EP3629104B1 - Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece - Google Patents

Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece Download PDF

Info

Publication number
EP3629104B1
EP3629104B1 EP19193740.8A EP19193740A EP3629104B1 EP 3629104 B1 EP3629104 B1 EP 3629104B1 EP 19193740 A EP19193740 A EP 19193740A EP 3629104 B1 EP3629104 B1 EP 3629104B1
Authority
EP
European Patent Office
Prior art keywords
braking
frequency
mechanical
pulses
mechanical resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19193740.8A
Other languages
German (de)
French (fr)
Other versions
EP3629104A1 (en
Inventor
Lionel TOMBEZ
Matthias Imboden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Publication of EP3629104A1 publication Critical patent/EP3629104A1/en
Application granted granted Critical
Publication of EP3629104B1 publication Critical patent/EP3629104B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C11/00Synchronisation of independently-driven clocks
    • G04C11/08Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction
    • G04C11/081Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet
    • G04C11/084Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet acting on the balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/042Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using mechanical coupling
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/047Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using other coupling means, e.g. electrostrictive, magnetostrictive
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance

Definitions

  • the present invention relates to a timepiece comprising a mechanical oscillator, the average frequency of which is synchronized to a reference frequency determined by an auxiliary electronic oscillator.
  • the timepiece comprises a regulating device capable of correcting any time drift in the operation of the mechanical oscillator, which rates the rate of the mechanical movement which incorporates it.
  • the timepiece disclosed in the document CH 713306 A2 comprises a mechanical movement, provided with a mechanical oscillator, and an electromagnetic system formed of at least one magnet mounted on the balance of a mechanical oscillator and of a coil carried by a support of the balance.
  • the electromagnetic system is part of a regulation device intended to regulate the average frequency of the mechanical oscillator in the case where this oscillator has a positive time drift relative to an auxiliary oscillator, for example a crystal oscillator, as in the case where it presents a negative time drift.
  • this document proposes a solution in which the time drift is measured and the movement oscillation of the resonator is observed so that the regulation device can selectively apply one or more braking pulses to it, respectively via one or more short-circuits of the coil, in one or more respective first half-waves (located before the passage of the resonator by its neutral position) when the measured time drift corresponds to at least a certain advance and in one or more respective second half-waves (located after the resonator has passed through its neutral position) when the time drift corresponds to at least one some delay.
  • the electronic circuit of the regulation device comprises a time counter or a timer making it possible to determine, on the basis of detections of voltage pulses induced in the coil, whether an induced voltage pulse occurs in a first half-wave. or in a second half-cycle so as to be able to selectively apply the braking pulses as indicated above.
  • the regulation method implemented in this document although remarkable, requires a relatively complex electronic circuit which therefore consumes a certain electrical energy which is taken from the mechanical oscillator, which tends to reduce its oscillation amplitude and therefore the duration of the oscillation. normal operation for a certain mechanical energy stored in a barrel of the mechanical movement.
  • the timepiece disclosed in the document EP 3339982 A1 is remarkable for the system designed to generate mechanical braking pulses applied to the balance of the mechanical oscillator.
  • the regulation process is similar to that of the previous document.
  • a sensor is provided which is designed to be able to detect the passages of the resonator through its neutral position.
  • a control logic circuit determines with the aid of a time counter the instants at which the braking pulses must be triggered for that they intervene selectively before or after the passage of the mechanical resonator by its neutral position in corresponding vibrations, that is to say to apply the mechanical braking pulses either in first half-cycles or in two second half-vibrations. In this case too, a relatively complex electronic circuit is necessary.
  • the main aim of the present invention is to simplify the electronic circuit of the device for regulating the average frequency of a mechanical oscillator, by providing an alternative to the regulating devices of the prior art, described in the technological background, which is easy to implement in a timepiece.
  • the invention relates to a timepiece as defined above in the field of the invention and which is characterized in that the regulation circuit comprises a device generating at least one frequency which is arranged in so as to be able to generate a periodic digital signal at a frequency F SUP ; and by the fact that the regulation circuit is designed to be able to supply, when it determines a time drift corresponding to at least a certain delay in the operation of the timepiece, momentarily to the braking device a first control signal for activate this braking device so that the braking device generates, during a first correction period, a series of periodic braking pulses which are applied to the mechanical resonator at the frequency F SUP .
  • This frequency F SUP and the duration of the first correction period are provided and the braking device is arranged so that the series of periodic braking pulses at the frequency F SUP can generate, during the first correction period, a synchronous phase in which the mechanical oscillator is synchronized to a correction frequency which is greater than a reference frequency F0c provided for the mechanical oscillator.
  • the regulation circuit determines a time drift corresponding to at least a certain advance in the operation of the timepiece.
  • the regulation circuit is arranged to be able, after having detected said at least a certain advance, to stop the mechanical oscillator and then to temporarily block the mechanical resonator so as to at least partially correct said at least one. certain advance detected.
  • said device for generating at least one frequency is a device for generating frequencies arranged so as to be able, moreover, to generate a periodic digital signal at a frequency F INF and the regulation circuit is arranged to be able to supply , when it determines a time drift corresponding to at least a certain advance in the operation of the timepiece, momentarily to the braking device a second control signal to activate this braking device so that the braking device generates, during a second correction period, a series of periodic braking pulses which are applied to the mechanical resonator at the frequency F INF .
  • This frequency F INF and the duration of the second correction period are provided and the braking device is arranged so that the series of periodic braking pulses at the frequency F INF can generate, during the second correction period, a phase synchronous in which the mechanical oscillator is synchronized on a correction frequency which is lower than the reference frequency F0c.
  • the braking pulses have a duration T P less than a quarter of a setpoint period T0c, ie T P ⁇ T0c / 4, T0c being by definition the inverse of the setpoint frequency F0c.
  • the positive integer K is greater than two and less than ten, ie 2 ⁇ K ⁇ 10, and the number N is less than the number M divided by one hundred (N ⁇ M / 100).
  • the duration of the synchronous phase is provided to be much greater than a maximum duration of a transient phase generally occurring at the start of the correction periods before the synchronous phase.
  • this timepiece Apart from the arrangement of the regulation circuit and the operating mode of this control circuit, which implements a regulation method according to the present invention, this timepiece essentially corresponds to the first embodiment of the timepiece described in the document EP 3,339,982 using figures 1 and 2 of this document, so that reference will be made to the teaching of this document and all the variant embodiments will not be described here.
  • the timepiece 2 comprises a mechanical watch movement 4 which incorporates a mechanism 6 arranged to indicate at least one time datum, a mechanical resonator 14, formed by a balance 16 mounted to pivot on the plate 5 and a balance spring 18, and a device maintenance of the mechanical resonator forming with this mechanical resonator a mechanical oscillator which rates the operation of the indicator mechanism of a temporal datum.
  • the maintenance device comprises an escapement 12, formed by an anchor and an escape wheel which is kinematically connected to the barrel 8 by means of the gear 10.
  • the mechanical resonator is capable of oscillating along an axis d oscillation, here a circular geometric axis, around a neutral position corresponding to a state of minimum mechanical potential energy. Each oscillation of the mechanical resonator defines an oscillation period and two vibrations.
  • the timepiece 2 further comprises a device for regulating the average frequency of the mechanical oscillator, this regulating device 20 comprising an electronic regulating circuit 22 which is associated with a reference time base constituted by an auxiliary oscillator 36
  • This auxiliary oscillator is formed by a quartz resonator 23 and a clock circuit 38 which maintains the quartz resonator and receives from the latter a reference frequency signal which this clock circuit outputs. in the form of a digital periodic reference signal S Q.
  • auxiliary oscillators can be provided, in particular an oscillator fully integrated into the regulation circuit. By definition, the auxiliary oscillator is more precise than the mechanical oscillator.
  • the regulation device 20 also comprises a sensor 24 for detecting at least one angular position of the balance when it oscillates, making it possible to detect, for a useful operating range of the mechanical oscillator, a number of alternations or periods in the oscillation of the mechanical resonator.
  • the regulating device also comprises a mechanical braking device 26 designed to be able to momentarily apply a braking force to the mechanical resonator 14, in particular mechanical braking pulses to its balance.
  • the watch assembly comprises an energy source 32 associated with a device 34 for storing the electrical energy generated by the energy source.
  • the energy source is for example formed by a photovoltaic cell or by a thermoelectric element, these examples not being in any way limiting. In the case of a battery, the energy source and the storage device together form one and the same electrical component.
  • the regulation device 20 also comprises a measuring device arranged to measure, on the basis of position signals supplied by the sensor, a time drift D T of the mechanical oscillator relative to the auxiliary oscillator (base of reference time 36). It will be understood that such a measurement is easy when a sensor is provided which is capable of detecting the passage of the mechanical resonator through a certain angular position, in particular through its neutral position. Such an event takes place in all alternations (half-periods of oscillation) of the mechanical oscillator.
  • the measurement circuit will be described in more detail below.
  • the sensor 24 is designed to be able to detect the passage of at least one reference point of the balance 16 through a certain given angular position relative to a support of this mechanical resonator.
  • the sensor is arranged to detect the passage of the mechanical resonator through its neutral position.
  • the sensor can be associated with the anchor of the escapement so as to detect the tilting of this anchor during the oscillation sustaining pulses which are provided substantially when the mechanical resonator passes through. its neutral position.
  • the senor 24 is an optical sensor, of the photoelectric type, which comprises a light source, arranged so as to be able to send a beam of light in the direction of the balance, and a light detector, arranged to receive in return a light signal the intensity of which varies periodically depending on the position of the balance.
  • the beam is sent to the lateral surface 15 of the rim 17, this surface having a limited zone with a reflectivity different from the two neighboring zones, so that the sensor can detect the passage of this limited zone and provide the device with regulating a position signal when this event occurs.
  • the circular surface having a variable reflection for the light beam can be located at other places of the balance. The variation can in a particular case be produced by a hole in the reflecting surface.
  • the sensor can also detect the passage of a certain part of the balance, for example an arm, the neutral position corresponding for example to the middle of a signal reflected by this arm. It is therefore understood that the modulation of the light signal makes it possible to detect in various ways at least one angular position of the balance, by a negative or positive variation of the light picked up.
  • the position sensor may be of the capacitive type or of the inductive type and thus be arranged so as to be able to detect a variation in capacitance, respectively inductance, as a function of the position of the balance.
  • the sensor comprises means for converting the analog light signal into a digital signal Sc.
  • It can also include a rocker which makes it possible to divide by two the frequency of the light signal when the latter occurs once per alternation, so that the signal Sc corresponds to the oscillation frequency F0 of the mechanical oscillator.
  • a rocker which makes it possible to divide by two the frequency of the light signal when the latter occurs once per alternation, so that the signal Sc corresponds to the oscillation frequency F0 of the mechanical oscillator.
  • the mechanical braking device 26 is designed to be able to apply mechanical braking pulses to the balance 16 so as to regulate the frequency of the mechanical oscillator when a certain time drift D T of this mechanical oscillator is observed.
  • a braking torque applied to the mechanical resonator by any mechanical braking pulse is provided less than a locking torque of the mechanical oscillator and the duration of the braking pulses is provided so as to take a certain maximum. energy to the mechanical resonator so that the amplitude of the oscillation remains greater than a given minimum value.
  • the braking torque is expected to be less than the torque exerted by the hairspring at the minimum expected amplitude and the duration of the pulses is such that this minimum amplitude is respected for a predefined minimum torque which is exerted by the barrel (note that the mechanical oscillator is maintained by the barrel via the escapement), in order not to momentarily block the oscillating movement of the mechanical resonator during braking pulses and to keep the mechanical oscillator within its range useful operating mode as soon as the barrel exerts a torque greater than the minimum torque expected.
  • a braking torque greater than the torque exerted by the hairspring at the minimum amplitude provided but the duration of the pulses is determined, taking into account the maintenance of the mechanical oscillator, to so that this minimum amplitude is maintained for the minimum torque of the barrel from which the timepiece is expected to be functional and for any angular position of the mechanical resonator during the application of a braking pulse. Note that the energy taken from the resonator mechanical is maximum when the braking pulse occurs during the passage of this resonator through its neutral position.
  • the mechanical braking device is formed by an actuator 26 which comprises a mechanical braking member 28 arranged to be actuated, in response to a control signal S F supplied by the regulation circuit to the control circuit 30 of this actuator, of so as to exert, during the braking pulses, a mechanical braking torque on a braking surface 15 of the pivoting balance 16.
  • the braking surface is circular and defined by the outer lateral surface of the rim 17 of the balance .
  • the mechanical braking member 28 comprises a movable part (defined by the free end of this member) which defines a braking shoe arranged so as to be able to exert a certain pressure against the circular braking surface during the application of the brakes. braking pulses to the mechanical resonator.
  • the actuator 26 comprises a piezoelectric element supplied by a control circuit 30 which applies an activation electric voltage to it as a function of the control signal S F supplied by the regulation circuit 22.
  • the piezoelectric element When the piezoelectric element is momentarily placed under tension, the braking member comes into contact with a braking surface of the balance to brake it.
  • the blade forming the braking member is curved and its end part presses against the circular lateral surface 15 of the rim 17 of the balance 16. The end part of the blade therefore defines a movable brake shoe.
  • the pivoting balance and the mechanical braking member are arranged so that the braking pulses can be applied mainly by dynamic dry friction between the mechanical braking member and the braking surface 15.
  • the balance comprises a central shaft which defines or which carries a part other than the rim of the balance defining a circular braking surface.
  • a shoe of the braking member is arranged so as to exert pressure against this circular braking surface during the application of the mechanical braking pulses.
  • a circular braking surface, for an oscillating member which is pivoted (balance wheel), associated with at least one braking shoe, carried by the braking device of the regulating device, constitutes a mechanical braking system which has decisive advantages. Indeed, thanks to such a system, braking pulses can be applied to the mechanical resonator at any moment of the oscillations, and this independently of the amplitude of oscillation of the balance. It will also be noted that the pad of the braking member can also have a circular contact surface, of the same radius as the braking surface, but a flat surface has the advantage of leaving a certain margin in the positioning of the brake member. braking relative to the balance, which makes it possible to have greater tolerances in the manufacture and assembly of the braking device in the watch movement or at its periphery.
  • the various elements of the regulation device 20 form a module independent of the watch movement.
  • this module can be assembled or associated with the mechanical movement 4 only during their assembly, in particular in a watch case.
  • such a module can be fixed to a casing circle which surrounds the watch movement.
  • the electronic regulation module can therefore be advantageously associated with the watch movement once the latter has been fully assembled and adjusted, the assembly and disassembly of this module being able to take place without having to intervene on the mechanical movement itself.
  • the regulation circuit 22 is designed to be able to determine whether a time drift, which is measured by the measuring device on the basis of the signals that it receives from the sensor 24 and from the reference time base 36, corresponds at least a certain advance or at least a certain delay and in order to be able, if this is the case, to generate a control signal which selectively activates the braking device, to generate periodic braking pulses which are applied to the mechanical resonator with a braking frequency which is a function of the measured time drift, so as to at least partially correct this measured time drift.
  • the regulation circuit 22 comprises a frequency generator device arranged so as to be able to generate a first periodic digital signal S FI at a first frequency F INF (first braking frequency) and a second periodic digital signal S FS at a second frequency F SUP (second braking frequency).
  • the first frequency F INF is included in a range of values extending between (M-2) / M, inclusive, and (M-1) / M multiplied by a frequency Fz (N) which is equal to twice a reference frequency F0c, for the mechanical oscillator, divided by a positive integer N, i.e.
  • the positive integer K is greater than two and less than ten, ie 2 ⁇ K ⁇ 10 and the number N is less than the number M divided by one hundred (N ⁇ M / 100).
  • the braking pulses have a duration T P less than half of a setpoint period T0c, i.e. T P ⁇ T0c / 2, T0c being by definition the inverse of the setpoint frequency F0c for the mechanical oscillator formed by the resonator 14 and of the exhaust 12.
  • the braking pulses have a duration T P less than a quarter of the reference period T0c, ie T P ⁇ T0c / 4.
  • a rocker can be arranged in the regulation circuit 22 upstream of the counter CB so as to divide by two the periodic pulses of the signal Sc and supply at the input of the counter CB a single pulse per oscillation period T0.
  • the control circuit 30 of the braking device comprises a source of supply voltage V ACT which supplies the braking member to actuate it via a switch 50, which is controlled by a periodic signal S P supplied by a built-in timer 48. in the control circuit to manage the duration of the braking pulses.
  • the timer selectively receives, via the control signal S F , the first periodic digital signal S FI and the second periodic digital signal S FS which activate it periodically during a correction period according to a detection of a certain advance or a certain delay in the operation of the mechanical oscillator and therefore in the operation of the timepiece, and this repeatedly during distinct and successive correction periods when a time drift continues.
  • the timer 48 makes the switch 50 periodically conductive during each correction period to generate, as the case may be, either a first series of braking pulses 60 or a second series of braking pulses 61 (see Figures 4 and 5 ).
  • the braking surface of the balance 16 is configured so as to allow the braking device to start, in a useful operating range of the mechanical oscillator, a braking pulse of each first series of braking pulses. and a braking pulse of every second series of braking pulses at any angular position of the mechanical resonator 14 between the two extreme angular positions that it can occupy when it oscillates within the useful operating range of the part d watchmaking.
  • the aforementioned condition implies, in the variant shown in Figure 1 , that the lateral surface 15 of the balance is circular and substantially continuous over the entire perimeter of the balance, so that the movable braking member 28 can come to bear against the circular lateral surface substantially at any point.
  • the Figure 3 gives the flowchart of a first regulation mode implemented in the regulation circuit 22 of the first embodiment.
  • the counter CB is reset to zero and it begins to count any difference between the first number of pulses included in the signal Sc received from the sensor 24 and the second number of pulses included in the clock signal S H.
  • the divider DIV1 & DIV2 is arranged so that the clock signal supplies a reference signal with a number of pulses per unit of time corresponding to the number of pulses provided in the signal Sc per unit of time for a correct operation of the timepiece, that is to say without time drift.
  • the Figure 4 shows in fact only a truncated series of braking pulses with a much smaller number of pulses than in reality, so that the time drift D T corresponds here to a fraction ⁇ 1 H of the time drift N1 H. But this makes it possible to clearly expose the operating principle.
  • the natural frequency F0 4.0005 Hz, which corresponds to an advance of about ten seconds per day.
  • the logic circuit 40 waits for the value of the counter CB to become equal to or less than an integer N1 L , which is less than the number N1 H and preferably less in absolute value than N1 H.
  • N1 L is equal to zero so that the fraction ⁇ 1 L of the time drift N1 L given on this Figure 4 is also zero.
  • the logic circuit puts an end to the activation of the generator 42 so that the latter is deactivated. , which ends a correction sequence / correction period.
  • the correction periods each last approximately 34 minutes, including the initial transient phase.
  • the value of the time drift is reduced and is here equal to the integer N1 L which corresponds to a lower threshold for the time drift, while the integer N1 H , which generates the triggering of a first series braking pulses, corresponds to an upper threshold of the time drift.
  • the braking device is generally activated less than half the time, or less than 12 hours per day. In the example given here, assuming that the natural frequency F0 remains stable over time, the braking device must be actuated for approximately 8 hours per day.
  • the Figure 5 shows in fact only a truncated series of braking pulses with a much smaller number of pulses than in reality, so that the time drift D T corresponds here to a fraction - ⁇ 2 H of the time drift -N2 H .
  • the natural frequency F0 3.9995 Hz, which corresponds approximately to a delay of ten seconds per day.
  • the braking device When the time drift reaches or becomes less than a value - ⁇ 2 H , namely in reality a value -N2 H , the braking device is actuated via the frequency generator 44 and it begins to periodically apply braking pulses to the mechanical resonator 61 at a frequency F SUP defined previously (for the sake of clarity of the drawing, all the pulses are shown in Figure 5 as they occur during a stable / synchronous phase discussed below).
  • the logic circuit 40 waits for the value of the counter CB to become equal to or greater than an integer N2 L , which is greater than the number N2 H and preferably less in absolute value than N2 H.
  • N2 L is equal to zero, like N1 L , so that the fraction ⁇ 2 L of the time drift N2 L given on this Figure 5 is also zero.
  • the logic circuit puts an end to the activation of the generator 44 so that the latter is deactivated, which ends a correction sequence.
  • the correction sequence is provided in a loop, so that the logic circuit 40 returns then at the start of a next sequence and it waits for the detection of a new time drift.
  • Each correction sequence corresponds to a correction period.
  • the duration of the synchronous phase is expected to be much greater than a maximum duration of the transient phase, in particular at least ten times greater.
  • the timepiece according to the invention is remarkable in that a correction of a time drift, detected by the regulation circuit in association with a sensor, is carried out by the generation of a series of braking pulses.
  • a correction of a time drift detected by the regulation circuit in association with a sensor, is carried out by the generation of a series of braking pulses.
  • 'electromagnetic braking is understood a braking of the mechanical resonator generated via an electromagnetic interaction between at least one permanent magnet, carried by the mechanical resonator or a support of this mechanical resonator, and at least one coil carried respectively by the support or the resonator mechanical and associated with an electronic circuit in which a current induced in the coil by the permanent magnet can be generated.
  • the electromagnetic braking device is formed by an electromagnetic system which comprises a coil 78 carried by a support 5 of the mechanical resonator 14A and at least one permanent magnet carried by a balance of this mechanical resonator, this electromagnetic system being arranged so that an induced voltage is generated between the two terminals 78A & 78B of the coil in each alternation of the oscillation of the mechanical resonator for a useful operating range of the mechanical oscillator.
  • the regulation device is arranged so as to allow the regulation circuit to temporarily reduce the impedance between the two terminals of the coil, during distinct time intervals T P , to generate electromagnetic braking pulses of the mechanical resonator.
  • a short-circuit of the coil is carried out during each distinct time interval T P.
  • the electromagnetic system of the electromagnetic braking device comprises a first pair of bipolar magnets 64 & 65 axially magnetized and of opposite polarities. These two bipolar magnets are arranged on the balance 16A symmetrically relative to a semi-axis of reference 68 of this balance, this reference semi-axis defining a zero angular position ('0') when the mechanical resonator is in its neutral position (minimum potential energy state).
  • a polar coordinate system centered on the axis of oscillation of the mechanical resonator 14A and fixed relative to the plate 5 of the watch movement 3.
  • the coil 78 is arranged with an angular offset relative to the angular position.
  • the angular offset of the coil is defined as the minimum angular distance between the zero angular position and the angular position of the center of the coil.
  • the extreme angular positions (oscillation amplitudes) of the mechanical resonator are provided, in absolute values, substantially equal to or greater than the angular offset of the coil.
  • the pulses 88 A and 88 B are separated in pairs by time zones without induced voltage in coil 28. Thanks to the positioning of the coil with an angular shift of 180 °, the two induced voltage pulses 88 A and 88 B occurring in each half-wave have a symmetry relative to the instant of passage of the mechanical resonator 14A through its neutral position.
  • electromagnetic braking pulses are generated by a short circuit of the coil 78 during distinct time intervals T P which are substantially equal to or greater than the time zones without voltage induced in the coil around the two extreme positions of the mechanical resonator for the useful operating range of the mechanical oscillator.
  • T P time intervals
  • the temporal zones without voltage induced in the coil around the two extreme positions of the mechanical resonator are substantially equal.
  • the regulation device 72 comprises a supply circuit formed by a storage capacitor C AL and a rectifier circuit of a voltage induced (signal S B ) in the coil 78 by a second pair of bipolar magnets 66 & 67 carried for this purpose by the balance 16A.
  • this supply circuit is represented as part of the regulation circuit 74. However, it can also be considered as a specific circuit which is associated with the regulation circuit in order to supply it.
  • the second pair of bipolar magnets 66 & 67 is momentarily coupled to coil 28 in each half-wave of the mechanical resonator oscillation and therefore serves primarily to supply power to the regulator, although it may occur in one phase. initial transient of each correction period which will be described later.
  • the second pair of bipolar magnets has a middle half-axis 69 between its two magnets which is offset by the angular offset that the coil 78 has relative to the reference half-axis 68, so that this half-axis 69 is aligned with the center of the coil when the mechanical resonator is in its home position.
  • the power supply circuit is connected, on the one hand, to a terminal of the coil and, on the other hand, to a reference potential (ground) of the regulation device at least periodically when the mechanical resonator passes through its position. neutral, but preferably constantly.
  • the second pair of magnets generates induced voltage pulses 90 A and 90 B when the balance 8B passes through the zero angular position, these pulses having a greater amplitude than the induced voltage pulses generated by the first pair of magnets.
  • 64 & 65 and used to supply the storage capacity, the voltage of which is represented by curve 94 at Figure 9 .
  • the rectifier is provided here in half-wave, so that each central peak of the pulses 90 A and 90 B recharges the supply capacity.
  • the regulation circuit 74 of an advantageous variant of the second embodiment, which implements a second regulation mode of the invention, is shown in Figure 8 . It receives as input, on the one hand, the periodic reference signal S Q supplied by the clock circuit 38 and, on the other hand, an induced voltage signal S B (curve 86 shown in Figure 9 ) supplied by coil 78. On the basis of these two signals, the regulation circuit performs the desired regulation of the operation of the timepiece. To do this, it comprises a measuring device which comprises a divider DIV1 & DIV2 supplying a clock signal S H , a bidirectional counter CB with two inputs (of the differential type), and a comparator 52 which receives a voltage of reference U Ref and the induced voltage signal S B.
  • Comparator 52 indicates if the voltage induced in the coil becomes lower than the reference voltage U Ref (which is negative).
  • the value of U Ref is selected here to be, in absolute values, greater than the amplitudes of the induced voltage pulses 88 A and 88 B which are generated by the first pair of magnets 64 & 65 and less than the amplitude central peaks of the 90 A pulses (note that, relative to the amplitudes of the induced voltage pulses 88 A and 88 B , the central peaks have a higher maximum value than shown in Figure 9 in the case of an angular offset of 180 ° for the coil).
  • the sensor is preferably formed by an electromagnetic system comprising the coil 78 and an additional pair of magnets 66 & 67 relative to the magnetic system of the braking device.
  • comparator 52 can also be considered as part of the sensor and not of the measuring device. It will be noted that, in general, an additional pair of magnets is advantageous but not essential, because in another variant the pulses 88 A and 88 B can also be used for the power supply of the regulation device and also for the detection of the number of alternations or periods of oscillation of the mechanical resonator.
  • the reference voltage is selected so that, in the useful operating range of the mechanical oscillator, the comparator 52 supplies a first input of the counter CB with a predetermined number of pulses per period of oscillation of the resonator.
  • the clock signal S H is provided so that it delivers the same number of pulses per setpoint period T0c (inverse of the setpoint frequency F0c) to a second input of the counter CB.
  • This counter CB outputs a signal corresponding to its state and which gives a measurement of the time drift D T of the mechanical oscillator relative to the auxiliary oscillator 36.
  • the state of the counter CB is supplied to two comparators 82 and 84.
  • the first comparator 82 performs a comparison of the state of the counter CB with a first integer N1 greater than zero, to determine whether the measured time drift is greater or not. to this first number N1, and thus detects whether at least a certain advance has occurred in the operation of the mechanical oscillator.
  • the second comparator 84 performs a comparison of this state with a second negative integer -N2, N2 being greater than zero, to determine whether or not the measured time drift is less than this second number -N2, and thus detects whether at least one some delay has occurred in the operation of the mechanical oscillator.
  • the output of the first comparator 82 is supplied to a first frequency generator 42A arranged to generate a first periodic digital signal S FI at the first frequency F INF during a correction period each time that this output indicates that the state of the counter CB is greater than the number N1.
  • the first generator 42A of the frequency F INF comprises means arranged to enable it to be activated and then to deactivate it, the signal supplied by the first comparator being supplied to a 'start' input of the first generator to activate it. as soon as this first comparator indicates that the state of the counter CB is greater than the number N1.
  • the output of the second comparator 84 is supplied to a second frequency generator 44A arranged to generate a second periodic digital signal S FS at the second frequency F SUP during a correction period whenever this output indicates that the state of the counter CB is less than the number -N2.
  • the second generator 44A of the frequency F SUP comprises means arranged to enable it to be activated and then to deactivate it, the signal supplied by the second comparator being supplied to a 'start' input of the second generator to activate it. as soon as the second comparator indicates that the state of the counter CB is less than the number -N2.
  • the first and second periodic digital signals S FI and S FS as well as the frequencies F INF and F SUP have already been described in the context of the first embodiment and present in the second embodiment the same characteristics as in this first embodiment, so that these signals and these frequencies will not be described here again.
  • the control signal S F is similar to that described in the first embodiment; it is formed by the signal S FI when the first frequency generator is activated and by the signal S FS when the second frequency generator is activated.
  • the electrical connection point 86 corresponds in practice to an electronic element, for example an 'OR' logic gate, or to an electronic circuit, for example a multiplexer with two or three input positions and a single output (this is so here a switch with two or three inputs). In the case of three input positions, a neutral position is advantageously provided in which the switch is not connected to either of the two frequency generators.
  • the control signal S F is supplied to a timer 48 which outputs the periodic signal S P already described above.
  • the timer For each elementary pulse of the signal S FI or of the signal S FS , corresponding to a period of the respective frequency, the timer generates an activation pulse of the switch 50 which is here a short-circuit switch of the coil 78.
  • the switch 50 which is here a short-circuit switch of the coil 78.
  • a counter at N also receives the control signal S F and it counts the number of elementary pulses (number of periods) in this control signal S F from the start of each correction period. It is therefore reset to zero at the start of any correction period, simultaneously with the activation, as the case may be, of the first or second frequency generator.
  • This counter at N stops the frequency generator which was activated in the correction period considered as soon as it has counted N elementary pulses (i.e. N periods) via a 'Stop' input that each of the two frequency generators comprises, N being an integer greater than one (N> 1).
  • the counter at N is then deactivated until the start of a next correction period.
  • the number N is much greater than '1', this number N being for example between 100 and 10,000.
  • In each correction period are therefore generated N short-circuit pulses of coil 78 during N respective distinct time intervals each having a duration T P.
  • time drift D T absolute time error
  • N the number N which is related to the time drift D T detected.
  • the two frequency differences between the reference frequency F0c and respectively the first frequency F INF and the second frequency F SUP are provided to have the same value and where the number N1 is equal to the number N2, the number N is chosen. so that a detected time drift, negative or positive, is substantially corrected during a correction period which follows its detection. The same result can be obtained with a number N1 different from the number N2 if the two above-mentioned frequency differences are not expected to have the same value.
  • the induced voltage pulses 88 A generate, if the short-circuit pulses 84 of the coil 78 occur at least partially during these pulses 88 A , distinct electromagnetic braking pulses which generate negative phase shifts in the oscillation of the mechanical resonator 14A, so that they can generate a delay in the operation of the timepiece to correct an advance.
  • the induced voltage pulses 88 B generate, if the pulses 84 short-circuit the coil 78 At least partially intervene during these pulses 88 B , distinct electromagnetic braking pulses which generate positive phase shifts in the oscillation of the mechanical resonator, so that they can generate advance in the operation of the timepiece to correct a delay.
  • an angular offset of 180 ° has the advantage of being very efficient in generating the braking pulses by the short-circuit pulses 84, which makes it possible to effectively correct an advance or a delay in the operation of the motor. timepiece.
  • a stable phase / synchronous phase occurs in a second part of the correction period.
  • the frequency of the oscillator is synchronized on the selected correction frequency, namely either on the first correction frequency Fcor1 or on the second correction frequency Fcor2. It is therefore observed that, provided that the natural time drift of the timepiece remains within a nominal range for which the electromagnetic braking device of the mechanical resonator has been dimensioned, in each correction period a synchronous phase occurs in which the mechanical oscillator presents the correction frequency selected through the selection of the braking frequency F INF or F SUP , and this regardless of the angular position of the balance 16A during a first short-circuit pulse in any one correction period.
  • each short-circuit pulse generates an electromagnetic braking pulse, which is not always the case in the transitional phase.
  • the short-circuit pulses 84 are wedged between two induced voltage pulses 88 B and 88 A surrounding an extreme angular position of the mechanical resonator and two distinct braking pulses occur respectively at the start and at the end of each time interval T P , these two distinct braking pulses corresponding to two quantities of energy which are taken from the mechanical resonator during a braking pulse corresponding to a short-circuit pulse and which are variable (the variation of one being opposite to the variation of the other, so that if one of the two quantities of energy increases or decreases the other respectively decreases or increases) as a function of the frequency difference between the natural frequency F0 of the mechanical oscillator and the frequency of selected correction and selected braking frequency.
  • Two braking pulses are distinct when they are separated by a time zone having a non-zero duration.
  • F0 natural frequency
  • the braking pulses in the second embodiment correspond respectively to the pulses short-circuit which produce them, so that each braking pulse of a first series of braking pulses and of a second series of braking pulses encompasses all of the distinct braking pulses that may occur during the time interval T P of the corresponding short-circuit pulse. It will also be noted that, in the transient phase, if the time intervals Tp are less than time zones without voltage induced in the coil, it is possible that no braking pulse appears in the initial short-circuit pulses.
  • a braking pulse may contain only one distinct braking pulse, which is the case when the time interval T P has a duration less than those of the time zones without induced voltage located around extreme angular positions.
  • each braking pulse occurring in the synchronous phase of a correction period has two distinct braking pulses, respectively at the start and at the end of each corresponding short-circuit pulse which is generated during a time interval T P.
  • the Figure 9 corresponds to a situation where the natural oscillation frequency F0 of the mechanical oscillator is a little lower than the reference frequency F0c, so that the timepiece lags in the absence of regulation.
  • a first distinct braking pulse generated in the initial zone of each pulse short-circuit 84 and occurring in the second half-wave A1 2 of a first oscillating half-wave A1 (at the start of the separate time intervals Tp) is greater than a second separate braking pulse generated in the zone end of each short-circuit pulse and occurring in the first half-wave A2 1 of a second half-wave A2 (at the end of the distinct time intervals T P ).
  • the first and second pulses of distinct braking are generated respectively by the induced voltage pulses 88 B and 88 A during each short-circuit pulse 84 (respectively at the start and at the end of the distinct time intervals T P ).
  • the positive phase shift generated by a voltage pulse 88 B in a half-wave A1 2 is greater than the negative phase shift generated by the voltage pulse 88 A in the next half-wave A2 1 , so that A small correction of the detected delay occurs during each short-circuit pulse.

Description

Domaine techniqueTechnical area

La présente invention concerne une pièce d'horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur une fréquence de consigne déterminée par un oscillateur électronique auxiliaire. A cet effet, la pièce d'horlogerie comprend un dispositif de régulation capable de corriger une dérive temporelle éventuelle dans le fonctionnement de l'oscillateur mécanique, lequel cadence la marche du mouvement mécanique qui l'incorpore.The present invention relates to a timepiece comprising a mechanical oscillator, the average frequency of which is synchronized to a reference frequency determined by an auxiliary electronic oscillator. To this end, the timepiece comprises a regulating device capable of correcting any time drift in the operation of the mechanical oscillator, which rates the rate of the mechanical movement which incorporates it.

Plus particulièrement, la pièce d'horlogerie est munie d'un mouvement mécanique qui comprend :

  • un mécanisme indicateur d'au moins une donnée temporelle,
  • un résonateur mécanique susceptible d'osciller autour d'une position neutre correspondant à son état d'énergie potentielle minimale, et
  • un dispositif d'entretien du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui est agencé pour cadencer la marche du mécanisme indicateur.
More particularly, the timepiece is provided with a mechanical movement which comprises:
  • a mechanism indicating at least one temporal datum,
  • a mechanical resonator capable of oscillating around a neutral position corresponding to its state of minimum potential energy, and
  • a device for maintaining the mechanical resonator forming with this mechanical resonator a mechanical oscillator which is arranged to rate the operation of the indicator mechanism.

Cette pièce d'horlogerie est munie en outre d'un dispositif de régulation agencé pour réguler la fréquence moyenne de l'oscillateur mécanique et comprenant :

  • un capteur pour pouvoir détecter un nombre de périodes ou d'alternances dans l'oscillation du résonateur mécanique dans une plage de fonctionnement utile de l'oscillateur mécanique,
  • un oscillateur auxiliaire,
  • un dispositif de freinage qui est agencé pour pouvoir appliquer momentanément une force de freinage au résonateur mécanique, et
  • un circuit de régulation comprenant un dispositif de mesure agencé pour pouvoir mesurer, sur la base d'un signal de détection fourni par le capteur, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire, ce circuit de régulation étant agencé pour déterminer si la dérive temporelle mesurée correspond à au moins une certaine avance ou à au moins un certain retard et pour pouvoir, si c'est le cas, générer un signal de commande qui active sélectivement le dispositif de freinage en fonction de la dérive temporelle mesurée, de manière à engendrer au moins une impulsion de freinage qui est appliquée au résonateur mécanique pour corriger au moins partiellement cette dérive temporelle.
This timepiece is further provided with a regulating device designed to regulate the average frequency of the mechanical oscillator and comprising:
  • a sensor to be able to detect a number of periods or alternations in the oscillation of the mechanical resonator in a useful operating range of the mechanical oscillator,
  • an auxiliary oscillator,
  • a braking device which is arranged to be able to momentarily apply a braking force to the mechanical resonator, and
  • a regulation circuit comprising a measuring device arranged to be able to measure, on the basis of a detection signal supplied by the sensor, a time drift of the mechanical oscillator relative to the auxiliary oscillator, this regulation circuit being arranged to determining whether the measured time drift corresponds to at least a certain advance or at least a certain delay and in order to be able, if so, to generate a control signal which selectively activates the braking device as a function of the measured time drift , so as to generate at least one braking pulse which is applied to the mechanical resonator to at least partially correct this time drift.

Arrière-plan technologiqueTechnological background

Des pièces d'horlogerie du type défini ci-avant dans le domaine de l'invention ont été récemment divulguées dans les demandes de brevet CH 713306 A2 , EP 3339982 A1 et EP 1 241 538 A1 .Timepieces of the type defined above in the field of the invention have recently been disclosed in patent applications. CH 713306 A2 , EP 3339982 A1 and EP 1 241 538 A1 .

La pièce d'horlogerie divulguée dans le document CH 713306 A2 comprend un mouvement mécanique, muni d'un oscillateur mécanique, et un système électromagnétique formé d'au moins un aimant monté sur le balancier d'un oscillateur mécanique et d'une bobine portée par un support du balancier. Le système électromagnétique fait partie d'un dispositif de régulation prévu pour réguler la fréquence moyenne de l'oscillateur mécanique dans le cas où cet oscillateur présente une dérive temporelle positive relativement à un oscillateur auxiliaire, par exemple un oscillateur à quartz, comme dans le cas où il présente une dérive temporelle négative. Après avoir observé qu'une impulsion de freinage, appliquée au résonateur formant l'oscillateur mécanique dans une alternance de son oscillation, engendre un déphase négatif lorsqu'elle intervient avant le passage du résonateur par sa position neutre et un déphase positif lorsqu'elle intervient après le passage du résonateur par sa position neutre, ce document propose une solution dans laquelle la dérive temporelle est mesurée et le mouvement d'oscillation du résonateur est observé pour que le dispositif de régulation puisse lui appliquer sélectivement une ou plusieurs impulsions de freinage, respectivement via un ou plusieurs court-circuit de la bobine, dans une ou plusieurs premières demi-alternances respectives (situées avant le passage du résonateur par sa position neutre) lorsque la dérive temporelle mesurée correspond à au moins une certaine avance et dans une ou plusieurs secondes demi-alternances respectives (situées après le passage du résonateur par sa position neutre) lorsque la dérive temporelle correspond à au moins un certain retard. Pour ce faire, le circuit électronique du dispositif de régulation comprend un compteur temporel ou un minuteur permettant de déterminer, sur la base de détections d'impulsions de tension induite dans la bobine, si une impulsion de tension induite intervient dans une première demi-alternance ou dans une seconde demi-alternance de manière à pouvoir appliquer sélectivement les impulsions de freinage comme indiqué ci-dessus. Le procédé de régulation implémenté dans ce document, bien que remarquable, requière un circuit électronique relativement complexe qui consomme donc une certaine énergie électrique qui est prise de l'oscillateur mécanique, ce qui tend à réduire son amplitude d'oscillation et donc la durée de fonctionnement normal pour une certaine énergie mécanique stockée dans un barillet du mouvement mécanique.The timepiece disclosed in the document CH 713306 A2 comprises a mechanical movement, provided with a mechanical oscillator, and an electromagnetic system formed of at least one magnet mounted on the balance of a mechanical oscillator and of a coil carried by a support of the balance. The electromagnetic system is part of a regulation device intended to regulate the average frequency of the mechanical oscillator in the case where this oscillator has a positive time drift relative to an auxiliary oscillator, for example a crystal oscillator, as in the case where it presents a negative time drift. After observing that a braking pulse, applied to the resonator forming the mechanical oscillator in an alternation of its oscillation, generates a negative phase shift when it occurs before the resonator passes through its neutral position and a positive phase shift when it occurs after the resonator has passed through its neutral position, this document proposes a solution in which the time drift is measured and the movement oscillation of the resonator is observed so that the regulation device can selectively apply one or more braking pulses to it, respectively via one or more short-circuits of the coil, in one or more respective first half-waves (located before the passage of the resonator by its neutral position) when the measured time drift corresponds to at least a certain advance and in one or more respective second half-waves (located after the resonator has passed through its neutral position) when the time drift corresponds to at least one some delay. To do this, the electronic circuit of the regulation device comprises a time counter or a timer making it possible to determine, on the basis of detections of voltage pulses induced in the coil, whether an induced voltage pulse occurs in a first half-wave. or in a second half-cycle so as to be able to selectively apply the braking pulses as indicated above. The regulation method implemented in this document, although remarkable, requires a relatively complex electronic circuit which therefore consumes a certain electrical energy which is taken from the mechanical oscillator, which tends to reduce its oscillation amplitude and therefore the duration of the oscillation. normal operation for a certain mechanical energy stored in a barrel of the mechanical movement.

La pièce d'horlogerie divulguée dans le document EP 3339982 A1 est remarquable par le système prévu pour engendrer des impulsions de freinage mécanique appliquées au balancier de l'oscillateur mécanique. Cependant, le procédé de régulation s'apparente à celui du document précédent. Il est prévu un capteur agencé pour pouvoir détecter les passages du résonateur par sa position neutre. Sur la base de la connaissance de la période de consigne pour l'oscillateur mécanique et des détections opérées par le capteur, un circuit logique de commande détermine à l'aide d'un compteur temporel les instants auxquels les impulsions de freinage doivent être déclenchées pour qu'elles interviennent sélectivement avant ou après le passage du résonateur mécanique par sa position neutre dans des alternances correspondantes, c'est-à-dire pour appliquer les impulsions de freinage mécanique soit dans des premières demi-alternances, soit des deux secondes demi-alternances. Dans ce cas aussi, un circuit électronique relativement complexe est nécessaire.The timepiece disclosed in the document EP 3339982 A1 is remarkable for the system designed to generate mechanical braking pulses applied to the balance of the mechanical oscillator. However, the regulation process is similar to that of the previous document. A sensor is provided which is designed to be able to detect the passages of the resonator through its neutral position. On the basis of the knowledge of the setpoint period for the mechanical oscillator and of the detections made by the sensor, a control logic circuit determines with the aid of a time counter the instants at which the braking pulses must be triggered for that they intervene selectively before or after the passage of the mechanical resonator by its neutral position in corresponding vibrations, that is to say to apply the mechanical braking pulses either in first half-cycles or in two second half-vibrations. In this case too, a relatively complex electronic circuit is necessary.

Résumé de l'inventionSummary of the invention

Le but principal de la présente invention est de simplifier le circuit électronique du dispositif de régulation de la fréquence moyenne d'un oscillateur mécanique, en fournissant une alternative aux dispositifs de régulation de l'art antérieur, décrits dans l'arrière-plan technologique, qui soit aisée à implémenter dans une pièce d'horlogerie.The main aim of the present invention is to simplify the electronic circuit of the device for regulating the average frequency of a mechanical oscillator, by providing an alternative to the regulating devices of the prior art, described in the technological background, which is easy to implement in a timepiece.

A cet effet, l'invention concerne une pièce d'horlogerie telle que définie précédemment dans le domaine de l'invention et qui est caractérisée par le fait que le circuit de régulation comprend un dispositif générateur d'au moins une fréquence qui est agencé de manière à pouvoir générer un signal digital périodique à une fréquence FSUP ; et par le fait que le circuit de régulation est agencé pour pouvoir fournir, lorsqu'il détermine une dérive temporelle correspondant à au moins un certain retard dans la marche de la pièce d'horlogerie, momentanément au dispositif de freinage un premier signal de commande pour activer ce dispositif de freinage de manière que le dispositif de freinage génère, durant une première période de correction, une série d'impulsions de freinage périodiques qui sont appliquées au résonateur mécanique à la fréquence FSUP. Cette fréquence FSUP et la durée de la première période de correction sont prévues et le dispositif de freinage est agencé de manière que la série d'impulsions de freinage périodiques à la fréquence FSUP puisse engendrer, au cours de la première période de correction, une phase synchrone dans laquelle l'oscillateur mécanique est synchronisé sur une fréquence de correction qui est supérieure à une fréquence de consigne F0c prévue pour l'oscillateur mécanique.To this end, the invention relates to a timepiece as defined above in the field of the invention and which is characterized in that the regulation circuit comprises a device generating at least one frequency which is arranged in so as to be able to generate a periodic digital signal at a frequency F SUP ; and by the fact that the regulation circuit is designed to be able to supply, when it determines a time drift corresponding to at least a certain delay in the operation of the timepiece, momentarily to the braking device a first control signal for activate this braking device so that the braking device generates, during a first correction period, a series of periodic braking pulses which are applied to the mechanical resonator at the frequency F SUP . This frequency F SUP and the duration of the first correction period are provided and the braking device is arranged so that the series of periodic braking pulses at the frequency F SUP can generate, during the first correction period, a synchronous phase in which the mechanical oscillator is synchronized to a correction frequency which is greater than a reference frequency F0c provided for the mechanical oscillator.

Dans un mode de réalisation principal, la fréquence FSUP est comprise dans une première plage de valeurs s'étendant entre (M+1)/M et (M+2)/M, inclus, multipliés par une fréquence Fz(N) égale au double d'une fréquence de consigne F0c pour l'oscillateur mécanique divisée par un nombre entier positif N, soit [(M+1)/M]·Fz(N) < FSUP =< [(M+2)/M]·Fz(N) avec Fz (N) = 2·F0c/N, M étant égal à cent fois deux à la puissance K avec K égal à un nombre entier positif supérieur à zéro et inférieur à treize, soit 0 < K < 13 et M = 100.2K, et N étant prévu inférieur à M divisé par trente, soit N < M/30.In a main embodiment, the frequency F SUP is included in a first range of values extending between (M + 1) / M and (M + 2) / M, inclusive, multiplied by a frequency Fz (N) equal twice a reference frequency F0c for the mechanical oscillator divided by a positive integer N, that is to say [(M + 1) / M] · Fz (N) <F SUP = <[(M + 2) / M ] · Fz (N) with Fz (N) = 2 · F0c / N, M being equal to one hundred times two to the power K with K equal to a positive integer greater than zero and less than thirteen, that is to say 0 <K < 13 and M = 100.2 K , and N being expected to be less than M divided by thirty, i.e. N <M / 30.

Dans le cas où le circuit de régulation détermine une dérive temporelle correspondant à au moins une certaine avance dans la marche de la pièce d'horlogerie, deux modes de réalisation généraux sont prévus. Dans le premier mode de réalisation général, le circuit de régulation est agencé pour pouvoir, après avoir détecté ladite au moins une certaine avance, arrêter l'oscillateur mécanique et ensuite bloquer momentanément le résonateur mécanique de manière à corriger au moins partiellement ladite au moins une certaine avance détectée.In the case where the regulation circuit determines a time drift corresponding to at least a certain advance in the operation of the timepiece, two general embodiments are provided. In the first general embodiment, the regulation circuit is arranged to be able, after having detected said at least a certain advance, to stop the mechanical oscillator and then to temporarily block the mechanical resonator so as to at least partially correct said at least one. certain advance detected.

Dans le deuxième mode de réalisation général, ledit dispositif générateur d'au moins une fréquence est un dispositif générateur de fréquences agencé de manière à pouvoir en outre générer un signal digital périodique à une fréquence FINF et le circuit de régulation est agencé pour pouvoir fournir, lorsqu'il détermine une dérive temporelle correspondant à au moins une certaine avance dans la marche de la pièce d'horlogerie, momentanément au dispositif de freinage un deuxième signal de commande pour activer ce dispositif de freinage de manière que le dispositif de freinage génère, durant une deuxième période de correction, une série d'impulsions de freinage périodiques qui sont appliquées au résonateur mécanique à la fréquence FINF. Cette fréquence FINF et la durée de la deuxième période de correction sont prévues et le dispositif de freinage est agencé de manière que la série d'impulsions de freinage périodiques à la fréquence FINF puisse engendrer, au cours de la deuxième période de correction, une phase synchrone dans laquelle l'oscillateur mécanique est synchronisé sur une fréquence de correction qui est inférieure à la fréquence de consigne F0c.In the second general embodiment, said device for generating at least one frequency is a device for generating frequencies arranged so as to be able, moreover, to generate a periodic digital signal at a frequency F INF and the regulation circuit is arranged to be able to supply , when it determines a time drift corresponding to at least a certain advance in the operation of the timepiece, momentarily to the braking device a second control signal to activate this braking device so that the braking device generates, during a second correction period, a series of periodic braking pulses which are applied to the mechanical resonator at the frequency F INF . This frequency F INF and the duration of the second correction period are provided and the braking device is arranged so that the series of periodic braking pulses at the frequency F INF can generate, during the second correction period, a phase synchronous in which the mechanical oscillator is synchronized on a correction frequency which is lower than the reference frequency F0c.

La fréquence FINF est avantageusement comprise dans une deuxième plage de valeurs s'étendant entre (M-2)/M, inclus, et (M-1)/M multipliés par la fréquence Fz(N), soit [(M-2)/M]·Fz(N) =< FINF < [(M-1)/M]·Fz(N).The frequency F INF is advantageously included in a second range of values extending between (M-2) / M, inclusive, and (M-1) / M multiplied by the frequency Fz (N), that is to say [(M-2 ) / M] · Fz (N) = <F INF <[(M-1) / M] · Fz (N).

Dans une variante principale du deuxième mode de réalisation général, le circuit de régulation est agencé pour pouvoir fournir, chaque fois que le circuit de mesure détermine une dérive temporelle correspond à au moins une certaine avance ou à au moins un certain retard, momentanément au dispositif de freinage un signal de commande qui est sélectivement formé par :

  • un premier signal d'activation périodique du dispositif de freinage, qui est déterminé par ledit signal digital périodique à ladite fréquence FINF, lorsque la dérive temporelle correspond à ladite au moins une certaine avance, de manière à générer une première série d'impulsions de freinage périodiques qui sont appliquées au résonateur mécanique à la fréquence FINF, et
  • un deuxième signal d'activation périodique du dispositif de freinage, qui est déterminé par ledit signal digital périodique à ladite fréquence FSUP, lorsque la dérive temporelle correspond audit au moins un certain retard, de manière à générer une deuxième série d'impulsions de freinage périodiques qui sont appliquées au résonateur mécanique à la fréquence FSUP.
In a main variant of the second general embodiment, the regulation circuit is designed to be able to supply, each time the measuring circuit determines a time drift corresponding to at least a certain advance or at least a certain delay, momentarily to the device. brake a control signal which is selectively formed by:
  • a first periodic activation signal of the braking device, which is determined by said periodic digital signal at said frequency F INF , when the time drift corresponds to said at least a certain advance, so as to generate a first series of pulses of periodic braking which are applied to the mechanical resonator at the frequency F INF , and
  • a second periodic activation signal of the braking device, which is determined by said periodic digital signal at said frequency F SUP , when the time drift corresponds to said at least a certain delay, so as to generate a second series of braking pulses periodic which are applied to the mechanical resonator at the frequency F SUP .

En particulier, les impulsions de freinage ont une durée TP inférieure à au quart d'une période de consigne T0c, soit TP < T0c/4, T0c étant par définition l'inverse de la fréquence de consigne F0c.In particular, the braking pulses have a duration T P less than a quarter of a setpoint period T0c, ie T P <T0c / 4, T0c being by definition the inverse of the setpoint frequency F0c.

Dans une variante préférée, le nombre entier positif K est supérieur à deux et inférieur à dix, soit 2 < K < 10, et le nombre N est inférieur au nombre M divisé par cent (N < M/100).In a preferred variant, the positive integer K is greater than two and less than ten, ie 2 <K <10, and the number N is less than the number M divided by one hundred (N <M / 100).

Dans une variante générale, le circuit de régulation est agencé de manière que le signal de commande est fourni au dispositif de freinage, chaque fois que ce circuit de régulation détermine que la dérive temporelle correspond à ladite au moins une certaine avance ou audit au moins un certain retard, durant une période de correction au cours de laquelle la fréquence de l'oscillateur mécanique est synchronisée respectivement sur une première fréquence de correction Fcor1 qui est dans ladite deuxième plage de valeurs calculée avec Fz (N=2) = F0c ou sur une deuxième fréquence de correction Fcor2 qui est dans ladite première plage de valeurs calculée avec Fz (N=2) = F0c.In a general variant, the regulation circuit is arranged so that the control signal is supplied to the braking device, each time this regulation circuit determines that the time drift corresponds to said at least a certain advance or to said at least one certain delay, during a correction period during which the frequency of the mechanical oscillator is synchronized respectively on a first correction frequency Fcor1 which is in said second range of values calculated with Fz (N = 2) = F0c or on a second correction frequency Fcor2 which is in said first range of values calculated with Fz (N = 2) = F0c.

Dans une variante préférée, la durée de la phase synchrone est prévue largement supérieure à une durée maximale d'une phase transitoire intervenant généralement au début des périodes de correction avant la phase synchrone.In a preferred variant, the duration of the synchronous phase is provided to be much greater than a maximum duration of a transient phase generally occurring at the start of the correction periods before the synchronous phase.

Brève description des figuresBrief description of the figures

L'invention sera décrite ci-après de manière plus détaillée à l'aide des dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

  • La Figure 1 montre, en partie schématiquement, un premier mode de réalisation d'une pièce d'horlogerie selon l'invention ;
  • La Figure 2 montre le schéma du circuit électronique d'une variante du dispositif de régulation du premier mode de réalisation ;
  • La Figure 3 est un organigramme d'un mode de fonctionnement du dispositif de régulation de la Figure 2 implémenté dans son circuit logique de commande ;
  • La Figure 4 donne, pour un premier mode de régulation selon l'invention mis en œuvre dans le premier mode de réalisation de l'invention et dans le cas d'une pièce d'horlogerie dont le mécanisme indicateur d'une donnée temporelle présente de l'avance, des graphes représentant l'évolution temporelle de la position angulaire du résonateur mécanique, une première série d'impulsions de freinage appliquées à ce résonateur mécanique, dans une période de correction, en fonction d'une dérive temporelle également représentée, ainsi qu'un graphe de l'évolution de la fréquence instantanée de l'oscillateur mécanique dans une zone temporelle englobant la période de correction considérée ;
  • La Figure 5 donne, pour le premier mode de régulation et dans le cas d'une pièce d'horlogerie dont le mécanisme indicateur d'une donnée temporelle présente du retard, des graphes représentant l'évolution temporelle de la position angulaire du résonateur mécanique, une deuxième série d'impulsions de freinage appliquées à ce résonateur mécanique, dans une période de correction, en fonction d'une dérive temporelle également représentée, ainsi qu'un graphe de l'évolution de la fréquence instantanée de l'oscillateur mécanique dans une zone temporelle englobant la période de correction considérée ;
  • La Figure 6 montre, en partie schématiquement, un deuxième mode de réalisation d'une pièce d'horlogerie selon l'invention ;
  • La Figure 7 montre le résonateur mécanique et un dispositif de freinage électromagnétique formant le dispositif de régulation du deuxième mode de réalisation ;
  • La Figure 8 montre le schéma du circuit électronique d'une variante du dispositif de régulation du deuxième mode de réalisation ; et
  • La Figure 9 donne, dans le cadre du deuxième mode de réalisation, les graphes de la position angulaire du résonateur mécanique sur une période d'oscillation, de la tension induite dans une bobine du dispositif de freinage électromagnétique et d'un intervalle de temps distinct au cours duquel un court-circuit est appliqué à la bobine, dans un régime stable d'une synchronisation entre un générateur de fréquence du dispositif de régulation et le résonateur mécanique oscillant qui est obtenue au cours d'une série d'impulsions de freinage appliquées au résonateur mécanique.
The invention will be described below in more detail with the aid of the appended drawings, given by way of non-limiting examples, in which:
  • The Figure 1 shows, in part schematically, a first embodiment of a timepiece according to the invention;
  • The Figure 2 shows the electronic circuit diagram of a variant of the regulation device of the first embodiment;
  • The Figure 3 is a flowchart of an operating mode of the device for regulating the Figure 2 implemented in its control logic circuit;
  • The Figure 4 gives, for a first regulation mode according to the invention implemented in the first embodiment of the invention and in the case of a timepiece for which the mechanism indicating a time datum has an advance , graphs representing the temporal evolution of the angular position of the mechanical resonator, a first series of braking pulses applied to this mechanical resonator, in a correction period, as a function of a temporal drift also represented, as well as a graph of the evolution of the instantaneous frequency of the mechanical oscillator in a time zone including the considered correction period;
  • The Figure 5 gives, for the first regulation mode and in the case of a timepiece whose mechanism indicating a temporal datum has a delay, graphs representing the temporal evolution of the angular position of the mechanical resonator, a second series of braking pulses applied to this mechanical resonator, in a correction period, as a function of a time drift also represented, as well as a graph of the evolution of the instantaneous frequency of the mechanical oscillator in a time zone encompassing the correction period considered;
  • The Figure 6 shows, in part schematically, a second embodiment of a timepiece according to the invention;
  • The Figure 7 shows the mechanical resonator and an electromagnetic braking device forming the regulating device of the second embodiment;
  • The Figure 8 shows the electronic circuit diagram of a variant of the regulation device of the second embodiment; and
  • The Figure 9 gives, in the context of the second embodiment, the graphs of the angular position of the mechanical resonator over a period of oscillation, of the voltage induced in a coil of the electromagnetic braking device and of a distinct time interval during which a short circuit is applied to the coil, in a stable state of synchronization between a frequency generator of the regulating device and the oscillating mechanical resonator which is obtained during a series of braking pulses applied to the mechanical resonator .

Description détaillée de l'inventionDetailed description of the invention

A la Figure 1 est représentée une pièce d'horlogerie selon la présente invention. Hormis l'agencement du circuit de régulation et du mode de fonctionnement de ce circuit de commande, lequel met en œuvre un procédé de régulation selon la présente invention, cette pièce d'horlogerie correspond essentiellement au premier mode de réalisation de la pièce d'horlogerie décrit dans le document EP 3 339 982 à l'aide des figures 1 et 2 de ce document, de sorte qu'on se référera à l'enseignement de ce document et que toutes les variantes de réalisation ne seront pas décrites ici.To the Figure 1 is shown a timepiece according to the present invention. Apart from the arrangement of the regulation circuit and the operating mode of this control circuit, which implements a regulation method according to the present invention, this timepiece essentially corresponds to the first embodiment of the timepiece described in the document EP 3,339,982 using figures 1 and 2 of this document, so that reference will be made to the teaching of this document and all the variant embodiments will not be described here.

La pièce d'horlogerie 2 comprend un mouvement horloger mécanique 4 qui incorpore un mécanisme 6 agencé pour indiquer au moins une donnée temporelle, un résonateur mécanique 14, formé par un balancier 16 monté pivotant sur la platine 5 et un spiral 18, et un dispositif d'entretien du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui cadence la marche du mécanisme indicateur d'une donnée temporelle. Le dispositif d'entretien comprend un échappement 12, formé par une ancre et une roue d'échappement qui est reliée cinématiquement au barillet 8 par l'intermédiaire du rouage 10. Le résonateur mécanique est susceptible d'osciller le long d'un axe d'oscillation, ici un axe géométrique circulaire, autour d'une position neutre correspondant à un état d'énergie potentielle mécanique minimale. Chaque oscillation du résonateur mécanique définit une période d'oscillation et deux alternances.The timepiece 2 comprises a mechanical watch movement 4 which incorporates a mechanism 6 arranged to indicate at least one time datum, a mechanical resonator 14, formed by a balance 16 mounted to pivot on the plate 5 and a balance spring 18, and a device maintenance of the mechanical resonator forming with this mechanical resonator a mechanical oscillator which rates the operation of the indicator mechanism of a temporal datum. The maintenance device comprises an escapement 12, formed by an anchor and an escape wheel which is kinematically connected to the barrel 8 by means of the gear 10. The mechanical resonator is capable of oscillating along an axis d oscillation, here a circular geometric axis, around a neutral position corresponding to a state of minimum mechanical potential energy. Each oscillation of the mechanical resonator defines an oscillation period and two vibrations.

La pièce d'horlogerie 2 comprend en outre un dispositif pour réguler la fréquence moyenne de l'oscillateur mécanique, ce dispositif de régulation 20 comprenant un circuit électronique de régulation 22 qui est associé à une base de temps de référence constituée par un oscillateur auxiliaire 36. Cet oscillateur auxiliaire est formé par un résonateur à quartz 23 et un circuit d'horloge 38 qui entretient le résonateur à quartz et reçoit de ce dernier un signal de fréquence de référence que ce circuit d'horloge fournit en sortie sous la forme d'un signal périodique digital de référence SQ. On notera que d'autres types d'oscillateurs auxiliaires peuvent être prévus, notamment un oscillateur intégré entièrement dans le circuit de régulation. Par définition, l'oscillateur auxiliaire est plus précis que l'oscillateur mécanique. Le dispositif de régulation 20 comprend aussi un capteur 24 pour détecter au moins une position angulaire du balancier lorsqu'il oscille, permettant de détecter, pour une plage de fonctionnement utile de l'oscillateur mécanique, un nombre d'alternances ou de périodes dans l'oscillation du résonateur mécanique. Le dispositif de régulation comprend encore un dispositif de freinage mécanique 26 agencé pour pouvoir appliquer momentanément une force de freinage au résonateur mécanique 14, en particulier des impulsions de freinage mécanique à son balancier. Finalement, l'ensemble horloger comprend une source d'énergie 32 associée à un dispositif 34 de stockage de l'énergie électrique engendrée par la source d'énergie. La source d'énergie est par exemple formée par une cellule photovoltaïque ou par un élément thermoélectrique, ces exemples n'étant nullement limitatifs. Dans le cas d'une pile, la source d'énergie et le dispositif de stockage forment ensemble un seul et même composant électrique.The timepiece 2 further comprises a device for regulating the average frequency of the mechanical oscillator, this regulating device 20 comprising an electronic regulating circuit 22 which is associated with a reference time base constituted by an auxiliary oscillator 36 This auxiliary oscillator is formed by a quartz resonator 23 and a clock circuit 38 which maintains the quartz resonator and receives from the latter a reference frequency signal which this clock circuit outputs. in the form of a digital periodic reference signal S Q. It will be noted that other types of auxiliary oscillators can be provided, in particular an oscillator fully integrated into the regulation circuit. By definition, the auxiliary oscillator is more precise than the mechanical oscillator. The regulation device 20 also comprises a sensor 24 for detecting at least one angular position of the balance when it oscillates, making it possible to detect, for a useful operating range of the mechanical oscillator, a number of alternations or periods in the oscillation of the mechanical resonator. The regulating device also comprises a mechanical braking device 26 designed to be able to momentarily apply a braking force to the mechanical resonator 14, in particular mechanical braking pulses to its balance. Finally, the watch assembly comprises an energy source 32 associated with a device 34 for storing the electrical energy generated by the energy source. The energy source is for example formed by a photovoltaic cell or by a thermoelectric element, these examples not being in any way limiting. In the case of a battery, the energy source and the storage device together form one and the same electrical component.

De manière générale, le dispositif de régulation 20 comprend aussi un dispositif de mesure agencé pour mesurer, sur la base de signaux de position fournis par le capteur, une dérive temporelle DT de l'oscillateur mécanique relativement à l'oscillateur auxiliaire (base de temps de référence 36). On comprend qu'une telle mesure est aisée dès lors qu'il est prévu un capteur capable de détecter le passage du résonateur mécanique par une certaine position angulaire, notamment par sa position neutre. Un tel événement a lieu dans toutes les alternances (demi-périodes d'oscillation) de l'oscillateur mécanique. Le circuit de mesure sera décrit plus en détails par la suite.In general, the regulation device 20 also comprises a measuring device arranged to measure, on the basis of position signals supplied by the sensor, a time drift D T of the mechanical oscillator relative to the auxiliary oscillator (base of reference time 36). It will be understood that such a measurement is easy when a sensor is provided which is capable of detecting the passage of the mechanical resonator through a certain angular position, in particular through its neutral position. Such an event takes place in all alternations (half-periods of oscillation) of the mechanical oscillator. The measurement circuit will be described in more detail below.

Le capteur 24 est agencé pour pouvoir détecter le passage d'au moins un point de référence du balancier 16 par une certaine position angulaire donnée relativement à un support de ce résonateur mécanique. Dans une variante avantageuse, le capteur est agencé pour détecter le passage du résonateur mécanique par sa position neutre. On notera que, dans cette variante, le capteur peut être associé à l'ancre de l'échappement de manière à détecter le basculement de cette ancre lors des impulsions d'entretien de l'oscillation qui sont prévues sensiblement lorsque le résonateur mécanique passe par sa position neutre.The sensor 24 is designed to be able to detect the passage of at least one reference point of the balance 16 through a certain given angular position relative to a support of this mechanical resonator. In advantageous variant, the sensor is arranged to detect the passage of the mechanical resonator through its neutral position. It will be noted that, in this variant, the sensor can be associated with the anchor of the escapement so as to detect the tilting of this anchor during the oscillation sustaining pulses which are provided substantially when the mechanical resonator passes through. its neutral position.

Dans une variante particulière, le capteur 24 est un capteur optique, du type photoélectrique, qui comprend une source de lumière, agencée de manière à pouvoir envoyer un faisceau de lumière en direction du balancier, et un détecteur de lumière, agencé pour recevoir en retour un signal lumineux dont l'intensité varie périodiquement en fonction de la position du balancier. Par exemple, le faisceau est envoyé sur la surface latérale 15 de la serge 17, cette surface présentant une zone limitée avec une réflectivité différente des deux zones avoisinantes, de sorte que le capteur peut détecter le passage de cette zone limitée et fournir au dispositif de régulation un signal de position lorsque cet événement se produit. On comprendra que la surface circulaire présentant une réflexion variable pour le faisceau de lumière peut être située à d'autres endroits du balancier. La variation peut dans un cas particulier être produite par un trou dans la surface réfléchissante. Le capteur peut aussi détecter le passage d'une certaine partie du balancier, par exemple un bras, la position neutre correspondant par exemple au milieu d'un signal réfléchi par ce bras. On comprend donc que la modulation du signal lumineux permet de détecter de diverses manières au moins une position angulaire du balancier, par une variation négative ou positive de la lumière captée. Dans d'autres variantes, le capteur de position peut être du type capacitif ou du type inductif et être ainsi agencé de manière à pouvoir détecter une variation de capacité, respectivement d'inductance en fonction de la position du balancier. Le capteur comprend des moyens pour convertir le signal lumineux analogique en un signal digital Sc. Il peut aussi comprendre une bascule qui permet de diviser par deux la fréquence du signal lumineux lorsque celui-ci intervient une fois par alternance, de sorte que le signal Sc corresponde à la fréquence d'oscillation F0 de l'oscillateur mécanique. L'homme du métier connaît de nombreux capteurs qui pourront aisément être incorporés dans l'ensemble horloger selon l'invention.In a particular variant, the sensor 24 is an optical sensor, of the photoelectric type, which comprises a light source, arranged so as to be able to send a beam of light in the direction of the balance, and a light detector, arranged to receive in return a light signal the intensity of which varies periodically depending on the position of the balance. For example, the beam is sent to the lateral surface 15 of the rim 17, this surface having a limited zone with a reflectivity different from the two neighboring zones, so that the sensor can detect the passage of this limited zone and provide the device with regulating a position signal when this event occurs. It will be understood that the circular surface having a variable reflection for the light beam can be located at other places of the balance. The variation can in a particular case be produced by a hole in the reflecting surface. The sensor can also detect the passage of a certain part of the balance, for example an arm, the neutral position corresponding for example to the middle of a signal reflected by this arm. It is therefore understood that the modulation of the light signal makes it possible to detect in various ways at least one angular position of the balance, by a negative or positive variation of the light picked up. In other variants, the position sensor may be of the capacitive type or of the inductive type and thus be arranged so as to be able to detect a variation in capacitance, respectively inductance, as a function of the position of the balance. The sensor comprises means for converting the analog light signal into a digital signal Sc. It can also include a rocker which makes it possible to divide by two the frequency of the light signal when the latter occurs once per alternation, so that the signal Sc corresponds to the oscillation frequency F0 of the mechanical oscillator. Those skilled in the art are aware of numerous sensors which can easily be incorporated into the watch assembly according to the invention.

Le dispositif de freinage mécanique 26 est agencé pour pouvoir appliquer au balancier 16 des impulsions de freinage mécanique de manière à réguler la fréquence de l'oscillateur mécanique lorsqu'une certaine dérive temporelle DT de cet oscillateur mécanique est constatée. Dans une variante avantageuse, un couple de freinage appliqué au résonateur mécanique par une quelconque impulsion de freinage mécanique est prévu inférieur à un couple de blocage de l'oscillateur mécanique et la durée des impulsions de freinage est prévue de manière à prendre au maximum une certaine énergie au résonateur mécanique de sorte que l'amplitude de l'oscillation demeure supérieure à une valeur minimale donnée. En d'autres termes, le couple de freinage est prévu inférieur au couple exercé par le spiral à l'amplitude minimale prévue et la durée des impulsions est telle que cette amplitude minimale soit respectée pour un couple de force minimal prédéfini qui est exercé par le barillet (à noter que l'oscillateur mécanique est entretenu par le barillet via l'échappement), ceci afin de ne pas bloquer momentanément le mouvement d'oscillation du résonateur mécanique durant les impulsions de freinage et de maintenir l'oscillateur mécanique dans sa plage de fonctionnement utile dès que le barillet exerce un couple de force supérieur au couple de force minimal prévu. Dans une autre variante plus générale, on peut appliquer un couple de freinage supérieur au couple exercé par le spiral à l'amplitude minimale prévue, mais la durée des impulsions est déterminée, en tenant compte de l'entretien de l'oscillateur mécanique, de sorte que cette amplitude minimale soit maintenue pour le couple de force minimal du barillet à partir duquel il est prévu que la pièce d'horlogerie soit fonctionnelle et pour toute position angulaire du résonateur mécanique lors de l'application d'une impulsion de freinage. On remarquera que l'énergie prélevée au résonateur mécanique est maximale lorsque l'impulsion de freinage intervient lors du passage de ce résonateur par sa position neutre.The mechanical braking device 26 is designed to be able to apply mechanical braking pulses to the balance 16 so as to regulate the frequency of the mechanical oscillator when a certain time drift D T of this mechanical oscillator is observed. In an advantageous variant, a braking torque applied to the mechanical resonator by any mechanical braking pulse is provided less than a locking torque of the mechanical oscillator and the duration of the braking pulses is provided so as to take a certain maximum. energy to the mechanical resonator so that the amplitude of the oscillation remains greater than a given minimum value. In other words, the braking torque is expected to be less than the torque exerted by the hairspring at the minimum expected amplitude and the duration of the pulses is such that this minimum amplitude is respected for a predefined minimum torque which is exerted by the barrel (note that the mechanical oscillator is maintained by the barrel via the escapement), in order not to momentarily block the oscillating movement of the mechanical resonator during braking pulses and to keep the mechanical oscillator within its range useful operating mode as soon as the barrel exerts a torque greater than the minimum torque expected. In another more general variant, it is possible to apply a braking torque greater than the torque exerted by the hairspring at the minimum amplitude provided, but the duration of the pulses is determined, taking into account the maintenance of the mechanical oscillator, to so that this minimum amplitude is maintained for the minimum torque of the barrel from which the timepiece is expected to be functional and for any angular position of the mechanical resonator during the application of a braking pulse. Note that the energy taken from the resonator mechanical is maximum when the braking pulse occurs during the passage of this resonator through its neutral position.

A la Figure 1, le dispositif de freinage mécanique est formé par un actionneur 26 qui comprend un organe de freinage mécanique 28 agencé pour être actionné, en réponse à un signal de commande SF fourni par le circuit de régulation au circuit de commande 30 de cet actionneur, de manière à exercer, durant les impulsions de freinage, un couple de freinage mécanique sur une surface de freinage 15 du balancier pivotant 16. Dans la variante représentée, la surface de freinage est circulaire et définie par la surface latérale externe de la serge 17 du balancier. L'organe de freinage mécanique 28 comprend une partie mobile (définie par l'extrémité libre de cet organe) qui définit un patin de freinage agencé de manière à pouvoir venir exercer une certaine pression contre la surface de freinage circulaire lors de l'application des impulsions de freinage au résonateur mécanique.To the Figure 1 , the mechanical braking device is formed by an actuator 26 which comprises a mechanical braking member 28 arranged to be actuated, in response to a control signal S F supplied by the regulation circuit to the control circuit 30 of this actuator, of so as to exert, during the braking pulses, a mechanical braking torque on a braking surface 15 of the pivoting balance 16. In the variant shown, the braking surface is circular and defined by the outer lateral surface of the rim 17 of the balance . The mechanical braking member 28 comprises a movable part (defined by the free end of this member) which defines a braking shoe arranged so as to be able to exert a certain pressure against the circular braking surface during the application of the brakes. braking pulses to the mechanical resonator.

L'actionneur 26 comprend un élément piézoélectrique alimenté par un le circuit de commande 30 qui lui applique une tension électrique d'activation en fonction du signal de commande SF fourni par le circuit de régulation 22. Lorsque l'élément piézoélectrique est mis momentanément sous tension, l'organe de freinage vient en contact avec une surface de freinage du balancier pour le freiner. Dans l'exemple représenté à la Figure 1, la lame formant l'organe de freinage se courbe et sa partie d'extrémité vient presser contre la surface latérale circulaire 15 de la serge 17 du balancier 16. La partie d'extrémité de la lame définit donc un patin de freinage mobile. Dans une variante préférée, le balancier pivotant et l'organe de freinage mécanique sont agencés de manière que les impulsions de freinage puissent être appliquées principalement par un frottement sec dynamique entre l'organe de freinage mécanique et la surface de freinage 15. Dans une autre variante, on peut prévoir un frottement visqueux entre l'organe de freinage et une partie de freinage du balancier.The actuator 26 comprises a piezoelectric element supplied by a control circuit 30 which applies an activation electric voltage to it as a function of the control signal S F supplied by the regulation circuit 22. When the piezoelectric element is momentarily placed under tension, the braking member comes into contact with a braking surface of the balance to brake it. In the example shown in Figure 1 , the blade forming the braking member is curved and its end part presses against the circular lateral surface 15 of the rim 17 of the balance 16. The end part of the blade therefore defines a movable brake shoe. In a preferred variant, the pivoting balance and the mechanical braking member are arranged so that the braking pulses can be applied mainly by dynamic dry friction between the mechanical braking member and the braking surface 15. In another variant, one can provide a viscous friction between the braking member and a braking part of the balance.

Dans une variante particulière (non représentée), le balancier comprend un arbre central qui définit ou qui porte une partie autre que la serge du balancier définissant une surface de freinage circulaire. Dans ce cas, un patin de l'organe de freinage est agencé de manière à venir exercer une pression contre cette surface de freinage circulaire lors de l'application des impulsions de freinage mécanique.In a particular variant (not shown), the balance comprises a central shaft which defines or which carries a part other than the rim of the balance defining a circular braking surface. In this case, a shoe of the braking member is arranged so as to exert pressure against this circular braking surface during the application of the mechanical braking pulses.

Une surface de freinage circulaire, pour un organe oscillant qui est pivoté (balancier), associé à au moins un patin de freinage, porté par le dispositif de freinage du dispositif de régulation, constitue un système de freinage mécanique qui présente des avantages déterminants. En effet, grâce à un tel système, des impulsions de freinage peuvent être appliquées au résonateur mécanique à n'importe quel instant des oscillations, et ceci de manière indépendante de l'amplitude d'oscillation du balancier. On notera encore que le patin de l'organe de freinage peut aussi présenter une surface de contact circulaire, de même rayon que la surface de freinage, mais une surface plane a pour avantage de laisser une certaine marge dans le positionnement de l'organe de freinage relativement au balancier, ce qui permet d'avoir de plus grandes tolérances de fabrication et de montage du dispositif de freinage dans le mouvement horloger ou à sa périphérie.A circular braking surface, for an oscillating member which is pivoted (balance wheel), associated with at least one braking shoe, carried by the braking device of the regulating device, constitutes a mechanical braking system which has decisive advantages. Indeed, thanks to such a system, braking pulses can be applied to the mechanical resonator at any moment of the oscillations, and this independently of the amplitude of oscillation of the balance. It will also be noted that the pad of the braking member can also have a circular contact surface, of the same radius as the braking surface, but a flat surface has the advantage of leaving a certain margin in the positioning of the brake member. braking relative to the balance, which makes it possible to have greater tolerances in the manufacture and assembly of the braking device in the watch movement or at its periphery.

De manière avantageuse, les divers éléments du dispositif de régulation 20 forment un module indépendant du mouvement horloger. Ainsi, ce module peut être assemblé ou associé au mouvement mécanique 4 que lors de leur montage notamment dans une boîte de montre. En particulier, un tel module peut-être fixé à un cercle d'emboîtage qui entoure le mouvement horloger. On comprend que le module de régulation électronique peut donc être avantageusement associé au mouvement horloger une fois ce dernier entièrement monté et réglé, le montage et démontage de ce module pouvant intervenir sans devoir intervenir sur le mouvement mécanique lui-même.Advantageously, the various elements of the regulation device 20 form a module independent of the watch movement. Thus, this module can be assembled or associated with the mechanical movement 4 only during their assembly, in particular in a watch case. In particular, such a module can be fixed to a casing circle which surrounds the watch movement. It will be understood that the electronic regulation module can therefore be advantageously associated with the watch movement once the latter has been fully assembled and adjusted, the assembly and disassembly of this module being able to take place without having to intervene on the mechanical movement itself.

De manière générale, le circuit de régulation 22 est agencé pour pouvoir déterminer si une dérive temporelle, qui est mesurée par le dispositif de mesure sur la base des signaux qu'il reçoit du capteur 24 et de la base de temps de référence 36, correspond à au moins une certaine avance ou à au moins un certain retard et pour pouvoir, si c'est le cas, générer un signal de commande qui active sélectivement le dispositif de freinage, pour engendrer des impulsions de freinage périodiques qui sont appliquées au résonateur mécanique avec une fréquence de freinage qui est fonction de la dérive temporelle mesurée, de sorte à corriger au moins partiellement cette dérive temporelle mesurée.In general, the regulation circuit 22 is designed to be able to determine whether a time drift, which is measured by the measuring device on the basis of the signals that it receives from the sensor 24 and from the reference time base 36, corresponds at least a certain advance or at least a certain delay and in order to be able, if this is the case, to generate a control signal which selectively activates the braking device, to generate periodic braking pulses which are applied to the mechanical resonator with a braking frequency which is a function of the measured time drift, so as to at least partially correct this measured time drift.

Dans une variante principale, le circuit de régulation 22 comprend un dispositif générateur de fréquences agencé de manière à pouvoir générer un premier signal digital périodique SFI à une première fréquence FINF (première fréquence de freinage) et un deuxième signal digital périodique SFS à une deuxième fréquence FSUP (deuxième fréquence de freinage).In a main variant, the regulation circuit 22 comprises a frequency generator device arranged so as to be able to generate a first periodic digital signal S FI at a first frequency F INF (first braking frequency) and a second periodic digital signal S FS at a second frequency F SUP (second braking frequency).

La première fréquence FINF est comprise dans une plage de valeurs s'étendant entre (M-2)/M, inclus, et (M-1)/M multipliés par une fréquence Fz (N) qui est égale au double d'une fréquence de consigne F0c, pour l'oscillateur mécanique, divisée par un nombre entier positif N, soit Fz (N) = 2·F0c/N et [(M-2)/M]·Fz (N) =< FINF < [(M-1)/M]·Fz (N), M étant égal à cent fois deux à la puissance K avec K égal à un nombre entier positif supérieur à zéro et inférieur à treize, soit 0 < K < 13 et M = 100·2K, et N étant prévu inférieur à M divisé par trente, soit N < M/30. La deuxième fréquence FSUP est comprise dans une plage de valeurs s'étendant entre (M+1)/M et (M+2)/M, inclus, multipliés par la fréquence Fz (N), avec M et N tels que définis ci-avant, soit [(M+1)/M]·Fz (N) < FSUP =< [(M+2)/M]·Fz (N). L'opérateur '=<' signifie 'égal ou inférieur à', la limite en question étant comprise dans la plage de valeurs.The first frequency F INF is included in a range of values extending between (M-2) / M, inclusive, and (M-1) / M multiplied by a frequency Fz (N) which is equal to twice a reference frequency F0c, for the mechanical oscillator, divided by a positive integer N, i.e. Fz (N) = 2 F0c / N and [(M-2) / M] Fz (N) = <F INF < [(M-1) / M] · Fz (N), M being equal to one hundred times two to the power K with K equal to a positive integer greater than zero and less than thirteen, that is to say 0 <K <13 and M = 100 · 2 K , and N being expected to be less than M divided by thirty, i.e. N <M / 30. The second frequency F SUP is included in a range of values extending between (M + 1) / M and (M + 2) / M, inclusive, multiplied by the frequency Fz (N), with M and N as defined above, or [(M + 1) / M] · Fz (N) <F SUP = <[(M + 2) / M] · Fz (N). The operator '= <' means 'equal to or less than', the limit in question being within the range of values.

Le circuit de régulation 22 est agencé pour fournir, chaque fois qu'il détermine que la dérive temporelle DT de l'oscillateur mécanique correspond au moins à une certaine avance ou au moins à un certain retard, momentanément au dispositif de freinage 26 un signal de commande SF durant une période de correction, ce signal de commande SF étant sélectivement formé par :

  • le premier signal digital périodique SFI lorsque la dérive temporelle correspond au moins à la certaine avance, de manière à générer une première série d'impulsions de freinage 60 qui sont appliquées au résonateur mécanique 14 avec une première fréquence de déclenchement F1D égale à la première fréquence FINF (première fréquence de freinage), et
  • le deuxième signal digital périodique SFS lorsque la dérive temporelle correspond au moins au certain retard, de manière à générer une deuxième série d'impulsions de freinage 61 qui sont appliquées au résonateur mécanique avec une deuxième fréquence de déclenchement F2D égale à la deuxième fréquence FSUP (deuxième fréquence de freinage).
The regulation circuit 22 is arranged to supply, each time it determines that the time drift D T of the mechanical oscillator corresponds at least to a certain advance or at least to a certain delay, momentarily to the braking device 26 a signal control S F during a correction period, this control signal S F being selectively formed by:
  • the first periodic digital signal S FI when the time drift corresponds at least to the certain advance, so as to generate a first series of braking pulses 60 which are applied to the mechanical resonator 14 with a first triggering frequency F1 D equal to the first frequency F INF (first braking frequency), and
  • the second periodic digital signal S FS when the time drift corresponds at least to the certain delay, so as to generate a second series of braking pulses 61 which are applied to the mechanical resonator with a second trigger frequency F2 D equal to the second frequency F SUP (second braking frequency).

Dans une variante préférée, le nombre entier positif K est supérieur à deux et inférieur à dix, soit 2 < K < 10 et le nombre N est inférieur au nombre M divisé par cent (N < M/100).In a preferred variant, the positive integer K is greater than two and less than ten, ie 2 <K <10 and the number N is less than the number M divided by one hundred (N <M / 100).

Les impulsions de freinage ont une durée TP inférieure à la moitié d'une période de consigne T0c, soit TP < T0c/2, T0c étant par définition l'inverse de la fréquence de consigne F0c pour l'oscillateur mécanique formé du résonateur 14 et de l'échappement 12. De préférence, dans ce premier mode de réalisation, les impulsions de freinage ont une durée TP inférieure au quart de la période de consigne T0c, soit TP < T0c/4.The braking pulses have a duration T P less than half of a setpoint period T0c, i.e. T P <T0c / 2, T0c being by definition the inverse of the setpoint frequency F0c for the mechanical oscillator formed by the resonator 14 and of the exhaust 12. Preferably, in this first embodiment, the braking pulses have a duration T P less than a quarter of the reference period T0c, ie T P <T0c / 4.

La Figure 2 représente de manière détaillée le circuit de régulation 22 et le circuit de commande 30 de l'actionneur 26 formant le dispositif de freinage mécanique caractérisant le premier mode de réalisation. Le circuit de régulation comprend :

  • deux étages DIV1 et DIV2 d'un diviseur de fréquence qui reçoit en entrée de la base de temps de référence 36 le signal périodique digital de référence SQ et qui fournit en sortie un signal d'horloge SH à une moindre fréquence,
  • un compteur différentiel bidirectionnel CB qui reçoit à une entrée le signal d'horloge SH et à une seconde entrée le signal digital Sc du capteur 24, lequel fournit via ce signal digital Sc une impulsion digitale à chaque alternance ou à chaque période de l'oscillation du résonateur mécanique 14, et qui fournit en sortie un signal de mesure SD correspondant à une valeur représentative de la dérive temporelle DT de l'oscillateur,
  • un circuit logique de commande 40 qui reçoit en entrée seulement le signal de mesure SD (hormis un signal de cadencement à une fréquence généralement bien supérieure à celle de l'oscillateur à quartz, soit bien supérieure à la fréquence du signal de référence SQ) et qui fournit en sortie, en fonction de la valeur du signal de mesure SD, sélectivement un signal de commande SR et un signal de commande SA (lesquels seront décrits par la suite lors de la description d'un premier mode de régulation selon l'invention en référence aux Figures 3 à 5),
  • un premier générateur de fréquence 42 fournissant, lorsqu'il est activé par le signal de commande SA, momentanément le premier signal digital périodique SFI et un deuxième générateur de fréquence 44 fournissant, lorsqu'il est activé par le signal de commande SR, momentanément le deuxième signal digital périodique SFS, les premier et deuxième générateurs de fréquence formant ensemble le dispositif générateur de fréquences mentionné précédemment, et
  • une porte logique 'OR' qui est connectée en entrée aux sorties respectives des deux générateurs de fréquence 42 et 44 et qui fournit en sortie le signal de commande SF.
The Figure 2 shows in detail the regulation circuit 22 and the control circuit 30 of the actuator 26 forming the mechanical braking device characterizing the first embodiment. The regulation circuit comprises:
  • two stages DIV1 and DIV2 of a frequency divider which receives at input of the reference time base 36 the digital periodic reference signal S Q and which provides at output a clock signal S H at a lower frequency,
  • a bidirectional differential counter CB which receives at one input the clock signal S H and at a second input the digital signal Sc of the sensor 24, which supplies via this digital signal Sc a digital pulse at each alternation or at each period of the oscillation of the mechanical resonator 14, and which outputs a measurement signal S D corresponding to a value representative of the time drift D T of the oscillator,
  • a control logic circuit 40 which receives as input only the measurement signal S D (apart from a timing signal at a frequency generally much higher than that of the crystal oscillator, that is to say much higher than the frequency of the reference signal S Q ) and which outputs, as a function of the value of the measurement signal S D , selectively a control signal S R and a control signal S A (which will be described below during the description of a first mode of regulation according to the invention with reference to Figures 3 to 5 ),
  • a first frequency generator 42 supplying, when it is activated by the control signal S A , momentarily the first periodic digital signal S FI and a second frequency generator 44 supplying, when it is activated by the control signal S R , momentarily the second periodic digital signal S FS , the first and second frequency generators together forming the previously mentioned frequency generator device, and
  • a logic gate “OR” which is connected as an input to the respective outputs of the two frequency generators 42 and 44 and which provides the control signal S F as an output.

Si le signal digital Sc fourni par le capteur 24 présente une période correspondant à une alternance de l'oscillateur mécanique, une bascule peut être agencée dans le circuit de régulation 22 en amont du compteur CB de manière à diviser par deux les impulsions périodiques du signal Sc et fournir en entrée du compteur CB une seule impulsion par période d'oscillation T0.If the digital signal Sc supplied by the sensor 24 has a period corresponding to an alternation of the mechanical oscillator, a rocker can be arranged in the regulation circuit 22 upstream of the counter CB so as to divide by two the periodic pulses of the signal Sc and supply at the input of the counter CB a single pulse per oscillation period T0.

Le circuit de commande 30 du dispositif de freinage comprend une source de tension d'alimentation VACT qui alimente l'organe de freinage pour l'actionner via un interrupteur 50, lequel est commandé par un signal périodique SP fourni par un minuteur 48 incorporé dans le circuit de commande pour gérer la durée des impulsions de freinage. Le minuteur reçoit sélectivement, via le signal de commande SF, le premier signal digital périodique SFI et le deuxième signal digital périodique SFS qui l'activent périodiquement durant une période de correction en fonction d'une détection d'une certaine avance ou d'un certain retard dans la marche de l'oscillateur mécanique et donc dans la marche de la pièce d'horlogerie, et ceci de manière répétitive au cours de périodes de correction distinctes et successives lorsqu'une dérive temporelle perdure. Ainsi, le minuteur 48 rend l'interrupteur 50 périodiquement conducteur durant chaque période de correction pour générer, selon le cas, soit une première série d'impulsions de freinage 60, soit une deuxième série d'impulsions de freinage 61 (voir Figures 4 et 5).The control circuit 30 of the braking device comprises a source of supply voltage V ACT which supplies the braking member to actuate it via a switch 50, which is controlled by a periodic signal S P supplied by a built-in timer 48. in the control circuit to manage the duration of the braking pulses. The timer selectively receives, via the control signal S F , the first periodic digital signal S FI and the second periodic digital signal S FS which activate it periodically during a correction period according to a detection of a certain advance or a certain delay in the operation of the mechanical oscillator and therefore in the operation of the timepiece, and this repeatedly during distinct and successive correction periods when a time drift continues. Thus, the timer 48 makes the switch 50 periodically conductive during each correction period to generate, as the case may be, either a first series of braking pulses 60 or a second series of braking pulses 61 (see Figures 4 and 5 ).

Dans une variante préférée, la surface de freinage du balancier 16 est configurée de manière à permettre au dispositif de freinage de débuter, dans une plage de fonctionnement utile de l'oscillateur mécanique, une impulsion de freinage de chaque première série d'impulsions de freinage et une impulsion de freinage de chaque deuxième série d'impulsions de freinage à n'importe quelle position angulaire du résonateur mécanique 14 entre les deux positions angulaires extrêmes qu'il peut occuper lorsqu'il oscille dans la plage de fonctionnement utile de la pièce d'horlogerie. Comme l'amplitude d'oscillation du balancier-spiral est généralement supérieure à 180° (+/-180°) dans un mouvement mécanique classique, la condition susmentionnée implique, dans la variante représentée à la Figure 1, que la surface latérale 15 du balancier est circulaire et sensiblement continue sur l'entier du pourtour du balancier, de sorte que l'organe de freinage mobile 28 peut venir appuyer contre la surface latérale circulaire sensiblement en tout point.In a preferred variant, the braking surface of the balance 16 is configured so as to allow the braking device to start, in a useful operating range of the mechanical oscillator, a braking pulse of each first series of braking pulses. and a braking pulse of every second series of braking pulses at any angular position of the mechanical resonator 14 between the two extreme angular positions that it can occupy when it oscillates within the useful operating range of the part d watchmaking. As the amplitude of oscillation of the sprung balance is generally greater than 180 ° (+/- 180 °) in a conventional mechanical movement, the aforementioned condition implies, in the variant shown in Figure 1 , that the lateral surface 15 of the balance is circular and substantially continuous over the entire perimeter of the balance, so that the movable braking member 28 can come to bear against the circular lateral surface substantially at any point.

La Figure 3 donne l'organigramme d'un premier mode de régulation implémenté dans le circuit de régulation 22 du premier mode de réalisation. Après l'activation du circuit au début de son alimentation électrique ou dans le cadre d'une initialisation intervenant lors de cette activation, le compteur CB est remis à zéro et il commence à comptabiliser une différence éventuelle entre le premier nombre d'impulsions compris dans le signal Sc reçu du capteur 24 et le deuxième nombre d'impulsions compris dans le signal d'horloge SH. Le diviseur DIV1 & DIV2 est agencé de manière que le signal d'horloge fournit un signal de consigne avec un nombre d'impulsions par unité de temps correspondant au nombre d'impulsions prévu dans le signal Sc par unité de temps pour une marche correcte de la pièce d'horlogerie, c'est-à-dire sans dérive temporelle.The Figure 3 gives the flowchart of a first regulation mode implemented in the regulation circuit 22 of the first embodiment. After activation of the circuit at the start of its electrical supply or as part of an initialization occurring during this activation, the counter CB is reset to zero and it begins to count any difference between the first number of pulses included in the signal Sc received from the sensor 24 and the second number of pulses included in the clock signal S H. The divider DIV1 & DIV2 is arranged so that the clock signal supplies a reference signal with a number of pulses per unit of time corresponding to the number of pulses provided in the signal Sc per unit of time for a correct operation of the timepiece, that is to say without time drift.

Dans chaque séquence du premier mode de régulation, le circuit logique 40 détermine premièrement si la valeur du compteur CB est supérieure à un nombre entier positif N1H (correspondant à une avance de l'oscillateur mécanique) ou inférieure à un nombre entier négatif -N2H (correspondant à un retard de l'oscillateur mécanique). Si CB > N1H (premier cas considéré), le circuit logique active le générateur de fréquence 42 via un signal de commande SA et ce générateur de fréquence commence à fournir le premier signal digital périodique SFI, à la première fréquence FINF définie précédemment, au circuit de commande 30 du dispositif de freinage via la porte logique 46. Il en résulte que le dispositif de freinage commence alors à générer une première série d'impulsions de freinage 60 de manière périodique à la première fréquence FINF. Une telle situation est représentée à la Figure 4 qui montre :

  • dans le graphe supérieur 54B, la position angulaire θ du résonateur mécanique 14 sur une pluralité de périodes d'oscillation au cours de laquelle intervient une première série d'impulsions de freinage 60,
  • dans le graphe intermédiaire 56A, l'évolution correspondante de la fréquence de l'oscillateur mécanique (la fréquence de consigne F0c est égale à 4 Hz dans l'exemple traité, soit F0c = 4 Hz), et
  • dans le graphe inférieur 58A, l'évolution correspondante de la dérive temporelle DT de l'oscillateur mécanique.
In each sequence of the first regulation mode, the logic circuit 40 firstly determines whether the value of the counter CB is greater than a positive integer N1 H (corresponding to an advance of the mechanical oscillator) or less than a negative integer -N2 H (corresponding to a delay of the mechanical oscillator). If CB> N1 H (first case considered), the logic circuit activates the frequency generator 42 via a control signal S A and this frequency generator begins to supply the first periodic digital signal S FI , at the first defined frequency F INF previously, to the control circuit 30 of the braking device via the logic gate 46. The result is that the braking device then begins to generate a first series of braking pulses 60 periodically at the first frequency F INF . Such a situation is shown in the Figure 4 which shows :
  • in the upper graph 54B, the angular position θ of the mechanical resonator 14 over a plurality of oscillation periods during which a first series of braking pulses 60 occurs,
  • in the intermediate graph 56A, the corresponding evolution of the frequency of the mechanical oscillator (the reference frequency F0c is equal to 4 Hz in the example treated, i.e. F0c = 4 Hz), and
  • in the lower graph 58A, the corresponding evolution of the time drift D T of the mechanical oscillator.

On notera que, pour avoir une représentation visible de la position angulaire du résonateur mécanique et des impulsions de freinage, la Figure 4 montre de fait seulement une série tronquée d'impulsions de freinage avec un bien moins grand nombre d'impulsions qu'en réalité, de sorte que la dérive temporelle DT correspond ici à une fraction ε1H de la dérive temporelle N1H. Mais ceci permet d'exposer clairement le principe de fonctionnement. Dans le premier cas, dans l'exemple donné, la fréquence naturelle F0 = 4.0005 Hz, ce qui correspond à une avance d'environ dix secondes par jour. Lorsque la dérive temporelle atteint ou dépasse une valeur ε1H, à savoir en réalité une valeur N1H, le dispositif de freinage est actionné via le générateur de fréquence 42 et il commence à appliquer périodiquement au résonateur mécanique des impulsions de freinage 60 à une fréquence FINF définie précédemment (par souci de clarté du dessin, toutes les impulsions sont représentées à la Figure 4 telles qu'elles interviennent durant une phase stable / synchrone exposée par la suite). On remarquera que, dans l'exemple donné, les impulsions de freinage interviennent dans chaque période d'oscillation et donc avec une fréquence F0c, de sorte que la fréquence Fz(N) = 2·F0c/N, qui sert à définir les plages pour les fréquences de freinage, est prévue avec N = 2. Par exemple, comme représenté à la Figure 4, la première fréquence de freinage FINF est égale à 0.99975·F0c = 3.9990 Hz, soit FINF = Fz (2)·(L-1)/L = F0c·(L-1)/L avec L = 4'000. Cette première fréquence FINF est dans la plage [(M-2)/M]·Fz(2) à [(M-1)/M]·Fz(2) avec K = 6, soit M = 100·26.It will be noted that, in order to have a visible representation of the angular position of the mechanical resonator and of the braking pulses, the Figure 4 shows in fact only a truncated series of braking pulses with a much smaller number of pulses than in reality, so that the time drift D T corresponds here to a fraction ε1 H of the time drift N1 H. But this makes it possible to clearly expose the operating principle. In the first case, in the example given, the natural frequency F0 = 4.0005 Hz, which corresponds to an advance of about ten seconds per day. When the time drift reaches or exceeds a value ε1 H , namely in reality a value N1 H , the braking device is actuated via the frequency generator 42 and it begins to periodically apply to the mechanical resonator braking pulses 60 at a frequency F INF defined previously (for the sake of clarity of the drawing, all the pulses are shown in the Figure 4 as they occur during a stable / synchronous phase discussed below). It will be noted that, in the example given, the braking pulses intervene in each oscillation period and therefore with a frequency F0c, so that the frequency Fz (N) = 2F0c / N, which is used to define the ranges for braking frequencies, is provided with N = 2. For example, as shown in Figure 4 , the first braking frequency F INF is equal to 0.99975 F0c = 3.9990 Hz, i.e. F INF = Fz (2) (L-1) / L = F0c (L-1) / L with L = 4'000 . This first frequency F INF is in the range [(M-2) / M] · Fz (2) to [(M-1) / M] · Fz (2) with K = 6, or M = 100 · 2 6 .

Pendant la phase d'activation du générateur de fréquence 42, le circuit logique 40 attend que la valeur du compteur CB devienne égale ou inférieure à un nombre entier N1L, lequel est inférieur au nombre N1H et de préférence inférieur en valeur absolue à N1H. Dans l'exemple représenté à la Figure 4, N1L est égal à zéro de sorte que la fraction ε1L de la dérive temporelle N1L donnée sur cette Figure 4 vaut également zéro. Dès que le circuit logique a détecté l'événement attendu, soit lorsque la valeur du compteur CB devient égale ou inférieure à un nombre entier N1L, le circuit logique met un terme à l'activation du générateur 42 de sorte que ce dernier est désactivé, ce qui met fin à une séquence de correction / période de correction. Si la valeur N1H = 4 et que le compteur CB compte les alternances de l'oscillateur mécanique, ceci correspond à une dérive temporelle d'une demi-seconde. Dans l'exemple donné, la durée DPC d'une période de correction vaut au minimum le nombre L susmentionné multiplié par la dérive temporelle DT corrigée, soit DPC = L·DT = 4'000·0,5 = 2'000 secondes. Ainsi, les périodes de correction durent chacune environ 34 minutes, y compris la phase transitoire initiale.During the activation phase of the frequency generator 42, the logic circuit 40 waits for the value of the counter CB to become equal to or less than an integer N1 L , which is less than the number N1 H and preferably less in absolute value than N1 H. In the example shown in Figure 4 , N1 L is equal to zero so that the fraction ε1 L of the time drift N1 L given on this Figure 4 is also zero. As soon as the logic circuit has detected the expected event, or when the value of the counter CB becomes equal to or less than an integer N1 L , the logic circuit puts an end to the activation of the generator 42 so that the latter is deactivated. , which ends a correction sequence / correction period. If the value N1 H = 4 and the counter CB counts the vibrations of the mechanical oscillator, this corresponds to a time drift of half a second. In the example given, the duration D PC of a correction period is equal to at least the above-mentioned number L multiplied by the corrected time drift D T , i.e. D PC = L · D T = 4'000 · 0.5 = 2 '000 seconds. Thus, the correction periods each last approximately 34 minutes, including the initial transient phase.

A la Figure 4, le graphe 56A de la fréquence de l'oscillateur mécanique, formé par le résonateur mécanique 14 et l'échappement 12, montre l'évolution de cette fréquence résultant d'une séquence du premier mode de régulation dans le premier cas décrit ci-avant. Alors que la fréquence de l'oscillateur mécanique est supérieure à la fréquence de consigne F0c en l'absence d'impulsions de freinage, cette fréquence diminue dès qu'intervient une première série d'impulsions de freinage 60. On observe une phase transitoire avant que la fréquence d'oscillation se stabilise à une première fréquence de correction Fcor1 qui est égale à la première fréquence FINF avec Fz (N=2) = F0c, soit Fcor1 = FINF (N=2), et donc qu'une phase synchrone apparaisse. Ainsi, durant cette phase synchrone, on observe une synchronisation de l'oscillateur mécanique sur la première fréquence de correction Fcor1 qui est légèrement inférieur à la fréquence de consigne, ce qui permet d'effectuer une correction de la dérive temporelle, comme le montre le graphe inférieur 58A de la Figure 4. A la fin d'une séquence du premier mode de régulation, la valeur de la dérive temporelle est diminuée et est ici égale au nombre entier N1L qui correspond à un seuil inférieur pour la dérive temporelle, alors que le nombre entier N1H, qui engendre le déclenchement d'une première série d'impulsions de freinage, correspond à un seuil supérieur de la dérive temporelle.To the Figure 4 , the graph 56A of the frequency of the mechanical oscillator, formed by the mechanical resonator 14 and the escapement 12, shows the evolution of this frequency resulting from a sequence of the first regulation mode in the first case described above . While the frequency of the mechanical oscillator is greater than the setpoint frequency F0c in the absence of braking pulses, this frequency decreases as soon as a first series of braking pulses 60 occurs. A transient phase is observed before that the oscillation frequency stabilizes at a first correction frequency Fcor1 which is equal to the first frequency F INF with Fz (N = 2) = F0c, i.e. Fcor1 = F INF (N = 2), and therefore that a synchronous phase appears. Thus, during this synchronous phase, one observes a synchronization of the mechanical oscillator on the first correction frequency Fcor1 which is slightly lower than the reference frequency, which makes it possible to carry out a correction of the time drift, as shown in lower graph 58A of the Figure 4 . At the end of a sequence of first regulation mode, the value of the time drift is reduced and is here equal to the integer N1 L which corresponds to a lower threshold for the time drift, while the integer N1 H , which generates the triggering of a first series braking pulses, corresponds to an upper threshold of the time drift.

On remarquera que, en valeurs absolues, la différence entre FINF (N=2) et F0c est de préférence prévue supérieure à une différence typique entre F0 et F0c. Ainsi, le dispositif de freinage est généralement activé moins de la moitié du temps, soit moins de 12 heures par jour. Dans l'exemple donné ici, en prenant comme hypothèse que la fréquence naturelle F0 reste stable au cours du temps, le dispositif de freinage devra être actionné pendant environ 8 heures par jour.It will be noted that, in absolute values, the difference between F INF (N = 2) and F0c is preferably expected to be greater than a typical difference between F0 and F0c. Thus, the braking device is generally activated less than half the time, or less than 12 hours per day. In the example given here, assuming that the natural frequency F0 remains stable over time, the braking device must be actuated for approximately 8 hours per day.

Dans chaque séquence du mode de régulation, si CB < -N2H (second cas considéré), le circuit logique 40 active le générateur de fréquence 44 via un signal de commande SR et ce générateur de fréquence commence à fournir le deuxième signal digital périodique SFS, à la deuxième fréquence FSUP définie précédemment, au circuit de commande 30 du dispositif de freinage via la porte logique 46. Il en résulte que le dispositif de freinage commence alors à générer une deuxième série d'impulsions de freinage 61 de manière périodique à la deuxième fréquence FSUP. Une telle situation est représentée à la Figure 5 qui montre :

  • dans le graphe supérieur 54B, la position angulaire du résonateur mécanique 14 sur une pluralité de périodes d'oscillation au cours de laquelle intervient une seconde série d'impulsions de freinage 61,
  • dans le graphe intermédiaire 56B, l'évolution correspondante de la fréquence de l'oscillateur mécanique, et
  • dans le graphe inférieur 58B, l'évolution correspondante de la dérive temporelle DT de l'oscillateur mécanique.
In each sequence of the regulation mode, if CB <-N2 H (second case considered), the logic circuit 40 activates the frequency generator 44 via a control signal S R and this frequency generator begins to supply the second periodic digital signal S FS , at the second frequency F SUP defined above, to the control circuit 30 of the braking device via the logic gate 46. The result is that the braking device then begins to generate a second series of braking pulses 61 in such a manner periodic at the second frequency F SUP . Such a situation is shown in the Figure 5 which shows :
  • in the upper graph 54B, the angular position of the mechanical resonator 14 over a plurality of oscillation periods during which a second series of braking pulses 61 occurs,
  • in the intermediate graph 56B, the corresponding evolution of the frequency of the mechanical oscillator, and
  • in the lower graph 58B, the corresponding evolution of the time drift D T of the mechanical oscillator.

On notera que, pour avoir une représentation visible de la position angulaire du résonateur mécanique et des impulsions de freinage, la Figure 5, comme la Figure 4, montre de fait seulement une série tronquée d'impulsions de freinage avec un bien moins grand nombre d'impulsions qu'en réalité, de sorte que la dérive temporelle DT correspond ici à une fraction -ε2H de la dérive temporelle -N2H. Dans le second cas, dans l'exemple donnée, la fréquence naturelle F0 = 3.9995 Hz, ce qui correspond environ à un retard de dix secondes par jour. Lorsque la dérive temporelle atteint ou devient inférieure à une valeur -ε2H, à savoir en réalité une valeur -N2H, le dispositif de freinage est actionné via le générateur de fréquence 44 et il commence à appliquer périodiquement au résonateur mécanique des impulsions de freinage 61 à une fréquence FSUP définie précédemment (par souci de clarté du dessin, toutes les impulsions sont représentées à la Figure 5 telles qu'elles interviennent durant une phase stable / synchrone exposée par la suite). Dans l'exemple représenté, comme dans le premier cas, la fréquence Fz(N) = 2·F0c/N est prévue avec N = 2, de sorte que la fréquence Fz(2) = F0c. La deuxième fréquence de freinage FSUP est égale à 1.00025·F0c = 4.001, soit à FSUP = F0c·(L+1)/L avec L = 4'000. Cette deuxième fréquence FSUP est dans la plage [(M+1)/M]·Fz(2) à [(M+2)/M]·Fz(2) avec K = 6, soit M = 100·26. On notera que rien n'oblige à prendre une même valeur pour N et une même valeur L dans le second cas (correction d'un retard) que dans le premier cas (correction d'une avance).It will be noted that, in order to have a visible representation of the angular position of the mechanical resonator and of the braking pulses, the Figure 5 , as the Figure 4 , shows in fact only a truncated series of braking pulses with a much smaller number of pulses than in reality, so that the time drift D T corresponds here to a fraction -ε2 H of the time drift -N2 H . In the second case, in the example given, the natural frequency F0 = 3.9995 Hz, which corresponds approximately to a delay of ten seconds per day. When the time drift reaches or becomes less than a value -ε2 H , namely in reality a value -N2 H , the braking device is actuated via the frequency generator 44 and it begins to periodically apply braking pulses to the mechanical resonator 61 at a frequency F SUP defined previously (for the sake of clarity of the drawing, all the pulses are shown in Figure 5 as they occur during a stable / synchronous phase discussed below). In the example shown, as in the first case, the frequency Fz (N) = 2 · F0c / N is provided with N = 2, so that the frequency Fz (2) = F0c. The second braking frequency F SUP is equal to 1.00025 · F0c = 4.001, i.e. to F SUP = F0c · (L + 1) / L with L = 4'000. This second frequency F SUP is in the range [(M + 1) / M] · Fz (2) to [(M + 2) / M] · Fz (2) with K = 6, or M = 100 · 2 6 . It will be noted that nothing makes it necessary to take the same value for N and the same value L in the second case (correction of a delay) as in the first case (correction of an advance).

Pendant la phase d'activation du générateur de fréquence 44, le circuit logique 40 attend que la valeur du compteur CB devienne égale ou supérieure à un nombre entier N2L, lequel est supérieur au nombre N2H et de préférence inférieur en valeur absolue à N2H. Dans l'exemple représenté à la Figure 5, N2L est égal à zéro, comme N1L, de sorte que la fraction ε2L de la dérive temporelle N2L donnée sur cette Figure 5 vaut également zéro. Dès que le circuit logique a détecté l'événement attendu, soit lorsque la valeur du compteur CB devient égale ou supérieure au nombre entier N2L, le circuit logique met un terme à l'activation du générateur 44 de sorte que ce dernier est désactivé, ce qui met fin à une séquence de correction. La séquence de correction est prévue en boucle, de sorte que le circuit logique 40 revient ensuite au début d'une prochaine séquence et il attend la détection d'une nouvelle dérive temporelle. Chaque séquence de correction correspond à une période de correction.During the activation phase of the frequency generator 44, the logic circuit 40 waits for the value of the counter CB to become equal to or greater than an integer N2 L , which is greater than the number N2 H and preferably less in absolute value than N2 H. In the example shown in Figure 5 , N2 L is equal to zero, like N1 L , so that the fraction ε2 L of the time drift N2 L given on this Figure 5 is also zero. As soon as the logic circuit has detected the expected event, either when the value of the counter CB becomes equal to or greater than the integer N2 L , the logic circuit puts an end to the activation of the generator 44 so that the latter is deactivated, which ends a correction sequence. The correction sequence is provided in a loop, so that the logic circuit 40 returns then at the start of a next sequence and it waits for the detection of a new time drift. Each correction sequence corresponds to a correction period.

A la Figure 5, le graphe 56B de la fréquence de l'oscillateur mécanique montre l'évolution de cette fréquence résultant d'une séquence du premier mode de régulation dans le second cas considéré. Alors qu'en absence d'impulsions de freinage la fréquence de l'oscillateur mécanique est ici inférieure à la fréquence de consigne F0c = 4 Hz, la fréquence de l'oscillateur mécanique augmente dès qu'intervient une deuxième série d'impulsions de freinage 61. Comme dans le premier cas, on observe une phase transitoire avant que la fréquence de l'oscillateur mécanique se stabilise à une deuxième fréquence de correction Fcor2 égale à la deuxième fréquence FSUP avec Fz (N=2) = F0c, soit Fcor2 = FSUP (N=2) et donc qu'une phase synchrone apparaisse au cours de la deuxième série d'impulsions de freinage 61. Ainsi, durant cette phase synchrone, on observe une synchronisation de l'oscillateur mécanique sur la deuxième fréquence de correction Fcor2 qui est légèrement supérieure à la fréquence de consigne F0c, ce qui permet d'effectuer une correction de la dérive temporelle DT, comme le montre le graphe inférieur 56B de la Figure 5. Dans ce second cas, à la fin d'une séquence du premier mode de régulation, la valeur absolue de la dérive temporelle est diminuée relativement au début de la séquence et est ici égale au nombre entier N2L qui correspond à un seuil inférieur pour la dérive temporelle, alors que le nombre entier N2H, qui engendre le déclenchement d'une deuxième série d'impulsions de freinage, correspond à un seuil supérieur pour la dérive temporelle (à noter que la notion de seuil inférieur et seuil supérieur est considérée en valeurs absolues).To the Figure 5 , the graph 56B of the frequency of the mechanical oscillator shows the evolution of this frequency resulting from a sequence of the first regulation mode in the second case considered. While in the absence of braking pulses, the frequency of the mechanical oscillator is here lower than the setpoint frequency F0c = 4 Hz, the frequency of the mechanical oscillator increases as soon as a second series of braking pulses occurs. 61. As in the first case, we observe a transient phase before the frequency of the mechanical oscillator stabilizes at a second correction frequency Fcor2 equal to the second frequency F SUP with Fz (N = 2) = F0c, or Fcor2 = F SUP (N = 2) and therefore that a synchronous phase appears during the second series of braking pulses 61. Thus, during this synchronous phase, a synchronization of the mechanical oscillator on the second frequency of correction Fcor2 which is slightly higher than the reference frequency F0c, which makes it possible to perform a correction of the time drift D T , as shown in the lower graph 56B of the Figure 5 . In this second case, at the end of a sequence of the first regulation mode, the absolute value of the time drift is reduced relative to the start of the sequence and is here equal to the integer N2 L which corresponds to a lower threshold for the time drift, while the integer N2 H , which triggers a second series of braking pulses, corresponds to an upper threshold for the time drift (note that the concept of lower threshold and upper threshold is considered in absolute values).

Le circuit de régulation est agencé de manière que chaque période de correction a une durée suffisante à l'établissement de la phase synchrone dans laquelle la fréquence de l'oscillateur mécanique est synchronisée, en fonction d'une dérive positive ou négative détectée, respectivement sur une première fréquence de correction Fcor1 qui est égal à la fréquence FINF calculée avec Fz (N=2) = F0c ou sur une deuxième fréquence de correction Fcor2 qui est égal à la fréquence FSUP calculée avec Fz (N=2) = F0c.The regulation circuit is arranged so that each correction period has a sufficient duration to establish the synchronous phase in which the frequency of the mechanical oscillator is synchronized, as a function of a detected positive or negative drift, respectively on a first correction frequency Fcor1 which is equal to the frequency F INF calculated with Fz (N = 2) = F0c or on a second correction frequency Fcor2 which is equal to the frequency F SUP calculated with Fz (N = 2) = F0c.

Dans une variante préférée, la durée de la phase synchrone est prévue largement supérieure à une durée maximale de la phase transitoire, notamment au moins dix fois supérieure.In a preferred variant, the duration of the synchronous phase is expected to be much greater than a maximum duration of the transient phase, in particular at least ten times greater.

La pièce d'horlogerie selon l'invention est remarquable par le fait qu'une correction d'une dérive temporelle, détectée par le circuit de régulation en association avec un capteur, est effectuée par la génération d'une série d'impulsions de freinage de manière périodique à une fréquence sélectionnée proche mais différente d'une fréquence Fz(N) = 2·F0c/N, N étant un nombre entier positif, ce qui permet de réguler la fréquence moyenne de l'oscillateur mécanique pour qu'elle égale une fréquence de consigne F0c sans avoir à gérer les instants de déclenchement des impulsions de freinage relativement à la position angulaire de l'oscillateur mécanique comme dans l'art antérieur. On pourrait prévoir de déterminer l'instant d'une première impulsion de freinage de chaque série d'impulsions relativement à la position angulaire de l'oscillateur mécanique pour assurer une phase transitoire relativement courte avant la phase stable de la synchronisation, mais une telle variante n'est pas nécessaire.The timepiece according to the invention is remarkable in that a correction of a time drift, detected by the regulation circuit in association with a sensor, is carried out by the generation of a series of braking pulses. periodically at a selected frequency close to but different from a frequency Fz (N) = 2F0c / N, N being a positive integer, which makes it possible to regulate the average frequency of the mechanical oscillator so that it equals a reference frequency F0c without having to manage the instants of triggering of the braking pulses relative to the angular position of the mechanical oscillator as in the prior art. Provision could be made to determine the instant of a first braking pulse of each series of pulses relative to the angular position of the mechanical oscillator to ensure a relatively short transient phase before the stable phase of the synchronization, but such a variant is not necessary.

En référence aux Figures 6 à 9, on décrira ci-après un deuxième mode de réalisation de l'invention et un deuxième mode de régulation selon l'invention. A la Figure 6, les éléments du mouvement horloger 4A de la pièce d'horlogerie 3 déjà décrits précédemment ne seront pas décrits ici à nouveau. Le dispositif de régulation 72 de ce deuxième mode de réalisation comprend :

  • une base de temps de référence 36,
  • un dispositif de freinage électromagnétique 76 pour freiner le résonateur mécanique 14A au cours de périodes de correction, et
  • un circuit de régulation 74 qui reçoit un signal périodique digital SQ de la base de temps de référence et qui est agencé pour engendrer des séries d'impulsions 84 de court-circuit de la bobine 78 via un interrupteur 50 (voir Figures 8 et 9) respectivement au cours de périodes de correction de dérives temporelles détectées successivement par ce circuit de régulation.
With reference to Figures 6 to 9 , a second embodiment of the invention and a second regulation mode according to the invention will be described below. To the Figure 6 , the elements of the watch movement 4A of the timepiece 3 already described above will not be described here again. The regulation device 72 of this second embodiment comprises:
  • a reference time base 36,
  • an electromagnetic braking device 76 for braking the mechanical resonator 14A during correction periods, and
  • a regulation circuit 74 which receives a digital periodic signal S Q from the reference time base and which is arranged to generate series of pulses 84 short-circuiting coil 78 via a switch 50 (see Figures 8 and 9 ) respectively during periods of correction of temporal drifts detected successively by this regulation circuit.

Par 'freinage électromagnétique' on comprend un freinage du résonateur mécanique engendré via une interaction électromagnétique entre au moins un aimant permanent, porté par le résonateur mécanique ou un support de ce résonateur mécanique, et au moins une bobine portée respectivement par le support ou le résonateur mécanique et associée à un circuit électronique dans lequel un courant induit dans la bobine par l'aimant permanent peut être engendré.By 'electromagnetic braking' is understood a braking of the mechanical resonator generated via an electromagnetic interaction between at least one permanent magnet, carried by the mechanical resonator or a support of this mechanical resonator, and at least one coil carried respectively by the support or the resonator mechanical and associated with an electronic circuit in which a current induced in the coil by the permanent magnet can be generated.

Dans une variante générale (non représentée), le dispositif de freinage électromagnétique est formé par un système électromagnétique qui comprend une bobine 78 portée par un support 5 du résonateur mécanique 14A et au moins un aimant permanent porté par un balancier de ce résonateur mécanique, ce système électromagnétique étant agencé de manière qu'une tension induite est générée entre les deux bornes 78A & 78B de la bobine dans chaque alternance de l'oscillation du résonateur mécanique pour une plage de fonctionnement utile de l'oscillateur mécanique. Le dispositif de régulation est agencé de manière à permettre au circuit de régulation de diminuer momentanément l'impédance entre les deux bornes de la bobine, durant des intervalles de temps distincts TP, pour engendrer des impulsions de freinage électromagnétique du résonateur mécanique. Dans la variante avantageuse du deuxième mode de réalisation décrite en référence aux Figures 8 et 9, un court-circuit de la bobine est effectué durant chaque intervalle de temps distinct TP.In a general variant (not shown), the electromagnetic braking device is formed by an electromagnetic system which comprises a coil 78 carried by a support 5 of the mechanical resonator 14A and at least one permanent magnet carried by a balance of this mechanical resonator, this electromagnetic system being arranged so that an induced voltage is generated between the two terminals 78A & 78B of the coil in each alternation of the oscillation of the mechanical resonator for a useful operating range of the mechanical oscillator. The regulation device is arranged so as to allow the regulation circuit to temporarily reduce the impedance between the two terminals of the coil, during distinct time intervals T P , to generate electromagnetic braking pulses of the mechanical resonator. In the advantageous variant of the second embodiment described with reference to Figures 8 and 9 , a short-circuit of the coil is carried out during each distinct time interval T P.

Dans la variante particulière représentée aux Figures 6 et 7, le système électromagnétique du dispositif de freinage électromagnétique comprend une première paire d'aimants bipolaires 64 & 65 à aimantation axiale et de polarités opposées. Ces deux aimants bipolaires sont agencés sur le balancier 16A symétriquement relativement à un demi-axe de référence 68 de ce balancier, ce demi-axe de référence définissant une position angulaire zéro ('0') lorsque le résonateur mécanique est dans sa position neutre (état d'énergie potentielle minimale). On considère ici un système de coordonnées polaires centré sur l'axe d'oscillation du résonateur mécanique 14A et fixe relativement à la platine 5 du mouvement horloger 3. De manière générale, la bobine 78 est agencée avec un décalage angulaire relativement à la position angulaire zéro de manière qu'une tension induite dans la bobine intervienne substantiellement, lorsque l'oscillateur mécanique oscille dans sa plage de fonctionnement utile, dans chaque alternance alternativement avant et après le passage du résonateur mécanique par sa position neutre dans cette alternance. Le décalage angulaire de la bobine est défini comme la distance angulaire minimale entre la position angulaire zéro et la position angulaire du centre de la bobine. Dans la plage de fonctionnement utile de la pièce d'horlogerie 3, les positions angulaires extrêmes (amplitudes d'oscillation) du résonateur mécanique sont prévues, en valeurs absolues, sensiblement égales ou supérieures au décalage angulaire de la bobine. De préférence, comme représenté à la Figure 7, le décalage angulaire est prévu sensiblement égal à 180°. On notera que le balancier 16A est représenté sur la Figure 7 dans une position angulaire θ égale à 90° (θ = 90°).In the particular variant shown in Figures 6 and 7 , the electromagnetic system of the electromagnetic braking device comprises a first pair of bipolar magnets 64 & 65 axially magnetized and of opposite polarities. These two bipolar magnets are arranged on the balance 16A symmetrically relative to a semi-axis of reference 68 of this balance, this reference semi-axis defining a zero angular position ('0') when the mechanical resonator is in its neutral position (minimum potential energy state). We consider here a polar coordinate system centered on the axis of oscillation of the mechanical resonator 14A and fixed relative to the plate 5 of the watch movement 3. In general, the coil 78 is arranged with an angular offset relative to the angular position. zero so that a voltage induced in the coil intervenes substantially, when the mechanical oscillator oscillates in its useful operating range, in each half-wave alternately before and after the passage of the mechanical resonator through its neutral position in this half-wave. The angular offset of the coil is defined as the minimum angular distance between the zero angular position and the angular position of the center of the coil. In the useful operating range of the timepiece 3, the extreme angular positions (oscillation amplitudes) of the mechanical resonator are provided, in absolute values, substantially equal to or greater than the angular offset of the coil. Preferably, as shown in Figure 7 , the angular offset is expected to be substantially equal to 180 °. It will be noted that the balance 16A is represented on the Figure 7 in an angular position θ equal to 90 ° (θ = 90 °).

A la Figure 9 sont représentées, pour un décalage angulaire de 180° et pour une amplitude d'oscillation du résonateur mécanique dans la plage de fonctionnement utile de l'oscillateur, la position angulaire du balancier 16A (courbe 82) sur une période d'oscillation et la tension induite (courbe 86) générée dans la bobine 78 au cours de cette période d'oscillation. Dans la plage de fonctionnement utile de l'oscillateur mécanique, le système électromagnétique formé de la bobine et de la première paire d'aimants 64 & 65 engendre, dans chaque alternance de cet oscillateur mécanique, deux impulsions de tension induite 88A et 88B, à savoir une impulsion 88A dans chaque première demi-alternance A11, A21 et une impulsion 88B dans chaque seconde demi-alternance A12, A22. On remarque que les impulsions 88A et 88B sont séparées deux à deux par des zones temporelles sans tension induite dans la bobine 28. Grâce au positionnement de la bobine avec un décalage angulaire de 180°, les deux impulsions de tension induite 88A et 88B intervenant dans chaque alternance présentent une symétrie relativement à l'instant du passage du résonateur mécanique 14A par sa position neutre.To the Figure 9 are shown, for an angular offset of 180 ° and for an oscillation amplitude of the mechanical resonator in the useful operating range of the oscillator, the angular position of the balance 16A (curve 82) over a period of oscillation and the voltage induced (curve 86) generated in coil 78 during this period of oscillation. In the useful operating range of the mechanical oscillator, the electromagnetic system formed by the coil and the first pair of magnets 64 & 65 generates, in each half-wave of this mechanical oscillator, two induced voltage pulses 88 A and 88 B , namely an 88 A pulse in each first half-wave A1 1 , A2 1 and an 88 B pulse in each second half-wave A1 2 , A2 2 . Note that the pulses 88 A and 88 B are separated in pairs by time zones without induced voltage in coil 28. Thanks to the positioning of the coil with an angular shift of 180 °, the two induced voltage pulses 88 A and 88 B occurring in each half-wave have a symmetry relative to the instant of passage of the mechanical resonator 14A through its neutral position.

Dans une variante avantageuse représentée aux Figures 8 et 9, des impulsions de freinage électromagnétique sont engendrées par un court-circuit de la bobine 78 durant des intervalles de temps distincts TP qui sont sensiblement égaux ou supérieures aux zones temporelles sans tension induite dans la bobine autour des deux positions extrêmes du résonateur mécanique pour la plage de fonctionnement utile de l'oscillateur mécanique. Dans le cas préféré (décalage angulaire de 180° de la bobine), les zones temporelles sans tension induite dans la bobine autour des deux positions extrêmes du résonateur mécanique sont sensiblement égales.In an advantageous variant shown in Figures 8 and 9 , electromagnetic braking pulses are generated by a short circuit of the coil 78 during distinct time intervals T P which are substantially equal to or greater than the time zones without voltage induced in the coil around the two extreme positions of the mechanical resonator for the useful operating range of the mechanical oscillator. In the preferred case (angular shift of 180 ° of the coil), the temporal zones without voltage induced in the coil around the two extreme positions of the mechanical resonator are substantially equal.

De préférence, le dispositif de régulation 72 comprend un circuit d'alimentation formé par une capacité de stockage CAL et un circuit redresseur d'une tension induite (signal SB) dans la bobine 78 par une deuxième paire d'aimants bipolaires 66 & 67 portée à cet effet par le balancier 16A. A la Figure 8, ce circuit d'alimentation est représenté comme une partie du circuit de régulation 74. Cependant, on peut aussi le considérer comme un circuit spécifique qui est associé au circuit de régulation pour l'alimenter. La seconde paire d'aimants bipolaires 66 & 67 est couplée momentanément à la bobine 28 dans chaque alternance de l'oscillation du résonateur mécanique et sert donc essentiellement à l'alimentation électrique du dispositif de régulation, bien qu'elle puisse intervenir dans une phase transitoire initiale de chaque période de correction qui sera décrite par la suite. La deuxième paire d'aimants bipolaires présente un demi-axe milieu 69 entre ses deux aimants qui est décalé du décalage angulaire que présente la bobine 78 relativement au demi-axe de référence 68, de sorte que ce demi-axe 69 est aligné sur le centre de la bobine lorsque le résonateur mécanique est dans sa position de repos.Preferably, the regulation device 72 comprises a supply circuit formed by a storage capacitor C AL and a rectifier circuit of a voltage induced (signal S B ) in the coil 78 by a second pair of bipolar magnets 66 & 67 carried for this purpose by the balance 16A. To the Figure 8 , this supply circuit is represented as part of the regulation circuit 74. However, it can also be considered as a specific circuit which is associated with the regulation circuit in order to supply it. The second pair of bipolar magnets 66 & 67 is momentarily coupled to coil 28 in each half-wave of the mechanical resonator oscillation and therefore serves primarily to supply power to the regulator, although it may occur in one phase. initial transient of each correction period which will be described later. The second pair of bipolar magnets has a middle half-axis 69 between its two magnets which is offset by the angular offset that the coil 78 has relative to the reference half-axis 68, so that this half-axis 69 is aligned with the center of the coil when the mechanical resonator is in its home position.

Le circuit d'alimentation est relié, d'une part, à une borne de la bobine et, d'autre part, à un potentiel de référence (masse) du dispositif de régulation au moins périodiquement lors de passage du résonateur mécanique par sa position neutre, mais de préférence constamment. La deuxième paire d'aimants génère des impulsions de tension induite 90A et 90B lors des passages du balancier 8B par la position angulaire zéro, ces impulsions présentant une plus grande amplitude que les impulsions de tension induite générées par la première paire d'aimants 64 & 65 et servant à l'alimentation de la capacité de stockage dont la tension est représentée par la courbe 94 à la Figure 9. Le redresseur est prévu ici à double alternance, de sorte que chaque pic central des impulsions 90A et 90B recharge la capacité d'alimentation.The power supply circuit is connected, on the one hand, to a terminal of the coil and, on the other hand, to a reference potential (ground) of the regulation device at least periodically when the mechanical resonator passes through its position. neutral, but preferably constantly. The second pair of magnets generates induced voltage pulses 90 A and 90 B when the balance 8B passes through the zero angular position, these pulses having a greater amplitude than the induced voltage pulses generated by the first pair of magnets. 64 & 65 and used to supply the storage capacity, the voltage of which is represented by curve 94 at Figure 9 . The rectifier is provided here in half-wave, so that each central peak of the pulses 90 A and 90 B recharges the supply capacity.

Le circuit de régulation 74 d'une variante avantageuse du deuxième mode de réalisation, lequel met en œuvre un deuxième mode régulation de l'invention, est représenté à la Figure 8. Il reçoit en entrée, d'une part, le signal périodique de référence SQ fourni par le circuit d'horloge 38 et, d'autre part, un signal de tension induite SB (courbe 86 représentée à la Figure 9) fourni par la bobine 78. Sur la base de ces deux signaux, le circuit de régulation effectue la régulation voulue de la marche de la pièce d'horlogerie. Pour ce faire, il comprend un dispositif de mesure qui comprend un diviseur DIV1 & DIV2 fournissant un signal d'horloge SH, un compteur bidirectionnel CB à deux entrées (du type différentiel), et un comparateur 52 qui reçoit en entrée une tension de référence URef et le signal de tension induite SB.The regulation circuit 74 of an advantageous variant of the second embodiment, which implements a second regulation mode of the invention, is shown in Figure 8 . It receives as input, on the one hand, the periodic reference signal S Q supplied by the clock circuit 38 and, on the other hand, an induced voltage signal S B (curve 86 shown in Figure 9 ) supplied by coil 78. On the basis of these two signals, the regulation circuit performs the desired regulation of the operation of the timepiece. To do this, it comprises a measuring device which comprises a divider DIV1 & DIV2 supplying a clock signal S H , a bidirectional counter CB with two inputs (of the differential type), and a comparator 52 which receives a voltage of reference U Ref and the induced voltage signal S B.

Comme montré à la Figure 9, il est prévu de détecter dans chaque période d'oscillation, pour la plage de fonctionnement utile de l'oscillateur mécanique, un pic central négatif d'une impulsion de tension induite 90A intervenant une fois dans chaque période d'oscillation. Le comparateur 52 indique si la tension induite dans la bobine devient inférieure à la tension de référence URef (qui est négative). On comprend que la valeur de URef est sélectionnée ici pour être, en valeurs absolues, supérieure aux amplitudes des impulsions de tension induite 88A et 88B qui sont générées par la première paire d'aimants 64 & 65 et inférieure à l'amplitude des pics centraux des impulsions 90A (à noter que, relativement aux amplitudes des impulsions de tension induite 88A et 88B, les pics centraux ont une valeur maximale plus élevée que représentée à la Figure 9 dans le cas d'un décalage angulaire de 180° pour la bobine). Ainsi, dans le second mode de réalisation, le capteur est de préférence formé par un système électromagnétique comprenant la bobine 78 et une paire d'aimants 66 & 67 additionnelle relativement au système magnétique du dispositif de freinage.As shown in Figure 9 , provision is made to detect in each oscillation period, for the useful operating range of the mechanical oscillator, a negative central peak of an induced voltage pulse 90A occurring once in each oscillation period. Comparator 52 indicates if the voltage induced in the coil becomes lower than the reference voltage U Ref (which is negative). It is understood that the value of U Ref is selected here to be, in absolute values, greater than the amplitudes of the induced voltage pulses 88 A and 88 B which are generated by the first pair of magnets 64 & 65 and less than the amplitude central peaks of the 90 A pulses (note that, relative to the amplitudes of the induced voltage pulses 88 A and 88 B , the central peaks have a higher maximum value than shown in Figure 9 in the case of an angular offset of 180 ° for the coil). Thus, in the second embodiment, the sensor is preferably formed by an electromagnetic system comprising the coil 78 and an additional pair of magnets 66 & 67 relative to the magnetic system of the braking device.

Par analogie avec le premier mode de réalisation tel que décrit, le comparateur 52 peut aussi être considéré comme une partie du capteur et non du dispositif de mesure. On remarquera que, de manière générale, une paire d'aimants additionnelle est avantageuse mais pas indispensable, car dans une autre variante les impulsions 88A et 88B peuvent aussi servir à l'alimentation électrique du dispositif de régulation et également à la détection du nombre d'alternances ou de périodes d'oscillation du résonateur mécanique. De manière générale, la tension de référence est sélectionnée de manière que, dans la plage de fonctionnement utile de l'oscillateur mécanique, le comparateur 52 fournisse à une première entrée du compteur CB un nombre d'impulsions prédéterminé par période d'oscillation du résonateur mécanique, et le signal d'horloge SH est prévu pour qu'il délivre un même nombre d'impulsions par période de consigne T0c (inverse de la fréquence de consigne F0c) à une deuxième entrée du compteur CB. Ce compteur CB, comme dans le premier mode de réalisation, fournit en sortie un signal correspondant à son état et qui donne une mesure de la dérive temporelle DT de l'oscillateur mécanique relativement à l'oscillateur auxiliaire 36.By analogy with the first embodiment as described, comparator 52 can also be considered as part of the sensor and not of the measuring device. It will be noted that, in general, an additional pair of magnets is advantageous but not essential, because in another variant the pulses 88 A and 88 B can also be used for the power supply of the regulation device and also for the detection of the number of alternations or periods of oscillation of the mechanical resonator. In general, the reference voltage is selected so that, in the useful operating range of the mechanical oscillator, the comparator 52 supplies a first input of the counter CB with a predetermined number of pulses per period of oscillation of the resonator. mechanical, and the clock signal S H is provided so that it delivers the same number of pulses per setpoint period T0c (inverse of the setpoint frequency F0c) to a second input of the counter CB. This counter CB, as in the first embodiment, outputs a signal corresponding to its state and which gives a measurement of the time drift D T of the mechanical oscillator relative to the auxiliary oscillator 36.

L'état du compteur CB est fourni à deux comparateurs 82 et 84. Le premier comparateur 82 effectue une comparaison de l'état du compteur CB avec un premier nombre entier N1 supérieur à zéro, pour déterminer si la dérive temporelle mesurée est supérieure ou non à ce premier nombre N1, et détecte ainsi si au moins une certaine avance est intervenue dans la marche de l'oscillateur mécanique. Le deuxième comparateur 84 effectue une comparaison de cet état avec un deuxième nombre entier négatif -N2, N2 étant supérieur à zéro, pour déterminer si la dérive temporelle mesurée est inférieure ou non à ce deuxième nombre -N2, et détecte ainsi si au moins un certain retard est intervenu dans la marche de l'oscillateur mécanique. La sortie du premier comparateur 82 est fournie à un premier générateur de fréquence 42A agencé pour générer un premier signal digital périodique SFI à la première fréquence FINF durant une période de correction chaque fois que cette sortie indique que l'état du compteur CB est supérieure au nombre N1. Plus particulièrement, le premier générateur 42A de la fréquence FINF comprend des moyens agencés pour permettre de l'activer et ensuite de le désactiver, le signal fourni par le premier comparateur étant fourni à une entrée 'start' du premier générateur pour l'activer dès que ce premier comparateur indique que l'état du compteur CB est supérieure au nombre N1. De manière similaire, la sortie du deuxième comparateur 84 est fournie à un deuxième générateur de fréquence 44A agencé pour générer un deuxième signal digital périodique SFS à la deuxième fréquence FSUP durant une période de correction chaque fois que cette sortie indique que l'état du compteur CB est inférieure au nombre -N2. Plus particulièrement, le deuxième générateur 44A de la fréquence FSUP comprend des moyens agencés pour permettre de l'activer et ensuite de le désactiver, le signal fourni par le deuxième comparateur étant fourni à une entrée 'start' du deuxième générateur pour l'activer dès que le deuxième comparateur indique que l'état du compteur CB est inférieure au nombre -N2. Les premier et deuxième signaux digitaux périodiques SFI et SFS ainsi que les fréquences FINF et FSUP ont déjà été décrites dans le cadre du premier mode de réalisation et présentent dans le deuxième mode de réalisation les mêmes caractéristiques que dans ce premier mode de réalisation, de sorte que ces signaux et ces fréquences ne seront pas décrits ici à nouveau. Le signal de commande SF est similaire à celui décrit dans le premier mode de réalisation ; il est formé du signal SFI lorsque le premier générateur de fréquence est activé et du signal SFS lorsque le deuxième générateur de fréquence est activé.The state of the counter CB is supplied to two comparators 82 and 84. The first comparator 82 performs a comparison of the state of the counter CB with a first integer N1 greater than zero, to determine whether the measured time drift is greater or not. to this first number N1, and thus detects whether at least a certain advance has occurred in the operation of the mechanical oscillator. The second comparator 84 performs a comparison of this state with a second negative integer -N2, N2 being greater than zero, to determine whether or not the measured time drift is less than this second number -N2, and thus detects whether at least one some delay has occurred in the operation of the mechanical oscillator. The output of the first comparator 82 is supplied to a first frequency generator 42A arranged to generate a first periodic digital signal S FI at the first frequency F INF during a correction period each time that this output indicates that the state of the counter CB is greater than the number N1. More particularly, the first generator 42A of the frequency F INF comprises means arranged to enable it to be activated and then to deactivate it, the signal supplied by the first comparator being supplied to a 'start' input of the first generator to activate it. as soon as this first comparator indicates that the state of the counter CB is greater than the number N1. Similarly, the output of the second comparator 84 is supplied to a second frequency generator 44A arranged to generate a second periodic digital signal S FS at the second frequency F SUP during a correction period whenever this output indicates that the state of the counter CB is less than the number -N2. More particularly, the second generator 44A of the frequency F SUP comprises means arranged to enable it to be activated and then to deactivate it, the signal supplied by the second comparator being supplied to a 'start' input of the second generator to activate it. as soon as the second comparator indicates that the state of the counter CB is less than the number -N2. The first and second periodic digital signals S FI and S FS as well as the frequencies F INF and F SUP have already been described in the context of the first embodiment and present in the second embodiment the same characteristics as in this first embodiment, so that these signals and these frequencies will not be described here again. The control signal S F is similar to that described in the first embodiment; it is formed by the signal S FI when the first frequency generator is activated and by the signal S FS when the second frequency generator is activated.

On comprend que les deux générateurs de fréquence ne sont jamais activés simultanément. Le point de liaison électrique 86 correspond en pratique à un élément électronique, par exemple une porte logique 'OU', ou à un circuit électronique, par exemple un multiplexeur à deux ou trois positions d'entrée et une seule sortie (il s'agit donc ici d'un commutateur à deux ou trois entrées). Dans le cas de trois positions d'entrée, il est avantageusement prévu une position neutre dans laquelle le commutateur n'est connecté à aucun des deux générateurs de fréquence. Comme dans le premier mode de réalisation, le signal de commande SF est fourni à un temporisateur 48 qui fournit en sortie le signal périodique SP déjà décrit précédemment. Pour chaque impulsion élémentaire du signal SFI ou du signal SFS, correspondant à une période de la fréquence respective, le minuteur génère une impulsion d'activation de l'interrupteur 50 qui est ici un interrupteur de court-circuit de la bobine 78. Ainsi, dans chaque période du signal SFI et du signal SFS est engendrée une impulsion de court-circuit au cours d'un intervalle de temps distinct d'une durée TP.It is understood that the two frequency generators are never activated simultaneously. The electrical connection point 86 corresponds in practice to an electronic element, for example an 'OR' logic gate, or to an electronic circuit, for example a multiplexer with two or three input positions and a single output (this is so here a switch with two or three inputs). In the case of three input positions, a neutral position is advantageously provided in which the switch is not connected to either of the two frequency generators. As in the first embodiment, the control signal S F is supplied to a timer 48 which outputs the periodic signal S P already described above. For each elementary pulse of the signal S FI or of the signal S FS , corresponding to a period of the respective frequency, the timer generates an activation pulse of the switch 50 which is here a short-circuit switch of the coil 78. Thus, in each period of the signal S FI and of the signal S FS is generated a short-circuit pulse during a time interval distinct from a duration T P.

Un compteur à N (référencé CN) reçoit également le signal de commande SF et il compte le nombre d'impulsions élémentaires (nombre de périodes) dans ce signal de commande SF depuis le début de chaque période de correction. Il est donc remis à zéro au début d'une quelconque période de correction, simultanément à l'activation, selon le cas, du premier ou deuxième générateur de fréquence. Ce compteur à N stoppe le générateur de fréquence qui a été activé dans la période de correction considérée dès qu'il a compté N impulsions élémentaires (soit N périodes) via une entrée 'Stop' que comporte chacun des deux générateurs de fréquence, N étant un nombre entier supérieur à un (N > 1). Dans une variante avantageuse, le compteur à N est alors désactivé jusqu'au début d'une prochaine période de correction. De préférence, le nombre N est largement plus grand que '1', ce nombre N étant par exemple compris entre 100 et 10'000. Dans chaque période de correction sont donc générées N impulsions de court-circuit de la bobine 78 au cours de N intervalles de temps distincts respectifs ayant chacun une durée TP.A counter at N (referenced CN) also receives the control signal S F and it counts the number of elementary pulses (number of periods) in this control signal S F from the start of each correction period. It is therefore reset to zero at the start of any correction period, simultaneously with the activation, as the case may be, of the first or second frequency generator. This counter at N stops the frequency generator which was activated in the correction period considered as soon as it has counted N elementary pulses (i.e. N periods) via a 'Stop' input that each of the two frequency generators comprises, N being an integer greater than one (N> 1). In an advantageous variant, the counter at N is then deactivated until the start of a next correction period. Preferably, the number N is much greater than '1', this number N being for example between 100 and 10,000. In each correction period are therefore generated N short-circuit pulses of coil 78 during N respective distinct time intervals each having a duration T P.

On remarquera qu'on peut connaître approximativement quelle dérive temporelle DT (erreur temporelle absolue) est corrigée par un certain nombre N d'impulsions de court-circuit générées dans une période de correction, de sorte qu'il est aisé de sélectionner un nombre N qui soit en relation avec la dérive temporelle DT détectée. Dans une variante préférée où les deux différences de fréquence entre la fréquence de consigne F0c et respectivement la première fréquence FINF et la deuxième fréquence FSUP sont prévues de même valeur et où le nombre N1 est égal au nombre N2, le nombre N est choisi de manière qu'une dérive temporelle détectée, négative ou positive, est sensiblement corrigée lors d'une période de correction qui suit sa détection. Un même résultat peut être obtenu avec un nombre N1 différent du nombre N2 si les deux différences de fréquence susmentionnées ne sont pas prévues de même valeur.It will be noted that it is possible to know approximately which time drift D T (absolute time error) is corrected by a certain number N of short-circuit pulses generated in a correction period, so that it is easy to select a number N which is related to the time drift D T detected. In a preferred variant where the two frequency differences between the reference frequency F0c and respectively the first frequency F INF and the second frequency F SUP are provided to have the same value and where the number N1 is equal to the number N2, the number N is chosen. so that a detected time drift, negative or positive, is substantially corrected during a correction period which follows its detection. The same result can be obtained with a number N1 different from the number N2 if the two above-mentioned frequency differences are not expected to have the same value.

De manière générale, sur la base de l'enseignement donné dans le document CH 713 306 , on comprend que, d'une part, les impulsions de tension induite 88A engendrent, si des impulsions 84 de court-circuit de la bobine 78 interviennent au moins partiellement lors de ces impulsions 88A, des impulsions distinctes de freinage électromagnétique qui engendrent des déphasages négatifs dans l'oscillation du résonateur mécanique 14A, de sorte qu'elles peuvent générer du retard dans la marche de la pièce d'horlogerie pour corriger une avance. D'autre part, les impulsions de tension induite 88B engendrent, si des impulsions 84 de court-circuit de la bobine 78 interviennent au moins partiellement lors de ces impulsions 88B, des impulsions distinctes de freinage électromagnétique qui engendrent des déphasages positifs dans l'oscillation du résonateur mécanique, de sorte qu'elles peuvent générer de l'avance dans la marche de la pièce d'horlogerie pour corriger un retard. On notera qu'un décalage angulaire de 180° présente l'avantage d'une grande efficacité pour engendrer les impulsions de freinage par les impulsions de court-circuit 84, ce qui permet de corriger efficacement une avance ou un retard dans la marche de la pièce d'horlogerie.In general, on the basis of the teaching given in the document CH 713 306 , it is understood that, on the one hand, the induced voltage pulses 88 A generate, if the short-circuit pulses 84 of the coil 78 occur at least partially during these pulses 88 A , distinct electromagnetic braking pulses which generate negative phase shifts in the oscillation of the mechanical resonator 14A, so that they can generate a delay in the operation of the timepiece to correct an advance. On the other hand, the induced voltage pulses 88 B generate, if the pulses 84 short-circuit the coil 78 At least partially intervene during these pulses 88 B , distinct electromagnetic braking pulses which generate positive phase shifts in the oscillation of the mechanical resonator, so that they can generate advance in the operation of the timepiece to correct a delay. It will be noted that an angular offset of 180 ° has the advantage of being very efficient in generating the braking pulses by the short-circuit pulses 84, which makes it possible to effectively correct an advance or a delay in the operation of the motor. timepiece.

Comme dans le premier mode de réalisation, lors d'une période de correction au cours de laquelle est générée soit une première série d'impulsions de freinage par une première série correspondante d'impulsions de court-circuit de la bobine, soit une deuxième série d'impulsions de freinage par une deuxième série correspondante d'impulsions de court-circuit de la bobine, on observe dans une première partie de la période de correction une phase transitoire (plus au moins longue selon le cas et notamment selon le moment auquel intervient la première impulsion de court-circuit des N impulsions de court-circuit générées à chaque période de correction) au cours de laquelle la fréquence instantanée de l'oscillateur mécanique passe de la fréquence qu'il a avant la période de correction en question à la fréquence de correction sélectionnée, à savoir soit la fréquence FINF (N=2) soit la fréquence FSUP (N=2) en fonction de la dérive temporelle détectée que l'on corrige. Suite à la phase transitoire intervient une phase stable / phase synchrone dans une seconde partie de la période de correction. Au cours de la phase synchrone, la fréquence de l'oscillateur est synchronisée sur la fréquence de correction sélectionnée, à savoir soit sur la première fréquence de correction Fcor1 soit sur la deuxième fréquence de correction Fcor2. On observe donc que, pour autant que la dérive temporelle naturelle de la pièce d'horlogerie reste dans une plage nominale pour laquelle le dispositif de freinage électromagnétique du résonateur mécanique a été dimensionné, dans chaque période de correction intervient une phase synchrone où l'oscillateur mécanique présente la fréquence de correction sélectionnée au travers de la sélection de la fréquence de freinage FINF ou FSUP, et ceci quelle que soit la position angulaire du balancier 16A lors d'une première impulsion de court-circuit dans une quelconque période de correction. Dans la phase synchrone, si aucune perturbation extérieure particulière n'intervient (par exemple un choc ou une certaine accélération du balancier due à un mouvement brusque), chaque impulsion de court-circuit engendre une impulsion de freinage électromagnétique, ce qui n'est pas toujours le cas dans la phase transitoire.As in the first embodiment, during a correction period during which is generated either a first series of braking pulses by a first corresponding series of coil short-circuit pulses, or a second series of braking pulses by a second corresponding series of short-circuit pulses of the coil, a transient phase is observed in a first part of the correction period (longer or shorter depending on the case and in particular depending on the moment at which the first short-circuit pulse of the N short-circuit pulses generated at each correction period) during which the instantaneous frequency of the mechanical oscillator changes from the frequency it has before the correction period in question to the selected correction frequency, namely either the frequency F INF (N = 2) or the frequency F SUP (N = 2) as a function of the detected time drift which is corrected. Following the transient phase, a stable phase / synchronous phase occurs in a second part of the correction period. During the synchronous phase, the frequency of the oscillator is synchronized on the selected correction frequency, namely either on the first correction frequency Fcor1 or on the second correction frequency Fcor2. It is therefore observed that, provided that the natural time drift of the timepiece remains within a nominal range for which the electromagnetic braking device of the mechanical resonator has been dimensioned, in each correction period a synchronous phase occurs in which the mechanical oscillator presents the correction frequency selected through the selection of the braking frequency F INF or F SUP , and this regardless of the angular position of the balance 16A during a first short-circuit pulse in any one correction period. In the synchronous phase, if no particular external disturbance occurs (for example a shock or a certain acceleration of the balance wheel due to a sudden movement), each short-circuit pulse generates an electromagnetic braking pulse, which is not always the case in the transitional phase.

Dans la phase synchrone, on observe à la Figure 9 que les impulsions de court-circuit 84 sont callées entre deux impulsions de tension induite 88B et 88A entourant une position angulaire extrême du résonateur mécanique et deux impulsions de freinage distinctes interviennent respectivement au début et à la fin de chaque intervalle de temps TP, ces deux impulsions de freinage distinctes correspondant à deux quantités d'énergie qui sont prélevées au résonateur mécanique lors d'une impulsion de freinage correspondant à une impulsion de court-circuit et qui sont variables (la variation de l'une étant opposée à la variation de l'autre, de sorte que si une des deux quantités d'énergie augmente ou diminue l'autre respectivement diminue ou augmente) en fonction de l'écart de fréquence entre la fréquence naturelle F0 de l'oscillateur mécanique et la fréquence de correction sélectionnée et de la fréquence de freinage sélectionnée. Deux impulsions de freinage sont distinctes lorsqu'elles sont séparées par une zone temporelle ayant une durée non nulle. Par fréquence naturelle F0, on comprend la fréquence que présenterait naturellement l'oscillateur mécanique au cours de la période de correction considérée, c'est-à-dire dans le cas hypothétique d'une absence d'impulsions de court-circuit.In the synchronous phase, we observe at the Figure 9 that the short-circuit pulses 84 are wedged between two induced voltage pulses 88 B and 88 A surrounding an extreme angular position of the mechanical resonator and two distinct braking pulses occur respectively at the start and at the end of each time interval T P , these two distinct braking pulses corresponding to two quantities of energy which are taken from the mechanical resonator during a braking pulse corresponding to a short-circuit pulse and which are variable (the variation of one being opposite to the variation of the other, so that if one of the two quantities of energy increases or decreases the other respectively decreases or increases) as a function of the frequency difference between the natural frequency F0 of the mechanical oscillator and the frequency of selected correction and selected braking frequency. Two braking pulses are distinct when they are separated by a time zone having a non-zero duration. By natural frequency F0, we understand the frequency that the mechanical oscillator would naturally present during the correction period considered, that is to say in the hypothetical case of an absence of short-circuit pulses.

On remarquera que, dans la définition de la présente invention dans le texte descriptif et les revendications, les impulsions de freinage dans le deuxième mode de réalisation correspondent respectivement aux impulsions de court-circuit qui les produisent, de sorte que chaque impulsion de freinage d'une première série d'impulsions de freinage et d'une deuxième série d'impulsions de freinage englobe l'ensemble des impulsions de freinage distinctes pouvant intervenir durant l'intervalle de temps TP de l'impulsion de court-circuit correspondante. On remarquera encore que, dans la phase transitoire, si les intervalles de temps Tp sont inférieurs à des zones temporelles sans tension induite dans la bobine, il est possible qu'aucune impulsion de freinage n'apparaisse dans des impulsions de court-circuit initiales. Dans la phase synchrone d'une période de correction, une impulsion de freinage peut ne contenir qu'une seule impulsion de freinage distincte, ce qui est le cas lorsque l'intervalle de temps TP a une durée inférieure à celles des zones temporelles sans tension induite situées autour des positions angulaires extrêmes. Dans la variante avantageuse représentée à la Figure 9, chaque impulsion de freinage intervenant dans la phase synchrone d'une période de correction présente deux impulsions de freinage distinctes, respectivement au début et à la fin de chaque impulsion de court-circuit correspondante qui est engendrée durant un intervalle de temps TP.It will be noted that, in the definition of the present invention in the descriptive text and the claims, the braking pulses in the second embodiment correspond respectively to the pulses short-circuit which produce them, so that each braking pulse of a first series of braking pulses and of a second series of braking pulses encompasses all of the distinct braking pulses that may occur during the time interval T P of the corresponding short-circuit pulse. It will also be noted that, in the transient phase, if the time intervals Tp are less than time zones without voltage induced in the coil, it is possible that no braking pulse appears in the initial short-circuit pulses. In the synchronous phase of a correction period, a braking pulse may contain only one distinct braking pulse, which is the case when the time interval T P has a duration less than those of the time zones without induced voltage located around extreme angular positions. In the advantageous variant shown in Figure 9 , each braking pulse occurring in the synchronous phase of a correction period has two distinct braking pulses, respectively at the start and at the end of each corresponding short-circuit pulse which is generated during a time interval T P.

La Figure 9 correspond à une situation où la fréquence d'oscillation naturelle F0 de l'oscillateur mécanique est un peu inférieure à la fréquence de consigne F0c, de sorte que la pièce d'horlogerie retarde en l'absence de régulation. Dans ce cas, dans chaque période d'oscillation au cours de phases synchrones de périodes de correction successives d'un certain retard dans la marche de la pièce d'horlogerie, une première impulsion de freinage distincte, engendrée dans la zone initiale de chaque impulsion de court-circuit 84 et intervenant dans la seconde demi-alternance A12 d'une première alternance d'oscillation A1 (au début des intervalles de temps distincts Tp), est plus forte qu'une deuxième impulsion de freinage distincte engendrée dans la zone finale de chaque impulsion de court-circuit et intervenant dans la première demi-alternance A21 d'une seconde alternance A2 (à la fin des intervalles de temps distincts TP). Les première et deuxième impulsions de freinage distinctes sont engendrées respectivement par les impulsions de tension induite 88B et 88A lors de chaque impulsion de court-circuit 84 (respectivement au début et à la fin des intervalles de temps distincts TP). Ainsi, dans ce cas, le déphasage positif généré par une impulsion de tension 88B dans une demi-alternance A12 est supérieur au déphasage négatif généré par l'impulsion de tension 88A dans la demi-alternance A21 suivante, de sorte qu'une petite correction du retard détecté intervient lors de chaque impulsion de court-circuit.The Figure 9 corresponds to a situation where the natural oscillation frequency F0 of the mechanical oscillator is a little lower than the reference frequency F0c, so that the timepiece lags in the absence of regulation. In this case, in each period of oscillation during synchronous phases of successive correction periods for a certain delay in the operation of the timepiece, a first distinct braking pulse, generated in the initial zone of each pulse short-circuit 84 and occurring in the second half-wave A1 2 of a first oscillating half-wave A1 (at the start of the separate time intervals Tp), is greater than a second separate braking pulse generated in the zone end of each short-circuit pulse and occurring in the first half-wave A2 1 of a second half-wave A2 (at the end of the distinct time intervals T P ). The first and second pulses of distinct braking are generated respectively by the induced voltage pulses 88 B and 88 A during each short-circuit pulse 84 (respectively at the start and at the end of the distinct time intervals T P ). Thus, in this case, the positive phase shift generated by a voltage pulse 88 B in a half-wave A1 2 is greater than the negative phase shift generated by the voltage pulse 88 A in the next half-wave A2 1 , so that A small correction of the detected delay occurs during each short-circuit pulse.

Dans la situation où la pièce d'horlogerie avance naturellement, c'est l'inverse qui est observé, à savoir que, dans la phase synchrone de la période de correction, la deuxième impulsion de freinage distincte susmentionnée est plus forte que la première impulsion de freinage distincte lors de chaque impulsion de court-circuit, de sorte qu'une petite correction de l'avance détectée intervient lors de chaque impulsion de court-circuit.In the situation where the timepiece advances naturally, the reverse is observed, namely that in the synchronous phase of the correction period, the aforementioned second separate braking pulse is stronger than the first pulse separate braking effect during each short-circuit pulse, so that a small correction of the detected advance occurs during each short-circuit pulse.

Claims (17)

  1. Timepiece (2; 3) provided with a mechanical movement (4) which includes:
    - a mechanism (6) for indicating at least one time data item,
    - a mechanical resonator (14; 14A) capable of oscillating around a neutral position corresponding to its state of minimum potential energy, and
    - a device (12) for maintaining the oscillation of the mechanical resonator forming with said mechanical resonator a mechanical oscillator which is arranged to pace the running of the indicator mechanism ;
    the timepiece being also provided with a control device arranged to control the mean frequency of the mechanical oscillator and which includes:
    - a sensor (24; 66, 67, 78) arranged to be capable of detecting a number of periods or vibrations in the oscillation of the mechanical resonator in a useful operating range of the mechanical oscillator,
    - an auxiliary oscillator (23),
    - a braking device (26; 64, 65, 78) which is arranged to be capable of momentarily applying a braking force to the mechanical resonator,
    - a control circuit (22; 74) including a measuring device (DIV1 & DIV2, CB) arranged to be capable of measuring, on the basis of a detection signal (Sc) provided by the sensor, a temporal drift of the mechanical oscillator relative to the auxiliary oscillator, this control circuit being arranged to determine whether a measured temporal drift corresponds to at least a certain gain or to at least a certain loss and if so, to be capable of generating a control signal which selectively activates the braking device as a function of the measured temporal drift in order to generate at least one braking pulse which is applied to the mechanical resonator to at least partially correct the measured temporal drift ;
    characterized in that the control circuit (22; 74) includes a device for generating at least a frequency FSUP which is arranged to be capable of generating a periodic digital signal at this frequency FSUP ; and in that, when the control circuit determines a temporal drift corresponding to at least a certain loss in the operation of the timepiece, the control circuit is arranged to be capable of momentarily providing to the braking device a first control signal to activate said braking device such that the braking device generates, during a first correction period, a series of periodic braking pulses which are applied to the mechanical resonator at said frequency FSUP; this frequency FSUP and the duration of the first correction period being provided and the braking device being arranged so that the series of periodic braking pulses at frequency FSUP is capable to generate, in the first correction period, a synchronous phase in which the mechanical oscillator is synchronized to a correction frequency (Fcor2) which is greater than a set point frequency F0c provided for the mechanical oscillator.
  2. Timepiece according to claim 1, characterized in that said frequency FSUP is comprised in a first range of values extending from (M+1)/M to (M+2)/M inclusive multiplied by a frequency FZ (N) equal to twice the set point frequency F0c divided by a positive integer number N, that is to say [(M+1)/M]·FZ (N) < FSUP =< [(M+2)/M]·FZ (N) where FZ (N) = 2·F0c/N, M being equal to one hundred times two to the power of K where K is equal to a positive integer number greater than zero and less than thirteen, that is to say 0 < K < 13 and M = 100·2K, and N being less than M divided by thirty, that is to say N < M/30.
  3. Timepiece according to claim 1 or 2, characterized in that said device for generating at least one frequency is a frequency generator device arranged also to be capable of generating a periodic digital signal at a frequency FINF ; and in that, when the control circuit determines a temporal drift corresponding to at least a certain gain in the operation of the timepiece, the control circuit is arranged to be capable of momentarily providing to the braking device a second control signal to activate said braking device such that the braking device generates, during a second correction period, a series of periodic braking pulses which are applied to the mechanical resonator at said frequency FINF; this frequency FINF and the duration of the second correction period being provided and the braking device being arranged so that the series of periodic braking pulses at frequency FINF is capable to generate, in the second correction period, a synchronous phase in which the mechanical oscillator is synchronized to a correction frequency (Fcor1) which is less than set point frequency F0c.
  4. Timepiece according to claim 3, characterized in that said frequency FINF is comprised in a second range of values extending from (M-2)/M to (M-1)/M inclusive multiplied by the frequency FZ (N), that is to say [(M-2)/M]·FZ (N) =< FINF < [(M-1)/M]·FZ (N).
  5. Timepiece according to claim 3 or 4, characterized in that each time that the measuring circuit determines a temporal drift corresponding to at least a certain gain or to at least a certain loss, the control circuit is arranged to be capable of momentarily providing to the braking device a control signal which is selectively formed by:
    - a first periodic braking device activation signal, which is determined by said periodic digital signal at said frequency FINF, when the temporal drift corresponds to said at least a certain gain, in order to generate a first series of periodic braking pulses which are applied to the mechanical resonator at said frequency FINF, and
    - a second periodic braking device activation signal, which is determined by said periodic digital signal at said frequency FSUP, when the temporal drift corresponds to said at least a certain loss, in order to generate a second series of periodic braking pulses which are applied to the mechanical resonator at said frequency FSUP.
  6. Timepiece according to claim 2 or 4, characterized in that the positive integer number K is greater than two and less than ten, that is to say 2 < K < 10, and the number N is less than the number M divided by a hundred (N < M/100).
  7. Timepiece according to any of the preceding claims, characterized in that the braking device (26) is formed by an actuator which includes a mechanical braking member (28) arranged to be actuated, in response to said control signal (SF), in order to exert, during the braking pulses, a mechanical braking torque on a braking surface (15) of a pivoting balance (16) comprised in the mechanical resonator (14).
  8. Timepiece according to claim 7, characterized in that the pivoting balance includes a rim (17) which forms the braking surface, which is circular; and in that the mechanical braking member (28) includes a movable portion which forms a brake pad arranged to be capable of exerting a certain pressure against the circular braking surface (15) during the application of braking pulses to the mechanical resonator.
  9. Timepiece according to claim 8, characterized in that the pivoting balance and the mechanical braking member are arranged such that the mechanical braking pulses can be applied mainly by dynamic dry friction between the mechanical braking member and the braking surface.
  10. Timepiece according to any of claims 7 to 9, characterized in that the braking surface (15) is configured to allow the braking device to start, in a useful operating range of the mechanical oscillator, a braking pulse of each first series of braking pulses and a braking pulse of each second series of braking pulses in any angular position of the mechanical resonator along said axis of oscillation.
  11. Timepiece according to any of the preceding claims, characterized in that the mechanical braking pulses have a duration TP less than a quarter of a set point period T0c, that is to say TP < T0c/4, T0c being by definition the inverse of set point frequency F0c.
  12. Timepiece according to any of claims 1 to 6, characterized in that the braking device (76) is formed by an electromagnetic system which comprises a coil (78) carried by the mechanical resonator (14A) or a support (5) of said mechanical resonator and at least one permanent magnet (64, 65) respectively carried by said support or said mechanical resonator, the electromagnetic system being arranged such that an induced voltage is generated by said at least one permanent magnet between the two coil terminals (78A, 78B) in each vibration of oscillation of the mechanical resonator for a useful operating range of the mechanical oscillator; and in that the control device is arranged to allow the control circuit to periodically decrease the impedance between the two coil terminals during distinct time intervals (TP) to generate said first series of periodic braking pulses at the first frequency FINF and said second series of braking pulses at the second frequency FSUP.
  13. Timepiece according to claim 12, characterized in that the electromagnetic system comprises a pair of bipolar magnets (64, 65) with axial magnetization and opposite polarity, said two bipolar magnets being symmetrically arranged on a balance (16A) with respect to a reference half-axis (62A) of said balance, this reference half-axis defining a zero angular position when the mechanical resonator is in its neutral position; and in that the coil is arranged on said support and has an angular offset relative to the zero angular position such that a voltage induced in said coil occurs substantially, when the mechanical oscillator oscillates in its useful operating range, in each vibration alternately prior to and after the passage of the mechanical resonator through its neutral position in said vibration, the extreme angular positions of the mechanical resonator in said useful operating range being, in absolute value, greater than said angular offset which is defined as the minimum angular distance between the zero angular position and the angular position of the centre of the coil.
  14. Timepiece according to claim 13, characterized in that said angular offset is substantially equal to 180°.
  15. Timepiece according to claim 13 or 14, characterized in that the electromagnetic braking pulses are generated by a short circuit of the coil during the distinct time intervals (TP) which are substantially equal to or greater than the maximum duration of time portions with no voltage induced in the coil around the two extreme positions of the mechanical resonator for the useful operating range of the mechanical oscillator.
  16. Timepiece according to any of claims 13 to 15, characterized in that the timepiece includes a power supply circuit formed by a storage capacitor (CAL) and a rectifier circuit for a voltage induced in the coil (78) by at least one permanent magnet (66, 67) carried by the balance (16A) and coupled to the coil.
  17. Timepiece according to any of claims 13 to 15, characterized in that the sensor is formed by the coil and at least one permanent magnet (66, 67) carried by the balance and coupled to the coil, said sensor further comprising a comparator (52) receiving, at a first input, a signal (SB) representative of the voltage induced by said at least one permanent magnet and, at a second input, a reference voltage, the latter being selected such that the comparator supplies to a bidirectional counter (CB) of the measuring device a predetermined number of pulses per oscillation period of the mechanical oscillator for the useful operating range of said mechanical oscillator.
EP19193740.8A 2018-09-27 2019-08-27 Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece Active EP3629104B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18197282 2018-09-27

Publications (2)

Publication Number Publication Date
EP3629104A1 EP3629104A1 (en) 2020-04-01
EP3629104B1 true EP3629104B1 (en) 2021-05-12

Family

ID=63708126

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19193740.8A Active EP3629104B1 (en) 2018-09-27 2019-08-27 Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece

Country Status (4)

Country Link
US (1) US11327440B2 (en)
EP (1) EP3629104B1 (en)
JP (1) JP6889220B2 (en)
CN (1) CN110955139B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3629103B1 (en) * 2018-09-28 2021-05-12 The Swatch Group Research and Development Ltd Timepiece comprising a mechanical movement of which the oscillation precision is regulated by an electronic device
EP3842876A1 (en) * 2019-12-24 2021-06-30 The Swatch Group Research and Development Ltd Timepiece fitted with a mechanical movement and a device for correcting the time displayed
EP3944027A1 (en) * 2020-07-21 2022-01-26 The Swatch Group Research and Development Ltd Portable object, in particular a wristwatch, comprising a power supply device provided with an electromechanical converter
EP4174586A1 (en) * 2021-10-29 2023-05-03 The Swatch Group Research and Development Ltd Timepiece assembly comprising a watch and a system for correcting the time

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH568597B5 (en) * 1971-12-10 1975-10-31 Dixi Sa
US4448543A (en) * 1983-01-17 1984-05-15 Rockwell International Corporation Time-of-day clock having a temperature compensated low power frequency source
SE465398B (en) * 1990-01-15 1991-09-02 Ericsson Telefon Ab L M PROCEDURE AND DEVICE FOR FREQUENCY SYNTHESIS
DE4108935A1 (en) * 1991-03-19 1992-09-24 Damm Eric COMPENSATOR FOR A MECHANICAL Pendulum Clock
DE69841366D1 (en) * 1998-12-15 2010-01-21 Piguet Frederic Sa Timepiece with generator for generating electrical energy
WO2001048565A1 (en) * 1999-12-24 2001-07-05 Seiko Instruments Inc. Mechanical timepiece having train wheel operation controller
CN1348555A (en) * 1999-06-29 2002-05-08 精工电子有限公司 Mechanical timepiece having train wheel operation controller
JP3823741B2 (en) * 2001-03-06 2006-09-20 セイコーエプソン株式会社 Electronic device, electronically controlled mechanical timepiece, control method therefor, control program for electronic device, and recording medium
JP2002296365A (en) * 2001-03-29 2002-10-09 Seiko Epson Corp Electronic device, electronocally-controlled mechanical clock and method of controlling the electronic device
DE60314142T2 (en) * 2003-10-01 2008-01-24 Asulab S.A. Clock with a mechanical movement, which is coupled with an electronic regulator
ATE363676T1 (en) * 2003-10-01 2007-06-15 Asulab Sa CLOCK WITH A MECHANICAL MOVEMENT COUPLED WITH AN ELECTRONIC REGULATOR
US7371005B1 (en) * 2006-11-16 2008-05-13 Intersil Americas Inc. Automatic circuit and method for temperature compensation of oscillator frequency variation over temperature for a real time clock chip
DE102008010536A1 (en) * 2008-02-22 2009-08-27 Symeo Gmbh Circuit arrangement and method for synchronizing clocks in a network
US7924104B2 (en) * 2008-08-21 2011-04-12 Mediatek Inc. Methods and apparatus for compensating a clock bias in a GNSS receiver
EP2570866A1 (en) * 2011-09-15 2013-03-20 The Swatch Group Research and Development Ltd. Synchronised oscillators for an intermittent escapement
US9465366B2 (en) * 2013-12-23 2016-10-11 The Swatch Group Research And Development Ltd Angular speed regulating device for a wheel set in a timepiece movement including a magnetic escapement mechanism
CN105549375B (en) * 2016-01-29 2017-12-26 中国科学院长春光学精密机械与物理研究所 The spaceborne Time Transmission system of high accuracy
CH713306B1 (en) 2016-12-23 2021-05-31 Swatch Group Res & Dev Ltd Watchmaking assembly comprising a mechanical oscillator associated with a device for regulating its average frequency.
EP3339982B1 (en) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Regulation by mechanical breaking of a horological mechanical oscillator
CN107315338A (en) * 2017-06-19 2017-11-03 江汉大学 A kind of chronometer time correcting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6889220B2 (en) 2021-06-18
JP2020052047A (en) 2020-04-02
US20200103827A1 (en) 2020-04-02
EP3629104A1 (en) 2020-04-01
CN110955139A (en) 2020-04-03
US11327440B2 (en) 2022-05-10
CN110955139B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
EP3629104B1 (en) Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece
EP3339982B1 (en) Regulation by mechanical breaking of a horological mechanical oscillator
EP1521141B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP1521142B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP3620867B1 (en) Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator
EP2044490B1 (en) Electromechanical escapement device and timepiece part utilizing said device
EP3602207B1 (en) Timepiece comprising a mechanical movement of which the operation is improved by a correction device
CH704457B1 (en) Watchmaking set including a mobile and a speed regulator
EP3120199A2 (en) Rotary clock member, clock oscillator
CH713306A2 (en) Watchmaking assembly comprising a mechanical oscillator associated with a device for regulating its average frequency.
WO2018177774A1 (en) Mechanical timepiece comprising a movement of which the operation is improved by a correction device
CH715399A2 (en) Timepiece comprising a mechanical oscillator associated with an electronic device for regulating its average frequency.
EP3842876A1 (en) Timepiece fitted with a mechanical movement and a device for correcting the time displayed
EP3502797B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3502796B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3502798B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3584645A1 (en) Timepiece comprising a mechanical movement of which the operation is controlled by an electromechanical device
EP4099100A1 (en) Timepiece movement provided with an oscillator comprising a piezoelectric hairspring
CH713332A2 (en) Clock assembly comprising a mechanical oscillator associated with a regulating device.
CH713637A2 (en) Timepiece comprising a mechanical movement whose running is improved by a correction device.
WO2021121711A1 (en) Timepiece component provided with a mechanical movement and a device for correcting a displayed time
EP4009119B1 (en) Timepiece movement provided with a generator and a circuit for controlling the frequency of rotation of said generator
CH713636A2 (en) Mechanical timepiece comprising a movement whose progress is improved by a correction device.
CH715295A2 (en) Timepiece including a mechanical oscillator whose average frequency is synchronized with that of a reference electronic oscillator.
CH714485A2 (en) Timepiece comprising a mechanical oscillator associated with a control system.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201001

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G04C 3/04 20060101AFI20201026BHEP

Ipc: G04C 11/08 20060101ALI20201026BHEP

Ipc: G04C 10/00 20060101ALI20201026BHEP

INTG Intention to grant announced

Effective date: 20201202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019004567

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1392583

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1392583

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210512

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019004567

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

26N No opposition filed

Effective date: 20220215

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210827

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210827

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 5

Ref country code: DE

Payment date: 20230720

Year of fee payment: 5