to produce an axial magnetic flux on both sides of the magnetic ring.
  • these magnetized areas form at the upper surface of the magnetic structure a first magnetic track 11A1 and at the lower surface a second equivalent magnetic track 11A2.
  • These two magnetic tracks are respectively coupled with the two active end parts 262 and 266.
  • the magnetized zones can be formed by a plurality of distinct magnets or by a ring formed of the same material of which only the zones 10A are magnetized. In another interesting variant, this ring is magnetized with an alternation of the direction of polarity in each angular period.
  • the two magnetic tracks coupled to the resonator are respectively secured to two rotating mobiles having no engagement relationship with each other.
  • These two mobiles can be coaxial or located one next to the other with two distinct axes of rotation.
  • these two mobiles are coupled to the same coupling element or respectively to two coupling elements of the resonator.
  • the two rotating mobiles can each be driven by their own source of mechanical energy.
  • a seventh embodiment is shown of a regulating device 270 according to the invention.
  • the magnetic structure 4B is similar to that described in Figure 5 . It includes two tracks 11A and 13A which are concentric.
  • the resonator 272 is of the balance-spring type with a rigid balance 274 associated with a balance spring 276.
  • the balance can take various forms, in particular circular as in a classic watch movement.
  • the balance pivots about an axis 278 and it comprises two magnetic coupling members 280 and 282 according to the invention which are angularly offset relative to the axis of rotation 20 of the magnetic structure 4B. These two organs are formed by two magnets.
  • the angular offset of the two magnets and their positioning relative to the structure 4B are provided so that these two magnets define the same circle of zero position 44 and that they have in their rest position an angular offset ⁇ D equal to an integer of angular period ⁇ P increased by half a period.
  • these two magnets have a phase shift of ⁇ .
  • the circle 44 corresponds substantially to the interface circle (common limit) of the two magnetic tracks 11A and 13A.
  • the axis of rotation 278 of the balance wheel is positioned at the intersection of the two tangents to the zero position circle 44 respectively at the two points of intersection of this circle with the two respective axes of oscillation of the two magnets of the resonator.
  • the balance is balanced, more precisely that its center of mass is on the axis of the balance.
  • Those skilled in the art will easily be able to configure pendulums of various shapes having this important characteristic. It is therefore understood that the various variants shown in the figures are schematic and the problem linked to the inertia of the resonator is not dealt with concretely in these figures.
  • arrangements guaranteeing a zero result of the magnetic forces acting radially and axially on the axis of the balance are preferred.
  • a balance with flexible blades defining a fictitious axis of rotation that is to say without pivoting, in place of the balance spring.
  • each of the magnets 280 and 282 When passing through the central pulse zone located around the interface circle 44, each of the magnets 280 and 282 receives a pulse in each alternation of each oscillation period. So here we have a double impulse.
  • four simultaneous pulses are obtained at the end of the first half-wave and of the second half-wave in each period of oscillation.
  • Such a system has a strong coupling between the resonator and the magnetic structures driven in rotation by a motor torque in a useful range, the latter thus being able to be relatively extended.
  • the Figure 22 is an alternative to the device of the Figure 21 , the device of the Figure 22 being based on the second main embodiment while the device of the Figure 21 is based on the first main embodiment.
  • This alternative relates to a regulating device 290 with two concentric magnetic tracks 86A and 186 of small radial dimension forming the magnetic structure 182, which is similar to that already described in Figure 15 (the only difference is the arched shape of magnets 103 and 188 on the Figure 22 ).
  • This regulating device further comprises a resonator 292 of the balance-spring type described above.
  • the resonator therefore has a hairspring 276 or another suitable elastic element and a balance 274A having two arms, the respective free ends of which carry two coupling elements 294 and 296 respectively formed by two magnets arranged in repulsion of the magnets of the magnetic tracks.
  • Each coupling element is formed by a magnetic zone similar to element 190 of the Figure 15 .
  • the regulating device 300 comprises a magnetic structure 82A similar to that described in Figures 12A and 13 and a resonator 302 formed by a tuning fork with two branches 308 and 309 (shown diagrammatically) which have at their two free ends two identical magnetic plates 304A and 304B.
  • Each magnetic plate is formed by two magnetic pads 156 and 158 and by two non-magnetic complementary parts 305 and 306.
  • the magnetic pads 156 and 158 are arranged identically to the two active end parts which are described in Figure 13 .
  • the magnetic operation here is equivalent to that described using the Figures 9 to 11A and 13 , and will therefore not be discussed again here.
  • the magnetic coupling can be provided in repulsion (see Figures 9 and 10 ) or as an attraction (see Figures 11 and 11A ).
  • the magnetic track has an even number of magnets and therefore of angular periods so that the two plates 304A, 304B advantageously oscillate in opposite directions.
  • an odd number of magnets must be provided along the track magnetic 86A.
  • the resonator is formed by a tuning fork, two free ends of its resonant structure of which carry the first and second magnetic coupling elements, respectively.
  • the regulating device 310 differs essentially from the previous embodiments by three particular characteristics. Firstly, it includes two independent resonators 312 and 314, that is to say not having a common resonance mode. However, these two resonators are identical. Secondly, the magnetic structure 316 is provided fixed on a support or a plate 318 of a timepiece movement, while the two resonators 312 and 314 are driven in rotation at the angular speed ⁇ by a motor torque supplied to a rotor 320 which comprises two rigid arms 322 and 323 at the respective free ends of which the two resonators are arranged respectively.
  • These two resonators each comprise an elastic strip at the free end of which is arranged an elongated magnet 325, 326.
  • These magnets are arranged according to the invention tangentially to an interface circle 44 between the two magnetic tracks 328 and 330 when the respective resonators are in their rest position, so that this interface circle corresponds to a zero position circle for the two active end parts defined by the magnets 325 and 326.
  • Each magnetic track comprises first zones 332 and second zones 334 having properties already described in the description of the first main embodiment.
  • Each of the two magnets defines with the two magnetic tracks an oscillator.
  • the inversion of the drive at the level of the 'resonator - magnetic track' system with a motor torque applied to the resonator to drive it in rotation around an axis of rotation 20A coincident with the central axis of the structure magnetic does not change the magnetic interaction between the resonator and the magnetic structure which has been exposed previously, so that this inversion can be implemented as a variant in the other embodiments.
  • the third particular characteristic of this embodiment comes from the fact that, in an embodiment corresponding to the first main embodiment, the oscillation of the coupling elements is not radial relative to the axis of rotation 20A of the rotor 320 , namely that the axis of oscillation intercepts the zero position circle 44 in a non-perpendicular manner.
  • the degree of freedom of the coupling element of each resonator is located substantially on a circle whose radius is substantially equal to the length L of the elastic blade and centered at the anchor point of this blade.
  • the device regulator 340 is distinguished by the fact that the resonator comprises a truncated annular magnet 352 rigidly connected to a balance 348 which is associated with a hairspring 350.
  • the truncated annular magnet defines the wall of a section of cylindrical tube open laterally.
  • This truncated annular magnet is located in a first general plane parallel to a second general plane defined by the annular magnetic track, so that this annular magnet passes over the exhaust mobile to be magnetically repelled, and therefore contactless. , to the annular track 344 driven in rotation by a motor torque.
  • no pendulum other than the section of cylindrical tube with its pivoting means is provided.
  • the truncated annular magnet is arranged to rotate around the axis C.
  • a shaft can be provided in this variant, this shaft being connected to the annular magnet for example by a plate supporting this magnet and fixedly mounted on the shaft. The plate is provided on the other side of the exhaust mobile relative to this annular magnet.
  • the annular magnet 352 forms two active end parts of two coupling elements, these two ends being in the variant shown formed by a single truncated annular magnet. Indeed, in a variant limiting the amplitudes of oscillation, one can provide two arcuate magnets of the same radius and connected by a non-magnetic fixing part.
  • the truncated annular magnet defines in its general plane a first penetration line 354, corresponding to its outer wall and a first outlet line 356 at a first end of this annular magnet in its general plane. The second end defines a second outlet line 357 while a second penetration line 355 is defined by the interior wall of this annular magnet.
  • the annular magnet corresponds in orthogonal projection to a zone of accumulation of potential magnetic energy.
  • the penetration lines are oriented according to the degree of freedom of the resonator since they are circular and centered on the axis of oscillation C. They define paths according to this degree of freedom so that, for a given angular position from the magnetic track 344, the potential magnetic energy of a magnet 343 partially superimposed on the annular magnet 352 does not vary when this magnet oscillates in a first alternation of the period of oscillation of the balance spring ( Figures 25A and 25C ) before reaching the exit line ( Figures 25B and 25D ) where a pulse P is supplied to the balance via the annular magnet.
  • the magnet 352 defines in its general plane a truncated annular surface.
  • a first magnet 343 of the magnetic track penetrates under the annular magnet by the external penetration line 354.
  • the first magnet In the useful range of the motor torque, thanks to the arrangement of a stop magnetic 345 following each magnet 343 (significantly stronger interaction with the annular magnet for this magnetic stop), the first magnet ultimately remains in a certain position of maximum penetration or final superposition position. In this final overlapping position, the balance can rotate freely substantially throughout the first half-cycle ( Figure 25A ) until it substantially reaches its rest position around which it receives a first pulse P ( Figure 25B ). The balance continues its rotation at substantially maximum speed and a second magnet preceding the first magnet, relative to the direction of rotation of the driving mobile, penetrates after a certain rotation of the exhaust mobile under the annular magnet by the internal penetration line. 355.
  • This second magnet also remains in a position of maximum penetration corresponding to a certain partial superposition with the annular magnet during most of the second half-wave ( Figure 25C ) before exiting via the output line 357 around the rest position of the resonator ( Figure 25D ) by providing a second pulse P to the balance spring.
  • the magnet 343 can be completely superimposed on the annular magnet in its position of maximum penetration.
  • the annular magnet forms the active end part common to the coupling of the magnetic track to the resonator in the two half-waves of each period of oscillation. Note that in its rest position ( Figures 25B and 25D ), the output lines defined by this common active end part each have an orientation according to the present invention, because these output lines are substantially tangential to the median geometric circle 120.
  • this embodiment in its main operating mode, is characterized by a jerky advance of the exhaust mobile with a large amplitude of oscillation.
  • the truncated annular ring forms a magnetic barrier for the magnetic stops of the magnetic track, making it possible to stop the exhaust mobile momentarily, which then advances in steps (two steps for a rotation of an angular period).
  • steps two steps for a rotation of an angular period.
  • the magnetic stops are no longer necessary.
  • an almost continuous or continuous advance is mainly provided for in the other embodiments.
  • certain embodiments depending on the dimensioning of the resonator and of the magnetic structure, can also operate in a jerky mode.
  • the regulating device 360 of the “magnetic cylinder exhaust” type differs from the previous variant essentially by the fact that it is intended that the same magnet 343A which is first magnetically coupled to the annular magnet 352A of the resonator in a first alternation a period of oscillation, by entering under this annular magnet by the external penetration line 354 (substantially same radius R E as in the previous variant) and leaving by the output line 356A by providing a first pulse, is then directly magnetically coupled to the annular magnet in the second alternation of this oscillation period by penetrating under this annular magnet by the interior penetration line 355A before finally exiting by the output line 357A by providing a second impulse to the balance-spring ( no shown in the Figure 26 ).
  • Such a configuration makes it possible, for a given external diameter of the annular magnet of the resonator, to considerably increase the thickness E T of the wall of this cylindrical tube and therefore the length L4 of the outlet lines, as well as the longitudinal dimension L3 (angular or tangential dimension) of the magnets 343A of the magnetic track.
  • This makes it possible to increase the accumulation of potential magnetic energy in the oscillator since, for a given first dimension W3, the second dimension L3 of these magnets can be enlarged, which thus increases the ratio between these two dimensions.
  • the opening of the annular magnet 352A, defined above, is less than an angular period of the magnetic track 342A.
  • the annular magnet is mounted on or suspended from a structure comprising two crossed flexible blades defining a geometric axis of oscillation C for the annular magnet.
  • This elastically deformable structure is arranged on the other side of this annular magnet relative to the magnetic structure of the exhaust mobile. Thus, no material axis is necessary at the level of the annular magnet and the exhaust mobile.
  • the diameter (2 ⁇ R I ) of the internal contour of the truncated annular magnet is less than or substantially equal to the second dimension L3 of the second zones defined by the magnets of the magnetic track.
  • the difference between the radii of the first and second circular penetration lines 354 and 355A, corresponding approximately to the length L4 of the first and second outlet lines, is substantially equal to the second dimension L3 or between eighty and one hundred and twenty percent ( 80% to 120%) of this second dimension.
  • the regulating device 370 is particular in two main characteristics. First, it includes a magnetic exhaust mobile 372 formed by a disc 374 with a non-magnetic central part and a peripheral ring 376 magnetized radially so as to define two lateral magnetic tracks 378 and 380 each formed by alternating magnetic poles 382 and 384, these magnetic poles generating a magnetic flux corresponding to radial magnet axes in alternating directions. They define first and second zones of each magnetic strip. The second zones are in magnetic repulsion with the magnets 392 and 394 of the resonator while the first zones are in magnetic attraction with these magnets.
  • the general geometric surface of the two magnetic tracks is a cylindrical surface so that the penetration lines opposite the second zones for the magnets of the resonator are segments of axial lines.
  • the output lines follow the interface circle of the two magnetic tracks, this interface circle preferably being merged with the zero position circle 44A defined by the orthogonal projection in the cylindrical surface of the center of mass of the end part. active of each of the magnets 394 and 396 in their rest position.
  • each of the centers of mass is on a radial axis of the disc 374 intercepting the interface circle of the two magnetic tracks when the first and second coupling elements are in their rest position.
  • the resonator 386 is of the torsion type with two free ends of its resonant structure carrying the first and second coupling elements respectively.
  • This resonator has a resonant structure in H with two longitudinal bars 387 and 388, each carrying a coupling magnet 392, 394. These two longitudinal bars are connected by a transverse bar 390 which has a capacity of deformation in torsion. Indeed, it is expected that the longitudinal bars oscillate with a phase shift of 180 ° so that the transverse bar deforms elastically in torsion around its longitudinal axis.
  • the number of angular periods of the magnetic tracks is odd and, as in the other embodiments with two magnetic tracks, these two magnetic tracks are angularly offset by an angular half-period, that is to say phase shifted by 180 °.
  • Two fixing parts 395 and 396 of the resonator are connected in the middle of the transverse bar by two relatively narrow bridges 398, because the material does not undergo in this median zone of rotation around the longitudinal axis of the transverse bar during movements d substantially axial oscillation, in opposite directions, of the two longitudinal bars.
  • the first and second zones 382 and 384 of the two magnetic tracks 378 and 380 of the rotating magnetic structure and the two magnetic coupling elements 392 and 394 of the resonator are dimensioned and arranged according to the criteria of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Claims (33)

  1. Vorrichtung (36, 56, 200, 240, 270, 310, 370) zum Steuern der die relativen Winkelgeschwindigkeit (ω) zwischen einer magnetischen Struktur (4, 4A, 202, 244, 246, 4B, 316, 372) und einem Resonator (38, 38A, 210, 242, 312, 314, 386), die magnetisch gekoppelt sind, um zusammen einen Oszillator zu definieren, der diese Steuervorrichtung bildet, wobei die magnetische Struktur mindestens eine ringförmige Magnetspur (11, 13, 11A, 13A, 204, 11A1, 328, 330, 378, 380) aufweist, die auf eine Drehachse (20, 20A) dieser magnetischen Struktur oder des Resonators zentriert ist, wobei die magnetische Struktur und der Resonator so angeordnet sind, dass sie eine Drehung relativ zueinander um die Drehachse ausführen, wenn auf die magnetische Struktur oder auf den Resonator ein Antriebsdrehmoment ausgeübt wird; wobei der Resonator mindestens ein magnetisches Kopplungselement mit der ringförmigen Magnetspur aufweist, wobei dieses Kopplungselement einen aktiven Endabschnitt (46, 46A, 46B, 262, 266, 280, 282, 325, 326) aufweist, der aus einem ersten magnetischen Material gebildet ist und sich auf Seiten der ringförmigen Magnetspur befindet; wobei diese ringförmige Magnetspur mindestens teilweise aus einem zweiten magnetischen Material gebildet ist, das so angeordnet ist, dass sich die magnetische potentielle Energie des Oszillators winkelmäßig entlang der ringförmigen Magnetspur periodisch ändert und somit eine Winkelperiode (θP) dieser ringförmigen Magnetspur definiert und erste Zonen (40, 42, 40A, 42A, 382) und zweite Zonen (10, 12, 10A, 12A, 206, 334, 384) definiert, die in jeder Winkelperiode winkelmäßig mit einer ersten Zone und einer zweiten, benachbarten Zone abwechseln; wobei jede zweite Zone relativ zu einer benachbarten ersten Zone eine höhere Abstoßungskraft oder eine niedrigere Anziehungskraft für dieselbe beliebige Zone des aktiven Endabschnitts erzeugt, wenn diese beliebige Zone in einer orthogonalen Projektion auf die allgemeine geometrische Oberfläche, auf der sich die ringförmige Magnetspur erstreckt, dieser zweiten Zone bzw. dieser ersten benachbarten Zone überlagert ist; wobei das Magnetkopplungselement mit der ringförmigen Magnetspur magnetisch gekoppelt ist, so dass eine Schwingung gemäß einem Freiheitsgrad eines Resonanzmodus des Resonators innerhalb eines wirksamen Bereichs des auf die magnetische Struktur oder auf den Resonator ausgeübten Antriebsdrehmoments aufrechterhalten wird und dass eine Periode dieser Schwingung bei jeder relativen Drehung in jeder Winkelperiode der ringförmigen Magnetspur auftritt, wobei die Frequenz der Schwingung somit die relative Winkelgeschwindigkeit bestimmt, und der Freiheitsgrad eine Schwingungsachse (48) des aktiven Endabschnitts definiert, die durch seinen Massenschwerpunkt verläuft; wobei der Resonator relativ zu der magnetischen Struktur so angeordnet ist, dass der aktive Endabschnitt in einer orthogonalen Projektion dieser ringförmigen Magnetspur mindestens zum größten Teil im Wesentlichen während einer ersten Halbschwingung in jeder Periode dieser Schwingung überlagert ist, und derart, dass die Spur des Magnetkopplungselements in dieser ersten Halbschwingung zu der allgemeinen geometrischen Oberfläche im Wesentlichen parallel ist, wobei die ringförmige Magnetspur in der orthogonalen Projektion der Schwingungsachse in dieser allgemeinen geometrischen Oberfläche eine Abmessung aufweist, die größer ist als die Abmessung des aktiven Endabschnitts entlang dieser Schwingungsachse; wobei jede der zweiten Zonen in der orthogonalen Projektion einen allgemeinen Umriss aufweist mit einem ersten Abschnitt, der eine Eindringstrecke (10a, 12a, 214, 336) oberhalb dieser zweiten Zone für den aktiven Endabschnitt des Magnetkopplungselements während der Schwingung definiert und einem zweiten Abschnitt, der eine Ausgangsstrecke (10b, 12b, 216) über dieser zweiten Zone für diesen aktiven Endabschnitt während dieser Schwingung definiert, wobei diese Ausgangsstrecke im Wesentlichen in einer Winkelrichtung parallel zu einem Kreis mit Position null (44, 44A) ausgerichtet ist, der auf die Drehachse zentriert ist und die orthogonalen Projektion des Massenschwerpunkts des aktiven Endabschnitts in seiner Ruheposition passiert; wobei die magnetische Struktur ferner für den aktiven Endabschnitt mindestens eine Ausgangszone definiert, die sich über die allgemeine geometrische Oberfläche erstreckt, wobei diese mindestens eine Ausgangszone in der orthogonalen Projektion mindestens den Hauptteil des aktiven Endabschnitts aufnimmt, wenn dieser während der Schwingung nacheinander die ringförmige Magnetspur über jeweilige Ausgangsstrecken der zweiten Zonen verlässt, wobei diese mindestens eine Ausgangszone relativ zu den zweiten Zonen eine niedrigere Abstoßungskraft oder eine höhere Anziehungskraft für dieselbe beliebige Zone des aktiven Endabschnitts erzeugt, wenn diese gleiche beliebige Zone in der orthogonalen Projektion dieser mindestens einen Ausgangszone bzw. diesen zweiten Zonen überlagert ist; wobei der aktive Endabschnitt des Kopplungselements in seiner Ruheposition in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche eine erste Abmessung (W2) längs einer ersten Achse senkrecht zu dem Kreis mit Position null, der die orthogonale Projektion des Massenschwerpunkts dieses aktiven Endabschnitts passiert, und eine zweite Abmessung (L2) entlang einer durch den Kreis mit Position null definierten zweiten Achse, die größer als diese erste Abmessung ist, aufweist, wobei die Ausgangsstrecke jeder der zwei Zonen eine Länge (L1) entlang der mindestens einen Ausgangszone und längs der zweiten Achse aufweist, die größer als die erste Abmessung (W2) des aktiven Endabschnitts ist.
  2. Steuervorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Ausgangsstrecke jeder zweiten Zone mit dem Kreis mit Position null im Wesentlichen zusammenfällt.
  3. Steuervorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass in dem wirksamen Bereich des Antriebsdrehmoments die ringförmige Magnetspur, die mindestens eine Ausgangszone und das Magnetkopplungselement in jeder Winkelperiode in Abhängigkeit von der relativen Position dieser ringförmigen Magnetspur und des aktiven Endabschnitts einen Akkumulationssektor (70, 72), in dem der Oszillator die magnetische potentielle Energie im Wesentlichen akkumuliert, und einen an diesen Akkumulationssektor angrenzenden Impulssektor (76), in dem das Magnetkopplungselement im Wesentlichen einen Impuls empfängt, definieren, wobei sich die Impulssektoren in einer zentralen Impulszone befinden, die die dem Kreis mit Position null entsprechenden relativen Positionen umfasst.
  4. Steuervorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Kreis mit Position null und die Schwingungsachse an ihrem Schnittpunkt im Wesentlichen senkrecht sind.
  5. Steuervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Abmessung (L2) des aktiven Endabschnitts mindestens zweimal größer ist als seine erste Abmessung (W2) und die Länge (L1) der Ausgangsstrecke mindestens zweimal größer ist als diese erste Abmessung.
  6. Steuervorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Abmessung (L2) des aktiven Endabschnitts mindestens viermal größer ist als seine erste Abmessung (W2) und die Länge (L1) der Ausgangsstrecke mindestens viermal größer ist als diese erste Abmessung.
  7. Steuervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche die Eindringstrecke jeder zweiten Zone im Wesentlichen entlang der Schwingungsachse ausgerichtet ist, wenn diese Eindringstrecke mit dem Massenschwerpunkt des aktiven Endabschnitts ausgerichtet ist.
  8. Steuervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ausgangsstrecke der zweiten Zonen entlang der mindestens einen Ausgangszone und der aktive Endabschnitt sich winkelmäßig relativ zur Drehachse im Wesentlichen über die Hälfte einer Winkelperiode (θP) erstrecken.
  9. Steuervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abmessung (W1) jeder der zweiten Zonen entlang einer Achse senkrecht zum Kreis mit Position null an einem Mittelpunkt der Ausgangsstrecke mindestens dreimal größer ist als die erste Abmessung (W2) des aktiven Endabschnitts.
  10. Steuervorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Abmessung (W1) jeder der zweiten Zonen entlang einer Achse senkrecht zum Kreis mit Position null an einem Mittelpunkt der Ausgangsstrecke mindestens sechsmal größer ist als die erste Abmessung (W2) des aktiven Endabschnitts.
  11. Steuervorrichtung (80, 126, 170, 180, 220, 290, 300, 340, 360) der relativen Winkelgeschwindigkeit (ω) zwischen einer magnetischen Struktur (82, 182, 342) und einem Resonator (84, 174, 184, 230, 292, 302, 346), die magnetisch gekoppelt sind, um zusammen einen Oszillator zu definieren, der diese Steuervorrichtung bildet, wobei die magnetische Struktur mindestens eine ringförmige Magnetspur (86, 86A, 186, 344) aufweist, die auf eine Drehachse (20) dieser magnetischen Struktur oder des Resonators zentriert ist, wobei die magnetische Struktur und der Resonator so angeordnet sind, dass sie eine Drehung relativ zueinander um die Drehachse erfahren, wenn auf die magnetische Struktur oder auf den Resonator ein Antriebsdrehmoment ausgeübt wird; wobei der Resonator mindestens ein magnetisches Kopplungselement mit der ringförmigen Magnetspur aufweist, wobei dieses magnetische Kopplungselement einen aktiven Endabschnitt (92, 94, 128, 130, 144, 144A, 156, 158, 92A, 94A, 190A, 234, 294, 296, 156, 158, 352) aufweist, der aus einem ersten magnetischen Material gebildet ist und sich auf Seiten der ringförmigen Magnetspur befindet; wobei diese ringförmige Magnetspur mindestens teilweise aus einem zweiten magnetischen Material gebildet ist, das so angeordnet ist, dass die magnetische potentielle Energie des Oszillators winkelmäßig entlang der ringförmigen Magnetspur periodisch variiert und somit eine Winkelperiode (θP) dieser ringförmigen Magnetspur definiert; wobei das magnetische Kopplungselement mit der ringförmigen Magnetspur magnetisch gekoppelt ist, so dass eine Schwingung gemäß einem Freiheitsgrad eines Resonanzmodus des Resonators in einem wirksamen Bereich des auf die magnetische Struktur oder auf den Resonator ausgeübten Antriebsdrehmoments aufrechterhalten wird und dass eine Periode dieser Schwingung während der relativen Drehung in jeder Winkelperiode der ringförmigen Magnetspur auftritt, wobei die Frequenz der Schwingung somit die relative Winkelgeschwindigkeit bestimmt, wobei der Freiheitsgrad eine Schwingungsachse (94, 96, 100, 150, 154) des aktiven Endabschnitts definiert, die durch seinen Massenschwerpunkt verläuft; wobei das zweite magnetische Material entlang der ringförmigen Magnetspur so angeordnet ist, dass es magnetisch erste Zonen (104, 104A) und zweite Zonen (102, 106, 103, 106A, 343) definiert, die winkelmäßig mit einer ersten Zone und einer zweiten, benachbarten Zone in jeder Winkelperiode abwechseln; und wobei während der Schwingung in dem wirksamen Bereich des Antriebsdrehmoments der aktive Endabschnitt des magnetischen Kopplungselements in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche, auf der sich im Allgemeinen dieser aktive Endabschnitt befindet und die die Schwingungsachse umfasst, magnetisch definiert:
    - eine Zone des aufeinander folgenden Eintretens für die zweiten Zonen in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche,
    - eine Zone für die Akkumulation magnetischer potentieller Energie in dem Oszillator, die winkelmäßig benachbart zur Eingangszone ist und in die in der orthogonalen Projektion mindestens teilweise jede zweite Zone aus dieser Eingangszone eindringt, und
    - eine Ausgangszone benachbart zu der Zone für die Akkumulation magnetischer potentieller Energie, wobei diese Ausgangszone in der orthogonalen Projektion mindestens den Hauptabschnitt jeder zweiten Zone aufnimmt, die aus dieser Akkumulationszone oder aus einer zweiten folgenden Zone austritt;
    wobei jede zweite Zone pro Winkellängeneinheit relativ zu einer ersten Zone eine größere Abstoßungskraft für die Zone für die Akkumulation magnetischer potentieller Energie oder eine größere Anziehungskraft für die Eingangszone und die Ausgangszone erzeugt; wobei die Zone für die Akkumulation magnetischer potentieller Energie relativ zu der Eingangszone und der Ausgangszone eine größere Abstoßungskraft oder eine kleinere Anziehungskraft für dieselbe beliebige Zone jeder zweiten Zone erzeugt, wenn diese beliebige Zone dieser Zone für die Akkumulation magnetischer potentieller Energie bzw. der Eingangszone oder der Ausgangszone überlagert ist; wobei die ringförmige Magnetspur in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche eine Abmessung entlang der Schwingungsachse aufweist, die kleiner ist als die Abmessung entlang dieser Schwingungsachse des aktiven Endabschnitts; wobei der Resonator relativ zu der magnetischen Struktur so angeordnet ist, dass die Zone für die Akkumulation magnetischer potentieller Energie in der orthogonalen Projektion von einem geometrischen Mediankreis (120, 121) durchquert wird, der durch die Mitte der ringförmigen Magnetspur im Wesentlichen während einer bestimmten Halbschwingung in jeder Periode der Schwingung verläuft; wobei die Zone für die Akkumulation magnetischer potentieller Energie einen allgemeinen Umriss aufweist mit einem ersten Abschnitt, der eine Eindringstrecke (126, 128, 138, 139, 145, 145A, 164, 166, 196, 354, 355) unterhalb dieser Akkumulationszone aufeinander folgend für jede der zweiten Zonen während dieser Schwingung definiert, und einem zweiten Abschnitt, der eine Ausgangsstrecke (127, 129, 140, 141, 146, 146A, 160, 162, 127A, 129A, 197, 198, 356, 357) unter dieser Akkumulationszone für diese zweite Zone oder eine folgende zweite Zone während dieser Schwingung definiert, wobei die Ausgangsstrecke, wenn sich das Magnetkopplungselement in seiner Ruheposition befindet, im Wesentlichen in einer Winkelrichtung parallel zu der orthogonalen Projektion des geometrischen Mediankreises ausgerichtet ist; wobei jede der zweiten Zonen in der orthogonalen Projektion, wenn das Zentrum dieser zweiten Zone der Schwingungsachse überlagert ist, eine erste Abmessung (W3) entlang einer ersten Achse senkrecht zu der orthogonalen Projektion des geometrischen Mediankreises, die durch den Schnittpunkt dieser orthogonalen Projektion des geometrischen Mediankreises mit der Schwingungsachse verläuft, und eine zweite Abmessung (L3) entlang einer zweiten Achse senkrecht zu der ersten Achse, die durch den Schnittpunkt verläuft, die größer als die erste Abmessung ist, aufweist, und wobei dann, wenn das magnetische Kopplungselement in seiner Ruheposition ist, die Ausgangsstrecke eine Länge (L4) entlang der Ausgangszone und entlang der zweiten Achse aufweist, die größer als die erste Abmessung (W3) der zweiten Zonen ist.
  12. Steuervorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Ausgangsstrecke der Zone für die Akkumulation magnetischer potentieller Energie mit der orthogonalen Projektion des geometrischen Mediankreises im Wesentlichen zusammenfällt, wenn das Kopplungselement in seiner Ruheposition ist.
  13. Steuervorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass in dem wirksamen Bereich des Antriebsdrehmoments die ringförmige Magnetspur und das magnetische Kopplungselement in jeder Winkelperiode in Abhängigkeit von der relativen Position dieser ringförmigen Magnetspur und des aktiven Endabschnitts einen Akkumulationssektor (70A, 72A), in dem der Oszillator im Wesentlichen magnetische potentielle Energie akkumuliert, und einen an diese Akkumulationszone angrenzenden Impulssektor (76A, 77A), in dem das Kopplungselement im Wesentlichen einen Impuls empfängt, definieren, wobei sich die Impulssektoren in einer mittleren Impulszone befinden, die im Wesentlichen der ringförmigen Magnetspur entspricht.
  14. Steuervorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Schwingungsachse und der geometrische Mediankreis in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche an ihrem Schnittpunkt im Wesentlichen senkrecht sind.
  15. Steuervorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die zweite Abmessung (L3) jeder zweiten Zone mindestens zweimal größer ist als seine erste Abmessung (W3) und die Länge (L4) der Ausgangsstrecke mindestens zweimal größer ist als diese erste Abmessung.
  16. Steuervorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die zweite Abmessung (L3) jeder zweiten Zone mindestens viermal größer ist als die erste Abmessung (W3) und die Länge (L4) der Ausgangsstrecke mindestens viermal größer ist als diese erste Abmessung.
  17. Steuervorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass die Eindringstrecke in der Zone für die Akkumulation magnetischer potentieller Energie in einer zu der Schwingungsachse im Wesentlichen parallelen Richtung ausgerichtet ist.
  18. Steuervorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass die Eindringstrecke in der Zone für die Akkumulation magnetischer potentieller Energie einen Weg entsprechend dem Freiheitsgrad definiert.
  19. Steuervorrichtung nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, dass sich die Ausgangsstrecke der Zone für die Akkumulation magnetischer potentieller Energie entlang der Ausgangszone und jeder zweiten Zone winkelmäßig im Wesentlichen über die Hälfte einer Winkelperiode erstrecken.
  20. Steuervorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass die Abmessung (W4) der Eindringstrecke in der Zone für die Akkumulation magnetischer potentieller Energie entlang der Schwingungsachse mindestens fünfmal größer ist als die Abmessung (W3) der ringförmigen Magnetspur entlang dieser Schwingungsachse in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche.
  21. Steuervorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass die Abmessung (W4) der Eindringstrecke in der Zone für die Akkumulation magnetischer potentieller Energie entlang der Schwingungsachse mindestens achtmal größer ist als die Abmessung (W3) der ringförmigen Magnetspur entlang dieser Schwingungsachse in der orthogonalen Projektion auf die allgemeine geometrische Oberfläche.
  22. Steuervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die allgemeine geometrische Oberfläche eine zylindrische Oberfläche ist, die als Mittelachse die Drehachse hat, wobei der Freiheitsgrad im Wesentlichen entlang dieser Drehachse ausgerichtet ist.
  23. Steuervorrichtung (180) nach einem der vorhergehenden Ansprüche, wobei die ringförmige Magnetspur eine erste Spur (86A) definiert, dadurch gekennzeichnet, dass die magnetische Struktur ferner eine zweite ringförmige Magnetspur (186) umfasst, die ebenfalls mit dem Kopplungselement auf eine Weise gekoppelt ist, die jener ähnlich ist, auf die dieses Kopplungselement mit der ersten Spur gekoppelt ist; wobei die zweite Spur mindestens teilweise aus einem magnetischen Material gebildet ist, das eine Veränderung entlang dieser zweiten Spur aufweist, derart, dass sich die magnetische potentielle Energie des Oszillators winkelmäßig mit der Winkelperiode und auf ähnliche Weise wie die Veränderung der ersten Spur entlang dieser zweiten Spur verändert, wobei die erste und die zweite Spur einen Winkelversatz gleich der Hälfte der Winkelperiode aufweisen.
  24. Steuervorrichtung (220) nach einem der Ansprüche 1 bis 22, wobei die ringförmige Magnetspur eine erste Spur definiert, dadurch gekennzeichnet, dass sie ferner eine zweite ringförmig Magnetspur umfasst, die mindestens teilweise aus einem magnetischen Material gebildet ist und mit dem Kopplungselement oder mit einem anderen Kopplungselement auf eine Weise gekoppelt ist, die jener ähnlich ist, auf die das Kopplungselement mit der ersten Spur gekoppelt ist; wobei die zweite Spur mindestens teilweise aus einem magnetischen Material gebildet ist, das eine Veränderung entlang derselben aufweist, derart, dass sich die magnetische potentielle Energie des Oszillators winkelmäßig auf ähnliche Weise wie die Veränderung für die erste Spur ebenfalls entlang dieser zweiten Spur verändert; und dass die erste und die zweite Spur mit zwei jeweiligen Drehteilen (222, 224), die unterschiedliche Drehachsen besitzen, fest verbunden sind.
  25. Steuervorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass die beiden Drehteile auf ihrem Umfang zwei entsprechende Zahnungen (226, 228) aufweisen, die direkt miteinander in Eingriff stehen.
  26. Steuervorrichtung nach einem der vorhergehenden Ansprüche, wobei das magnetische Kopplungselement ein erstes Kopplungselement (92, 156, 294) ist, dadurch gekennzeichnet, dass sie mindestens ein zweites Kopplungselement (94, 158, 296) umfasst, das ebenfalls magnetisch mit der Magnetspur auf ähnliche Weise wie das erste Kopplungselement gekoppelt ist.
  27. Steuervorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass der Resonator vom Typ Unruh-Spiralfeder oder vom Typ Unruh mit flexiblen Blättern ist, wobei die Unruh das erste und das zweite Kopplungselement trägt.
  28. Steuervorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass der Resonator durch eine Stimmgabel gebildet ist, von der zwei freie Enden ihrer Resonanzstruktur das erste bzw. das zweite magnetische Kopplungselement tragen.
  29. Steuervorrichtung nach Anspruch 26, wenn abhängig von Anspruch 22, dadurch gekennzeichnet, dass der Resonator vom Torsionstyp mit zwei freien Enden der Resonanzstruktur ist, die das erste bzw. das zweite magnetische Kopplungselement tragen.
  30. Steuervorrichtung (340, 360) nach einem der Ansprüche 11 bis 21, dadurch gekennzeichnet, dass der aktive Endabschnitt des Kopplungselements im Wesentlichen aus einem abgeschnittenen Ringmagneten (352) gebildet ist und eine Mittelachse besitzt, die mit einer Drehachse des Resonators zusammenfällt, wobei der Freiheitsgrad winklig und die Schwingungsachse kreisförmig ist, wobei dieser abgeschnittene ringförmige Magnet in der allgemeinen geometrischen Oberfläche eine abgeschnittene ringförmige Oberfläche definiert, die der Zone für die Akkumulation magnetischer potentieller Energie nacheinander in den zwei Halbschwingungen jeder Schwingungsperiode entspricht, wobei diese abgeschnittene ringförmige Oberfläche ein erstes Ende und ein zweites Ende sowie eine äußere Kontur aufweist, die die Eindringstrecke definiert, die eine erste kreisförmige Eindringstrecke (354) ist, und eine innere Kontur aufweist, die eine zweite kreisförmige Eindringstrecke (355) definiert; dass das erste Ende die Ausgangsstrecke definiert, die eine erste Ausgangsstrecke (356) ist, und das zweite Ende eine zweite Ausgangsstrecke (357) mit ähnlichen Eigenschaften wie die erste Ausgangsstrecke definiert; und dass die äußere Kontur der ersten Ausgangsstrecke in einer ersten Halbschwingung der Schwingungsperioden des Resonators zugeordnet ist, um nacheinander die magnetische Kopplung in Abstoßung mit den zwei Zonen der Magnetspur zu gewährleisten und einen ersten Impuls am Ende jeder ersten Halbschwingung zu erzeugen, während die innere Kontur der zweiten Ausgangsstrecke zugeordnet ist, um nacheinander die magnetische Kopplung in Abstoßung mit diesen zweiten Zonen in der zweiten Halbschwingung der Schwingungsperioden zu gewährleisten und einen zweiten Impuls am Ende jeder zweiten Halbschwingung zu erzeugen.
  31. Steuervorrichtung (360) nach Anspruch 30, dadurch gekennzeichnet, dass die Öffnung der abgeschnittenen ringförmigen Oberfläche kleiner als die Winkelperiode ist und dass der Durchmesser der inneren Kontur dieser abgeschnittenen ringförmigen Oberfläche im Wesentlichen gleich der zweiten Abmessung der zweiten Zonen oder kleiner als diese zweite Abmessung ist.
  32. Steuervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste und das zweite magnetische Material abstoßend magnetisierte Materialien sind.
  33. Uhrwerk, dadurch gekennzeichnet, dass es eine Steuervorrichtung nach einem der vorhergehenden Ansprüche umfasst, wobei diese Steuervorrichtung einen Resonator und eine magnetische Hemmung definiert und dazu dient, den Gang mindestens eines Mechanismus dieses Uhrwerks zu regeln.
EP14821180.8A 2013-12-23 2014-12-22 Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk Active EP3087435B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14821180.8A EP3087435B1 (de) 2013-12-23 2014-12-22 Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP13199427.9A EP2887157B1 (de) 2013-12-23 2013-12-23 Optimierte uhrhemmung
EP13199428 2013-12-23
EP14176816 2014-07-11
EP14186261.5A EP2889704B1 (de) 2013-12-23 2014-09-24 Kontaktloser Zylindrische Uhrhemmungsmechanismus
EP14821180.8A EP3087435B1 (de) 2013-12-23 2014-12-22 Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk
PCT/EP2014/079036 WO2015097172A2 (fr) 2013-12-23 2014-12-22 Dispositif regulateur de la vitesse angulaire d'un mobile dans un mouvement horloger comprenant un echappement magnetique

Publications (2)

Publication Number Publication Date
EP3087435A2 EP3087435A2 (de) 2016-11-02
EP3087435B1 true EP3087435B1 (de) 2020-04-22

Family

ID=53479736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14821180.8A Active EP3087435B1 (de) 2013-12-23 2014-12-22 Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk

Country Status (4)

Country Link
US (1) US9715217B2 (de)
EP (1) EP3087435B1 (de)
CN (1) CN106030422B (de)
WO (1) WO2015097172A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998801A1 (de) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Magnetische Ankerhemmung, und Gangeinstellvorrichtung eines Uhrwerks
EP3179316B1 (de) * 2015-12-10 2021-09-15 Nivarox-FAR S.A. Kontaktlose zylindrische uhrhemmung
EP3206089B1 (de) * 2016-02-10 2018-12-19 The Swatch Group Research and Development Ltd. Resonatormechanismus eines uhrwerks
EP3208667A1 (de) * 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Magnetisches hemmungsdrehteil eines uhrwerks
EP3316046B1 (de) 2016-10-25 2019-07-31 The Swatch Group Research and Development Ltd Verbessertes uhrwerk
CH713166B1 (fr) * 2016-11-16 2021-10-29 Swatch Group Res & Dev Ltd Protection des lames d'un résonateur de montre mécanique en cas de choc.
EP3327518B1 (de) * 2016-11-29 2020-03-18 Montres Breguet S.A. Uhr mit schaltvorrichtung für einen uhrmechanismus
EP3339982B1 (de) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Regulierung durch mechanisches bremsen eines mechanischen oszillators einer uhr
EP3525046A1 (de) * 2018-02-12 2019-08-14 The Swatch Group Research and Development Ltd Uhrwerkoszillator, der für winkelbeschleunigungen des tragens unempfindlich ist
CH715091A2 (fr) * 2018-06-07 2019-12-30 Swatch Group Res & Dev Ltd Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électromécanique.
US11454932B2 (en) * 2018-07-24 2022-09-27 The Swatch Group Research And Development Ltd Method for making a flexure bearing mechanism for a mechanical timepiece oscillator
EP3627242B1 (de) 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Optimierter magnetomechanischer uhrhemmungsmechanismus
EP3663868B1 (de) * 2018-12-07 2021-09-08 Montres Breguet S.A. Uhrwerk, das ein tourbillon mit einem festen magnetischen rad umfasst
EP3767397B1 (de) * 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Uhrwerk mit einem drehelement, das eine magnetisierte struktur mit periodischer konfigurierung besitzt

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946183A (en) 1955-06-14 1960-07-26 Horstmann Magnetics Ltd Self-starting magnetic escapement mechanisms
CH457295A (fr) * 1965-07-29 1968-07-31 Centre Electron Horloger Dispositif de transformation du mouvement oscillant d'un résonateur de montre électromécanique
US3410083A (en) * 1966-02-04 1968-11-12 Army Usa Timing mechanism
DE1815728C3 (de) * 1967-12-30 1980-04-30 K.K. Hattori Tokeiten, Tokio Magnetantrieb mit einem Hemmrad
CH559932A (fr) * 1970-06-24 1975-03-14 Omega Brandt & Freres Sa Louis Dispositif pour convertir un mouvement vibratoire en un mouvement rotatif dans une piece d'horlogerie.
CH615571A4 (de) * 1971-04-27 1972-08-31
JPS5240366B2 (de) 1972-12-14 1977-10-12
JPS5240366A (en) 1975-09-27 1977-03-29 Jeco Co Ltd Escapement wheel for magnetic escapement
JPS5245468U (de) 1975-09-27 1977-03-31
JPS5263453U (de) 1975-11-04 1977-05-11
JPS5262062A (en) * 1975-11-18 1977-05-23 Jiekoo Kk Magnetic escaping wheel for magnetic escapement device
EP2463732B1 (de) * 2010-12-10 2016-03-30 Montres Breguet SA Schlagwerkmechanismus einer Armbanduhr oder einer Spieluhr
EP2466401B1 (de) * 2010-12-15 2013-08-14 Asgalium Unitec SA Magnetischer Resonator für eine mechanische Uhr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3087435A2 (de) 2016-11-02
CN106030422A (zh) 2016-10-12
US9715217B2 (en) 2017-07-25
WO2015097172A3 (fr) 2016-01-07
US20160357155A1 (en) 2016-12-08
WO2015097172A2 (fr) 2015-07-02
CN106030422B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
EP3087435B1 (de) Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem eine magnetische hemmung unfassnden uhrwerk
EP2891930B1 (de) Vorrichtung zur Regulierung der Winkelgeschwindigkeit einer Triebfeder in einem Uhrwerk, das einen magnetischen Hemmungsmechanismus umfasst
EP3130966B1 (de) Mechanisches uhrwerk, das mit einem bewegungsrückkopplungssysteme ausgestattet ist
EP2466401B1 (de) Magnetischer Resonator für eine mechanische Uhr
EP3191899B1 (de) Magnetische ankerhemmung, und gangeinstellvorrichtung eines uhrwerks
EP1805565B1 (de) Armbanduhr-regulierungsglied und mechanisches uhrwerk mit einem solchen regulierungsglied
EP3030938B1 (de) Reglersystem für eine mechanische uhr
EP2887157B1 (de) Optimierte uhrhemmung
WO2015096974A2 (fr) Mecanisme de synchronisation d'horlogerie
WO2013045573A1 (fr) Resonateur a diapason pour mouvement horloger mecanique
EP2911015B1 (de) Natürliche Hemmung
CH715049A2 (fr) Pièce d'horlogerie comprenant un tourbillon.
EP2808745B1 (de) Schlagwerk mit Mitteln zur Auswahl des Vibrationsmodus einer Tonfeder
EP3579058A1 (de) Uhr, die ein tourbillon umfasst
EP2889701B1 (de) Synchronisierungsmechanismus für Uhrwerk
EP3191898B1 (de) Regler für den betrieb einer mechanischen uhrwerks
FR2928015A1 (fr) Echappement perfectionne a ancre articulee a impulsion tangentielle, montre mecanique
WO2018215284A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune
EP3944027B1 (de) Tragbares gerät, insbesondere armbanduhr, das mit einer stromquellevorrichtung mit einem elektromechanischen wandler ausgestattet ist
CH717674A2 (fr) Objet portable, notamment montre bracelet, comprenant un dispositif d'alimentation muni d'un convertisseur électromécanique.
CH710132A2 (fr) Echappement magnétique horloger et dispositif régulateur de la marche d'un mouvement horloger.
CH710160A2 (fr) Dispositif régulateur de la marche d'un mouvement horloger mécanique.
CH709019A2 (fr) Mécanisme d'échappement magnétique ou électrostatique.
CH711408A2 (fr) Mouvement d'horlogerie mécanique muni d'un système de rétroaction du mouvement.
CH713829A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191119

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DI DOMENICO, GIANNI

Inventor name: WINKLER, PASCAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014064229

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1260943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014064229

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 10

Ref country code: DE

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 10