EP2891930B1 - Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement - Google Patents
Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement Download PDFInfo
- Publication number
- EP2891930B1 EP2891930B1 EP14199882.3A EP14199882A EP2891930B1 EP 2891930 B1 EP2891930 B1 EP 2891930B1 EP 14199882 A EP14199882 A EP 14199882A EP 2891930 B1 EP2891930 B1 EP 2891930B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- resonator
- coupling element
- annular
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 629
- 230000001105 regulatory effect Effects 0.000 title claims description 71
- 230000008878 coupling Effects 0.000 claims description 222
- 238000010168 coupling process Methods 0.000 claims description 222
- 238000005859 coupling reaction Methods 0.000 claims description 222
- 238000005381 potential energy Methods 0.000 claims description 147
- 239000000696 magnetic material Substances 0.000 claims description 90
- 238000009825 accumulation Methods 0.000 claims description 86
- 230000010355 oscillation Effects 0.000 claims description 70
- 230000000875 corresponding effect Effects 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 29
- 230000007423 decrease Effects 0.000 claims description 22
- 230000002596 correlated effect Effects 0.000 claims description 14
- 230000004907 flux Effects 0.000 claims description 10
- 230000001419 dependent effect Effects 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000003302 ferromagnetic material Substances 0.000 description 14
- 230000035699 permeability Effects 0.000 description 14
- 230000003993 interaction Effects 0.000 description 13
- 235000012431 wafers Nutrition 0.000 description 13
- 238000012935 Averaging Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 11
- 230000000750 progressive effect Effects 0.000 description 11
- 230000010363 phase shift Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000010349 pulsation Effects 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C5/00—Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
- G04C5/005—Magnetic or electromagnetic means
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/06—Free escapements
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/32—Component parts or constructional details, e.g. collet, stud, virole or piton
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
- G04C3/06—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
- G04C3/06—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
- G04C3/065—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
- G04C3/066—Constructional details, e.g. disposition of coils
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
- G04C3/06—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
- G04C3/065—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
- G04C3/067—Driving circuits with distinct detecting and driving coils
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C5/00—Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
Definitions
- the present invention relates to the field of devices regulating the relative angular velocity between a magnetic structure and a resonator magnetically coupled so as to define an oscillator together.
- the regulating device of the present invention paces the course of a mechanical clockwork movement. More particularly, the invention relates to magnetic escapements for mechanical watch movements in which there is provided a direct magnetic coupling between a resonator and a magnetic structure. In general, its function is to subject the mobile rotation frequencies of a counter wheel of such a watch movement to the resonance frequency of the resonator.
- This regulator device thus comprises a resonator, an oscillating portion of which is provided with at least one magnetic coupling element, and a magnetic escapement arranged to control the relative angular velocity between a magnetic structure forming this magnetic escapement and this resonator. It replaces the sprung balance and the classic exhaust mechanism, including the exhaust with a Swiss-type anchor and a toothed escape wheel.
- the resonator or the magnetic structure is integral in rotation with a mobile driven in rotation with a certain engine torque which maintains oscillation of the resonator.
- the mobile is incorporated in a cog or more generally a kinematic chain of a mechanism. This oscillation makes it possible to adjust the relative angular velocity between the magnetic structure and the resonator by virtue of the magnetic coupling between them.
- the devices for regulating the speed of a wheel, also called a rotor, by a magnetic coupling, also called a magnetic coupling, between a resonator and a magnetic wheel have been known for many years in the watchmaking field.
- a magnetic coupling also called a magnetic coupling
- Several patents relating to this field have been issued to Horstmann Clifford Magnetics for inventions by CF Clifford.
- the control devices described in these documents have various disadvantages, in particular anisochronism problem (defined as a non-isochronism, that is to say an absence of isochronism), namely a significant variation of the pulsation ( angular velocity) of the rotor as a function of the engine torque applied to this rotor.
- anisochronism problem defined as a non-isochronism, that is to say an absence of isochronism
- the reasons for this anisochronism were included in the context of the
- FIG. 1 A comparable device is also described in the application US 3,518,464 A .
- FIG. 1 To the Figure 1 is schematically represented an oscillator forming a magnetic escapement 2 of the type described in the Japanese documents mentioned above, but already optimized by the fact that the magnetic teeth 14 and 16 of the wheel 4 define annular sectors which each extend over a half-period of oscillation and by selecting a coupling element with a round or square end for the resonator, to better allow comparison with an embodiment of the present invention shown in FIG. Figure 5 and objectively demonstrate the benefits of the present invention.
- the wheel 4 comprises a first series of teeth 14 separated respectively by a first series of holes 15 which together define a first annular track.
- This wheel further comprises a second series of teeth 16 separated respectively by a second series of holes 17 which together define a second annular track.
- the teeth 14 and 16 are formed by a magnetic material with high magnetic permeability, in particular a ferromagnetic material.
- the two sets of teeth are respectively connected by an outer ring 18 and an inner ring 19 formed of the same magnetic material.
- the two annular tracks are adjacent and delimited by a circle 20 which corresponds to the rest position of the magnet 12, located at its center, of the resonator 6 for any angular position of the wheel 4. that is, at the position where the resonator has minimal elastic deformation energy.
- the resonator is represented symbolically by a spring 8, corresponding to its elastic deformation capacity defined by an elastic constant, and by an inertia defined by its mass and its structure.
- the resonator is able to oscillate with a natural frequency in at least one resonance mode where the magnet 12 has a radial oscillation.
- this schematic representation of the resonator 6 means that, in the context of the present invention, it is not limited to a few particular variants. What is important is that the resonator comprises at least one magnetic coupling element 12 for magnetically coupling this resonator to the magnetic structure of the wheel 4 which is, in the example shown in FIG. Figure 1 , driven in rotation by a motor torque counterclockwise at the angular velocity ⁇ .
- the magnet 12 is thus located above the wheel 4 and is capable of oscillating radially around a zero position located on the intermediate circle 20.
- the magnetic teeth 14 and 16 form magnetic interaction zones located alternately on one side and the other of the intermediate circle 20, they define a sinuous magnetic path with a determined angular period P ⁇ , which corresponds to the angular period of each of the first and second annular tracks.
- P ⁇ angular period
- the angular velocity ⁇ of the wheel is defined substantially by the oscillation frequency of the resonator.
- the magnetic potential energy (also called potential magnetic interaction energy) of the oscillator 2 which varies angularly and radially depending on the magnetic structure of the wheel.
- the contour lines 22 correspond to different levels of energy magnetic potential. They define equipotential curves.
- the magnetic potential energy of the oscillator at a given point corresponds to a state of the oscillator when the magnetic coupling element of the resonator is in a given position (its center being situated at this given point). It is set to a constant.
- the magnetic potential energy is defined relative to a reference energy which corresponds to the minimum potential energy of the oscillator.
- this potential energy corresponds to the work necessary to bring the magnet from a position of minimum potential energy to a given position.
- this work is provided by the motor torque applied to the wheel 4.
- the potential energy accumulated in the oscillator can be transferred to the resonator when the magnet returns to a position of less potential energy. , in particular of minimum potential energy, by a radial movement relative to the axis of rotation of the wheel (that is to say according to the degree of freedom of the useful resonance mode).
- this potential energy is transformed into kinetic energy and elastic energy in the resonator by the work of the magnetic force between the coupling element of the resonator and the magnetic structure.
- the engine torque supplied to the wheel serves to maintain the oscillation of the resonator which in turn brakes the wheel by adjusting its angular speed.
- the outer annular track defines an alternation of areas of minimum potential energy 24 and areas of maximum potential energy 25 while the inner annular track defines, with a phase shift of one half-angular period P ⁇ / 2 relative to the first one. track (ie a phase shift of 180 °), an alternation of zones of minimum potential energy 28 and areas of maximum potential energy.
- Figure 3 are represented two traces 32 and 34 giving the position of the center of the magnet 12 when the oscillator 2 is in operation and that the wheel 4 is thus rotated with a regulating its angular velocity. These plots are therefore a representation of the oscillation of the magnet with two different amplitudes in a reference linked to the wheel.
- the oscillator accumulates magnetic potential energy at each alternation in zones of accumulation 26 and 30.
- the force exerted on the magnet of the resonator is given by the gradient of the magnetic potential energy, this gradient being perpendicular to the level curves 22.
- the angular component (degree of freedom of the wheel) works by reaction on the wheel while the radial component ( degree of freedom of the resonator) works on the coupling member of the resonator.
- the angular force corresponds to a braking force of the wheel because the angular reaction force opposes the direction of rotation of this wheel.
- the zones of pure accumulation substantially define annular zones Z1 ac * and Z2 ac *.
- the accumulated energy is then transferred to the resonator in a central zone of pulses ZC imp *.
- the gradient of the magnetic potential energy has a radial component which increases progressively with the rotation of the wheel while the component angular decreases to finally be zero. This gradient corresponds to a pushing force for the magnet and therefore to a pulse.
- the thrust force is applied over the entire width of the central zone between the points PE 1 and PS 1 .
- the passage through the central zone ZC imp * extends over an upper angular distance between the points PE 2 and PS 2 and, in the first half of the crossing of the central zone ( up to about the middle circle 20), the oscillation is substantially free, a pulse of less energy being given only in the second half of this crossing.
- the term “accumulation zone” includes an area in which the magnetic potential energy in the oscillator increases for the various amplitudes of oscillation in the useful range of the driving torque; and an 'area of impulse' is understood to include an area in which this magnetic potential energy decreases for the various amplitudes of oscillation of the useful range of the driving torque and a magnetic thrust force is exerted on the coupling member of the resonator. according to its degree of freedom.
- force of thrust it comprises a force in the direction of movement of the oscillating coupling member.
- the averaging is obtained by an integration on the whole of the coupled magnetic field, which extends over a region of the magnetic structure all the greater as the magnet has a large end surface parallel to said general plane and the gap is big.
- the vertical flank of a magnetic tooth adjacent to an opening in the magnetic structure in question gives, in the space of the magnetic potential energy, contour lines 22 which extend over an angular distance all the greater that the averaging effect is important.
- this section and the airgap chosen already correspond to a more favorable arrangement than those of the prior art devices mentioned above for the operation of the oscillator, since sufficiently large braking zones 26 and 30 are provided while already limiting a little the radial distance from the central zone of pulses.
- the range of values for the engine torque is relatively small and the regulating device presents an important anisochronism. This is shown on the graph of the Figure 4 where is represented the relative angular velocity or pulsation error ( ⁇ - ⁇ 0 ) / ⁇ 0 of the wheel 4 ( ⁇ 0 being the nominal angular velocity) relative to the relative torque M rot / M max applied to this wheel (for a resonator quality factor of about 200).
- the various points 36 define a curve 38 corresponding to a strong anisochronism for a watch application. Indeed, a relative error of 5.10 -4 corresponds to a very important daily operation error, namely about forty seconds (40 s). Then, we observe an instability of the behavior of the oscillator when the relative torque approaches 80% (0.8), as evidenced by the point 40.
- the relative torque remains in a narrow range between 0.6 (60%) and 0.8 (80%).
- the watch movement must be designed so that the maximum acceptable torque corresponds to the maximum torque applied to the wheel 4 so that the torque will have to remain above 80% in this practical case.
- the anisochronism increases rapidly to become enormous when we pass below this lower limit. We therefore understand an important reason for the failure of such magnetic escapements when they have been known for decades.
- the present invention proposes a device for regulating the relative angular velocity between a magnetic structure. and a resonator, magnetically coupled so as to together define an oscillator forming said controller, as defined in claim 1 for a first main embodiment and claim 2 for a second main embodiment.
- the magnetic structure comprises at least one annular magnetic strip centered on an axis of rotation of this magnetic structure or of the resonator, which are arranged to be rotated one by one. relative to the other about the axis of rotation when a driving torque is applied to the magnetic structure or the resonator.
- the annular magnetic strip is formed at least partially of a first magnetic material of which at least a first physical parameter is correlated with the magnetic potential energy of the oscillator but different from it. This first magnetic material is arranged along the annular magnetic strip so that this magnetic potential energy varies angularly periodically along this annular magnetic strip and thus defines an angular period (P ⁇ ) of this annular magnetic strip. .
- the resonator includes at least one magnetic coupling element (also called magnetic coupling member) to the magnetic structure.
- This magnetic coupling element is formed of a second magnetic material, of which at least a second physical parameter is correlated to the magnetic potential energy of the oscillator, and is magnetically coupled to the annular magnetic track so that an oscillation according to a degree of freedom of a resonance mode of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or the resonator and a given integral number of periods, in particular and preferably a period, of this oscillation intervenes during said relative rotation in each angular period of the annular magnetic strip; the frequency of the oscillation thereby determining the relative angular velocity.
- the annular track and the magnetic coupling element define in each angular period, as a function of their relative position defined by their relative angular position and the position of the coupling element according to its degree of freedom. , a potential magnetic energy storage zone in the oscillator. Then, the annular magnetic track and the magnetic coupling element are arranged so that the magnetic coupling element receives, during the aforementioned relative rotation between the resonator and the magnetic structure, pulses according to its degree of freedom around a rest position of this magnetic coupling element. These pulses define, as a function of the relative position of the magnetic coupling element and the annular magnetic track and for the useful range of the motor torque supplied to the regulating device, pulse zones which are substantially located in a central zone.
- the ratio between the radial dimension of the pulse zones and the radial dimension of the magnetic potential energy accumulation zones is less than fifty percent. In a preferred variant, this ratio is less than or substantially equal to thirty percent.
- the annular magnetic track and the magnetic coupling element are arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the areas of magnetic potential energy accumulation is lower than the average gradient of this potential magnetic energy in the pulse zones according to the degree of freedom of the resonator and in the same unit.
- the variation of the first physical parameter of the first magnetic material in the first main embodiment mentioned below, respectively of the second physical parameter of the second magnetic material, in the second main embodiment mentioned hereinafter, is stronger in the pulse zones according to the degree of freedom of the resonator, in particular radially, than angularly in the zones of accumulation of magnetic potential energy.
- This variation of the physical parameter in the pulse zones can be abrupt, in particular be generated by a radial discontinuity of the first magnetic material along a circle of zero position defined by the coupling element at rest in projection in the general plane the magnetic structure, respectively the second magnetic material along a geometric circle defined by the middle of the annular magnetic strip projected in the general plane of the coupling element at rest.
- the resonator is arranged relative to the magnetic structure so that an active end portion of the coupling element, located on the magnetic structure side, is at least substantially superimposed, in orthogonal projection to a general geometrical surface defined by the annular magnetic track, to this annular magnetic track during substantially a first alternation in each oscillation period of this coupling element and so that the path of the magnetic coupling element during of this first alternation is substantially parallel to said general geometric surface.
- the annular magnetic track has a dimension according to the degree of freedom of the resonator coupling element which is greater than the dimension of the active end portion of the coupling element according to this degree of freedom.
- the first magnetic material is arranged in each angular period so that, at least in a zone of this first magnetic material magnetically coupled at least partially to the active end portion of the magnetic coupling element for the relative positions of this element magnetic coupling with respect to the annular magnetic strip corresponding to at least a portion of the magnetic potential energy accumulation zone in this angular period, the first physical parameter increases gradually angularly or decreases gradually angularly. It will be noted that the selection between an increase or a decrease of the physical parameter is carried out so that the magnetic potential energy of the oscillator is angularly increasing during said relative rotation; this follows implicitly from the fact that it is question of areas of accumulation of potential magnetic energy.
- the aforementioned angular variation of the first physical parameter is provided in an area of the first magnetic material corresponding at least to most of the magnetic potential energy storage area in each angular period.
- the angular variation of the first physical parameter is provided in an area of the first magnetic material substantially corresponding to the totality of the magnetic potential energy accumulation zone in each angular period.
- the first physical parameter angularly defines an increasing monotonic function, monotonically decreasing respectively.
- the annular magnetic strip has a dimension according to the degree of freedom of the element of coupling of the resonator which is smaller than the dimension, according to this degree of freedom, of an active end portion of the magnetic coupling element located on the magnetic structure side.
- they are measured in orthogonal projection to the general geometrical surface defined by the active end portion along an axis of the degree of freedom passing through the center of mass of the active end portion of the coupling element.
- This axis can be rectilinear or curvilinear.
- the general geometric surface comprises this axis of the degree of freedom, the active end portion extending in this general surface.
- the resonator is arranged relative to the magnetic structure so that the active end portion is traversed, in projection orthogonal to a general geometric surface defined by this active end portion, by a geometric circle located in the middle of the track ring magnet during substantially a first half cycle in each oscillation period of the coupling element.
- the second magnetic material of the coupling element is arranged such that, at least in a zone of this second magnetic material magnetically coupled at least partially to the annular magnetic track for the relative positions of this annular magnetic strip with respect to the coupling element corresponding to at least a portion of the magnetic potential energy accumulation zone in each angular period of the annular magnetic strip, the second physical parameter increases gradually angularly or decreases gradually angularly.
- the selection between an increase or a decrease of the physical parameter is carried out so that the magnetic potential energy of the oscillator is angularly increasing in the areas of magnetic potential energy accumulation during said relative rotation; which follows from the term 'accumulation' used.
- the above-mentioned angular variation of the second physical parameter is provided in an area of the second magnetic material magnetically coupled to the magnetic track for most of each potential magnetic energy storage area.
- the angular variation of the second physical parameter is provided in an area of the second magnetic material magnetically coupled to the magnetic track for substantially all of each magnetic potential energy accumulation zone.
- the second physical parameter angularly defines an increasing monotonous function, monotonically decreasing respectively.
- magnetic material a material having a magnetic property generating an external magnetic field (magnet) or a good conductor of the magnetic flux which is attracted by a magnet (in particular a ferromagnetic material).
- the magnetic potential energy in each accumulation zone has substantially no variation depending on the degree of freedom of the resonator useful resonance mode.
- the variation of the physical parameter considered is only angular, that is to say that this physical parameter is substantially constant in a radial direction, in each zone of said first magnetic material corresponding to a potential energy accumulation zone. magnetic in the oscillator.
- the progressive increase or decrease of the first physical parameter of the first magnetic material, respectively the second physical parameter of the second magnetic material extends over an angular distance greater than twenty percent (20%) of the angular period of the annular magnetic track.
- the ratio between the angular distance of the variation of the first physical parameter, respectively second physical parameter and the angular period is greater than or substantially equal to forty percent (40%).
- This regulator device advantageously defines an exhaust magnetic.
- the magnetic structure comprises a first annular magnetic strip 52 and a second annular magnetic strip 53 centered on an axis of rotation 51 of this magnetic structure and formed of a magnetic material 45, at least one physical parameter of which is correlated with the magnetic potential energy. EP m of the oscillator 42, this physical parameter being other than this potential energy.
- the axis of rotation 51 is perpendicular to the general plane of the magnetic structure.
- the magnetic material is arranged along each annular magnetic strip so that this physical parameter angularly varies periodically and thus defines an angular period P ⁇ of this magnetic strip.
- the second annular magnetic strip may have a periodic variation of another physical parameter of this magnetic material or, in a particular variant, of another magnetic material also correlated with the energy potential magnetic EP m oscillator.
- the physical parameter in question is a parameter specific to the magnetic structure that exists independently of the relative angular position ⁇ between the magnetic structure and the coupling member of the resonator.
- this physical parameter may be a geometrical parameter that is related to the spatial positioning of the coupling member.
- this physical parameter is a distance between the surface of the magnetic material and a circle defined by the center of mass of the active end portion of this magnetic member. coupling in a corresponding position of its degree of freedom, in a reference frame associated with the magnetic structure, during a relative rotation between the latter and the coupling member.
- the physical parameter is, in a frame of reference related to the magnetic structure, a distance between the annular magnetic track and a surface of revolution having the axis of rotation of the magnetic structure as an axis of revolution. and the degree of freedom of the coupling element as a generator of this surface of revolution. This distance corresponds substantially, to a constant, to an air gap between the magnetic coupling element and the annular magnetic strip considered.
- the resonator comprises a member or magnetic coupling member to the magnetic structure 44.
- This member or coupling member is formed here by a magnet 50 which is cylindrical or having a rectangular parallelepiped shape.
- this resonator is represented symbolically by a spring 47, corresponding to its elastic deformation capacity defined by an elastic constant, and by an inertia 48 defined by its mass and its structure.
- the magnet 50 is positioned relatively to the magnetic structure so that in its rest position, here corresponding to a minimum elastic deformation energy of the resonator, the center of mass of the active end portion of the coupling element
- the magnetic structure is viewed substantially on a zero position circle for any angular position ⁇ of the magnetic structure relative to the magnet.
- the zero position circle is centered on the axis of rotation 51 and has a radius substantially corresponding to the inner radius of the first annular track and the outer radius of the second annular track, these inner and outer radii being here combined.
- the zero position circle 20 is situated substantially on the geometric circle defined by the interface between these two coaxial and contiguous magnetic tracks, that is to say that this circle geometric corresponds to a projection of the zero position circle on the general plane of the magnetic structure.
- the two magnetic tracks are distant and separated by an intermediate zone entirely formed by the same medium.
- the orthogonal projection of the zero position circle is located between these two magnetic tracks substantially in the middle of the intermediate zone.
- Such an intermediate zone which will be kept small for various reasons, may be useful to ensure easy startup of the oscillator.
- a first reason relates to the small dimension provided for the coupling element according to its degree of freedom and radially relative to the axis of rotation, since it is necessary to avoid that the oscillator rotates 'empty' with the coupling element remaining substantially on the zero position circle.
- Another reason will appear later: It is to obtain localized pulses which are close and preferably centered on the zero position circle.
- first and second coaxial annular magnetic tracks 52 and 53 have between them an angular offset equal to half the aforementioned angular period, ie a phase shift of ⁇ (180 °).
- the physical parameter considered in the first place is in relation to an air gap between the magnet 50 and the magnetic material 45, formed of a material with high magnetic permeability and in particular a ferromagnetic material.
- the magnetic material is a magnetic material arranged in attraction relative to the magnet 50.
- the annular track 52 comprises alternately annular sectors 54 in which the material magnetic material has a maximum thickness and annular sectors 56 in which the thickness of the magnetic material gradually decreases in the opposite direction to the direction of rotation of the magnetic structure 44 relative to the magnet 50.
- the angular distance of each sector 56 is substantially equal to the angular distance of each sector 54, which is substantially equal to an angular half-period P ⁇ / 2.
- the magnets of the magnetic tracks and the magnet of the resonator forming said coupling element are arranged in repulsion. In this variant, to obtain an effect equivalent to that described above, the thickness of the magnetic material increases progressively in each sector 56 in the direction opposite to the direction of rotation of the magnetic structure relative to the magnet 50.
- the thickness decreases from the maximum thickness to a thickness almost zero over a distance V P ; but other variants are possible as will be explained later.
- the variation in thickness causes a variation of the average air gap for the magnetic field coupled between the magnet 50 and the magnetic material 45, formed of a material with high magnetic permeability or a magnetic material arranged in attraction relative to the 50.
- This average air gap increases progressively, in the opposite direction to the direction of rotation of the magnetic structure 44 relative to the magnet 50, over a certain angular range substantially corresponding to the angular distance of each annular sector 56.
- the annular track 53 comprises, in a manner similar to the annular track 52, alternating annular sectors 55 in which the magnetic material 45 has a maximum thickness and annular sectors 57 in which the thickness of the magnetic material gradually decreases.
- This annular track 53 is substantially equivalent to the annular track 52, but they are offset by an angular half-period P ⁇ / 2 so as to define a sinuous magnetic path for the magnet 50, as has been explained above.
- the physical parameter considered here is in relation to the gap between the magnet and each annular magnetic strip, that is to say with the distance between the upper surface of the magnetic material and the lower surface of the magnet 50 , this physical parameter corresponds to a parameter specific to the magnetic structure.
- the physical parameter considered is a distance to a plane 59 which is parallel to the general plane of the magnetic structure. In addition, this general plane is also parallel to an oscillation path of the magnet.
- the magnetic structure can be arranged to vary only one or other of the two physical parameters mentioned, namely the gap between the magnetic coupling element of the resonator and the magnetic structure or thickness of this magnetic structure.
- the variation of the energy magnetic potential correlated only to the thickness finds a particular application with a magnetized material, because the intensity of the magnet flux can vary easily depending on the thickness of this magnetized material.
- this thickness is defined as the thickness of the magnetic strip in question along an axis perpendicular to the general plane of this magnetic strip and passing through the center of mass of the active end portion of the coupling member.
- the only variation of the thickness is more limited. Indeed, it is then necessary that the range of thicknesses considered corresponds to a situation where there is saturation for the magnet flux at least in a portion of the variable section of the magnetic material traversed by this magnet flux. In the opposite case, the thickness variation will not have a significant effect on the magnetic potential energy of the oscillator.
- the magnet 50 is coupled to the first and second annular tracks so that an oscillation 71, respectively 72 ( Figure 8 ) according to a degree of freedom 58 of a resonant mode of the resonator 46 is maintained in a useful range of a motor torque applied to the magnetic structure.
- the frequency of the oscillation determines the relative angular velocity w.
- the oscillation 71, respectively 72 a in projection in a general plane of the magnetic structure (parallel to the plane of the Figures 5 , 7 and 8 ), first alternations 71a, respectively 72a, in a first zone superimposed on the first annular track 52 and second alternations 71b, respectively 72b in a second zone superimposed on the second annular track 53.
- the degree of freedom of the coupling element of the resonator is selected so that the path of this magnetic coupling element during the first alternations, respectively second alternations of its oscillation during the magnetic coupling to the magnetic structure is substantially parallel to a general geometric surface of the first annular magnetic strip, respectively second annular magnetic strip.
- the general geometrical surface defined by the annular magnetic track (s), or generally by the magnetic structure is a general plane perpendicular to the axis of rotation of the magnetic structure.
- the degree of freedom of resonator is entirely in a plane parallel to this general plane.
- the entire path taken by the magnetic coupling element during its oscillation is here parallel to the general plane of the magnetic structure.
- the two annular magnetic tracks form the side wall of a disc and the general geometric surface they define is a cylindrical surface whose central axis is the axis of rotation of the magnetic structure.
- the path of the oscillating element is substantially in a plane parallel to the general plane defined by the magnetic structure, this path being able to deviate somewhat from it notably at the end points of the oscillation and this all the more more than the amplitude is large.
- Such a situation occurs for example when the coupling element of the resonator oscillates in a substantially circular path with an axis of rotation parallel to the general plane of the magnetic structure.
- the direction defined by the degree of freedom of the coupling element in its rest position is substantially parallel to a plane tangential to said general geometric surface at a point corresponding to the orthogonal projection. the center of mass of the active end portion of the coupling element in its rest position.
- FIG. 7 and 8 is schematically represented on a part of the magnetic structure 44 the magnetic potential energy EP m of the oscillator 42 which varies depending on the magnetic structure, namely the two annular tracks 52 and 53.
- the force Magnetic is a force of attraction, in particular with a magnetic structure formed of a ferromagnetic material.
- the contour lines 60 correspond to various levels of the magnetic potential energy, as explained in relation to the Figures 2 and 3 .
- FIGS 9A and 9B represent the profiles of the magnetic potential energy respectively along the middle of each of the two annular magnetic tracks 52 and 53; while Figure 9C gives the radial profile of this magnetic potential energy along the X axis ( Figure 7 ) corresponding to the degree of freedom of the resonator 46.
- Figures 7 , 8 and 9A-9C with magnetic tracks formed by magnets arranged in repulsion relative to the magnet forming the coupling element of the resonator.
- the variation of the gap and / or the thickness of the magnetized material is reversed relative to the variants previously described, in particular that of Figures 6A and 6B .
- the annular track alternately comprises annular sectors in which the magnetic material has a minimum thickness (zero included) and annular sectors in which the thickness of the magnetic material increases progressively in the opposite direction to the direction of rotation of the structure magnetic relative to the magnet 50, the latter annular sectors generating areas of magnetic potential energy accumulation in the oscillator.
- each annular magnetic strip 52, 53 comprises, in each angular period P ⁇ , a useful potential magnetic energy storage area 63, respectively 65 in the oscillator.
- These zones 63 and 65 are respectively located substantially in a first annular zone of energy accumulation Z1 ac and a second annular zone of energy accumulation Z2 ac .
- useful area of accumulation there is generally understood a zone swept by the magnetic field of the magnet 50 which oscillates with various amplitudes in all the range of amplitudes provided (corresponding to the useful range of the engine torque) and in which the Oscillator essentially accumulates a potential magnetic energy EP m to be transmitted thereafter to the resonator.
- the magnetic potential energy in each useful accumulation zone has substantially no variation depending on the degree of freedom of the resonator useful resonance mode.
- the EP m gradient is essentially angular in the useful zones of accumulation, this angular gradient corresponding to a braking force acting on the magnetic structure and generally generating a braking torque.
- the first and second annular zones Z1 ac and Z2 ac are here areas of pure accumulation of magnetic potential energy.
- the magnetic potential energy in the figures is given punctually for a position of the coupling element located at the center of mass of the active end portion of this coupling element (other reference points may be provided making sure to keep the same reference point for the various parameters considered in relation to the coupling member).
- the accumulation zones and also the pulse zones, described below, are defined and represented by taking the position of the center of mass of the active end portion of the coupling element.
- the first and second annular zones Z1 ac and Z2 ac are separated by a central pulse zone ZC imp defined by pulse zones 68 and 69 in which energy transfers to the resonator are respectively effected as a function of the engine torque, as previously discussed in connection with the prior art.
- Each pulse zone 68, 69 is defined by a region swept by the magnetic field of the magnet 50 for various amplitudes of oscillation between the aforementioned minimum amplitude and maximum amplitude.
- the central pulse zone comprises the zero position circle located substantially in the middle of this central pulse zone.
- the zero position circle is defined as the circle described by the reference point of the coupling member in its rest position (reference point used to establish the equipotential curves in the space of the magnetic potential energy according to the polar coordinates of the rotor / magnetic structure) by placing itself on the magnetic structure when the a relative rotation between the resonator and the magnetic structure.
- the coupling member of the resonator is arranged radially relative to the axis of rotation so that this zero position circle passes substantially in the middle of all the pulse zones associated with this coupling element.
- the circle Y defines the interface between the zone Z1 ac and the zone ZC imp . This circle Y is centered on the axis of rotation of the magnetic structure 44 and has a radius R Y.
- curve 76 corresponds to a radial profile of EP m .
- This curve 76 gives the width Z 0 of a pulse zone 69, this width corresponding substantially to the width of a pulse zone 68 and also to the width of the central pulse zone ZC imp .
- the respective widths Z 1 and Z 2 of the useful zones of energy accumulation are also given. These widths Z 1 and Z 2 are defined by the maximum amplitude oscillation for the useful motor torque range supplied to the regulating device.
- the curve 74 gives the angular profile of EP m approximately in the middle of the zone Z1 ac while the curve 75 gives the angular profile of EP m approximately in the middle of the zone Z2 ac.
- the useful accumulation zones 63 and 65 are characterized by a rising monotonic magnetic potential energy ramp, here substantially linear, between zones or plateaux of lower potential energy 62, respectively 64 and higher potential energies defined here by vertices. It will be noted that the height of the vertices of the outer annular track 52 may be slightly greater than the height of the vertices of the inner annular track 53. Since the magnetic potential energy is correlated with the magnetic structure 44, the curves 74 and 75 are angularly shifted. an angular half-period P ⁇ / 2.
- the energy transmitted to the resonator when passing through a pulse zone substantially corresponds to the potential energy difference ⁇ EP m between the EP IN 1 , EP IN 2 entry point of the oscillating magnetic coupling element in this pulse zone and the EP OUT 1 , EP OUT 2 output point of this oscillating member out of this pulse zone.
- the ramp of increasing magnetic potential energy may not be linear, but for example quadratic or have several segments with different slopes.
- the lower potential energy trays 62, respectively 64 may have other potential energy profiles.
- an angular profile of the magnetic potential energy defining an alternation of rising ramps (braking ramps / potential energy accumulation zones) and descending ramps.
- These descending ramps can extend over an angular half-period or less and then end with a small lower plate. They can be linear or have another profile.
- the ramps can extend over an angular distance different from an angular half-period, in particular lower but also higher.
- the magnetic material 45 of the magnetic structure 44 in each angular period, is thus arranged so that, at least in a zone of this magnetic material corresponding to the useful magnetic potential energy accumulation zone in this angular period, the considered physical parameter of this magnetic material angularly increases progressively or decreases angularly gradually so that the magnetic potential energy EP m of the oscillator, in each useful zone of accumulation, is angularly increasing during a rotation of the magnetic structure relative to the magnetic coupling element. Then, for the embodiment considered here and for any motor torque of the useful range of the driving torque, the magnetic coupling element passes, in each half-period of the oscillation of the resonator, a useful zone.
- the magnetic structure is thus arranged so that the magnetic potential energy difference of the oscillator between the input of the coupling element in a pulse zone and the output of this coupling element of this pulse zone is positive for any motor torque in the useful range.
- the average angular gradient in the zones of pure accumulation, defining a braking force for the magnetic structure is significantly smaller than the average radial gradient (more generally the average gradient according to the degree of freedom of the resonator useful resonance mode) in the pulse zones, this average radial gradient defining the thrust force on the magnet 50 and thus the energy transferred to the resonator in the form of localized pulses around the zero position of the magnetic coupling element (magnet 50) of the resonator.
- the average angular gradient and the average radial gradient are calculated in the same unit, for example in Joules per meter (J / M).
- the average radial gradient in the central zone of pulses is substantially equal to the average angular gradient in the accumulation zones.
- the ratio of the average angular gradient in the energy accumulation zones and the average radial gradient in the pulse zones is less than 30% for zone Z1 ac and less than or substantially equal to 40% for zone Z2 ac .
- the magnetic structure is arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the areas of magnetic potential energy accumulation is lower than the average gradient of this magnetic potential energy in the zones. pulse according to the degree of freedom of the coupling element of the resonator and in the same unit.
- the ratio of the average angular gradient and the average gradient depending on the degree of freedom is less than sixty percent (60%). In a preferred variant, the ratio of the average angular gradient and the average gradient according to the degree of freedom is less than or substantially equal to forty percent (40%).
- the minimum energy zones 62 and 64 extend over a relatively large angular distance and the transition from maximum energy to a minimum energy zone is performed over a short angular distance much smaller than the angular distance of the energy accumulation zone that precedes it.
- the strong gradient in the pulse zones and therefore in the transition zones between a maximum potential energy and a minimum potential energy is obtained thanks to reduced dimensions of the coupling element, projected in the general plane of the coupling element.
- the width of the pure accumulation zones in the prior art is approximately equal to the width of the central zone of pulses, or even lower. This results in a small useful range for the engine torque and the large width of the central pulse zone generates a relatively large perturbation for the resonator because the energy transfer is performed over a large part of each oscillation.
- the aforementioned averaging is not only not necessary but is even undesirable depending on the degree of useful freedom of the resonator and thus avoided as far as possible. In an optimal theoretical case, we even get rid of averaging; which results in a width of the pulse zone that is almost zero and therefore very localized. In practice, the reduction of the averaging according to the degree of freedom of the resonator is limited by the technology and the fact that the magnetic field of a magnet occupies a certain volume.
- the pulses supplied to the resonator may be located near the zero position of the magnetic coupling element, while the useful zones accumulation can be more extensive thanks to a smaller angular gradient of potential energy and therefore a softer slope in the increase of potential energy as a function of the angle ⁇ .
- the localized pulses around the zero position of the resonator greatly improve the isochronism, while a relatively wide angular range ⁇ ZU for the energy accumulation zone provided by the motor torque makes it possible to have a useful range of larger engine torque and therefore a larger operating range. It will be noted that the location of the pulses is all the better that the radial dimension of the coupling member is small.
- the ratio between the radial dimension (width Z 0 ) of the pulse zones and the radial dimension (Z 1 , respectively Z 2 ) of the useful accumulation zones is less than or substantially equal to fifty percent ( 50%).
- the above report may also be defined by other parameters of the regulator device, for example by Z 0 / 2A 2A max where max is equal to the distance R max- R min (peak-to-peak distance over a period) defined by the maximum amplitude oscillation in projection in the general plane of the annular magnetic structure (see Figure 8 ).
- the ratio Z 0 / (R max -R min ) is therefore less than or substantially equal to 20%.
- the abovementioned ratio Z 0 / Z 1 is less than or substantially equal to thirty percent (30%).
- the progressive increase or decrease of the physical parameter of the magnetic material in each useful zone of accumulation of the magnetic potential energy extends over an angular distance (considered here as an angle in radian) greater at twenty percent (20%) of the angular period (P ⁇ in radians) of an annular track of the magnetic structure.
- the ratio of the angular distance of the variation of the physical parameter and the angular period is greater than or substantially equal to forty percent (40%).
- the magnetic structure 86 of the oscillator 84 comprises a single magnetic coupling element (a magnet) and a single annular track 88, a physical parameter of which magnetic material 45 which shape varies periodically.
- a magnet a magnetic coupling element
- annular track 88 a physical parameter of which magnetic material 45 which shape varies periodically.
- the magnetic structure 86 further comprises a second annular track 90 formed continuously of the magnetic material 45.
- This second track defines an annular zone of minimum magnetic potential energy whose value is substantially equal to that of the zones of lower magnetic potential energy defined by the annular sectors 52 of the annular track 88.
- the annular track 90 can be replaced by a single plate of magnetic material adjacent to the annular track 88, placed under the oscillating magnet 50 and fixed relative to the resonator 46.
- the orthogonal projection of the Zero position circle 20 of the resonator 46 is located substantially at the interface Y 0 of the two annular tracks.
- the circle Y corresponds substantially to the interface between the EP m accumulation areas defined by the annular sectors 56 and the pulse zones between these useful accumulation zones and the annular zone of minimum magnetic potential energy mentioned above.
- the curve 94 has a practical significance only for all the oscillations of the resonance mode considered that can be maintained in the oscillator 84.
- This set of oscillations is essentially located in a range R Y of the axis circular Y which is determined by a useful range R U of ⁇ EP m , the latter range R U corresponding to the range of useful motor torque supplied to the magnetic structure 86.
- each annular magnetic strip and therefore the dimension according to the degree of freedom of the resonator, is extended. while the dimension of each coupling member of the resonator is reduced radially relative to the axis of rotation of the magnetic structure.
- the radial dimension of the magnetic annular sectors of the magnetic structure is greater than that of each coupling element of the resonator.
- the radial dimension of the annular magnetic sectors is chosen so that the coupling member is entirely superimposed on the magnetic track considered for a maximum amplitude in the alternation where this coupling member is coupled to this magnetic track.
- the coupling member remains in an area where the potential gradient is perpendicular to the degree of freedom of the resonator throughout the useful torque range, that is to say for all oscillation amplitudes that the coupling member can present up to its maximum amplitude.
- the annular track 98 comprises an alternation of annular sectors 54A, where the thickness of the material with high magnetic permeability 100 is constant, and annular sectors 56A where the thickness of this material 100 gradually decreases incrementally over an angular distance V P.
- Each annular sector 56A forms a staircase with several steps. This staircase has a distance between the upper surface of its steps and a plane 59, parallel to the general plane of the annular track 98, which varies gradually in stages. This staircase defines a rising monotonic EP m potential energy ramp that forms the useful areas of potential energy accumulation, as previously discussed.
- the physical parameter considered of the material 100 is a distance to a geometric plane 59, which corresponds to an air gap between the magnet 50 and this material.
- the magnetic material is formed of a magnetized material.
- the annular track 102 of the variant of the Figure 14 has a constant thickness of the ferromagnetic material 100, but periodically exhibits a plurality of holes 104.
- the annular sectors 54B without holes define the areas of minimum magnetic potential energy.
- the annular sectors 56B each have a plurality of holes whose density varies and / or whose area of the sections varies over an angular distance V P.
- the hole density having the same relatively small diameter, increases gradually, continuously or, alternatively, stepwise.
- the physical parameter of the ferromagnetic material is here the average magnetic permeability of this magnetic material.
- the annular track 106 of the Figure 15 is formed by a magnetic material 108 whose thickness is constant.
- the intensity of the magnetic field 110 produced by the magnetized material is substantially constant.
- the intensity of the magnetic field 110 decreases progressively over an angular distance V P in an attraction arrangement (variant shown) while it is expected that it increases gradually in a repulsion arrangement.
- the physical parameter considered is the intensity of the flux of the magnetic field generated by the magnetic material between the annular magnetic strip and a surface of revolution having the axis of rotation of the magnetic structure as the axis of revolution and the degree of rotation. freedom of the magnet 50 as a generator of this surface of revolution.
- the oscillator 112 comprises a resonator 116 formed by an arm or lever 120 connected to a fixed point by a linear spring 118.
- the arm or lever 120 rotates at a first end about an axis 124, parallel to the axis of rotation 51 of the magnetic structure 114, and it carries at its second end a magnetic coupling structure 122 coupled to the magnetic structure 114.
- the structure 122 comprises a member 125 made of ferromagnetic material, coated U-shape or C, both of which branches respectively extend above and below the magnetic structure 114.
- the respective free ends of the two branches are arranged respectively two magnets 126 and 127, which are oriented so that their two magnetic fields propagating in the air gap between them are mainly oriented parallel to the axis of rotation 51 and in the same direction.
- These two coaxial magnets together define the magnetic coupling element of the oscillator 112.
- the degree of freedom of the resonator is on a circle 123 of radius R and centered on the axis of rotation 124 of the arm or lever 120, R being the distance between this axis of rotation and a geometric axis passing through the middle of the two magnets 126 and 127.
- a gradient of the magnetic potential energy EP m substantially zero depending on the degree of freedom 123 of the resonator 116 in the useful zones of accumulation it is provided in this third mode.
- the physical parameter of the magnetic material 45 correlated with EP m is substantially constant along arcs of a circle corresponding to the In other words, for any angular position ⁇ of the magnetic structure 114, the physical parameter considered is invariant on the path made by the center of mass of the end portions of the magnets 126 and 127 projected in the plane. general of the magnetic structure. This is in particular provided in sectors 56D and 57D where the physical parameter varies angularly to define the useful zones of potential energy accumulation.
- annular sectors 54D and 56D, respectively 55D and 57D forming the two annular tracks of the magnetic structure have a slightly arcuate shape.
- the various variants mentioned for the first embodiment also apply to this third embodiment.
- the variant shown here is that of a staircase of several steps in sectors 56D and 57D.
- the oscillator of the Figure 18 is formed by a wheel 128 comprising at its periphery an annular magnetic structure 98A, similar to the magnetic structure 98 ( Figure 13 ) in a plan view from above, but doubled relative to this latter magnetic structure by a planar symmetry at the circular axis ⁇ of the Figure 13 .
- each annular sector 56A includes a first staircase and below it another staircase, mirror of the first staircase.
- the wheel 128 comprises a central core of non-magnetic material.
- the resonator 117 comprises a C-shaped magnetic coupling structure 122A, similar to the structure 122 described above. However, here, the structure 122A comprises a large magnet connected to two branches of ferromagnetic material whose two respective free ends together define the magnetic coupling element of the resonator to the magnetic structure 98A.
- the oscillator comprises a wheel 129 formed of a central core of non-magnetic material and an annular magnetic structure 106A.
- This structure 106A is functionally similar to the magnetic structure 106 of the Figure 15 but here the magnetization of the material is homogeneous over the whole of the magnetic structure 106A, the variation of intensity of the magnetic field generated by the magnet and thus of the coupled magnetic flux being obtained by a variation of the thickness of the the magnetic ring.
- the resonator 119 is particular in that it does not include a magnet, its magnetic coupling structure 122B being formed by an open loop of high magnetic permeability material, the magnetized structure 106A passing through the opening of this loop.
- the loop 122B simply defines a path of low magnetic reluctance for the magnetic field of the magnetized structure.
- the oscillator is distinguished by a rotor 130 formed of two trays 132 and 134 of ferromagnetic material.
- the lower plate 132 has at its periphery a magnetic structure with two annular tracks 52 and 53 as already described and formed by the ferromagnetic material.
- the upper plate 134 is similar to the lower plate but is reversed, that is to say that it is the image of the lower plate by a planar symmetry by the middle plane between the two plates.
- This upper plate thus comprises two annular tracks 52A and 53A similar to annular tracks 52 and 53 and facing them. These two plates meet in the central region to form a magnetic path of low reluctance for the magnetic field of the magnet 50 of the resonator 46.
- FIGS. Figures 18 and 20 have the advantage of preventing a force is applied axially on the coupling element of the resonator.
- FIG. 21 another embodiment of a regulating device 136 according to the invention is shown.
- This device is remarkable in that it comprises two magnetic structures 106A and 106B which are coaxial and mechanically independent (not integral in rotation by mechanical means).
- the lower magnetic structure 106A is carried by a wheel 129 similar to that described in FIG. Figure 19 , this wheel being secured to a shaft 140 aligned on the axis of rotation 51.
- the upper wheel 142 is formed of a central core 143 of non-magnetic material connected to a barrel 144 mounted freely around the shaft 140, and a magnetic structure 106B similar to the structure 106A, but image thereof by a planar symmetry relative to the midplane between the two wheels.
- the resonator 148 is schematized by a spring 151 and a magnetic coupling element 149 of ferromagnetic material arranged at the end of an arm 150 of non-magnetic material.
- the magnetization in the two structures 106A and 106B is provided in the same direction.
- the two wheels 129 and 142 are respectively driven by the same source of mechanical energy, in particular a mainspring.
- these two wheels are respectively driven by two different mechanical energy sources, in particular two barrels arranged in a watch movement.
- the magnetic coupling element may also be a magnet.
- a fourth embodiment of a regulator device 152 is distinguished in particular by the fact that the magnetic structure 154 comprises a single annular track 156 formed by an alternation of annular sectors 54 and 56 as described above.
- the non-hatched sectors correspond to zones of lower or lower magnetic potential energy
- the sectors hatched correspond to zones in which the magnetic potential energy increases angularly according to the invention.
- the magnetic material used has at least one physical parameter that is correlated to the magnetic potential energy of the oscillator when the magnetic coupling element of the resonator is magnetically coupled to the annular magnetic track.
- each hatched sector is arranged in such a way that the physical parameter in question angularly increases in a progressive manner or decreases angularly in a progressive manner so that the magnetic potential energy of the oscillator is angularly increasing during the relative rotation provided between the resonator and the magnetic structure.
- the magnetic material is arranged in the hatched areas so that the physical parameter in question is radially constant, but that it varies angularly in a progressive manner to ensure a magnetic potential energy accumulation that is progressive over a relatively large angular distance of braking and dependent on the amplitude of the oscillation of the resonator coupling element.
- the resonator 158 is of the spring-balance type with a rigid rocker 160 associated with a spiral spring 162.
- the balance can take various forms, including circular as in a classic clockwork movement.
- the balance pivots around an axis 163 and comprises two magnetic coupling members 164 and 165 (magnets of square section) which are angularly offset relative to the axis of rotation 51 of the magnetic structure 154.
- This angular displacement of the two magnets 164 and 165 and their positioning relative to the structure 154 are provided so that the zero position circle 20 of the two magnets of the resonator (situation where the latter is at rest and therefore not excited) is superimposed on the outer circle (variant shown) or on the inner circle of the annular track 156 and that they then have an angular offset ⁇ D equal to an integer number of angular period P ⁇ increased by half a period.
- these two magnets have a phase shift of ⁇ .
- the axis of rotation 163 of the balance is positioned at the intersection of the two tangents at the zero position circle 20 respectively at the two points defined by the two coupling members 164 and 165 on the zero position circle.
- the balance is balanced, more precisely that its center of mass is on the axis of the balance.
- the skilled person will easily configure pendulums of various shapes with this important feature. It will therefore be understood that the various variants shown in the figures are diagrammatic and the problematic related to the inertia of the resonator is not treated concretely in these figures, which show the various characteristics of the invention. In addition, arrangements ensuring a zero resultant magnetic forces acting radially and axially on the axis of the balance are preferred. It will be noted that, in one variant, a flexible-leaf balance defining a fictitious axis of rotation, that is to say without pivoting, is provided instead of the balance-spring.
- the resonator 158 is continuously magnetically coupled to the annular track 156 by one or other of these two members. In each period of oscillation of the balance, the latter receives two pulses.
- the physical phenomenon generating these pulses is the same as that described previously taking into consideration the two magnets and the annular track. Indeed, when a magnet climbs a ramp of potential energy in an annular sector 56 and returns in the direction of the circle 20, the other magnet arrives above an annular sector 54 whose potential energy is minimal. It is therefore the combined effect of the two interactions that occurs in this embodiment.
- a simple ring of high magnetic permeability material similarly to the second embodiment, is provided outside the annular track 156, adjacent to the latter.
- This simple ring therefore defines the same lower potential energy over its entire surface for the oscillator.
- this ring may be integral with the magnetic structure 154 or arranged fixed relative to the resonator 158. In the latter case, two ferromagnetic plates respectively arranged in the two radial directions of the two magnets of the resonator relative to the axis 51 are sufficient for the function.
- the regulator device formed by the oscillator 168, comprises a magnetic structure 44 already described above and a resonator 158 described above.
- This variant is different from that of the Figure 22 by the arrangement of a second annular track 52 in addition to the annular track 53 corresponding to the annular track 156. Thanks to this arrangement, during the passage in the central zone of pulses, each of the magnets 164 and 165 receives a pulse . So here we have a double impulse while the variant of the Figure 22 receives globally only one.
- the variant of the Figure 23 is particularly effective and has a relatively wide operating range. In fact, this embodiment corresponds to a doubling of the magnetic coupling between the resonator and the magnetic structure relative to the variant of the Figure 22 and in the first embodiment; as is also the case in the two embodiments described below.
- the Figure 24 shows a fifth embodiment of the invention.
- the oscillator 172 comprises a magnetic structure 44A similar to the structure 44 already described and comprising an even number of angular periods P ⁇ .
- the resonator 174 is formed by a tuning fork 176 with two vibrating branches. The two respective free ends of the two branches bear respectively two cylindrical magnets 177 and 178 diametrically opposite relative to the axis of rotation 51.
- the reason for choosing an even number of angular periods P ⁇ is related to the fact that, in the of fundamental resonance of the tuning fork, the two branches oscillate in opposition of phase, that is to say, against-direction.
- Each magnet of the resonator experiences an interaction with the magnetic structure 44A which is similar to that described in connection with the first mode of production. Thus each magnet contributes to the maintenance of its oscillation and thus to the maintenance of the vibration of the tuning fork 176.
- the Figure 25 shows a sixth embodiment of the invention.
- the oscillator 180 differs essentially from the previous one in that the two magnets 177 and 178 of the resonator 182 are rigidly connected by a bar 185, and in that the magnetic structure 44B comprises an odd number of angular periods P ⁇ .
- Each magnet is arranged at the end of an elastic rod 183, respectively 184 anchored in a base 186.
- a tuning fork can be used as in FIG. Figure 24 with the two magnets rigidly connected.
- the useful resonance mode of the resonator 182 defines a phase oscillation of the two magnets because of the rigid link between them. This is the reason why the magnetic structure 44B here comprises an odd number of angular periods P ⁇ .
- Each magnet of the resonator experiences interaction with the magnetic structure 44B which is similar to that described in connection with the first embodiment.
- each magnet contributes to the maintenance of the oscillation of the corresponding elastic rod, and thus to the maintenance of the vibration of the resonator 182.
- the Figure 26 shows a seventh embodiment of a regulator device 190 according to the invention.
- This embodiment is particular and interesting in that it comprises a magnetic structure 44B magnetically coupled to two resonators 191 and 192 independent of each other except by the magnetic coupling via the magnetic structure.
- Each resonator is shown schematically by an elastic rod 183, respectively 184 anchored at a first end and carrying a magnet 177, respectively 178.
- Each resonator therefore has its own natural frequency. There is thus a kind of averaging of the two eigenfrequencies for the angular velocity w of the integral wheel of the magnetic structure 44B, the latter having an additional differential function. Obviously, the two natural frequencies selected must be close, see substantially equal.
- the two oscillators react differently to the surrounding conditions, preferably so that one compensates for the drift of the other when these surrounding conditions vary.
- the two oscillators are oriented in opposite directions, so as to compensate for the effect of gravitation in their direction.
- the regulator device 196 differs essentially from the previous embodiments by two particular characteristics.
- the magnetic structure 198 is provided fixed on a support or a plate 200, while the two resonators 191A and 192A are rotated at the angular velocity ⁇ by a motor torque supplied to a rotor 202 which comprises two rigid arms 205 and 206 at respective free ends of which are arranged respectively the two resonators.
- this inversion at the device to which the motor torque is applied does not change the magnetic interaction between the resonator (s) and the magnetic structure (s) which has been previously explained, so that this inversion can be implemented as a variant in the other embodiments.
- a single resonator is provided.
- the second particular aspect of this embodiment arises from the fact that the oscillation is not radial, relative to the axis of rotation 51A of the rotor 202, when the magnet 177, respectively 178 intercepts the zero position circle 20.
- the degree of freedom of the coupling element of each resonator is substantially on a circle whose radius is here substantially equal to the length L of the resilient rod of this resonator and centered at the anchoring point of this rod on the resonator arm.
- a gradient of the magnetic potential energy EP m substantially zero according to the degree of freedom of each resonator (the two resonators having an axial symmetry with a geometric axis 51A) in the Useful areas of EP m accumulation it is provided in this embodiment that the physical parameter of the magnetic material of the magnetic structure 198 is substantially constant along arcs corresponding to the geometric circle defined by the coupling elements. In other words, for any angular position of the rotor 202, the physical parameter considered is invariant on the path made by the magnets 177 and 178 in projection in the general plane of the fixed magnetic structure.
- annular sectors 54E and 56E, respectively 55E and 57E forming the two annular tracks of the magnetic structure have an arcuate shape, the alternation of the sectors of the inner annular track being slightly angularly offset with respect to the sectors of the annular track exterior.
- the oscillator 210 comprises a wheel 212 whose at least the peripheral annular portion is formed of a material with high magnetic permeability.
- the lateral surface of this wheel is configured to form a cylindrical magnetic structure 214.
- This magnetic structure remains annular, but it no longer extends in the general plane of the wheel, but axially.
- the magnetic coupling between the resonator and the magnetic structure is of axial direction (the main component is parallel to the axis of rotation), whereas here this coupling magnetic is radial.
- Structure 214 defines two cylindrical tracks 218 and 219, equivalent to the annular tracks described above.
- each track is formed by a succession of asymmetric teeth which define the angular period P ⁇ of the magnetic structure.
- Each tooth has a flat or a small cylindrical section 215 followed by a recess forming a ramp / inclined plane 216.
- the teeth of the lower track 219 are angularly offset by half a period P ⁇ / 2 relative to the teeth of the tooth. upper track 218.
- This magnetic structure acts in a manner similar to that described in the other embodiments for the resonator 220.
- This resonator comprises a light structure 221 preferably made of ferromagnetic material.
- This structure 221 comprises two elastic arms 222 and 223 diametrically arranged relative to a shaft 224 centered on the axis of rotation 51 of the wheel 212.
- the resonator is fixedly mounted on the shaft, the structure 221 being fixed to a disc 225 integral of this tree.
- the two resilient arms are respectively extended at their free ends by two axial branches 226 and 227 which carry respectively at their lower ends the magnets 230 and 231. These two magnets are arranged so that the magnetic field generated by each of them is mainly radial. It is intended to use a resonance in which the two elastic arms 222 and 223 vibrate axially, which causes axial oscillation of the magnets 230 and 231.
- a central hole is provided in the wheel 212 in which this tree freely passes.
- the wheel is secured to a pinion 228 serving to drive the wheel by a driving torque coming for example from a watch cylinder.
- Other resonators may be provided by those skilled in the art with the wheel 212, including a type of resonator operating in torsion.
- the regulator device 236 comprises a resonator 238 shown schematically by a blade or elastic rod attached to a first end and carrying at its free end a magnet.
- the magnetic structure is particular in that it is formed by two annular magnetic tracks 241 and 243 according to the invention which are respectively carried by two mobiles 240 and 242 arranged next to each other.
- Each annular magnetic strip is arranged in the peripheral zone of a plate of the respective mobile.
- the two tracks are located here in the same geometrical plane and comprise an alternation of annular sectors 245 and 246 respectively similar to the annular sectors 54 and 56 of the first embodiment.
- the two mobiles When the two plates have the same diameter, the two mobiles are positioned so that the rest position (zero position) of the magnet of the resonator is located in the middle of a straight line orthogonal to their respective axes of rotation and intercepting these two. axes of rotation. More generally, the coupling element in its rest position is located on a straight line connecting the two respective axes of rotation of the two mobiles and at the interface of the two tracks or in the middle of them in projection in said geometrical plane, these two tracks having an offset of half an angular period on said line.
- the two mobiles 240 and 242 are coupled in rotation by a drive wheel 252 integral with a pinion 254 receiving the engine torque.
- the wheel 252 meshes with a wheel 248 of the first mobile 240 located under its plate and thus directly rotates the first mobile in a determined direction of rotation.
- the wheel 252 also transmits the engine torque to the second mobile 242 via an intermediate wheel 256 which meshes with a wheel 250 of the second mobile situated under its plate.
- the second mobile rotates in a direction opposite to the first mobile.
- the two annular tracks have the same outer diameter and the gear ratios are provided so that the angular velocity of the two mobiles be identical.
- the two mobiles can be coupled directly to one another by a gear, at least one of the two mobiles receiving a force torque in operation.
- care is taken to position these two annular tracks so that at the zero point position of the magnet they have a phase shift of ⁇ (half-period offset as shown in FIG. Figure 30 ).
- this tenth embodiment has the advantage that the two magnetic tracks have identical dimensions while being arranged in the same geometrical plane. This results in a perfect symmetry of magnetic interaction between the resonator and the magnetic structure in the two alternations of the oscillation of this resonator.
- the two mobiles are driven by two motor couples from two barrels incorporated in the same watch movement.
- the resonator could carry at least two coupling elements respectively coupled with the first track and the second track and placed elsewhere than on the aforementioned line connecting the two axes of rotation. It will then be ensured that the second coupling element interacts with the second magnetic strip when the first coupling element leaves the first magnetic strip and vice versa.
- This last variant opens several degrees of additional freedom in the arrangement of the oscillator and in particular the two mobiles. For example, it is possible for the two magnetic tracks to be respectively arranged on two parallel plates but at different levels.
- an oscillator 260 which is a first variant of the Figure 22 .
- This variant is different from this Figure 22 in that the resonator 158A comprises a rigid rocker 160A which carries on each of its two arms two magnets 164 and 264, respectively 165 and 265.
- the two magnets of each arm simultaneously undergo a magnetic interaction with the track Annular magnet 156. They are out of phase with an angular period P ⁇ .
- the number of coupling elements can be increased by providing an angular offset equal to N ⁇ P ⁇ , where N is a number a positive integer, (corresponding to a phase shift of N ⁇ 360 °) between the coupling elements which undergo the same movement (that is to say the same degree of freedom and the same direction of movement) relative to a corresponding magnetic track.
- an oscillator 270 which is a second variant of the Figure 22 .
- This second variant differs from the first variant in that the two coupling elements, associated with the same arm of the balance 160B of the resonator 158B, are respectively positioned on the two zero position circles 20 and 20A defined by the annular magnetic strip. 156, namely by the outer and inner circles delimiting this track, for the resonator considered in its rest position.
- the two coupling elements 164 and 266, respectively 165 and 267 have between them an angular phase shift of P ⁇ / 2 (ie 180 °).
- oscillator 280 shown in FIG. Figure 33 .
- This oscillator comprises a resonator 158C formed by a rocker 160C which comprises two arms 282 and 284 each carrying four coupling elements distributed over a period of angular of the magnetic structure 44 (period of each of the two magnetic tracks 52 and 53).
- a coupling element having an interaction with the magnetic structure in each half-period of three successive half-periods of this magnetic structure above which the four coupling elements associated with the same arm of the pendulum simultaneously extend.
- the annular magnetic tracks are extended to cover at least the expected maximum amplitude of oscillation (on an alternation) while the coupling members of the resonators have a relatively small dimension in the radial direction of magnetic tracks. rings associated with these resonators.
- the regulating device 300 comprises a magnetic structure 304 forming a wheel and comprising an annular magnetic track 306 formed by magnets 308 having a reduced radial dimension and arranged periodically along a circle 312.
- this circle passes substantially through the middle of the magnets or by the centers of mass of the magnets.
- the annular magnetic strip defines, in axial projection in its general plane, a geometric circle located radially in the middle of this track or passing substantially through the centers of mass of a plurality of magnetic elements forming this magnetic track. This circle is also called zero position circle by analogy with the previous embodiments.
- the resonator 302 is arranged to undergo radial oscillation.
- Its element or coupling member 310 is formed by a magnetic material and its active end portion, defining a magnetic range in front of the magnetic structure, extends in axial projection in a plane parallel to the general plane of the magnetic strip in a substantially rectangular zone with its inner angular edge, that is to say in the angular direction of the wheel, substantially in axial projection the zero position circle when the resonator is in a rest position (potential energy of the minimum resonator ).
- This substantially rectangular zone has an angular distance at the circle 312 substantially equal to a half-period (P ⁇ / 2) of the magnetic track 306 and a radial distance at least equal to the maximum amplitude of oscillation of the element coupling means on the alternation where it is coupled to this magnetic track 306.
- the resonator is arranged relative to the magnetic structure so that the circle 312 passes axially through the active end portion of the coupling element 310 during substantially a first alternation of each oscillation period of this coupling element when a motor torque in a useful torque range is provided to the oscillator (formed by the resonator and the magnetic structure).
- the magnetized material of the coupling element forms a magnet oriented axially along the geometric axis 51 just like the magnets 308, the latter here having an inversion of the magnetic poles so that they are arranged in repulsion with the magnet of the magnet. coupling element.
- the magnetized material of the coupling element has at least one physical parameter which is correlated with the magnetic potential energy of the oscillator when this magnetic coupling element is magnetically coupled to the annular magnetic track 306.
- the device regulator according to this eleventh embodiment is characterized in that, in the effective range of the driving torque, the annular magnetic track and the magnetic coupling element define in each angular period, as a function of their relative angular position ⁇ and the position coupling element according to its degree of freedom, a magnetic potential energy storage zone in the oscillator; and in that the magnetic material of the coupling element is arranged such that, at least in an area of this magnetic material coupled to the magnetic track for at least a portion of the potential magnetic energy storage area of each angular period, the physical parameter correlated with the magnetic potential energy of the oscillator angularly increases in a progressive manner or decreases angularly in a progressive manner.
- the positive or negative variation of the physical parameter is chosen so that the magnetic potential energy of the oscillator is angularly increasing during a relative rotation between the resonator and the magnetic structure under the action of a motor torque.
- the physical parameter in question is in particular an air gap or the flux of the magnetic field generated by the magnet of the coupling element, as previously described.
- a twelfth embodiment is shown diagrammatically to Figures 35 and 36 .
- the regulator device 320 corresponds to a technical reversal of the regulator device of the Figure 5 .
- the magnetic structure 304 is identical to that of the Figure 34 .
- the resonator 322 comprises a wafer 324 oscillating radially relatively to the center of the annular magnetic track 306 and supporting two coupling elements 326 and 328 rigidly fixed to this wafer. These two coupling elements are formed by two magnetized pads 326 and 328, each of which extends over an angular distance at the circle 312 substantially equal to a half-period P ⁇ / 2 of the magnetic strip 306 and are angularly offset from each other. half a period (phase shift of 180 °).
- the magnetic material forming the two coupling elements has a physical parameter correlated with the magnetic potential energy of the oscillator. Over at least a certain angular distance of each coupling element, this physical parameter angularly increases progressively or decreases angularly in a progressive manner so that the magnetic potential energy of the oscillator is angularly increasing during a relative rotation.
- the physical parameter is a distance between the lower surface of the wafer 324 and a general geometrical plane 325 of this wafer.
- This general geometric plane is parallel to the upper surface of the magnetic structure 304 and therefore to the general plane of the latter.
- the path of this wafer when it oscillates is also parallel to this plane 325.
- this potential energy must increase in the direction of the relative rotation of the magnetic structure 304, as depicted in the cup of the Figure 36 where the coupled magnets are arranged in repulsion.
- the magnetic zones of a variant of the regulating device of the Figure 35 can be obtained by axial symmetry along a radial axis located in the middle of an angular period and in the middle of the annular track and the coupling member, an angular period of the two magnetic tracks 52 and 53 and the coupling member 50 of the Figure 5 . Then, this magnetic member thus transferred is reproduced at each period of the magnetic track.
- the result is not optimal with respect to the variation of the physical parameter considered of the magnetized material in the areas of potential energy accumulation.
- magnetic zones 326 and 328 have been modified by axial symmetry so that the magnetic potential energy in each accumulation zone has substantially no variation depending on the degree of useful freedom of the resonator.
- any embodiment described above, with at least one radially extended magnetic track and a resonator comprising a radial low-dimensional coupling element, or several such coupling elements shifted by an integer number of angular periods, can lead to an inverse realization.
- An advantage of the regulator device according to the twelfth embodiment relative to the first embodiment arises from the fact that the extended magnetic zones 326 and 328 are on the resonator and can thus have the same dimensions, an identical linear variation of the physical parameter considered to generate magnetic potential energy accumulation ramps, and side edges with a curve exactly according to the degree of freedom of the coupling member. Another advantage is the greater simplicity of manufacturing the oscillator.
- the regulating device 330 is distinguished by the fact that the two coupling elements 326A and 328A arranged on the wafer 324A of the resonator 322A have at their end facing the magnetic structure a zone having a square or rectangular shape in axial projection in a plane parallel to the magnetic track.
- the inner angular edge of the annular zone 328A and the outer angular edge of the annular zone 326A are rectilinear. Since the angular period remains relatively small, in particular less than 45 °, this variant is functionally very close to that of the Figure 35 by optimally adjusting the rest position of the resonator relative to the annular magnetic track. It is thus also possible to obtain a good isochronism and a correct operating range which is relatively wide.
- the Figures 38 and 38A relate to a thirteenth embodiment of the invention in which there is provided a magnetic interaction in attraction.
- a magnetic material in the zones located radially in front of the energy accumulation zones, on the other side of the zero position circle, so that these zones have a lower magnetic potential energy. or minimal.
- the regulator device 332 comprises an annular magnetic strip 306 described above and a resonator 334 represented schematically, the latter comprising a plate 336 of ferromagnetic material which oscillates at the expected resonant frequency.
- the wafer 336 extends in a general plane 325 and comprises two zones 326B and 328B whose distance to this general plane, respectively the air gap with the magnetic track, increases in the direction of rotation of this magnetic track to each generate a zone d accumulation of potential energy over a relatively large angular distance.
- this plate comprises two complementary zones 337 and 338 also formed by the ferromagnetic material and having a minimum air gap with the magnetic strip.
- the angular dimension of the wafer is preferably provided equal to the linear distance between the centers of two successive magnets 308. This solves a problem that apart from the superposition area with the wafer, the magnets have high potential energy.
- FIG 39 is schematically represented a fourteenth embodiment by applying the technique reversal technique explained above to the regulating device of the Figure 24 .
- a regulator device 340 is thus obtained with a resonator 174A formed by a tuning fork 176A having at its two free ends two magnetic plates 344 and 345 similar to the wafer 324A of the Figure 37 or at plate 336 of the Figure 38 .
- the two wafers 344 and 345 oscillate in opposite directions and each comprise two coupling elements similar to the magnetic zones 326A and 328A, respectively 326B and 328B.
- Figures 37 and 38 The magnetic structure 304 corresponds to that described previously.
- the tuning fork is perfectly symmetrical (by axially symmetrying one of the two plates along an axis of symmetry substantially tangent to the zero position circle), an odd number of coupling elements must be provided. 308 on the wheel 304.
- the Figure 40 represents a fifteenth embodiment of the type described from the Figure 34 .
- This embodiment relates to a case with two concentric magnetic tracks of small radial dimension on the structure.
- the regulator device 350 is functionally similar to the embodiment of the Figure 32 .
- This regulator device 350 is formed by an oscillator comprising a resonator 352 of the sprung-balance type and a magnetic structure 358 forming a wheel driven in rotation about the geometric axis 51 by a motor torque supplied by the watch movement in which this regulating device is incorporated.
- the resonator therefore has a hairspring 162 or other suitable elastic element and a balance 160D having two arms whose two respective free ends respectively bear two coupling elements 354 and 356.
- Each coupling element is formed by a magnetized zone similar to the element 310 of the Figure 34 .
- the magnetic structure 358 comprises a first magnetic track 306 already described and a second magnetic track 360 concentric with the first magnetic track and formed by a plurality of magnets 362 regularly distributed with an angular period identical to that of the first magnetic track but with an angular offset of half a period; these two tracks thus having a phase shift of 180 °.
- the magnets 308 and 362 are arranged in repulsion relative to the two magnetic zones 354 and 356.
- the oscillator 350 can also be obtained from the oscillator of the Figure 23 using a second method of inverting the magnetic zone dimensions of the magnetic structure and the resonator.
- Each hatched area of the magnetic tracks is replaced by a magnet of small radial width at the center of the hatched area and the two magnets of the resonator are replaced by two magnetized zones having substantially the dimensions of a hatched sector of a track of the oscillator of the Figure 23 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Micromachines (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Description
La présente invention concerne le domaine des dispositifs régulateur de la vitesse angulaire relative entre une structure magnétique et un résonateur couplés magnétiquement de manière à définir ensemble un oscillateur. Le dispositif régulateur de la présente invention rythme la marche d'un mouvement horloger mécanique. Plus particulièrement, l'invention concerne les échappements magnétiques pour mouvements horlogers mécaniques dans lesquels il est prévu un couplage magnétique direct entre un résonateur et une structure magnétique. En général, sa fonction est d'assujettir les fréquences de rotation des mobiles d'un rouage compteur d'un tel mouvement horloger à la fréquence de résonance du résonateur. Ce dispositif régulateur comprend donc un résonateur, dont une partie oscillante est munie d'au moins un élément de couplage magnétique, et un échappement magnétique agencés de manière à commander la vitesse angulaire relative entre une structure magnétique formant cet échappement magnétique et ce résonateur. Il remplace le balancier-spiral et le mécanisme d'échappement classique, notamment l'échappement avec une ancre de type suisse et une roue d'échappement dentée.The present invention relates to the field of devices regulating the relative angular velocity between a magnetic structure and a resonator magnetically coupled so as to define an oscillator together. The regulating device of the present invention paces the course of a mechanical clockwork movement. More particularly, the invention relates to magnetic escapements for mechanical watch movements in which there is provided a direct magnetic coupling between a resonator and a magnetic structure. In general, its function is to subject the mobile rotation frequencies of a counter wheel of such a watch movement to the resonance frequency of the resonator. This regulator device thus comprises a resonator, an oscillating portion of which is provided with at least one magnetic coupling element, and a magnetic escapement arranged to control the relative angular velocity between a magnetic structure forming this magnetic escapement and this resonator. It replaces the sprung balance and the classic exhaust mechanism, including the exhaust with a Swiss-type anchor and a toothed escape wheel.
Le résonateur ou la structure magnétique est solidaire en rotation d'un mobile entraîné en rotation avec un certain couple moteur qui entretient une oscillation du résonateur. En général le mobile est incorporé dans un rouage ou plus généralement une chaîne cinématique d'un mécanisme. Cette oscillation permet de régler la vitesse angulaire relative entre la structure magnétique et le résonateur grâce au couplage magnétique entre eux.The resonator or the magnetic structure is integral in rotation with a mobile driven in rotation with a certain engine torque which maintains oscillation of the resonator. In general the mobile is incorporated in a cog or more generally a kinematic chain of a mechanism. This oscillation makes it possible to adjust the relative angular velocity between the magnetic structure and the resonator by virtue of the magnetic coupling between them.
Les dispositifs de régulation de la vitesse d'une roue, nommé aussi rotor, par un couplage magnétique, nommé aussi accouplement magnétique, entre un résonateur et une roue magnétique sont connus depuis de nombreuses années dans le domaine horloger. Plusieurs brevets relatifs à ce domaine ont été délivrés à la société Horstmann Clifford Magnetics pour des inventions de C. F. Clifford. En particulier, on citera le brevet
Il est aussi connu de la demande de brevet japonaise
Un dispositif comparable est aussi décrit dans la demande
Le résonateur est représenté symboliquement par un ressort 8, correspondant à sa capacité de déformation élastique définie par une constante élastique, et par une inertie 10 définie par sa masse et sa structure. Le résonateur est capable d'osciller avec une fréquence propre dans au moins un mode de résonance où l'aimant 12 présente une oscillation radiale. On comprendra que cette représentation schématique du résonateur 6 signifie que, dans le cadre de la présente invention, il n'est pas limité à quelques variantes particulières. Ce qui importe, c'est que le résonateur comprend au moins un élément de couplage magnétique 12 permettant de coupler magnétiquement ce résonateur à la structure magnétique de la roue 4 qui est, dans l'exemple représenté à la
A la
La piste annulaire extérieure définit une alternance de zones d'énergie potentielle minimale 24 et de zones d'énergie potentielle maximale 25 alors que la piste annulaire intérieure définit, avec un déphasage d'une demi-période angulaire Pθ/2 relativement à la première piste (c'est-à-dire un déphasage de 180°), une alternance de zones d'énergie potentielle minimale 28 et de zones d'énergie potentielle maximale 29. A la
Aux
De manière générale, on comprend par 'zone d'accumulation' une zone dans laquelle l'énergie potentielle magnétique dans l'oscillateur augmente pour les diverses amplitudes d'oscillation dans la plage utile du couple moteur ; et on comprend par 'zone d'impulsion' une zone dans laquelle cette énergie potentielle magnétique diminue pour les diverses amplitudes d'oscillation de la plage utile du couple moteur et où une force magnétique de poussée est exercée sur l'organe de couplage du résonateur selon son degré de liberté. Par force de poussée, on comprend une force dans le sens du mouvement de l'organe de couplage oscillant. Ainsi, bien qu'une telle force de poussée puisse déjà exister dans une zone d'accumulation, on parlera dans la présente description de zones d'impulsion en dehors des zones d'accumulation.Generally speaking, the term "accumulation zone" includes an area in which the magnetic potential energy in the oscillator increases for the various amplitudes of oscillation in the useful range of the driving torque; and an 'area of impulse' is understood to include an area in which this magnetic potential energy decreases for the various amplitudes of oscillation of the useful range of the driving torque and a magnetic thrust force is exerted on the coupling member of the resonator. according to its degree of freedom. By force of thrust, it comprises a force in the direction of movement of the oscillating coupling member. Thus, although such a pushing force may already exist in an accumulation zone, in the present description we will speak of pulse zones outside the accumulation zones.
Pour comprendre les courbes de niveaux 22 représentées aux
Le moyennage est obtenu par une intégration sur la totalité du champ magnétique couplé, lequel s'étend sur une région de la structure magnétique d'autant plus grande que l'aimant présente une grande surface d'extrémité parallèle audit plan général et que l'entrefer est grand. Ainsi, le flanc vertical d'une dent magnétique adjacente à une ouverture dans la structure magnétique considérée donne, dans l'espace de l'énergie potentielle magnétique, des courbes de niveaux 22 qui s'étendent sur une distance angulaire d'autant plus grande que l'effet de moyennage est important. Dans le cas analysé ici, on a pris un aimant présentant une section circulaire ou carrée parallèlement au plan général de la roue. La dimension de cette section et l'entrefer choisis correspondent déjà à un agencement plus favorable que ceux des dispositifs de l'art antérieur cités précédemment pour le fonctionnement de l'oscillateur, car on assure des plages de freinage 26 et 30 suffisamment étendues tout en limitant déjà un peu la distance radiale de la zone centrale d'impulsions.The averaging is obtained by an integration on the whole of the coupled magnetic field, which extends over a region of the magnetic structure all the greater as the magnet has a large end surface parallel to said general plane and the gap is big. Thus, the vertical flank of a magnetic tooth adjacent to an opening in the magnetic structure in question gives, in the space of the magnetic potential energy,
Lorsqu'on analyse le comportement de l'oscillateur considéré précédemment en fonction du couple moteur appliqué à la roue, on observe au moins deux inconvénients d'un tel dispositif régulateur : La plage de valeurs pour le couple moteur est relativement réduite et le dispositif régulateur présente un anisochronisme important. Ceci est montré sur le graphe de la
Dans le cadre de la présente invention, les inventeurs, après avoir constaté les problèmes d'anisochronisme et de plage de fonctionnement limitée dans les dispositifs régulateur connus mentionnés précédemment, se sont donnés pour objectif d'en comprendre les raisons et d'apporter une solution à ces problèmes.In the context of the present invention, the inventors, after having noted the problems of anisochronism and limited operating range in the aforementioned known regulating devices, have set themselves the objective of understanding the reasons and providing a solution. to these problems.
Les réflexions quant aux problèmes de l'art antérieur et diverses recherches effectuées ont permis de cerner des causes à ces problèmes. Le problème d'anisochronisme et également celui de la plage utile du couple moteur limitée sont dus en particulier au fait que les impulsions données à l'aimant du résonateur s'étendent sur une distance radiale relativement importante hors d'une zone localisée autour du cercle de position zéro. Ceci réduit les zones annulaires de pure accumulation et de plus perturbe la marche de l'oscillateur. En effet, seules des impulsions localisées à l'endroit de ce cercle de position zéro ne perturbent quasi pas l'oscillateur. Les inventeurs ont ainsi constaté qu'une force de poussée sur un chemin relativement étendu hors de ladite zone localisée perturbe le résonateur ; ce qui varie sa fréquence en fonction du couple fourni et est donc source d'anisochronisme.Reflections on the problems of the prior art and various research carried out have identified causes for these problems. The problem of anisochronism and also that of the useful range of the limited motor torque are due in particular to the fact that the pulses given to the magnet of the resonator extend over a relatively large radial distance out of a zone located around the circle. of zero position. This reduces the annular zones of pure accumulation and further disrupts the progress of the oscillator. Indeed, only localized pulses at the location of this zero position circle do not disturb the oscillator. The inventors have thus found that a thrust force on a relatively wide path out of said localized zone disturbs the resonator; This varies its frequency depending on the torque supplied and is therefore anisochronism source.
Pour résoudre le problème de la zone centrale d'impulsions de grande largeur tout en permettant un fonctionnement efficace et stable de l'oscillateur sur une plage de couple relativement importante, la présente invention propose un dispositif régulateur de la vitesse angulaire relative entre une structure magnétique et un résonateur, couplés magnétiquement de manière à définir ensemble un oscillateur formant ce dispositif régulateur, tel que défini à la revendication 1 pour un premier mode de réalisation principal et à la revendication 2 pour un second mode de réalisation principal.To solve the problem of the central zone of large pulses while allowing an efficient and stable operation of the oscillator over a relatively large torque range, the present invention proposes a device for regulating the relative angular velocity between a magnetic structure. and a resonator, magnetically coupled so as to together define an oscillator forming said controller, as defined in
De manière générale, le dispositif régulateur selon l'invention présente les caractéristiques suivantes : La structure magnétique comprend au moins une piste magnétique annulaire centrée sur un axe de rotation de cette structure magnétique ou du résonateur, lesquels sont agencés pour subir une rotation l'un relativement à l'autre autour de l'axe de rotation lorsqu'un couple moteur est appliqué à la structure magnétique ou au résonateur. La piste magnétique annulaire est formée au moins partiellement d'un premier matériau magnétique dont au moins un premier paramètre physique est corrélé à l'énergie potentielle magnétique de l'oscillateur mais différent de celle-ci. Ce premier matériau magnétique est agencé le long de la piste magnétique annulaire de sorte que cette énergie potentielle magnétique varie angulairement de manière périodique le long de cette piste magnétique annulaire et qu'il définisse ainsi une période angulaire (Pθ) de cette piste magnétique annulaire. Le résonateur comprend au moins un élément de couplage magnétique (aussi nommé organe de couplage magnétique) à la structure magnétique. Cet élément de couplage magnétique est formé d'un deuxième matériau magnétique, dont au moins un deuxième paramètre physique est corrélé à l'énergie potentielle magnétique de l'oscillateur, et est couplé magnétiquement à la piste magnétique annulaire de manière qu'une oscillation selon un degré de liberté d'un mode de résonnance du résonateur est entretenue dans une plage utile du couple moteur appliqué à la structure magnétique ou au résonateur et qu'un nombre entier déterminé de périodes, en particulier et de préférence une période, de cette oscillation intervienne lors de ladite rotation relative dans chaque période angulaire de la piste magnétique annulaire ; la fréquence de l'oscillation déterminant ainsi la vitesse angulaire relative. Dans la plage utile du couple moteur, la piste annulaire et l'élément de couplage magnétique définissent dans chaque période angulaire, en fonction de leur position relative définie par leur position angulaire relative et la position de l'élément de couplage selon son degré de liberté, une zone d'accumulation d'énergie potentielle magnétique dans l'oscillateur. Ensuite, la piste magnétique annulaire et l'élément de couplage magnétique sont agencés de manière que l'élément de couplage magnétique reçoit, lors de la rotation relative susmentionnée entre le résonateur et la structure magnétique, des impulsions selon son degré de liberté autour d'une position de repos de cet élément de couplage magnétique. Ces impulsions définissent, en fonction de la position relative de l'élément de couplage magnétique et de la piste magnétique annulaire et pour la plage utile du couple moteur fourni au dispositif régulateur, des zones d'impulsion qui sont sensiblement localisées dans une zone centrale d'impulsions adjacente aux zones d'accumulation d'énergie potentielle magnétique. Dans une variante particulière, le rapport entre la dimension radiale des zones d'impulsion et la dimension radiale des zones d'accumulation d'énergie potentielle magnétique est inférieur à cinquante pourcents. Dans une variante préférée, ce rapport est inférieur ou sensiblement égal à trente pourcents.
De plus, la piste magnétique annulaire et l'élément de couplage magnétique sont agencés de manière que le gradient angulaire moyen de l'énergie potentielle magnétique de l'oscillateur dans les zones d'accumulation d'énergie potentielle magnétique est inférieur au gradient moyen de cette énergie potentielle magnétique dans les zones d'impulsion selon le degré de liberté du résonateur et dans une même unité. Ainsi, la variation du premier paramètre physique du premier matériau magnétique dans le premier mode de réalisation principal mentionné ci-après, respectivement du deuxième paramètre physique du deuxième matériau magnétique, dans le deuxième mode de réalisation principal mentionné ci-après, est plus forte dans les zones d'impulsion selon le degré de liberté du résonateur, notamment radialement, que angulairement dans les zones d'accumulation d'énergie potentielle magnétique. Cette variation du paramètre physique dans les zones d'impulsion peut être abrupte, notamment être engendrée par une discontinuité radiale du premier matériau magnétique le long d'un cercle de position zéro défini par l'élément de couplage au repos en projection dans le plan général de la structure magnétique, respectivement du deuxième matériau magnétique le long d'un cercle géométrique défini par le milieu de la piste magnétique annulaire en projection dans le plan général de l'élément de couplage au repos.In general, the regulating device according to the invention has the following characteristics: The magnetic structure comprises at least one annular magnetic strip centered on an axis of rotation of this magnetic structure or of the resonator, which are arranged to be rotated one by one. relative to the other about the axis of rotation when a driving torque is applied to the magnetic structure or the resonator. The annular magnetic strip is formed at least partially of a first magnetic material of which at least a first physical parameter is correlated with the magnetic potential energy of the oscillator but different from it. This first magnetic material is arranged along the annular magnetic strip so that this magnetic potential energy varies angularly periodically along this annular magnetic strip and thus defines an angular period (P θ ) of this annular magnetic strip. . The resonator includes at least one magnetic coupling element (also called magnetic coupling member) to the magnetic structure. This magnetic coupling element is formed of a second magnetic material, of which at least a second physical parameter is correlated to the magnetic potential energy of the oscillator, and is magnetically coupled to the annular magnetic track so that an oscillation according to a degree of freedom of a resonance mode of the resonator is maintained within a useful range of the motor torque applied to the magnetic structure or the resonator and a given integral number of periods, in particular and preferably a period, of this oscillation intervenes during said relative rotation in each angular period of the annular magnetic strip; the frequency of the oscillation thereby determining the relative angular velocity. In the useful range of the motor torque, the annular track and the magnetic coupling element define in each angular period, as a function of their relative position defined by their relative angular position and the position of the coupling element according to its degree of freedom. , a potential magnetic energy storage zone in the oscillator. Then, the annular magnetic track and the magnetic coupling element are arranged so that the magnetic coupling element receives, during the aforementioned relative rotation between the resonator and the magnetic structure, pulses according to its degree of freedom around a rest position of this magnetic coupling element. These pulses define, as a function of the relative position of the magnetic coupling element and the annular magnetic track and for the useful range of the motor torque supplied to the regulating device, pulse zones which are substantially located in a central zone. impulses adjacent to magnetic potential energy accumulation zones. In a particular variant, the ratio between the radial dimension of the pulse zones and the radial dimension of the magnetic potential energy accumulation zones is less than fifty percent. In a preferred variant, this ratio is less than or substantially equal to thirty percent.
In addition, the annular magnetic track and the magnetic coupling element are arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the areas of magnetic potential energy accumulation is lower than the average gradient of this potential magnetic energy in the pulse zones according to the degree of freedom of the resonator and in the same unit. Thus, the variation of the first physical parameter of the first magnetic material in the first main embodiment mentioned below, respectively of the second physical parameter of the second magnetic material, in the second main embodiment mentioned hereinafter, is stronger in the pulse zones according to the degree of freedom of the resonator, in particular radially, than angularly in the zones of accumulation of magnetic potential energy. This variation of the physical parameter in the pulse zones can be abrupt, in particular be generated by a radial discontinuity of the first magnetic material along a circle of zero position defined by the coupling element at rest in projection in the general plane the magnetic structure, respectively the second magnetic material along a geometric circle defined by the middle of the annular magnetic strip projected in the general plane of the coupling element at rest.
Dans le premier mode de réalisation principal, le résonateur est agencé relativement à la structure magnétique de manière qu'une partie d'extrémité active de l'élément de couplage, située du côté de la structure magnétique, est au moins en majeure partie superposée, en projection orthogonale à une surface géométrique générale définie par la piste magnétique annulaire, à cette piste magnétique annulaire durant sensiblement une première alternance dans chaque période d'oscillation de cet élément de couplage et de manière que le trajet de l'élément de couplage magnétique lors de cette première alternance est sensiblement parallèle à ladite surface géométrique générale. Ensuite, la piste magnétique annulaire présente une dimension selon le degré de liberté de l'élément de couplage du résonateur qui est supérieure à la dimension de la partie d'extrémité active de l'élément de couplage selon ce degré de liberté. Pour la comparaison des deux dimensions, on les mesure en projection orthogonale à la surface géométrique générale définie par la piste magnétique annulaire le long d'un axe du degré de liberté passant par le centre de masse de la partie d'extrémité active de l'élément de couplage. Cet axe peut être rectiligne ou curviligne. Le premier matériau magnétique est agencé dans chaque période angulaire de manière que, au moins dans une zone de ce premier matériau magnétique couplée magnétiquement au moins partiellement à la partie d'extrémité active de l'élément de couplage magnétique pour les positions relatives de cet élément de couplage magnétique par rapport à la piste magnétique annulaire correspondant à au moins une partie de la zone d'accumulation d'énergie potentielle magnétique dans cette période angulaire, le premier paramètre physique augmente angulairement de manière progressive ou diminue angulairement de manière progressive. On notera que la sélection entre une augmentation ou une diminution du paramètre physique est effectuée pour que l'énergie potentielle magnétique de l'oscillateur soit angulairement croissante lors de ladite rotation relative; ce qui découle implicitement du fait qu'il est question de zones d'accumulation d'énergie potentielle magnétique.In the first main embodiment, the resonator is arranged relative to the magnetic structure so that an active end portion of the coupling element, located on the magnetic structure side, is at least substantially superimposed, in orthogonal projection to a general geometrical surface defined by the annular magnetic track, to this annular magnetic track during substantially a first alternation in each oscillation period of this coupling element and so that the path of the magnetic coupling element during of this first alternation is substantially parallel to said general geometric surface. Then the annular magnetic track has a dimension according to the degree of freedom of the resonator coupling element which is greater than the dimension of the active end portion of the coupling element according to this degree of freedom. For the comparison of the two dimensions, they are measured in projection orthogonal to the general geometrical surface defined by the annular magnetic track along an axis of the degree of freedom passing through the center of mass of the active end portion of the coupling element. This axis can be rectilinear or curvilinear. The first magnetic material is arranged in each angular period so that, at least in a zone of this first magnetic material magnetically coupled at least partially to the active end portion of the magnetic coupling element for the relative positions of this element magnetic coupling with respect to the annular magnetic strip corresponding to at least a portion of the magnetic potential energy accumulation zone in this angular period, the first physical parameter increases gradually angularly or decreases gradually angularly. It will be noted that the selection between an increase or a decrease of the physical parameter is carried out so that the magnetic potential energy of the oscillator is angularly increasing during said relative rotation; this follows implicitly from the fact that it is question of areas of accumulation of potential magnetic energy.
Selon une variante, la variation angulaire susmentionnée du premier paramètre physique est prévue dans une zone du premier matériau magnétique correspondant au moins à la majeure partie de la zone d'accumulation d'énergie potentielle magnétique dans chaque période angulaire. Selon une variante préférée, la variation angulaire du premier paramètre physique est prévue dans une zone du premier matériau magnétique correspondant substantiellement à la totalité de la zone d'accumulation d'énergie potentielle magnétique dans chaque période angulaire. Dans une variante particulière, le premier paramètre physique définit angulairement une fonction monotone croissante, respectivement monotone décroissante.Alternatively, the aforementioned angular variation of the first physical parameter is provided in an area of the first magnetic material corresponding at least to most of the magnetic potential energy storage area in each angular period. According to a preferred variant, the angular variation of the first physical parameter is provided in an area of the first magnetic material substantially corresponding to the totality of the magnetic potential energy accumulation zone in each angular period. In a particular variant, the first physical parameter angularly defines an increasing monotonic function, monotonically decreasing respectively.
Dans le deuxième mode de réalisation principal, la piste magnétique annulaire présente une dimension selon le degré de liberté de l'élément de couplage du résonateur qui est inférieure à la dimension, selon ce degré de liberté, d'une partie d'extrémité active de l'élément de couplage magnétique située du côté de la structure magnétique. Pour la comparaison des deux dimensions, on les mesure en projection orthogonale à la surface géométrique générale définie par la partie d'extrémité active le long d'un axe du degré de liberté passant par le centre de masse de la partie d'extrémité active de l'élément de couplage. Cet axe peut être rectiligne ou curviligne. La surface géométrique générale comprend cet axe du degré de liberté, la partie d'extrémité active s'étendant dans cette surface générale. Ensuite, le résonateur est agencé relativement à la structure magnétique de manière que la partie d'extrémité active est traversée, en projection orthogonale à une surface géométrique générale définie par cette partie d'extrémité active, par un cercle géométrique situé au milieu de la piste magnétique annulaire durant sensiblement une première alternance dans chaque période d'oscillation de l'élément de couplage. Le deuxième matériau magnétique de l'élément de couplage est agencé de manière que, au moins dans une zone de ce deuxième matériau magnétique couplée magnétiquement au moins partiellement à la piste magnétique annulaire pour les positions relatives de cette piste magnétique annulaire par rapport à l'élément de couplage correspondant à au moins une partie de la zone d'accumulation d'énergie potentielle magnétique dans chaque période angulaire de la piste magnétique annulaire , le deuxième paramètre physique augmente angulairement de manière progressive ou diminue angulairement de manière progressive. La sélection entre une augmentation ou une diminution du paramètre physique est effectuée pour que l'énergie potentielle magnétique de l'oscillateur soit angulairement croissante dans les zones d'accumulation d'énergie potentielle magnétique lors de ladite rotation relative; ce qui découle du terme 'accumulation' utilisé.In the second main embodiment, the annular magnetic strip has a dimension according to the degree of freedom of the element of coupling of the resonator which is smaller than the dimension, according to this degree of freedom, of an active end portion of the magnetic coupling element located on the magnetic structure side. For the comparison of the two dimensions, they are measured in orthogonal projection to the general geometrical surface defined by the active end portion along an axis of the degree of freedom passing through the center of mass of the active end portion of the coupling element. This axis can be rectilinear or curvilinear. The general geometric surface comprises this axis of the degree of freedom, the active end portion extending in this general surface. Then, the resonator is arranged relative to the magnetic structure so that the active end portion is traversed, in projection orthogonal to a general geometric surface defined by this active end portion, by a geometric circle located in the middle of the track ring magnet during substantially a first half cycle in each oscillation period of the coupling element. The second magnetic material of the coupling element is arranged such that, at least in a zone of this second magnetic material magnetically coupled at least partially to the annular magnetic track for the relative positions of this annular magnetic strip with respect to the coupling element corresponding to at least a portion of the magnetic potential energy accumulation zone in each angular period of the annular magnetic strip, the second physical parameter increases gradually angularly or decreases gradually angularly. The selection between an increase or a decrease of the physical parameter is carried out so that the magnetic potential energy of the oscillator is angularly increasing in the areas of magnetic potential energy accumulation during said relative rotation; which follows from the term 'accumulation' used.
Selon une variante, la variation angulaire susmentionnée du deuxième paramètre physique est prévue dans une zone du deuxième matériau magnétique couplée magnétiquement à la piste magnétique pour la majeure partie de chaque zone d'accumulation d'énergie potentielle magnétique. Selon une variante préférée, la variation angulaire du deuxième paramètre physique est prévue dans une zone du deuxième matériau magnétique couplée magnétiquement à la piste magnétique pour substantiellement la totalité de chaque zone d'accumulation d'énergie potentielle magnétique. En particulier, le deuxième paramètre physique définit angulairement une fonction monotone croissante, respectivement monotone décroissante.According to one variant, the above-mentioned angular variation of the second physical parameter is provided in an area of the second magnetic material magnetically coupled to the magnetic track for most of each potential magnetic energy storage area. According to a preferred variant, the angular variation of the second physical parameter is provided in an area of the second magnetic material magnetically coupled to the magnetic track for substantially all of each magnetic potential energy accumulation zone. In particular, the second physical parameter angularly defines an increasing monotonous function, monotonically decreasing respectively.
On comprend par matériau magnétique' un matériau ayant une propriété magnétique générant un champ magnétique externe (aimant) ou un bon conducteur du flux magnétique qui est attiré par un aimant (en particulier un matériau ferromagnétique).By magnetic material is meant a material having a magnetic property generating an external magnetic field (magnet) or a good conductor of the magnetic flux which is attracted by a magnet (in particular a ferromagnetic material).
Selon une variante de réalisation préférée des deux modes de réalisation principaux, l'énergie potentielle magnétique dans chaque zone d'accumulation ne présente sensiblement aucune variation selon le degré de liberté du mode de résonnance utile du résonateur. En particulier, la variation du paramètre physique considéré est seulement angulaire, c'est-à-dire que ce paramètre physique est sensiblement constant selon une direction radiale, dans chaque zone dudit premier matériau magnétique correspondant à une zone d'accumulation d'énergie potentielle magnétique dans l'oscillateur. On a ainsi sensiblement une pure accumulation d'énergie potentielle magnétique dans ces zones utiles d'accumulation.According to a preferred embodiment of the two main embodiments, the magnetic potential energy in each accumulation zone has substantially no variation depending on the degree of freedom of the resonator useful resonance mode. In particular, the variation of the physical parameter considered is only angular, that is to say that this physical parameter is substantially constant in a radial direction, in each zone of said first magnetic material corresponding to a potential energy accumulation zone. magnetic in the oscillator. Thus, there is substantially a pure accumulation of magnetic potential energy in these useful areas of accumulation.
Selon une variante particulière de l'invention, l'augmentation ou la diminution progressive du premier paramètre physique du premier matériau magnétique, respectivement deuxième paramètre physique du deuxième matériau magnétique s'étend sur une distance angulaire supérieure à vingt pourcents (20%) de la période angulaire de la piste magnétique annulaire. Selon une autre variante particulière, le rapport entre la distance angulaire de la variation du premier paramètre physique, respectivement deuxième paramètre physique et la période angulaire est supérieur ou sensiblement égal à quarante pourcents (40%).According to a particular variant of the invention, the progressive increase or decrease of the first physical parameter of the first magnetic material, respectively the second physical parameter of the second magnetic material, extends over an angular distance greater than twenty percent (20%) of the angular period of the annular magnetic track. According to another particular variant, the ratio between the angular distance of the variation of the first physical parameter, respectively second physical parameter and the angular period is greater than or substantially equal to forty percent (40%).
D'autres caractéristiques particulières de l'invention font l'objet de revendications dépendantes et seront exposées ci-après dans la description détaillée de l'invention.Other particular features of the invention are the subject of dependent claims and will be described below in the detailed description of the invention.
L'invention sera décrite ci-après à l'aide de dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :
- La
Figure 1 , déjà décrite, est une vue schématique de dessus d'un dispositif régulateur correspondant à l'art antérieur; - Les
Figures 2 et 3 , déjà décrites, représentent l'énergie potentielle magnétique du dispositif régulateur de laFigure 1 et les tracés correspondant à deux oscillations du résonateur; - La
Figure 4 , déjà décrite, montre l'erreur relative de pulsation en fonction du couple relatif appliqué à l'oscillateur de laFigure 1 ; - La
Figure 5 est une vue schématique de dessus d'un premier mode de réalisation du dispositif régulateur selon l'invention; - Les
Figures 6A et 6B sont des coupes angulaires respectivement le long des deux pistes annulaires définies par la structure magnétique; - Les
Figures 7 et 8 représentent l'énergie potentielle magnétique du dispositif régulateur de laFigure 5 et les tracés correspondant à deux oscillations du résonateur; - Les
Figures 9A et 9B montrent les profils de l'énergie potentielle magnétique respectivement le long du milieu des deux pistes annulaires définies par la structure magnétique, et laFigure 9C donne le profil transversal de cette énergie potentielle magnétique; - La
Figure 10 montre l'erreur relative de pulsation en fonction du couple relatif appliqué à l'oscillateur de laFigure 5 ; - La
Figure 11 est une vue partielle de dessus et schématique d'un deuxième mode de réalisation d'un dispositif régulateur selon l'invention; - La
Figure 12 donne la différence d'énergie potentielle magnétique pour l'ensemble des oscillations lors du passage de l'élément de couplage magnétique au travers d'une zone d'impulsion définie par la structure magnétique du dispositif régulateur de laFigure 11 ; - Les
Figures 13, 14 et15 représentent schématiquement trois variantes de profil du matériau magnétique le long d'une piste annulaire de la structure magnétique d'un dispositif régulateur selon l'invention; - Les
Figures 16 sont respectivement une vue schématique de dessus et une coupe transversale partielle d'un troisième mode de réalisation de l'invention;et 17 - Les
Figures 18 montrent en coupe deux variantes de réalisation du dispositif régulateur selon l'invention;et 19 - Les
Figures 20 et21 montrent en coupe deux autres variantes de réalisation du dispositif régulateur selon l'invention dans lesquelles la structure magnétique présente deux plateaux superposés entre lesquels passe l'élément de couplage magnétique du résonateur; - La
Figure 22 est une vue schématique de dessus d'un quatrième mode de réalisation d'un dispositif régulateur selon l'invention; - La
Figure 23 est une vue schématique de dessus d'une variante du quatrième mode de réalisation d'un dispositif régulateur selon l'invention; - Les
Figures 24 et 25 montrent schématiquement des cinquième et sixième modes de réalisation de l'invention; - La
Figure 26 est une vue schématique de dessus d'un septième mode de réalisation comprenant deux résonateurs indépendants; - La
Figure 27 est une vue schématique de dessus d'un huitième mode de réalisation où le résonateur est entraîné en rotation; - Les
Figures 28 sont respectivement une vue schématique de dessus et une coupe transversale d'un neuvième mode de réalisation de l'invention; etet 29 - La
Figure 30 est une vue schématique de dessus d'un dixième mode de réalisation d'un dispositif régulateur selon l'invention incorporé dans un mouvement horloger. - La
Figure 31 est une première variante du dispositif régulateur de laFigure 22 ; - La
Figure 32 est une deuxième variante du dispositif régulateur de laFigure 22 ; - La
Figure 33 est une variante du dispositif régulateur de laFigure 23 ; - La
Figure 34 est une vue schématique d'un onzième mode de réalisation dans lequel l'élément de couplage du résonateur est étendu radialement alors que la piste magnétique annulaire présente une faible largeur; - La
Figure 35 est une vue schématique d'un douzième mode de réalisation de l'invention; - La
Figure 36 est une coupe schématique de laFigure 35 selon la ligne définie par le cercle 312; - La
Figure 37 est une variante de réalisation de laFigure 36 ; - La
Figure 38 est une vue schématique d'un treizième mode de réalisation de l'invention, laFigure 38A étant une coupe transversale selon la ligne X-X; - La
Figure 39 est une vue schématique d'un quatorzième mode de réalisation de l'invention; et - La
Figure 40 est une vue schématique d'un quinzième mode de réalisation de l'invention.
- The
Figure 1 , already described, is a schematic view from above of a regulating device corresponding to the prior art; - The
Figures 2 and3 , already described, represent the magnetic potential energy of the regulating device of theFigure 1 and the plots corresponding to two oscillations of the resonator; - The
Figure 4 , already described, shows the relative pulse error as a function of the relative torque applied to the oscillator of theFigure 1 ; - The
Figure 5 is a diagrammatic view from above of a first embodiment of the regulating device according to the invention; - The
Figures 6A and 6B are angular sections respectively along the two annular tracks defined by the magnetic structure; - The
Figures 7 and8 represent the magnetic potential energy of the regulating device of theFigure 5 and the plots corresponding to two oscillations of the resonator; - The
Figures 9A and 9B show the profiles of the magnetic potential energy respectively along the middle of the two annular tracks defined by the magnetic structure, and theFigure 9C gives the transversal profile of this potential magnetic energy; - The
Figure 10 shows the relative pulse error as a function of the relative torque applied to the oscillator of theFigure 5 ; - The
Figure 11 is a partial top view and schematic of a second embodiment of a regulating device according to the invention; - The
Figure 12 gives the difference of magnetic potential energy for all the oscillations during the passage of the magnetic coupling element through a pulse zone defined by the magnetic structure of the regulating device of theFigure 11 ; - The
Figures 13, 14 and15 schematically represent three profile variants of the magnetic material along an annular track of the magnetic structure of a regulating device according to the invention; - The
Figures 16 and 17 are respectively a schematic top view and a partial cross section of a third embodiment of the invention; - The
Figures 18 and 19 show in section two embodiments of the regulator device according to the invention; - The
Figures 20 and21 show in section two other embodiments of the regulator device according to the invention in which the magnetic structure has two superimposed trays between which passes the magnetic coupling element of the resonator; - The
Figure 22 is a schematic view from above of a fourth embodiment of a regulating device according to the invention; - The
Figure 23 is a schematic top view of a variant of the fourth embodiment of a regulating device according to the invention; - The
Figures 24 and25 schematically show fifth and sixth embodiments of the invention; - The
Figure 26 is a schematic top view of a seventh embodiment comprising two independent resonators; - The
Figure 27 is a diagrammatic view from above of an eighth embodiment in which the resonator is rotated; - The
Figures 28 and 29 are respectively a schematic view from above and a cross section of a ninth embodiment of the invention; and - The
Figure 30 is a schematic view from above of a tenth embodiment of a regulating device according to the invention incorporated in a watch movement. - The
Figure 31 is a first variant of the regulating device of theFigure 22 ; - The
Figure 32 is a second variant of the regulating device of theFigure 22 ; - The
Figure 33 is a variant of the regulating device of theFigure 23 ; - The
Figure 34 is a schematic view of an eleventh embodiment in which the resonator coupling element is radially extended while the annular magnetic strip has a small width; - The
Figure 35 is a schematic view of a twelfth embodiment of the invention; - The
Figure 36 is a schematic section of theFigure 35 along the line defined bycircle 312; - The
Figure 37 is an alternative embodiment of theFigure 36 ; - The
Figure 38 is a schematic view of a thirteenth embodiment of the invention, theFigure 38A being a cross section along the line XX; - The
Figure 39 is a schematic view of a fourteenth embodiment of the invention; and - The
Figure 40 is a schematic view of a fifteenth embodiment of the invention.
A l'aide des
Le résonateur comprend un organe ou élément de couplage magnétique à la structure magnétique 44. Cet organe ou élément de couplage est formé ici par un aimant 50 qui est cylindrique ou ayant une forme de parallélépipède rectangle. En outre, ce résonateur est représenté symboliquement par un ressort 47, correspondant à sa capacité de déformation élastique définie par une constante élastique, et par une inertie 48 définie par sa masse et sa structure. L'aimant 50 est positionné relativement à la structure magnétique de manière que dans sa position de repos, correspondant ici à une énergie de déformation élastique minimale du résonateur, le centre de masse de la partie d'extrémité active de l'élément de couplage en regard de la structure magnétique est sensiblement situé sur un cercle de position zéro 20 pour toute position angulaire θ de la structure magnétique relativement à l'aimant. Par partie d'extrémité active, on comprend la partie d'extrémité de l'élément de couplage, située du côté de la structure magnétique considérée, au travers de laquelle passe l'essentiel du flux magnétique de couplage entre cet élément de couplage et la structure magnétique. Le cercle de position zéro est centré sur l'axe de rotation 51 et a un rayon correspondant sensiblement au rayon intérieur de la première piste annulaire et au rayon extérieur de la deuxième piste annulaire, ces rayons intérieur et extérieur étant ici confondus. En d'autres termes, le cercle de position zéro 20 est situé sensiblement sur le cercle géométrique défini par l'interface entre ces deux pistes magnétiques coaxiales et contiguës, c'est-à-dire que ce cercle géométrique correspond à une projection du cercle de position zéro sur le plan général de la structure magnétique. Dans une variante, les deux pistes magnétiques sont distantes et séparées par une zone intermédiaire formée entièrement par un même milieu. Dans ce dernier cas, la projection orthogonale du cercle de position zéro est située entre ces deux pistes magnétiques sensiblement au milieu de la zone intermédiaire. Une telle zone intermédiaire, que l'on conservera de petite largeur pour diverses raisons, peut être utile pour assurer un démarrage aisé de l'oscillateur. Une première raison est relative à la faible dimension prévue pour l'élément de couplage selon son degré de liberté et radialement relativement à l'axe de rotation, étant donné qu'il faut éviter que l'oscillateur tourne 'à vide' avec l'élément de couplage restant sensiblement sur le cercle de position zéro. Une autre raison apparaîtra par la suite : Il s'agit d'obtenir des impulsions localisées qui sont proches et de préférence centrées sur le cercle de position zéro.The resonator comprises a member or magnetic coupling member to the
Aux
Dans les secteurs annulaires 56, l'épaisseur diminue environ de l'épaisseur maximale à une épaisseur quasi nulle sur une distance VP; mais d'autres variantes sont possibles comme ceci sera exposé par la suite. La variation d'épaisseur engendre une variation de l'entrefer moyen pour le champ magnétique couplé entre l'aimant 50 et le matériau magnétique 45, formé d'un matériau à haute perméabilité magnétique ou d'un matériau aimanté agencé en attraction relativement à l'aimant 50. Cet entrefer moyen augmente progressivement, dans le sens contraire au sens de rotation de la structure magnétique 44 relativement à l'aimant 50, sur une certaine plage angulaire correspondant sensiblement à la distance angulaire de chaque secteur annulaire 56. Pour éviter un problème de clarté lié au moyennage provenant de l'étendue non nulle de l'élément de couplage 50 et de l'entrefer, ce moyennage engendrant aussi une variation de l'entrefer moyen, on parlera dans le cadre de la présente invention d'une variation de l'entrefer, le long d'un axe perpendiculaire au plan général de la piste magnétique en question, entre le centre de masse de la partie d'extrémité active de l'organe de couplage et la piste magnétique. Sur les
On remarquera que selon d'autres variantes non représentées, la structure magnétique peut être agencée de manière à ne varier que l'un ou l'autre des deux paramètres physiques mentionnés, à savoir l'entrefer entre l'élément de couplage magnétique du résonateur et la structure magnétique ou l'épaisseur de cette structure magnétique. On notera que dans le cas où seule l'épaisseur est variée, par exemple en effectuant une symétrie planaire de la structure magnétique 44 (ce qui correspond à la retourner sans varier la position de l'aimant 50), la variation de l'énergie potentielle magnétique corrélée seulement à l'épaisseur trouve une application particulière avec une matière aimantée, car l'intensité du flux d'aimant peut varier aisément en fonction de l'épaisseur de cette matière aimantée. Comme l'élément de couplage a une certaine étendue, on définit cette épaisseur comme l'épaisseur de la piste magnétique en question le long d'un axe perpendiculaire au plan général de cette piste magnétique et passant par le centre de masse de la partie d'extrémité active de l'organe de couplage. Dans le cas d'un matériau à haute perméabilité magnétique, la seule variation de l'épaisseur est plus limitée. En effet, il faut alors que la plage d'épaisseurs considérée corresponde à une situation où il y a saturation pour le flux d'aimant au moins dans une partie de la section variable du matériau magnétique traversé par ce flux d'aimant. Dans le cas contraire, la variation d'épaisseur n'aura pas d'effet significatif sur l'énergie potentielle magnétique de l'oscillateur.It will be noted that according to other variants not shown, the magnetic structure can be arranged to vary only one or other of the two physical parameters mentioned, namely the gap between the magnetic coupling element of the resonator and the magnetic structure or thickness of this magnetic structure. Note that in the case where only the thickness is varied, for example by performing a planar symmetry of the magnetic structure 44 (which corresponds to the return without varying the position of the magnet 50), the variation of the energy magnetic potential correlated only to the thickness finds a particular application with a magnetized material, because the intensity of the magnet flux can vary easily depending on the thickness of this magnetized material. Since the coupling element has a certain extent, this thickness is defined as the thickness of the magnetic strip in question along an axis perpendicular to the general plane of this magnetic strip and passing through the center of mass of the active end portion of the coupling member. In the case of a material with high magnetic permeability, the only variation of the thickness is more limited. Indeed, it is then necessary that the range of thicknesses considered corresponds to a situation where there is saturation for the magnet flux at least in a portion of the variable section of the magnetic material traversed by this magnet flux. In the opposite case, the thickness variation will not have a significant effect on the magnetic potential energy of the oscillator.
L'aimant 50 est couplé aux première et deuxième pistes annulaires de manière qu'une oscillation 71, respectivement 72 (
Aux
Les
Dans la plage utile du couple moteur appliqué au rotor supportant la structure magnétique 44, chaque piste magnétique annulaire 52, 53 comprend, dans chaque période angulaire Pθ, une zone utile d'accumulation d'énergie potentielle magnétique 63, respectivement 65 dans l'oscillateur. Ces zones 63 et 65 sont respectivement situées sensiblement dans une première zone annulaire d'accumulation d'énergie Z1ac et une deuxième zone annulaire d'accumulation d'énergie Z2ac. Par zone utile d'accumulation, on comprend généralement une zone balayée par le champ magnétique de l'aimant 50 qui oscille avec diverses amplitudes dans toute la plage d'amplitudes prévue (correspondant à la plage utile du couple moteur) et dans laquelle l'oscillateur essentiellement accumule une énergie potentielle magnétique EPm à transmettre ensuite au résonateur. Cette zone est ainsi délimitée par l'amplitude minimale d'oscillation de l'élément de couplage du résonateur, correspondant au couple utile minimum, et l'amplitude maximale d'oscillation de celui-ci correspondant au couple utile maximum. Selon une variante de réalisation préférée, montrée à la
Les première et deuxième zones annulaires Z1ac et Z2ac sont séparées par une zone centrale d'impulsions ZCimp définie par des zones d'impulsion 68 et 69 dans lesquelles sont respectivement effectués des transferts d'énergie au résonateur en fonction du couple moteur, comme exposé précédemment en relation avec l'art antérieur. Chaque zone d'impulsion 68, 69 est définie par une zone balayée par le champ magnétique de l'aimant 50 pour diverses amplitudes d'oscillation entre l'amplitude minimale et l'amplitude maximale susmentionnées. La zone centrale d'impulsions comprend le cercle de position zéro 20 situé sensiblement au milieu de cette zone centrale d'impulsions. Le cercle de position zéro est défini comme le cercle décrit par le point de repère de l'organe de couplage dans sa position de repos (point de repère utilisé pour établir les courbes équipotentielles dans l'espace de l'énergie potentielle magnétique en fonction des coordonnées polaires du rotor / structure magnétique) en se plaçant sur la structure magnétique lors d'une rotation relative entre le résonateur et la structure magnétique. De préférence, l'organe de couplage du résonateur est agencé radialement relativement à l'axe de rotation pour que ce cercle de position zéro passe sensiblement au milieu de toutes les zones d'impulsions associées à cet élément de couplage. Le cercle Y définit l'interface entre la zone Z1ac et la zone ZCimp. Ce cercle Y est centré sur l'axe de rotation de la structure magnétique 44 et il a un rayon RY.The first and second annular zones Z1 ac and Z2 ac are separated by a central pulse zone ZC imp defined by
A la
L'énergie transmise au résonateur lors du passage au travers d'une zone d'impulsion correspond sensiblement à la différence d'énergie potentielle ΔEPm entre le point d'entrée EPIN 1, EPIN 2 de l'élément de couplage magnétique oscillant dans cette zone d'impulsion et le point de sortie EPOUT 1, EPOUT 2 de cet organe oscillant hors de cette zone d'impulsion. Etant donné que toutes les zones d'énergie potentielle inférieure 62 et 64 ont ici sensiblement une même valeur constante et que toutes les oscillations dans la plage utile du couple moteur passent d'une zone utile d'accumulation 63 ou 65 à une zone d'énergie potentielle inférieure, l'énergie transmise au résonateur lors du passage au travers d'une zone d'impulsion correspond sensiblement à la différence d'énergie potentielle ΔEPm (
On notera premièrement que, dans des variantes envisageables, la rampe d'énergie potentielle magnétique croissante peut ne pas être linéaire, mais par exemple quadratique ou présenter plusieurs segments avec différentes pentes. Ensuite, les plateaux d'énergie potentielle inférieure 62, respectivement 64, peuvent présenter d'autres profils d'énergie potentielle. Ainsi, par exemple, il est prévu dans une variante particulière un profil angulaire de l'énergie potentielle magnétique définissant une alternance de rampes montantes (rampes de freinage / zones d'accumulation d'énergie potentielle) et de rampes descendantes. Ces rampes descendantes peuvent s'étendre sur une demi-période angulaire ou moins et finir alors par un petit plateau inférieure. Elles peuvent être linéaires ou présenter un autre profil. De même, il est clair que les rampes montantes peuvent s'étendre sur une distance angulaire différente d'une demi-période angulaire, notamment inférieure mais également supérieure. Il n'y a pas d'autres limitations à ce sujet dans le cadre de la présente invention que l'entretien d'un mode de résonance utile du résonateur, et donc de la présence pour ce mode de résonance de zones d'impulsion de longueur angulaire non nulle, c'est-à-dire de zones de passage pour l'organe de couplage oscillant, à proximité du cercle de position zéro, entre une zone utile d'accumulation d'un côté de ce cercle et une zone de réception de l'autre côté de ce cercle, ces deux zones étant configurées de manière que la différence d'énergie potentielle ΔEPm soit positive pour l'organe de couplage oscillant dans la plage de couple utile entre chaque zone utile d'accumulation et la zone de réception correspondante.It will first be noted that, in possible variants, the ramp of increasing magnetic potential energy may not be linear, but for example quadratic or have several segments with different slopes. Then, the lower
Le matériau magnétique 45 de la structure magnétique 44, dans chaque période angulaire, est donc agencé de manière que, au moins dans une zone de ce matériau magnétique correspondant à la zone utile d'accumulation d'énergie potentielle magnétique dans cette période angulaire, le paramètre physique considéré de ce matériau magnétique augmente angulairement de manière progressive ou diminue angulairement de manière progressive de sorte que l'énergie potentielle magnétique EPm de l'oscillateur, dans chaque zone utile d'accumulation, soit angulairement croissante lors d'une rotation de la structure magnétique relativement à l'élément de couplage magnétique. Ensuite, pour le mode de réalisation considéré ici et pour n'importe quel couple moteur de la plage utile du couple moteur, l'élément de couplage magnétique passe, dans chaque demi-période de l'oscillation du résonateur, d'une zone utile d'accumulation de la première piste annulaire, respectivement de la deuxième piste annulaire à une zone d'énergie potentielle inférieure ou minimale en traversant une des zones d'impulsion. La structure magnétique est ainsi agencée de manière que la différence d'énergie potentielle magnétique de l'oscillateur entre l'entrée de l'élément de couplage dans une zone d'impulsion et la sortie de cet élément de couplage de cette zone d'impulsion soit positive pour n'importe quel couple moteur de la plage utile.The
En observant les différences entre la
De manière générale, la structure magnétique est agencée de manière que le gradient angulaire moyen de l'énergie potentielle magnétique de l'oscillateur dans les zones d'accumulation d'énergie potentielle magnétique est inférieur au gradient moyen de cette énergie potentielle magnétique dans les zones d'impulsion selon le degré de liberté de l'élément de couplage du résonateur et dans une même unité. Dans une variante particulière, le rapport du gradient angulaire moyen et du gradient moyen selon le degré de liberté est inférieur à soixante pourcent (60%). Dans une variante préférée, le rapport du gradient angulaire moyen et du gradient moyen selon le degré de liberté est inférieur ou sensiblement égal à quarante pourcent (40%).In general, the magnetic structure is arranged so that the average angular gradient of the magnetic potential energy of the oscillator in the areas of magnetic potential energy accumulation is lower than the average gradient of this magnetic potential energy in the zones. pulse according to the degree of freedom of the coupling element of the resonator and in the same unit. In particular variant, the ratio of the average angular gradient and the average gradient depending on the degree of freedom is less than sixty percent (60%). In a preferred variant, the ratio of the average angular gradient and the average gradient according to the degree of freedom is less than or substantially equal to forty percent (40%).
On remarquera ensuite qu'à la
Aux
Ce qui est remarquable dans la présente invention, c'est que l'absence de l'effet du moyennage n'a plus pour conséquence d'engendrer un oscillateur non fonctionnel, car la distance angulaire sur laquelle s'étend chaque plage d'accumulation d'énergie potentielle magnétique n'est plus déterminée par un moyennage, mais par le fait que le paramètre physique considéré du matériau magnétique 45, dans chaque zone de ce matériau magnétique correspondant à une zone utile d'accumulation de EPm, augmente angulairement de manière progressive ou diminue angulairement de manière progressive de sorte que l'énergie potentielle magnétique de l'oscillateur soit angulairement croissante dans le sens contraire au sens de rotation de la structure magnétique relativement à l'élément de couplage magnétique. On obtient ainsi une augmentation de EPm contrôlée et répartie sur une certaine distance dans les phases d'accumulation d'énergie potentielle magnétique; ce qui est important pour éviter que l'oscillateur décroche dès que le couple moteur est relativement élevé et pour avoir une plage de fonctionnement relativement grande sans dérive de la synchronisation.What is remarkable in the present invention is that the absence of the effect of averaging no longer has the consequence of generating a non-functional oscillator, since the angular distance over which each accumulation range extends of magnetic potential energy is no longer determined by averaging, but by the fact that the physical parameter considered of the
Grâce aux caractéristiques de l'invention, il y a essentiellement une indépendance entre la largeur d'une zone d'impulsion et la distance angulaire d'une zone utile d'accumulation de EPm. Ainsi, les impulsions fournies au résonateur peuvent être localisées proches de la position zéro de l'élément de couplage magnétique, alors que les zones utiles d'accumulation peuvent être plus étendues grâce à un gradient angulaire de l'énergie potentielle moins important et donc une pente plus douce dans l'augmentation de l'énergie potentielle en fonction de l'angle θ. Les impulsions localisées autour de la position zéro du résonateur améliorent fortement l'isochronisme, alors qu'une plage angulaire θZU relativement étendue pour la zone d'accumulation de l'énergie fournie par le couple moteur permet d'avoir une plage utile de ce couple moteur plus étendue et donc une plage de fonctionnement plus grande. On remarquera que la localisation des impulsions est d'autant meilleure que la dimension radiale de l'organe de couplage est petite.Thanks to the characteristics of the invention, there is essentially an independence between the width of a pulse zone and the angular distance of a useful EP m accumulation zone. Thus, the pulses supplied to the resonator may be located near the zero position of the magnetic coupling element, while the useful zones accumulation can be more extensive thanks to a smaller angular gradient of potential energy and therefore a softer slope in the increase of potential energy as a function of the angle θ. The localized pulses around the zero position of the resonator greatly improve the isochronism, while a relatively wide angular range θ ZU for the energy accumulation zone provided by the motor torque makes it possible to have a useful range of larger engine torque and therefore a larger operating range. It will be noted that the location of the pulses is all the better that the radial dimension of the coupling member is small.
Les bénéfices de l'invention apparaissent à la
Selon une première variante de réalisation, le rapport entre la dimension radiale (largeur Z0) des zones d'impulsion et la dimension radiale (Z1, respectivement Z2) des zones utiles d'accumulation est inférieur ou sensiblement égal à cinquante pourcents (50%). Par dimension radiale d'une zone utile d'accumulation, on comprend l'amplitude maximale Amax de l'oscillation de l'élément de couplage magnétique, sur une alternance pour le couple moteur utile maximum, diminuée de la demi-largeur des zones d'impulsion, soit sensiblement Z2=Z1=(Amax-Z0/2). Le rapport ci-dessus peut également être défini par d'autres paramètres du dispositif régulateur, par exemple par Z0/2Amax où 2Amax est égal à la distance Rmax-Rmin (distance pic-pic sur une période) définie par l'oscillation d'amplitude maximale en projection dans le plan général de la structure magnétique annulaire (voir
Selon une troisième variante de réalisation, l'augmentation ou la diminution progressive du paramètre physique du matériau magnétique dans chaque zone utile d'accumulation de l'énergie potentielle magnétique s'étend sur une distance angulaire (considérée ici comme un angle en radian) supérieure à vingt pourcents (20%) de la période angulaire (Pθ en radian) d'une piste annulaire de la structure magnétique. Selon une quatrième variante préférée, le rapport de la distance angulaire de la variation du paramètre physique et de la période angulaire est supérieur ou sensiblement égal à quarante pourcents (40%).According to a third variant embodiment, the progressive increase or decrease of the physical parameter of the magnetic material in each useful zone of accumulation of the magnetic potential energy extends over an angular distance (considered here as an angle in radian) greater at twenty percent (20%) of the angular period (P θ in radians) of an annular track of the magnetic structure. According to a fourth preferred variant, the ratio of the angular distance of the variation of the physical parameter and the angular period is greater than or substantially equal to forty percent (40%).
A l'aide des
Dans le deuxième mode de réalisation, on a en principe les mêmes bénéfices de l'invention que ceux mentionnés précédemment en relation avec le premier mode de réalisation. Toutefois, une seule impulsion par période angulaire Pθ de la piste 88 est donnée au résonateur, et ceci toujours dans le même sens lorsque l'élément de couplage magnétique oscillant 50 passe de la piste annulaire 88 à la piste annulaire uniforme 90. L'alternance de l'oscillation au-dessus de la piste 90 est effectuée sans variation de l'interaction entre le résonateur et la structure magnétique, de sorte que cette alternance est libre. A la
On remarquera que dans les deux modes de réalisation décrits précédemment, la dimension radiale de chaque piste magnétique annulaire, et donc la dimension selon le degré de liberté du résonateur, est étendue alors que la dimension de chaque organe de couplage du résonateur est réduite radialement relativement à l'axe de rotation de la structure magnétique. Dans ces deux modes de réalisation, la dimension radiale des secteurs annulaires magnétiques de la structure magnétique est supérieure à celle de chaque élément de couplage du résonateur. En particulier, la dimension radiale des secteurs annulaires magnétiques est choisie de manière que l'organe de couplage soit entièrement superposé à la piste magnétique considérée pour une amplitude maximale dans l'alternance où cet organe de couplage est couplé à cette piste magnétique. Dans une variante préférée avec des zones de pure accumulation d'énergie potentielle magnétique, il est prévu que l'organe de couplage reste dans une zone où le gradient de potentiel est perpendiculaire au degré de liberté du résonateur dans toute la plage de couple utile, c'est-à-dire pour toutes les amplitudes d'oscillation que l'organe de couplage peut présenter jusqu'à son amplitude maximale.It will be noted that in the two embodiments described above, the radial dimension of each annular magnetic strip, and therefore the dimension according to the degree of freedom of the resonator, is extended. while the dimension of each coupling member of the resonator is reduced radially relative to the axis of rotation of the magnetic structure. In these two embodiments, the radial dimension of the magnetic annular sectors of the magnetic structure is greater than that of each coupling element of the resonator. In particular, the radial dimension of the annular magnetic sectors is chosen so that the coupling member is entirely superimposed on the magnetic track considered for a maximum amplitude in the alternation where this coupling member is coupled to this magnetic track. In a preferred variant with areas of pure magnetic potential energy accumulation, it is expected that the coupling member remains in an area where the potential gradient is perpendicular to the degree of freedom of the resonator throughout the useful torque range, that is to say for all oscillation amplitudes that the coupling member can present up to its maximum amplitude.
Aux
La piste annulaire 102 de la variante de la
La piste annulaire 106 de la
Aux
De manière à obtenir, selon une variante préférée de l'invention, un gradient de l'énergie potentielle magnétique EPm sensiblement nul selon le degré de liberté 123 du résonateur 116 dans les zones utiles d'accumulation, il est prévu dans ce troisième mode de réalisation que le paramètre physique de la matière magnétique 45 corrélé à EPm soit sensiblement constant selon des arcs de cercle correspondant au cercle 123. En d'autres termes, pour toute position angulaire θ de la structure magnétique 114, le paramètre physique considéré est invariant sur le chemin effectué par le centre de masse des parties d'extrémité des aimants 126 et 127 en projection dans le plan général de la structure magnétique. Ceci est en particulier prévu dans les secteurs 56D et 57D où le paramètre physique varie angulairement pour définir les zones utiles d'accumulation d'énergie potentielle. Ainsi, les secteurs annulaires 54D et 56D, respectivement 55D et 57D formant les deux pistes annulaires de la structure magnétique ont une forme légèrement arquée. Les diverses variantes mentionnées pour le premier mode de réalisation s'appliquent aussi à ce troisième mode de réalisation. La variante représentée ici est celle d'un escalier de plusieurs marches dans les secteurs 56D et 57D.In order to obtain, according to a preferred variant of the invention, a gradient of the magnetic potential energy EP m substantially zero depending on the degree of
A l'aide des
A la
A la
A la
A la
Le résonateur 158 est du type balancier-spiral avec un balancier rigide 160 associé à un ressort-spiral 162. Le balancier peut prendre diverses formes, notamment circulaire comme dans un mouvement horloger classique. Le balancier pivote autour d'un axe 163 et il comprend deux organes de couplage magnétique 164 et 165 (aimants de section carrée) qui sont décalés angulairement relativement à l'axe de rotation 51 de la structure magnétique 154. Ce décalage angulaire des deux aimants 164 et 165 et leur positionnement relativement à la structure 154 sont prévus pour que le cercle de position zéro 20 des deux aimants du résonateur (situation où ce dernier est au repos et donc non excité) soit superposé au cercle extérieur (variante représentée) ou au cercle intérieur de la piste annulaire 156 et qu'ils présentent alors un décalage angulaire θD égal à un nombre entier de période angulaire Pθ augmenté d'une demi-période. Ainsi ces deux aimants présentent un déphasage de π. De préférence, l'axe de rotation 163 du balancier est positionné à l'intersection des deux tangentes au cercle de position zéro 20 respectivement aux deux points définis par les deux organes de couplage 164 et 165 sur le cercle de position zéro. On notera qu'il est préférable que le balancier soit équilibré, plus précisément que son centre de masse se trouve sur l'axe du balancier. L'homme du métier saura facilement configurer des balanciers de diverses formes présentant cette caractéristique importante. On comprendra donc que les diverses variantes représentées aux figures sont schématiques et la problématique liée à l'inertie du résonateur n'est pas traitée concrètement sur ces figures, lesquelles présentent les différentes caractéristiques de l'invention. De plus, des agencements garantissant une résultante nulle des forces magnétiques agissant radialement et axialement sur l'axe du balancier sont préférés. On notera, que dans une variante, il est prévu un balancier à lames flexibles définissant un axe de rotation fictif, c'est-à-dire sans pivotement, en lieu et place du balancier-spiral.The
On remarquera que, grâce à la présence des deux organes de couplage magnétique, le résonateur 158 est continument couplé magnétiquement à la piste annulaire 156 par l'un ou l'autre de ces deux organes. Dans chaque période de l'oscillation du balancier, ce dernier reçoit deux impulsions. Le phénomène physique engendrant ces impulsions est le même que celui décrit précédemment en prenant en considération les deux aimants et la piste annulaire. En effet, lorsqu'un aimant gravit une rampe d'énergie potentielle dans un secteur annulaire 56 et qu'il revient en direction du cercle 20, l'autre aimant arrive au-dessus d'un secteur annulaire 54 dont l'énergie potentielle est minimale. C'est donc l'effet combiné des deux interactions qui intervient dans ce mode de réalisation. Dans une variante de réalisation, un simple anneau en matériau à haute perméabilité magnétique, de manière similaire au deuxième mode de réalisation, est prévu à l'extérieur de la piste annulaire 156, adjacent à cette dernière. Ce simple anneau définit donc une même énergie potentielle inférieure sur toute sa surface pour l'oscillateur. Ainsi, cet anneau peut être solidaire de la structure magnétique 154 ou agencé fixe relativement au résonateur 158. Dans ce dernier cas, deux plaquettes ferromagnétiques agencées respectivement selon les deux directions radiales des deux aimants du résonateur relativement à l'axe 51 suffissent à la fonction.It will be noted that, thanks to the presence of the two magnetic coupling members, the
A la
La
La
La
A la
Le deuxième aspect particulier de ce mode de réalisation provient du fait que l'oscillation n'est pas radiale, relativement à l'axe de rotation 51A du rotor 202, lorsque l'aimant 177, respectivement 178 intercepte le cercle de position zéro 20. Comme dans plusieurs modes de réalisation décrits précédemment, le degré de liberté de l'élément de couplage de chaque résonateur se trouve sensiblement sur un cercle dont de rayon est ici sensiblement égal à la longueur L de la tige élastique de ce résonateur et centré au point d'ancrage de cette tige sur le bras du résonateur. De manière à obtenir, selon une variante préféré de l'invention, un gradient de l'énergie potentielle magnétique EPm sensiblement nul selon le degré de liberté de chaque résonateur (les deux résonateurs présentant une symétrie axiale d'axe géométrique 51A) dans les zones utiles d'accumulation de EPm, il est prévu dans ce mode de réalisation que le paramètre physique de la matière magnétique de la structure magnétique 198 soit sensiblement constant selon des arcs de cercle correspondant au cercle géométrique défini par les éléments de couplage. En d'autres termes, pour toute position angulaire du rotor 202, le paramètre physique considéré est invariant sur le chemin effectué par les aimants 177 et 178 en projection dans le plan général de la structure magnétique fixe. Ceci est en particulier prévu dans les secteurs 56E et 57E où le paramètre physique varie pour définir les zones utiles d'accumulation de EPm. On remarquera que les secteurs annulaires 54E et 56E, respectivement 55E et 57E formant les deux pistes annulaires de la structure magnétique ont une forme arquée, l'alternance des secteurs de la piste annulaire intérieure étant légèrement décalés angulairement par rapport aux secteurs de la piste annulaire extérieure.The second particular aspect of this embodiment arises from the fact that the oscillation is not radial, relative to the axis of
Aux
A l'aide de la
Les deux mobiles 240 et 242 sont couplés en rotation par une roue d'entraînement 252 solidaire d'un pignon 254 recevant le couple moteur. La roue 252 engrène avec une roue 248 du premier mobile 240 située sous son plateau et entraîne ainsi directement en rotation ce premier mobile dans un sens de rotation déterminé. La roue 252 transmet également le couple moteur au deuxième mobile 242 via une roue intermédiaire 256 qui engrène avec une roue 250 de ce deuxième mobile située sous son plateau. Ainsi, le deuxième mobile tourne dans un sens contraire au premier mobile. Les deux pistes annulaires ont un même diamètre extérieur et les rapports d'engrenage sont prévus pour que la vitesse angulaire des deux mobiles soit identique. Dans une variante, les deux mobiles peuvent être couplés directement l'un à l'autre par un engrenage, au moins un des deux mobiles recevant un couple de force en fonctionnement. Lors du montage du mouvement horloger, on veille à positionner ces deux pistes annulaires pour qu'au point de position zéro de l'aimant elles présentent un déphasage de π (décalage d'une demi-période comme représenté à la
On remarquera que ce dixième mode de réalisation présente l'avantage que les deux pistes magnétiques ont des dimensions identiques tout en étant agencées dans un même plan géométrique. Il en résulte une parfaite symétrie d'interaction magnétique entre le résonateur et la structure magnétique dans les deux alternances de l'oscillation de ce résonateur. Dans une variante particulière, les deux mobiles sont entraînés par deux couples moteur provenant de deux barillets incorporés dans un même mouvement horloger. On remarquera encore que, dans une variante non représentée, le résonateur pourrait porter au moins deux éléments de couplage couplés respectivement avec la première piste et la deuxième piste et placés ailleurs que sur la droite susmentionnée reliant les deux axes de rotation. On veillera alors que le deuxième élément de couplage entre en interaction avec la deuxième piste magnétique lorsque le premier élément de couplage sort de la première piste magnétique et vice versa. Cette dernière variante ouvre plusieurs degrés de liberté supplémentaire dans l'agencement de l'oscillateur et notamment des deux mobiles. On peut par exemple prévoir que les deux pistes magnétiques soient respectivement agencées sur deux plateaux parallèles mais à différents niveaux.It will be noted that this tenth embodiment has the advantage that the two magnetic tracks have identical dimensions while being arranged in the same geometrical plane. This results in a perfect symmetry of magnetic interaction between the resonator and the magnetic structure in the two alternations of the oscillation of this resonator. In a particular variant, the two mobiles are driven by two motor couples from two barrels incorporated in the same watch movement. It will also be noted that, in a variant not shown, the resonator could carry at least two coupling elements respectively coupled with the first track and the second track and placed elsewhere than on the aforementioned line connecting the two axes of rotation. It will then be ensured that the second coupling element interacts with the second magnetic strip when the first coupling element leaves the first magnetic strip and vice versa. This last variant opens several degrees of additional freedom in the arrangement of the oscillator and in particular the two mobiles. For example, it is possible for the two magnetic tracks to be respectively arranged on two parallel plates but at different levels.
A la
A la
En combinant les enseignements tirés des réalisations des
A l'aide des figures suivantes, on décrira par la suite des modes de réalisation présentant une inversion technique relativement aux dispositifs régulateurs déjà décrits. Dans les modes de réalisation précédents, les pistes magnétiques annulaires sont étendues pour couvrir au moins l'amplitude maximale d'oscillation prévue (sur une alternance) alors que les organes de couplage des résonateurs ont une relativement faible dimension selon la direction radiale de pistes magnétiques annulaires associées à ces résonateurs. Il est cependant possible d'obtenir une interaction similaire et les bénéfices de la présente invention en inversant les dimensions des secteurs magnétiques des pistes magnétiques et des organes de couplage des résonateurs.With the aid of the following figures, will be described hereinafter embodiments having a technical inversion relative to the regulating devices already described. In the previous embodiments, the annular magnetic tracks are extended to cover at least the expected maximum amplitude of oscillation (on an alternation) while the coupling members of the resonators have a relatively small dimension in the radial direction of magnetic tracks. rings associated with these resonators. However, it is possible to obtain a similar interaction and the benefits of the present invention by inverting the dimensions of the magnetic sectors of the magnetic tracks and the resonator coupling members.
A la
Le matériau aimanté de l'élément de couplage présente au moins un paramètre physique qui est corrélé à l'énergie potentielle magnétique de l'oscillateur lorsque cet élément de couplage magnétique est couplé magnétiquement à la piste magnétique annulaire 306. De manière générale, le dispositif régulateur selon ce onzième mode de réalisation est caractérisé en ce que, dans la plage utile du couple moteur, la piste magnétique annulaire et l'élément de couplage magnétique définissent dans chaque période angulaire, en fonction de leur position angulaire relative θ et de la position de l'élément de couplage selon son degré de liberté, une zone d'accumulation d'énergie potentielle magnétique dans l'oscillateur ; et en ce que le matériau magnétique de l'élément de couplage est agencé de manière que, au moins dans une zone de ce matériau magnétique couplée à la piste magnétique pour au moins une partie de la zone d'accumulation d'énergie potentielle magnétique de chaque période angulaire, le paramètre physique corrélé à l'énergie potentielle magnétique de l'oscillateur augmente angulairement de manière progressive ou diminue angulairement de manière progressive. La variation positive ou négative du paramètre physique est choisie pour que l'énergie potentielle magnétique de l'oscillateur soit angulairement croissante lors d'une rotation relative entre le résonateur et la structure magnétique sous l'action d'un couple moteur. Selon diverses variantes de réalisation, le paramètre physique en question est notamment un entrefer ou le flux du champ magnétique généré par l'aimant de l'élément de couplage, comme décrit précédemment.The magnetized material of the coupling element has at least one physical parameter which is correlated with the magnetic potential energy of the oscillator when this magnetic coupling element is magnetically coupled to the annular
Un douzième mode de réalisation est représenté schématiquement aux
On notera que les zones magnétiques d'une variante du dispositif régulateur de la
On remarquera que toute réalisation décrite précédemment, avec au moins une piste magnétique étendue radialement et un résonateur comprenant un élément de couplage de faible dimension radiale ou plusieurs tels éléments de couplage décalés d'un nombre entier de périodes angulaires, peut engendrer une réalisation inverse en appliquant pour chaque élément de couplage la présente méthode dans laquelle on transfère selon le cas un seul secteur annulaire (une demi-période magnétique) comme à la
A la
Les
A la
La
On remarquera que l'on obtient la réalisation de la
Finalement, on notera que l'oscillateur 350 peut aussi être obtenu à partir de l'oscillateur de la
Claims (27)
- Device (42; 84; 112; 152; 168; 172; 180; 190; 196; 210; 236; 260; 270; 280) for regulating the relative angular speed (ω) between a magnetic structure (44; 86; 114; 154; 198; 214; 240, 242) and a resonator (46; 116; 117; 119; 148; 158; 158A; 158B; 158C; 174; 182,184; 202; 238) which are magnetically coupled so as to define together an oscillator forming said regulating device, the magnetic structure including at least one annular magnetic path centred on an axis of rotation (51, 51A) of said magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to undergo a rotation of one relative to the other about said axis of rotation when a drive torque is applied to the magnetic structure or to the resonator; the resonator including at least one element for magnetic coupling (50; 126,127; 149; 164,165; 177,178; 230,231) to said annular magnetic path; said annular magnetic path being at least partially formed of a first magnetic material (45) at least one physical parameter of which is correlated to the magnetic potential energy of the oscillator but different therefrom, said first magnetic material being arranged along the annular magnetic path such that the magnetic potential energy of the oscillator varies angularly in a periodic manner along said annular magnetic path and thus defines an angular period (Pe) of said annular magnetic path ; said magnetic coupling element having an active end portion, located on the side of said magnetic structure, which is magnetically coupled to said annular magnetic path so that an oscillation along a degree of freedom of a resonant mode of the resonator is maintained within a range of useful drive torque applied to the magnetic structure or to the resonator and so that a determined integer number of periods of said oscillation occurs during said relative rotation in each angular period of the annular magnetic path, the frequency of said oscillation thus determining said relative angular speed ; said resonator being arranged relative to said magnetic structure such that said active end portion of said magnetic coupling element is at least mostly superposed, in orthogonal projection to a general geometric surface defined by said annular magnetic path, on said annular magnetic path during substantially a first vibration in each period of said oscillation, and such that the travel of the magnetic coupling element during said first vibration is substantially parallel to said general geometric surface, the annular magnetic surface having a dimension along said degree of freedom which is greater than the dimension of said active end portion of said magnetic coupling element along said degree of freedom ; the regulating device being arranged such that, within said useful drive torque range, said annular magnetic path and said magnetic coupling element define, in each angular period, as a function of their relative position defined by their relative angular position and the position of the coupling element along its degree of freedom, an area of accumulation of magnetic potential energy (63, 65) in the oscillator; said annular magnetic path and said magnetic coupling element being arranged such that the magnetic coupling element receives, during said relative rotation, impulses along its degree of freedom about a rest position of said magnetic coupling element, said impulses defining, as a function of said relative position of the magnetic coupling element and of the annular magnetic path and for said range of useful drive torque delivered to the regulating device, impulse areas (68, 69), which are substantially located in a central impulse area adjacent to the areas of magnetic potential energy accumulation ;
the regulating device being characterized in that said first magnetic material is arranged in each angular period such that, at least in one area of said first magnetic material at least partially magnetically coupled to said active end portion for relative positions of the magnetic coupling element with respect to the annular magnetic path corresponding to at least one portion of the magnetic potential energy accumulation area in said angular period, said physical parameter gradually increases angularly or gradually decreases angularly, said annular magnetic path and said magnetic coupling element being arranged such that the mean angular gradient of said magnetic potential energy in said accumulation areas is less than the mean gradient of said magnetic potential energy in said impulse areas along said degree of freedom and in a same unit. - Device (300; 320; 330; 340; 350) for regulating the relative angular speed (ω) between a magnetic structure (304; 358) and a resonator (302; 322; 322A; 174A; 352) magnetically coupled so as to define together an oscillator forming said regulating device, the magnetic structure including at least one annular magnetic path centred on an axis of rotation (51) of said magnetic structure or of the resonator, the magnetic structure and the resonator being arranged to undergo a rotation of one relative to the other about said axis of rotation when a drive torque is applied to the magnetic structure or to the resonator; the resonator including at least one element for magnetic coupling (310; 326, 328; 326A, 328A; 344, 345; 354, 356) to said annular magnetic path, said annular magnetic path being at least partially formed of a first magnetic material arranged such that the magnetic potential energy of the oscillator varies angularly in a periodic manner along the annular magnetic path and defines an angular period (Pθ) of said annular magnetic path ; said magnetic coupling element having an active end portion, located on the side of said magnetic structure, which is formed of a second magnetic material, at least one physical parameter of which is correlated to the magnetic potential energy of the oscillator but different therefrom, and which is magnetically coupled to the annular magnetic path so that an oscillation along a degree of freedom of a resonant mode of the resonator is maintained within a range of useful drive torque applied to the magnetic structure or to the resonator and so that a determined integer number of periods of said oscillation occurs during said relative rotation in each angular period of the annular magnetic path, the frequency of said oscillation thus determining said relative angular speed ; said annular magnetic path and said magnetic coupling element defining, within said useful drive torque range in each angular period, an area of accumulation of magnetic potential energy (63, 65) in the oscillator as a function of their relative position defined by their relative angular position and the position of the coupling element along its degree of freedom ; said annular magnetic path and said magnetic coupling element being arranged such that the magnetic coupling element receives, during said relative rotation, impulses along its degree of freedom about a rest position of said magnetic coupling element, said impulses defining, as a function of said relative position of the magnetic coupling element and of the annular magnetic path and for said range of useful drive torque delivered to the regulating device, impulse areas (68, 69) which are substantially located in a central impulse area adjacent to the areas of magnetic potential energy accumulation ;
the regulating device being characterized in that said annular magnetic path has a dimension along said degree of freedom of the magnetic coupling element which is smaller than the dimension along said degree of freedom of said active end portion of the magnetic coupling element; in that the resonator is arranged relative to the magnetic structure such that said active end portion is traversed, in orthogonal projection to a general geometric surface defined by said active end portion, by a geometric circle passing through the middle of the annular magnetic path during substantially a first vibration in each period of said oscillation ; in that said second magnetic material is arranged such that, at least in one area of said second magnetic material at least partially magnetically coupled to said annular magnetic path for the relative positions of said annular magnetic path with respect to the magnetic coupling element corresponding to at least one part of the magnetic potential energy accumulation area in each angular period, said physical parameter gradually increases angularly or gradually decreases angularly, said annular magnetic path and said magnetic coupling element being arranged such that the mean angular gradient of said magnetic potential energy in said accumulation areas is smaller than the mean gradient of said magnetic potential energy in said impulse areas along said degree of freedom and in a same unit. - Regulating device according to claim 1 or 2, characterized in that the ratio of said mean angular gradient to said mean gradient along said degree of freedom is less than sixty percent (60%).
- Regulating device according to claim 1 or 2, characterized in that the ratio of said mean angular gradient to said mean gradient along said degree of freedom is substantially less than or equal to forty percent (40%).
- Regulating device according to any of the preceding claims, characterized in that the ratio between the radial dimension (Z0) of the impulse areas and the radial dimension (Z1,Z2) of the magnetic potential energy accumulation areas is less than fifty percent (50%).
- Regulating device according to any of claims 1 to 4, characterized in that the ratio between the radial dimension (Z0) of the impulse areas and the radial dimension (Z1,Z2) of the magnetic potential energy accumulation areas is less than or substantially equal to thirty percent (30%).
- Regulating device according to any of the preceding claims, characterized in that the magnetic potential energy in each magnetic potential energy accumulation area (63, 65) exhibits substantially no variation along the degree of freedom of the useful resonant mode of the resonator.
- Regulating device according to any of the preceding claims, characterized in that the gradual increase or decrease in said physical parameter, in each magnetic area corresponding to an area of magnetic potential energy accumulation, extends over an angular distance relative to said axis of rotation which is more than twenty percent (20%) of the angular period of said annular magnetic path.
- Regulating device according to any of claims 1 to 7, characterized in that the gradual increase or decrease in said physical parameter, in each magnetic area corresponding to a magnetic potential energy accumulation area, extends over an angular distance relative to said axis of rotation which is greater than or substantially equal to forty percent (40%) of the angular period of said annular magnetic path.
- Regulating device according to any of the preceding claims, characterized in that said considered physical parameter is a distance between the annular magnetic path and a surface of revolution which has said axis of rotation as axis of revolution and said degree of freedom as generatrix of said surface of revolution, said distance substantially corresponding, to within one constant, to an air gap between said magnetic coupling element and said annular magnetic path.
- Regulating device according to claim 1 or to any of claims 3 to 9 dependent on claim 1, wherein said first magnetic material is formed of a magnetized material, characterized in that said considered physical parameter is the intensity of magnetic field flux generated by the magnetized material between said annular magnetic path and a surface of revolution which has said axis of rotation as axis of revolution and said degree of freedom as generatrix of said surface of revolution.
- Regulating device according to claim 2 or to any of claims 3 to 9 dependent on claim 2, wherein said active end portion is formed of a magnetized material, characterized in that said considered physical parameter is the intensity of the magnetic field flux generated by the magnetized material between said coupling element and said annular magnetic path.
- Regulating device according to any of claims 1 to 9, characterized in that the variation in said physical parameter is obtained by a plurality of holes (104) in said considered magnetic material whose density and/or cross-sectional area varies.
- Regulating device according to any of claims 3 to 6 and wherein the rest position of the coupling element defines a zero position circle in a reference frame linked to the magnetic structure during a relative rotation between said magnetic structure and the resonator, characterized in that the zero position circle and said degree of freedom are substantially orthogonal to their point of intersection.
- Regulating device according to claim 14 dependent on claim 1, characterized in that the variation in said physical parameter is only angular in areas of said first magnetic material corresponding respectively to the magnetic potential energy accumulation areas in the oscillator.
- Regulating device according to claim 14 dependent on claim 2, characterized in that the variation in said physical parameter, in an area of said second magnetic material substantially corresponding to each magnetic potential energy accumulation area in the oscillator, is mainly in a linear direction orthogonal to said degree of freedom of said coupling element at said point of intersection when said coupling element is in its rest position.
- Regulating device according to any of the preceding claims and wherein said annular magnetic path defines a first path, characterized in that said magnetic structure further includes a second annular magnetic path coupled to said coupling element in a similar manner to the manner in which said coupling element is coupled to the first path, said second path being at least partially formed of a magnetic material which exhibits a variation along said second path so that the magnetic potential energy of the oscillator varies angularly, with said angular period and in a similar manner to the variation in the first path, along said second path, the first and second paths having an angular shift equal to half said angular period.
- Regulating device (236) according to any of claims 1 to 16 and wherein said annular magnetic path defines a first path, characterized in that the device further includes a second annular magnetic path coupled to said coupling element or to another coupling element of said resonator, in a similar manner to the manner in which said coupling element is coupled to the first path, and at least partially formed of a magnetic material, said magnetic material exhibiting a variation along said second annular magnetic path so that the magnetic potential energy of the oscillator varies angularly, in a similar manner to the variation along the first path, along said second path, and in that the first and second annular magnetic paths are respectively integral with two wheel sets.
- Regulating device according to any of the preceding claims and wherein said coupling element is a first coupling element, characterized in that the device includes at least a second coupling element also magnetically coupled to said magnetic structure.
- Regulating device according to claim 19, characterized in that said resonator (158) is of the type having a sprung balance or balance with flexible strips.
- Regulating device according to claim 19, characterized in that said resonator is formed by a tuning fork (176) wherein the two free ends of its resonant structure respectively carry the first and second magnetic coupling elements.
- Regulating device according to claim 19, characterized in that said resonator (182) includes a substantially rigid structure (185) carrying the first and second magnetic coupling elements and associated with one or respectively two elastic elements of the resonator.
- Regulating device according to any of claims 19 to 22 dependent on claim 1, characterized in that the first and second coupling elements define the same zero position circle in projection into a general plane of said annular magnetic path when said path rotates.
- Regulating device according to any of claims 19 to 22 dependent on claim 1, characterized in that the first and second coupling elements define in projection into a general plane of said annular magnetic path, when said path rotates, respectively two different zero position circles, which are substantially superposed on the inner and outer circles defining said annular magnetic path.
- Regulating device according to any of the preceding claims, characterized in that said resonator defines a first resonator (191; 191A) and in that the device includes at least a second resonator (192; 192A) magnetically coupled to said magnetic structure in a similar manner to the first resonator.
- Regulating device according to any of the preceding claims, characterized in that said first and second magnetic materials are materials magnetized to repel each other.
- Timepiece movement characterized in that the movement includes a regulating device according to any of the preceding claims, said regulating device defining a resonator and a magnetic escapement and serving to regulate the working of at least one mechanism of said timepiece movement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14199882.3A EP2891930B1 (en) | 2013-12-23 | 2014-12-22 | Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13199428 | 2013-12-23 | ||
EP14176816 | 2014-07-11 | ||
EP14199882.3A EP2891930B1 (en) | 2013-12-23 | 2014-12-22 | Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2891930A2 EP2891930A2 (en) | 2015-07-08 |
EP2891930A3 EP2891930A3 (en) | 2016-07-13 |
EP2891930B1 true EP2891930B1 (en) | 2018-09-19 |
Family
ID=52103092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14199882.3A Active EP2891930B1 (en) | 2013-12-23 | 2014-12-22 | Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement |
Country Status (7)
Country | Link |
---|---|
US (2) | US9483026B2 (en) |
EP (1) | EP2891930B1 (en) |
JP (1) | JP6087895B2 (en) |
CN (1) | CN104730898B (en) |
CH (1) | CH709031B1 (en) |
HK (1) | HK1211711A1 (en) |
RU (1) | RU2670236C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2743149C2 (en) * | 2016-10-25 | 2021-02-15 | Те Свотч Груп Рисерч Энд Дивелопмент Лтд | Optimized watchwork |
US11599064B2 (en) | 2019-06-26 | 2023-03-07 | The Swatch Group Research And Development Ltd | Inertia mobile component for horological resonator with magnetic interaction device insensitive to the external magnetic field |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH710025B1 (en) * | 2013-12-23 | 2018-06-29 | Eta Sa Mft Horlogere Suisse | Mechanical watch movement with magnetic escapement. |
EP2998801A1 (en) * | 2014-09-19 | 2016-03-23 | The Swatch Group Research and Development Ltd. | Magnetic clock escapement and device for controlling the operation of a clock movement |
CH711402A2 (en) * | 2015-08-04 | 2017-02-15 | Eta Sa Mft Horlogere Suisse | Magnetically synchronized rotary arm clock regulator mechanism. |
EP3128379B1 (en) * | 2015-08-04 | 2019-10-02 | The Swatch Group Research and Development Ltd. | Escapement with escape wheel with field rramps and a non-return device |
EP3179316B1 (en) | 2015-12-10 | 2021-09-15 | Nivarox-FAR S.A. | Contactless cylinder escapement |
EP3182224B1 (en) * | 2015-12-18 | 2019-05-22 | Montres Breguet S.A. | Safety regulator for timepiece escapement |
EP3208667A1 (en) | 2016-02-18 | 2017-08-23 | The Swatch Group Research and Development Ltd | Magnetic escapement mobile for timepiece |
EP3217227B1 (en) | 2016-03-11 | 2019-02-27 | The Swatch Group Research and Development Ltd. | Timepiece regulator mechanism with optimised magnetic escapement |
CH713056A2 (en) * | 2016-10-18 | 2018-04-30 | Eta Sa Mft Horlogere Suisse | Clockwork mechanical movement with two degrees of freedom resonator with roller maintenance mechanism on a track. |
EP3339982B1 (en) * | 2016-12-23 | 2021-08-25 | The Swatch Group Research and Development Ltd | Regulation by mechanical breaking of a horological mechanical oscillator |
JP6826673B2 (en) | 2017-03-28 | 2021-02-03 | ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド | Mechanical timekeeper with movement enhanced by adjustment device |
EP3602207B1 (en) | 2017-03-28 | 2020-12-30 | The Swatch Group Research and Development Ltd | Timepiece comprising a mechanical movement of which the operation is improved by a correction device |
CH714922A2 (en) * | 2018-04-23 | 2019-10-31 | Eta Sa Mft Horlogere Suisse | Shockproof protection of a rotational flexible guiding clock resonator mechanism. |
EP3579058B1 (en) | 2018-06-07 | 2021-09-15 | Montres Breguet S.A. | Timepiece comprising a tourbillon |
JP6843191B2 (en) * | 2018-07-24 | 2021-03-17 | ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド | Timekeeping oscillator with flexor bearings with long square strokes |
EP3629104B1 (en) * | 2018-09-27 | 2021-05-12 | The Swatch Group Research and Development Ltd | Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece |
EP3757682B1 (en) | 2019-06-26 | 2022-03-09 | The Swatch Group Research and Development Ltd | Timepiece movement comprising a magnetic escapement |
EP3767397B1 (en) | 2019-07-19 | 2022-04-20 | The Swatch Group Research and Development Ltd | Clock movement comprising a rotary element provided with a magnetic structure having a periodic configuration |
EP3787178A1 (en) * | 2019-08-30 | 2021-03-03 | Miniswys Sa | Piezoelectric drive unit |
EP3800513B1 (en) * | 2019-10-04 | 2023-08-09 | ETA SA Manufacture Horlogère Suisse | Timepiece including a means for indicating am-pm |
EP3842876A1 (en) * | 2019-12-24 | 2021-06-30 | The Swatch Group Research and Development Ltd | Timepiece fitted with a mechanical movement and a device for correcting the time displayed |
EP3882711B1 (en) | 2020-03-18 | 2024-08-07 | The Swatch Group Research and Development Ltd | Timepiece movement comprising an escapement provided with a magnetic system |
EP3885843A1 (en) * | 2020-03-24 | 2021-09-29 | The Swatch Group Research and Development Ltd | Watch with mechanical or electronic movement equipped with a striking mechanism |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2690646A (en) * | 1948-06-10 | 1954-10-05 | Clifford Cecil Frank | Escapement mechanism |
FR1113932A (en) | 1953-11-07 | 1956-04-05 | Horstmann Magnetics Ltd | Mechanism comprising magnetically coupled oscillating and rotating systems |
US2946183A (en) | 1955-06-14 | 1960-07-26 | Horstmann Magnetics Ltd | Self-starting magnetic escapement mechanisms |
US3183426A (en) * | 1962-02-14 | 1965-05-11 | Cons Electronics Ind | Magnetically coupled constant speed system |
DE1935486U (en) * | 1965-08-23 | 1966-03-24 | Junghans Geb Ag | DEVICE FOR CONVERTING THE TO-AND-BACK MOVEMENT OF A BENDING VIBRATOR FOR TIME-HOLDING DEVICES. |
US3410083A (en) * | 1966-02-04 | 1968-11-12 | Army Usa | Timing mechanism |
DE1673670B2 (en) * | 1967-06-27 | 1972-01-27 | Fa Muller Schlenker, 7220 Schwen ningen | ELECTRIC CLOCK WITH MAGNETIC DRIVE OF A POLE WHEEL |
DE1815728C3 (en) * | 1967-12-30 | 1980-04-30 | K.K. Hattori Tokeiten, Tokio | Magnetic drive with an escapement wheel |
CH510284A (en) * | 1968-11-02 | 1971-02-26 | Omega Brandt & Freres Sa Louis | Transmission device for converting a vibratory movement of a rotating resonator into a timepiece |
GB1308551A (en) * | 1969-03-07 | 1973-02-21 | Mauthe Gmbh Friedr | Device for converting oscillatory movement into rotary movement |
JPS5041914Y1 (en) * | 1969-12-16 | 1975-11-28 | ||
GB1327043A (en) | 1970-01-12 | 1973-08-15 | Horstmann Magnetics Ltd | Electromechanical oscillators with rotary output |
CH953070A4 (en) * | 1970-06-24 | 1974-10-15 | ||
US3671825A (en) * | 1970-08-07 | 1972-06-20 | Armec Corp | Timing motor with resonant members |
GB1361672A (en) | 1971-03-30 | 1974-07-30 | Horstmann Magnetics Ltd | Magnetic rotor drives |
JPS4838434B1 (en) * | 1971-08-17 | 1973-11-17 | ||
GB1402989A (en) * | 1971-09-17 | 1975-08-13 | Lucas Electrical Co Ltd | Battery charging systems |
SU441857A1 (en) * | 1972-01-20 | 1976-08-05 | Научно-исследовательский институт часовой промышленности | Motion transducer for an electric clock with a mechanical oscillator |
JPS5240366A (en) * | 1975-09-27 | 1977-03-29 | Jeco Co Ltd | Escapement wheel for magnetic escapement |
JPS5245468U (en) | 1975-09-27 | 1977-03-31 | ||
JPS5245468A (en) | 1975-10-06 | 1977-04-09 | Adosebun Kk | Packing container |
JPS5263453U (en) | 1975-11-04 | 1977-05-11 | ||
JPS5262062A (en) * | 1975-11-18 | 1977-05-23 | Jiekoo Kk | Magnetic escaping wheel for magnetic escapement device |
JPS5263453A (en) | 1975-11-20 | 1977-05-25 | Toray Industries | Fluid treatment apparatus for filament |
US5446704A (en) * | 1995-01-23 | 1995-08-29 | Chen; Ching-Ti | Structure of clock |
EP2466401B1 (en) * | 2010-12-15 | 2013-08-14 | Asgalium Unitec SA | Magnetic resonator for mechanical timepiece |
-
2014
- 2014-12-22 US US14/579,287 patent/US9483026B2/en active Active
- 2014-12-22 RU RU2014152043A patent/RU2670236C2/en not_active IP Right Cessation
- 2014-12-22 EP EP14199882.3A patent/EP2891930B1/en active Active
- 2014-12-22 JP JP2014259037A patent/JP6087895B2/en active Active
- 2014-12-22 CH CH02009/14A patent/CH709031B1/en unknown
- 2014-12-22 US US14/579,166 patent/US9465366B2/en active Active
- 2014-12-23 CN CN201410858439.8A patent/CN104730898B/en active Active
-
2015
- 2015-12-16 HK HK15112383.3A patent/HK1211711A1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2743149C2 (en) * | 2016-10-25 | 2021-02-15 | Те Свотч Груп Рисерч Энд Дивелопмент Лтд | Optimized watchwork |
US11599064B2 (en) | 2019-06-26 | 2023-03-07 | The Swatch Group Research And Development Ltd | Inertia mobile component for horological resonator with magnetic interaction device insensitive to the external magnetic field |
US11644797B2 (en) | 2019-06-26 | 2023-05-09 | The Swatch Group Research And Develonment Ltd | Inertia mobile component for horological resonator with magnetic interaction device insensitive to the external magnetic field |
Also Published As
Publication number | Publication date |
---|---|
US9465366B2 (en) | 2016-10-11 |
EP2891930A2 (en) | 2015-07-08 |
JP2015121541A (en) | 2015-07-02 |
CN104730898A (en) | 2015-06-24 |
HK1211711A1 (en) | 2016-05-27 |
CH709031B1 (en) | 2021-01-29 |
RU2014152043A (en) | 2016-07-10 |
US9483026B2 (en) | 2016-11-01 |
US20150177698A1 (en) | 2015-06-25 |
EP2891930A3 (en) | 2016-07-13 |
CN104730898B (en) | 2017-11-17 |
RU2670236C2 (en) | 2018-10-19 |
CH709031A2 (en) | 2015-06-30 |
JP6087895B2 (en) | 2017-03-01 |
US20150177697A1 (en) | 2015-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2891930B1 (en) | Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement | |
EP3087435B1 (en) | Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement | |
EP3130966B1 (en) | Mechanical clockwork provided with a motion feedback system | |
EP3191899B1 (en) | Magnetic clock escapement and device for controlling the operation of a clock movement | |
EP2466401B1 (en) | Magnetic resonator for mechanical timepiece | |
EP2761378B1 (en) | Oscillator with tuning fork for mechanical timepiece movement | |
EP2908187B1 (en) | Adjustment of a clock piece resonator by changing the active length of a hairspring | |
CH715049A2 (en) | Timepiece including a tourbillon. | |
EP3030938A2 (en) | Regulator system for mechanical watch | |
EP3191898B1 (en) | Regulator device for the operation of a mechanical timepiece movement | |
EP3265879A1 (en) | Time-keeping movement comprising a regulator with three-dimensional magnetic resonance | |
EP3944027B1 (en) | Portable object, in particular a wristwatch, comprising a power supply device provided with an electromechanical converter | |
CH717674A2 (en) | Portable object, in particular wristwatch, comprising a power supply device fitted with an electromechanical converter. | |
CH720388A2 (en) | Piezoelectric resonator, piezoelectric motor and timepiece | |
CH714600A2 (en) | Timepiece equipped with a tourbillon. | |
EP3882713B1 (en) | Timepiece movement comprising an escapement provided with a magnetic system | |
EP4391347A1 (en) | Piezoelectric resonator with flexible guide, in particular for rotary motors in horology | |
CH717239A2 (en) | Watch movement including an escapement fitted with a magnetic system. | |
CH710132A2 (en) | Watchmaker magnetic escapement and device regulating the movement of a watch movement. | |
CH711408A2 (en) | A mechanical watch movement with a movement feedback system. | |
CH720393A2 (en) | Piezoelectric resonator, piezoelectric motor and timepiece | |
CH710160A2 (en) | Device controller of walking a mechanical watch movement. | |
CH713829A1 (en) | Control device for a timepiece with isotropic harmonic oscillator having rotating masses and a common return force. | |
FR2611038A1 (en) | Laser rate gyro, device for eliminating parasitic rotations in piezoelectric mirrors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141222 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 17/06 20060101ALI20160609BHEP Ipc: G04C 3/10 20060101AFI20160609BHEP Ipc: G04B 17/32 20060101ALI20160609BHEP Ipc: G04C 5/00 20060101ALI20160609BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20170113 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180420 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180807 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1043957 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014032470 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181220 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1043957 Country of ref document: AT Kind code of ref document: T Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190119 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014032470 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
26N | No opposition filed |
Effective date: 20190620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181222 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181222 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141222 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180919 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 10 Ref country code: DE Payment date: 20231121 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240102 Year of fee payment: 10 |