EP3620867B1 - Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator - Google Patents

Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator Download PDF

Info

Publication number
EP3620867B1
EP3620867B1 EP18192469.7A EP18192469A EP3620867B1 EP 3620867 B1 EP3620867 B1 EP 3620867B1 EP 18192469 A EP18192469 A EP 18192469A EP 3620867 B1 EP3620867 B1 EP 3620867B1
Authority
EP
European Patent Office
Prior art keywords
mechanical
frequency
coil
oscillation
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18192469.7A
Other languages
German (de)
French (fr)
Other versions
EP3620867A1 (en
Inventor
Lionel TOMBEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP18192469.7A priority Critical patent/EP3620867B1/en
Priority to US16/520,402 priority patent/US11687041B2/en
Priority to JP2019153408A priority patent/JP6951389B2/en
Priority to CN201910827874.7A priority patent/CN110874049B/en
Publication of EP3620867A1 publication Critical patent/EP3620867A1/en
Application granted granted Critical
Publication of EP3620867B1 publication Critical patent/EP3620867B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C11/00Synchronisation of independently-driven clocks
    • G04C11/08Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction
    • G04C11/081Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C11/00Synchronisation of independently-driven clocks
    • G04C11/08Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction
    • G04C11/081Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet
    • G04C11/084Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet acting on the balance

Definitions

  • the present invention relates to a timepiece comprising a mechanical movement the rate of which is improved by a device for correcting a possible time drift in the operation of the mechanical oscillator which rates the rate of the mechanical movement.
  • the timepiece comprises a mechanical oscillator, the average frequency of which is synchronized to a reference frequency determined by an auxiliary electronic oscillator.
  • Timepieces as defined in the field of the invention have been proposed in some prior documents.
  • the patent CH 597 636 published in 1977 , offers such a timepiece in reference to his figure 3 .
  • the movement is equipped with a resonator formed by a sprung balance and a conventional maintenance device comprising an anchor and an escape wheel in kinematic connection with a barrel provided with a spring.
  • This watch movement further comprises a device for regulating the frequency of its mechanical oscillator.
  • This regulation device comprises an electronic circuit and an electromagnetic braking device formed of a flat coil, arranged on a support under the rim of the balance, and two magnets mounted on the balance and arranged close to each other of so that they both pass over the coil when the oscillator is activated.
  • the electronic circuit comprises a time base comprising a quartz resonator and serving to generate a reference frequency signal FR, this reference frequency being compared with the frequency FG of the mechanical oscillator.
  • the detection of the FG frequency of the oscillator is carried out via the electrical signals generated in the coil by the pair of magnets.
  • the comparison between the two frequencies FG and FR is carried out by a bidirectional counter receiving at its two inputs these two frequencies and providing at output a signal determining a difference of periods counted for the two frequencies.
  • the electronic circuit further comprises a logic circuit which analyzes the output signal of the counter to control a brake pulse application circuit as a function of this output signal, so as to brake the balance when the logic circuit has detected a time drift corresponding to a value of the frequency FG of the oscillator greater than the reference frequency FR.
  • the braking pulse application circuit is arranged to be able to generate a momentary braking torque on the balance wheel via an electromagnetic magnet-coil interaction and a switchable load connected to the coil.
  • the document US 2005/036405 describes a mechanical watch movement fitted with an electromagnetic frequency regulation system of oscillation of the mechanical resonator incorporated in this mechanical movement.
  • This regulation system is of the closed loop type and it is suitable only for correcting the rate of the mechanical movement in the case where this rate is too fast, that is to say in the case where this mechanical movement becomes slow. advance.
  • the control circuit determines whether the mechanical resonator oscillates with too high a frequency and, if so, then decreases this frequency by braking pulses applied to the balance wheel via the electromagnetic system.
  • the document FR 2 162 404 describes a mechanical movement and an electromechanical system designed to control the oscillation frequency of the mechanical resonator to a reference frequency supplied by an auxiliary quartz oscillator.
  • the electromechanical system comprises a stop projecting from the rim of the balance and an actuator whose finger is briefly actuated periodically in the direction of the rim, at the set frequency, so as to allow the stop to abut against this finger in the as this stop passes through the fixed angular position of the finger when the latter is briefly in its position of possible interaction with the balance via the stop.
  • the document EP 3 584 645 B1 explains in more detail, in its section 'Technological background', why the synchronization sought in the document FR 2 162 404 seems unlikely, and at least not sure.
  • An aim of the present invention is to simplify as much as possible the electronic circuit of a synchronization device arranged to control the average frequency of the mechanical oscillator of a mechanical movement on a reference frequency determined by an electronic oscillator. auxiliary, without losing precision in the operation of the timepiece equipped with such a synchronization device.
  • a mechanical watch movement In the context of the present invention, it is generally sought to improve the accuracy of the rate of a mechanical watch movement, that is to say to reduce the maximum daily error of this mechanical movement and more generally to decrease very significantly a possible time drift over a longer period (for example a year).
  • the present invention seeks to achieve such an aim for a mechanical watch movement the rate of which is initially adjusted to the best.
  • a general aim of the invention is to find a device for correcting the rate of a mechanical movement in the event that the natural functioning of this mechanical movement would lead to a certain daily error and consequently to an increasing time drift. (increasing cumulative error), without however renouncing that it can operate autonomously with the best precision that it is possible for it to have thanks to its own characteristics, that is to say in the absence of the correction device or when the latter is inactive.
  • the present invention relates to a timepiece as defined in independent claim 1 attached.
  • Preferred embodiments are defined in the dependent claims.
  • the mechanical oscillator of the horological movement is slaved to the auxiliary oscillator in an efficient and rapid manner, as will become clear from the detailed description of the invention which will follow.
  • the oscillation frequency of the mechanical oscillator (slave mechanical oscillator) is synchronized to the setpoint frequency determined by the auxiliary oscillator (master oscillator), and this without closed-loop servo-control and without requiring a motion measurement sensor. oscillation of the mechanical oscillator.
  • the synchronization device therefore operates in an open loop and it makes it possible to correct both an advance and a delay in the rate. of mechanical movement, as will be explained later. This result is quite remarkable.
  • the possible temporal distances D T determine the average frequency of the mechanical oscillator and therefore the timing of the operation of the mechanism.
  • the average frequency is determined by this auxiliary oscillator so that the precision of the rate of the mechanism is in direct relation with that of the auxiliary oscillator.
  • the mechanical resonator is formed by a balance oscillating around an axis of oscillation, and the synchronization device is arranged so as to periodically trigger the distinct time intervals T P , which have the same value.
  • the value of the distinct time intervals T P is expected less than a quarter of the setpoint period T0c, i.e. T P ⁇ T0c / 4.
  • a timepiece 2 comprising a mechanical movement 4 which comprises at least one mechanism 12 indicating time data.
  • the mechanism 12 comprises a cog 16 driven by a barrel 14 (the mechanism is shown partially on the Figure 1 ).
  • the mechanical movement further comprises a mechanical resonator 6, formed by a balance 8 and a hairspring 10, which is arranged on a plate 5 defining a support for the mechanical resonator, and a device for maintaining this mechanical resonator which is formed by an escapement. 18, this maintenance device forming with the mechanical resonator a mechanical oscillator which rates the operation of the indicator mechanism.
  • the escapement 18 conventionally comprises an anchor and an escape wheel, the latter being kinematically connected to the barrel via the gear 16.
  • the mechanical resonator is capable of oscillating around a neutral position (position rest / zero angular position) corresponding to its state of minimum potential energy, along a circular axis (the radius of this axis is irrelevant since the position of the balance along this axis is given by an angle).
  • the circular axis defines a general axis of oscillation which indicates the nature of the movement of the mechanical resonator, which may for example be linear in another embodiment.
  • Each oscillation of the mechanical resonator defines an oscillation period which is formed by two alternations, each between two extreme angular positions of the oscillation and with a rotation in the opposite direction of the other.
  • the mechanical resonator reaches an extreme angular position, defining the oscillation amplitude, its speed of rotation is zero and the direction of rotation is reversed.
  • Each half-cycle has two half-cycles (the duration of which may be different depending on disturbing events), i.e. a first half-cycle occurring before the mechanical resonator passes through its neutral position and a second half-cycle occurring after this passage through the neutral position.
  • the timepiece 2 comprises a device 20 for synchronizing the mechanical oscillator, formed by the mechanical resonator 6 and the escapement 18, on a reference time base 22 constituted by an auxiliary oscillator which comprises a quartz resonator 35 and a clock circuit 36 maintaining the quartz resonator and delivering a reference frequency signal S R.
  • the crystal oscillator defines a master oscillator.
  • the reference time base is associated with the control device 24 of the synchronization device to which it supplies the signal S R. It will be noted that other types of auxiliary oscillators can be provided, in particular an oscillator integrated entirely into an electronic circuit with the control circuit.
  • the auxiliary oscillator is by nature or by construction more precise than the mechanical oscillator arranged in the watch movement, this mechanical oscillator defining an oscillator slave in the context of the invention.
  • the synchronization device 20 is arranged to control the average frequency of the mechanical oscillator to a reference frequency determined by the auxiliary oscillator.
  • the synchronization device 20 comprises an electromagnetic braking device 26 of the mechanical resonator 6.
  • electromagnetic braking is understood a braking of the mechanical resonator generated via an electromagnetic interaction between at least one permanent magnet, carried by the mechanical resonator or a support of this mechanical resonator, and at least one coil carried respectively by the support or the mechanical resonator and associated with an electronic circuit in which a current induced in the coil by the magnet can be generated.
  • the electromagnetic braking device is thus formed of at least one coil 28 and at least one permanent magnet which are arranged so that an induced voltage is generated between the two terminals 28A, 28B of the coil 28 in each alternation of the oscillation of the mechanical resonator for a useful operating range of the mechanical oscillator.
  • the coil 28 is of the wafer type (disc having a height less than its diameter), without a ferromagnetic core.
  • annular magnet having an axial magnetization with successive sectors corresponding to the bipolar magnets 30, 32, these successive sectors having alternating polarities and each defining an angle at the center (an angular 'opening') having substantially a same value.
  • the bipolar magnets 30, 32 define eight magnetized annular sectors each having an angular distance of 45 ° with alternating magnetic polarities.
  • the coil 28 is arranged on the plate 5 so as to be traversed by the magnetic flux of the bipolar magnets / magnetized annular sectors when the balance oscillates.
  • the diameter of the coil 28 is provided so that it is substantially included in an angular opening, relative to the axis of oscillation, which is substantially equal to that defined by each bipolar magnet / magnetized annular sector.
  • the diameter of the coil 28 can be made larger and have for example an angular opening corresponding to substantially twice that of a magnetized annular sector.
  • a plurality of wafer coils having between them, taken in pairs, an angular offset corresponding to an integer number of magnetic periods (a magnetic period being given by the angular distance of two annular sectors adjacent magnets).
  • These coils thus not exhibiting any electromagnetic phase shift (that is to say that the phase shifts are integer multiples of 360 °), the voltages induced in these coils each have an identical time variation and simultaneous with the others, so that these induced voltages add up.
  • the plurality of coils can be arranged in series or in parallel. The number of magnetized annular sectors, the number of coils and their characteristic dimensions are selected as a function of the strength of the electromagnetic interaction desired to allow the desired servo-control of the mechanical oscillator.
  • the synchronization device is designed to be able to temporarily reduce the impedance between the two terminals of the coil.
  • the synchronization device is arranged to determine by means of the reference time base 22 the start of each of the distinct time intervals so as to satisfy the aforementioned mathematical relationship between the time distance D T and the reference period T0c.
  • the mechanical resonator is formed by a balance rotating around an axis of oscillation.
  • the distinct time intervals T P have the same value which is expected to be less than the reference half-period, ie T P ⁇ T0c / 2.
  • the synchronization device is arranged so as to generate a short-circuit between the two terminals 28A and 28B of the coil 28 during the distinct time intervals T P in order to reduce the impedance between the two terminals of this coil.
  • the value of the distinct time intervals T P is advantageously less than a quarter of the reference period T0c, ie T P ⁇ T0c / 4.
  • the electromagnetic braking device 26 is arranged so that an induced voltage is generated in the coil 28 substantially without interruption for any oscillation of the mechanical resonator 6 in the useful operating range of the mechanical oscillator formed by this mechanical resonator.
  • the stable phase represented here occurs following a transient phase (initial phase) which will be described below.
  • the stable phase also called synchronous phase
  • the oscillation frequency of the mechanical resonator is slaved to the reference frequency F0c and the first and second parts T B and T A of the short-circuit pulses 58 exhibit a substantially constant and defined ratio.
  • the synchronization device automatically stabilizes, without a sensor measuring a parameter of the oscillation of the mechanical resonator 6 and without a feedback loop, the oscillation frequency of this mechanical resonator at the setpoint frequency F0c.
  • the Figure 5A corresponds to a situation where the natural frequency F0 of the mechanical oscillator of the timepiece is greater than the setpoint frequency F0c, so that this timepiece without the synchronization device would exhibit a positive time drift corresponding to a advance in the march of the timepiece.
  • the short-circuit pulses 58 intervene around an extreme angular position, that is to say that the distinct time intervals T P include a reversal of the direction of the oscillation movement which occurs between an alternation A2 and an alternation A1 of the oscillation while the speed of rotation (angular speed) is zero.
  • the oscillation periods are equal to the reference period T0c, but it is noted that the two vibrations A1 and A2 which constitute each oscillation period are not equal.
  • the alternation A1 lasts here longer than the alternation A2, because more braking occurs in the alternation A1, before the passage of the mechanical resonator through its neutral position (angle 0 °), than in the alternation A2 after the mechanical resonator has passed through its neutral position. It will be noted that no braking torque is applied to the mechanical resonator neither after the passage of the mechanical resonator through its neutral position in the half-wave A1, nor before the passage of the mechanical resonator through its neutral position in the half-wave A2.
  • the braking pulse is formed by two small lobes 50 located respectively on each side of the instant of passage of the mechanical resonator through the extreme angular position, exhibiting central symmetry relative to this instant (the opposite mathematical signs of the two lobes 50 originates from the change of direction in the oscillation movement), and from a lobe 52 of greater amplitude which intervenes in the alternation A1 of each period of oscillation, in the first half-wave before the passage of the mechanical resonator through its neutral position.
  • the effects of the two lobes 50 are compensated for and therefore generally do not generate any phase shift in the oscillation of the mechanical resonator, while the braking torque caused by the lobe 52 in each alternation A1 causes an increase in the duration of the latter, so that the duration of the oscillation period concerned is equal to that of the reference period T0c.
  • the instantaneous oscillation frequency is thus equal to the reference frequency F0c which is, as indicated, lower than the natural frequency F0 of the mechanical oscillator.
  • the appearance of the lobe 52 only in the halfwaves A1 results from the fact that the mid-instants of the short-circuit pulses 58 occur with a certain delay relative to the passages of the mechanical resonator through a position extreme angular, this resulting from the fact that the natural frequency F0 of the mechanical oscillator is greater than the reference frequency F0c.
  • the part T B of the pulses 58 occurring before the passage of the mechanical resonator through an extreme position is less than the part T A of the pulses 58 occurring after this passage.
  • the Figure 5B corresponds to a situation where the natural frequency F0 of the mechanical oscillator of the timepiece is lower than the setpoint frequency F0c, so that this timepiece without the synchronization device would exhibit a negative time drift corresponding to a delay in the progress of the timepiece. It is also observed that the short-circuit pulses 58 occur around an extreme angular position and that the alternation A1 lasts longer than the alternation A2, because a greater braking occurs in the alternation A2, here after the passage of the mechanical resonator by its neutral position (angle 0 °), than in the alternation A1 before the passage of the mechanical resonator through its neutral position.
  • the braking pulse is here formed of two small lobes 50 located respectively on each side of the extreme angular position and of a lobe 54 of greater amplitude which occurs in the alternation A2 of each oscillation period, in the second half-wave after the mechanical resonator has passed through its neutral position.
  • the effects of the two lobes 50 are always compensated for, while the braking torque caused by the lobe 54 in each alternation A2 causes a reduction in the duration of the latter, so that the duration of the period of oscillation concerned is equal to that of the setpoint period T0c.
  • the instantaneous oscillation frequency is thus equal to the reference frequency F0c which is, as indicated, greater than the natural frequency F0 of the mechanical oscillator.
  • the appearance of the lobe 54 only in the alternations A2 results from the fact that the mid-instants of the short-circuit pulses 58 occur here with a certain advance relative to the passages of the mechanical resonator through an extreme angular position, this resulting from the fact that the frequency natural F0 of the mechanical oscillator is lower than the reference frequency F0c.
  • the part T A of the pulses 58 occurring after the passage of the mechanical resonator through an extreme position is less than the part T B of the pulses 58 occurring before this passage.
  • Figure 5C a situation where the natural frequency F0 of the mechanical oscillator of the timepiece is equal to the setpoint frequency F0c. It follows from this situation that the part T A of the pulses 58 occurring after the passage of the mechanical resonator through an extreme angular position is equal to the part T B of the pulses 58 occurring before this passage, so that the parts 50A of the braking pulses intervening in the halfwaves A2 just before the passage of the mechanical resonator through an extreme position have the same profile, with an opposite mathematical sign, that the parts 50B of the braking pulses intervening in the halfwaves A1 just after this passage and thus have a central symmetry relative to the instant of passage through the extreme angular position concerned.
  • the Figure 3 is a diagram which shows a first variant embodiment 24A of the control circuit 24 of the synchronization device 20.
  • the control circuit 24A is connected on the one hand to the clock circuit 36 and, on the other hand, to the coil 28.
  • the clock circuit maintains the quartz resonator 35 and in return generates a clock signal S R at a reference frequency, in particular equal to 2 15 Hz.
  • the signal d The clock S R is supplied successively to two dividers DIV1 and DIV2 (these two dividers being able to form two stages of the same divider).
  • Divider DIV2 supplies a periodic signal S D directly to a timer 38 ('Timer').
  • control circuit 24A of the synchronization device is very simple. It can be miniaturized easily and its power consumption is very low. No microcontroller is needed.
  • provision can be made to generate the short-circuit pulses in groups, for example a succession of sequences with four pulses in four successive oscillation periods then no pulse for ten seconds, i.e. for forty periods for a frequency F0c 4 Hz.
  • time intervals T P it is not necessary for the time intervals T P to be measured precisely, that is to say with as much precision as the time distances D T between the beginnings of these time intervals.
  • dividers DIV1 and DIV2 together form a conventional clockwork divider circuit which therefore provides at output a periodic signal S D having a frequency equal to 1 Hz.
  • This signal S D is supplied to a counter at N which defines an additional divider, which generates the periodic signal S P which it supplies to the timer 38.
  • the control signal Sc supplied by the timer to the switch 40 has a frequency of trigger F D equal to that of the periodic signal S P.
  • the trigger frequency F D of the periodic signals S P and Sc is then 1/8 Hz, which means that there is a braking pulse (short-circuit pulse) per 32 setpoint periods T0c, i.e. about one pulse after 32 periods of the mechanical oscillator insofar as its natural frequency F0 is expected to be close to the reference frequency F0c.
  • the synchronization device further comprises a power supply device 44 formed by a rectifier circuit 46 (of the single or full-wave type) and by a storage capacitor C AL connected to ground (reference potential of the synchronization device).
  • the rectifier circuit is constantly connected at the input to a terminal of the coil so that apart from the short-circuit pulses it can rectify a voltage induced in the coil 28 by the permanent magnets 30, 32. This induced voltage, rectified and accumulated in the storage capacity, is used for the power supply of the synchronization device in the useful operating range of the mechanical oscillator.
  • the control circuit 24B of the synchronization device is very simple and autonomous. It consumes little and takes a minimum of energy from the mechanical oscillator to efficiently perform the synchronization according to the invention.
  • the first graph indicates the instant t P1 at which a braking pulse P1, respectively P2 is applied to the mechanical resonator considered in order to correct the rate of the mechanism which is clocked by the mechanical oscillator formed by this resonator.
  • the last two graphs show respectively the angular velocity (values in radians per second: [rad / s]) and the angular position (values in radians: [rad]) of the oscillating member (subsequently also 'the balance ') of the mechanical resonator over time.
  • the curves 90 and 92 correspond respectively to the angular speed and to the angular position of the freely oscillating balance (oscillation at its natural frequency) before the intervention of a braking pulse.
  • the speed curves 90a and 90b are shown corresponding to the behavior of the resonator respectively in the case disturbed by the braking pulse and in the undisturbed case.
  • the position curves 92a and 92b correspond to the behavior of the resonator respectively in the case disturbed by the braking pulse and the undisturbed case.
  • the instants t P1 and t P2 at which the braking pulses P1 and P2 intervene correspond to the temporal positions of the middle of these pulses.
  • the start of the braking pulse and its duration are considered as the two parameters which temporally define a braking pulse.
  • braking pulse By braking pulse, one understands the momentary application of a torque of force to the mechanical resonator which brakes its oscillating member (balance), that is to say which opposes the oscillating movement of this oscillating member.
  • the duration of the pulse is generally defined as the part of this pulse which presents a significant force torque to brake the mechanical resonator. It will be noted that a braking pulse can exhibit a strong variation. It can even be chopped and form a succession of shorter pulses.
  • Each period of free oscillation T0 of the mechanical oscillator defines a first half-wave A0 1 followed by a second half-wave A0 2 each occurring between two extreme positions defining the amplitude of oscillation of this mechanical oscillator, each half-wave having an identical duration T0 / 2 and having a passage of the mechanical resonator through its zero position at a median instant.
  • the two successive alternations of an oscillation define two half-periods during which the balance respectively undergoes an oscillating movement in one direction and then an oscillating movement in the other direction.
  • an alternation corresponds here to a swing of the balance in one direction or the other direction between its two extreme positions defining the amplitude of oscillation.
  • the braking pulse is triggered after a time interval T A1 following the instant t D1 marking the start of the alternation A1.
  • the duration T A1 is less than one half-wave T0 / 4 minus the duration of the pulse of braking P1. In the example given, the duration of this braking pulse is much less than one half-wave T0 / 4.
  • the braking pulse is therefore generated between the start of a half-wave and the passage of the resonator through its neutral position in this half-wave.
  • the angular speed in absolute value decreases at the moment of the braking pulse P1.
  • Such a braking pulse induces a negative time phase shift T C1 in the oscillation of the resonator, as shown in Figure 6 the two curves 90a and 90b of the angular speed and also the two curves 92a and 92b of the angular position, that is to say a delay relative to the theoretical undisturbed signal (shown in broken lines).
  • the duration of the alternation A1 is increased by a time interval T C1 .
  • the oscillation period T1 comprising the alternation A1 is therefore prolonged relative to the value T0. This generates a punctual reduction in the frequency of the mechanical oscillator and a momentary slowing down of the associated mechanism, the operation of which is clocked by this mechanical oscillator.
  • the braking pulse P2 at the instant t P2 which is located in the halfwave A2 after the median instant t N2 at which the resonator passes through its neutral position. Finally, after the braking pulse P2, this alternation A2 ends at the final instant t F2 at which the resonator again occupies an extreme position (maximum positive angular position in the period T2) and therefore also before the final instant corresponding t F0 of the undisturbed oscillation.
  • the braking pulse is triggered after a time interval T A2 following the initial instant t D2 of the alternation A2.
  • the duration T A2 is greater than one half-wave T0 / 4 and less than one half-wave T0 / 2 reduced by the duration of the braking pulse P2. In the example given, the duration of this braking pulse is much less than half a wave.
  • the braking pulse is therefore generated, in an alternation, between the median instant at which the resonator passes through its neutral position (zero position) and the final instant at which this alternation ends.
  • the angular speed in absolute value decreases at the moment of the braking pulse P2.
  • the braking pulse here induces a positive time phase shift T C2 in the oscillation of the resonator, as shown in Figure 4 the two curves 90b and 90c of the angular speed and also the curves 92b and 92c of the angular position, ie an advance relative to the theoretical undisturbed signal (shown in broken lines).
  • T C2 the duration of the alternation A2 is reduced by the time interval T C2 .
  • the oscillation period T2 including the alternation A2 is therefore shorter than the value T0. This consequently generates a punctual increase in the frequency of the mechanical oscillator and a momentary acceleration of the associated mechanism, the operation of which is clocked by this mechanical oscillator. This phenomenon is surprising and not intuitive, which is why those skilled in the art have ignored it in the past. Indeed, obtaining an acceleration of the mechanism by a braking pulse is a priori astonishing, but such is the case when this rate is clocked by a mechanical oscillator and the braking pulse is applied to its resonator.
  • the aforementioned physical phenomenon for mechanical oscillators occurs in the synchronization method implemented in a timepiece according to the invention. Unlike general education in the watchmaking field, it is not only possible to reduce the frequency of a mechanical oscillator by braking pulses, but it is also possible to increase the frequency of such a mechanical oscillator also by braking pulses. Those skilled in the art expects to be able to reduce the frequency of a mechanical oscillator practically only by braking pulses and, as a corollary, to be able only to be able to increase the frequency of such a mechanical oscillator by the application of driving pulses. when energy is supplied to this oscillator.
  • the application of a braking torque during an alternation of the oscillation of a sprung balance causes a negative or positive phase shift in the oscillation of this sprung balance depending on whether this braking torque is applied respectively before or after the sprung balance has passed through its neutral position.
  • the error generated at the Figure 8B can correspond in fact to a correction for the case where the mechanical oscillator has a natural frequency which does not correspond to a reference frequency.
  • the oscillator has a natural frequency that is too low, braking pulses occurring in the second or fourth quarter of the oscillation period can allow a correction of the delay taken by the free oscillation (not disturbed), this correction being more or less strong depending on the instant of the braking pulses within the oscillation period.
  • braking pulses occurring in the first or third quarter of the oscillation period can allow a correction of the advance taken by the free oscillation, this correction being more or weaker depending on the instant of the braking pulses in the oscillation period.
  • the braking frequency is therefore proportional to the reference frequency and determined by this reference frequency, which is supplied by the auxiliary oscillator which is by nature or construction more precise than the main mechanical oscillator.
  • the angular position of the slave mechanical resonator, in particular of the sprung balance of a watch resonator, freely oscillating (curve 100) and oscillating with braking (curve 102) is shown in the top graph.
  • the first braking pulses 104 (hereinafter also called 'pulses') occur here once per period of oscillation in a half-cycle between the passage through an extreme position and the passage through zero. This choice is arbitrary because the system provided does not detect the angular position of the mechanical resonator; it is therefore just one possible hypothesis among others that will be analyzed subsequently. We are therefore here in the case of a slowdown of the mechanical oscillator.
  • the braking torque for the first braking pulse is provided here greater than a minimum braking torque to compensate for the advance that the free oscillator takes over a period of oscillation. This has the consequence that the second braking pulse takes place a little before the first within the quarter period in which these pulses occur.
  • Curve 106 which gives the instantaneous frequency of the mechanical oscillator, in fact indicates that the instantaneous frequency decreases below the setpoint frequency from the first pulse.
  • the second braking pulse is closer to the preceding extreme position, so that the effect of braking increases and so on with subsequent pulses.
  • the instantaneous frequency of the oscillator therefore gradually decreases and the pulses gradually approach an extreme position of the oscillation.
  • the braking pulses include the passage through the extreme position where the speed of the mechanical resonator changes direction and the instantaneous frequency then begins to increase.
  • Braking is unique in that it opposes the movement of the resonator whatever the direction of its movement.
  • the braking torque automatically changes sign at the instant of this reversal.
  • braking pulses 104a which have, for the braking torque, a first part with a first sign and a second part with a second sign opposite to the first sign.
  • the correction then decreases to stabilize finally and relatively quickly at a value for which the instantaneous frequency of the oscillator is equal to the reference frequency (corresponding here to the braking frequency).
  • the transient phase is followed by a stable phase, also called synchronous phase, where the oscillation frequency is substantially equal to the setpoint frequency and where the first and second parts of the braking pulses have a substantially constant and defined ratio.
  • the graphs of the Figure 10 are analogous to those of Figure 9 .
  • the first pulses 104 occur in the same half-wave as at the Figure 9 .
  • the oscillation with braking 108 therefore momentarily takes even more delay in the transient phase, this until the pulses 104b begin to encompass the passage of the resonator. by an extreme position. From this moment, the instantaneous frequency begins to increase until it reaches the setpoint frequency, because the first part of the pulses occurring before the extreme position increases the instantaneous frequency. This phenomenon is automatic.
  • the first part of the pulse increases while the second part decreases and consequently the instantaneous frequency continues to increase until a stable situation where the setpoint period is substantially equal to the oscillation period.
  • the graphs of the Figure 11 are analogous to those of Figure 10 .
  • the major difference comes from the fact that the first braking pulses 114 occur in a different half-wave than at the Figure 10 , namely in a half-cycle between the passage through zero and the passage through an extreme position.
  • an increase in the instantaneous frequency given by the curve 112 is observed here in a transient phase.
  • the braking torque for the first braking pulse is here provided greater than a minimum braking torque to compensate for the braking torque. delay that the free mechanical oscillator takes over a period of oscillation. This has the consequence that the second braking pulse takes place a little after the first within the quarter period in which these pulses occur.
  • Curve 112 in fact indicates that the instantaneous frequency of the oscillator increases above the reference frequency from the first pulse.
  • the second braking pulse is closer to the following extreme position, so that the effect of braking increases and so on with subsequent pulses.
  • the instantaneous frequency of the oscillation with braking 114 therefore increases and the braking pulses gradually approach an extreme position of the oscillation.
  • the braking pulses include passing through the extreme position where the speed of the mechanical resonator changes direction. From that moment, we have a phenomenon similar to the one explained above.
  • the braking pulses 114a then have two parts and the second part decreases the instantaneous frequency.
  • the Figure 12 represents a period of oscillation with the curve S1 of the positions of a mechanical resonator.
  • the natural oscillation frequency F0 of the free mechanical oscillator (without braking pulses) is greater than the reference frequency F0c (F0> F0 c ).
  • the oscillation period conventionally comprises a first alternation A1 followed by a second alternation A2, each between two extreme positions (t m-1 , A m-1 ; t m , A m ; t m + 1 , A m + 1 corresponding to the oscillation amplitude.
  • a braking pulse 'Imp1' whose middle time position occurs at an instant t 1
  • another braking pulse 'Imp2' whose middle temporal position occurs at an instant t 2.
  • the pulses Imp1 and Imp2 have a phase shift of T0 / 2, and they are particular because they correspond, for a given profile of the braking torque, to corrections generating two unstable equilibria of the system As these pulses intervene respectively in the first and the third quarter of the period of oscillation, they therefore brake the mechanical oscillator to an extent which makes it possible to correct exactly the too high natural frequency of the o Free mechanical scillator (with the braking frequency selected for the application of the braking pulses). Note that the pulses Imp1 and Imp2 are both first pulses, each being considered for itself in the absence of the other. It will be noted that the effects of the pulses Imp1 and Imp2 are identical.
  • the pulse will quickly drift towards the extreme position A m .
  • the pulses following will gradually approach the next extreme position A m .
  • the same behavior is observed in the second half-wave A2. If a pulse takes place to the left of the pulse Imp2 in the zone Z2a, the following pulses will gradually approach the previous extreme position A m. On the other hand, if a pulse takes place to the right of the pulse Imp2 in the zone Z2b, the following pulses will gradually approach the next extreme position A m + 1 .
  • the Figure 13 shows the synchronous phase corresponding to a final stable situation occurring after the transient phase described above.
  • this extreme position will lock onto the braking pulses as long as these braking pulses are configured (the force torque and the duration) to be able to sufficiently correcting the time drift of the free mechanical oscillator at least by a braking pulse occurring entirely, as the case may be, just before or just after an extreme position.
  • a first pulse occurs in the first halfwave A1
  • either the extreme position A m-1 of the oscillation is set on the pulses Imp1a, or the extreme position A m of the oscillation is set on the pulses Imp1b.
  • the pulses Imp1a and Imp1b each have a first part the duration of which is shorter than that of their second part, so as to correct exactly the difference between the too high natural frequency of the oscillator main slave and the setpoint frequency imposed by the master auxiliary oscillator.
  • a first pulse occurs in the second half-wave A2
  • either the extreme position A m of the oscillation is set on the pulses Imp2a, or the extreme position A m + 1 of the oscillation is set on Imp2b pulses.
  • the pulses Imp1a, respectively Imp1b, Imp2a and Imp2b occupy stable relative temporal positions. Indeed, a slight deviation to the left or to the right of one of these pulses, due to an external disturbance, will have the effect of bringing a following pulse back to the initial relative temporal position. Then, if the time drift of the mechanical oscillator varies during the synchronous phase, the oscillation will automatically undergo a slight phase shift so that the ratio between the first part and the second part of the pulses Imp1a, respectively Imp1b, Imp2a and Imp2b varies to an extent which adapts the correction generated by the braking pulses to the new frequency difference. Such behavior of the timepiece according to the present invention is truly remarkable.
  • the Figures 14 and 15 are similar to Figures 12 and 13 , but for a situation where the natural frequency of the oscillator is lower than the reference frequency. Consequently, the impulses Imp3 and Imp4, corresponding to an unstable equilibrium situation in the correction made by the braking impulses, are respectively located in the second and the fourth quarter of a period (instants t 3 and t 4 ) where the impulses cause an increase in the oscillation frequency.
  • the explanations in detail will not be given here again because the behavior of the system follows of the preceding considerations.
  • the impulses Imp3a and Imp3b each have a first part the duration of which is longer than that of their second part, so as to correct exactly the difference between the too low natural frequency of the oscillator main slave and the setpoint frequency imposed by the master auxiliary oscillator.
  • the correction device of the invention is efficient and quickly synchronizes the frequency of the mechanical oscillator, timing the operation of the mechanical movement, on the reference frequency which is determined by the reference frequency of the master auxiliary oscillator, which controls the braking frequency at which the pulses braking are applied to the resonator of the mechanical oscillator. This remains true if the natural frequency of the mechanical oscillator varies and even if it is, in certain periods of time, higher than the reference frequency, while in other periods of time it is lower than this reference frequency.
  • the teaching given above and the synchronization obtained by virtue of the characteristics of the timepiece according to the invention also apply to the case where the braking frequency for the application of the braking pulses is not equal to the setpoint frequency.
  • the pulses taking place at unstable positions correspond to corrections to compensate for time drift during a single oscillation period.
  • the planned braking pulses have a sufficient effect to correct a time drift during several oscillation periods, it is then possible to apply a single pulse per time interval equal to these several oscillation periods.
  • the Figures 16 and 17 show the synchronous phase for a variant with a braking frequency F FR equal to a quarter of the reference frequency, a braking pulse therefore occurring every four oscillation periods.
  • the Figures 18 and 19 are partial enlargements respectively of Figures 16 and 17 .
  • the braking pulses generate a phase shift only in the corresponding periods.
  • the instantaneous periods here oscillate around an average value which is equal to that of the setpoint period. It will be noted that, at Figures 16 to 19 , the instantaneous periods are measured from a zero crossing on a rising edge of the oscillation signal at such next pass. Thus, the synchronous pulses which occur at the extreme positions are entirely included in periods of oscillation.
  • the Figure 20 shows the specific case where the natural frequency is equal to the reference frequency.
  • the oscillation periods T0 * all remain equal, the braking pulses Imp5 occurring exactly at the extreme positions of the free oscillation with the first and second parts of these pulses which have identical durations (case of a constant braking torque), so that the effect of the first part is canceled by the opposite effect of the second part.
  • the synchronization device is arranged so that the braking frequency can take several values, preferably a first value in an initial phase of the operation of the synchronization device and a second value, less than the first value, in a normal operating phase following the initial phase.
  • the duration of the initial phase will be selected so that the normal operating phase occurs when the synchronous phase has probably already started.
  • the initial phase includes at least the first braking pulses, following the engagement of the synchronization device, and preferably the major part of the transient phase. By increasing the frequency of the braking pulses, the duration of the transient phase is reduced.
  • this variant makes it possible, on the one hand, to optimize the braking efficiency during the initial phase to ensure the physical process leading to synchronization and, on the other hand, to minimize the braking energy and therefore the energy losses for the main oscillator during the synchronous phase which continues as long as the synchronization device is not deactivated and the mechanical movement is functioning.
  • the first braking pulses can occur near the neutral position of the resonator where the effect of braking is less on the time phase shift generated for the oscillation of the main oscillator.
  • the braking pulses take place near the extreme positions of this oscillation where the braking effect is the greatest.
  • FIG. 21 we will describe a first variant of a second embodiment of the invention which is surprising by the simplicity of its electromagnetic braking device.
  • This second embodiment differs from the first embodiment essentially by the magnetic system of the electromagnetic braking device which consists, in the first variant, of a single bipolar magnet 60 carried by the balance 8A of the mechanical resonator 6A and, in a second variant, by a single pair of bipolar magnets.
  • a reference semi-axis 62 starting from the axis of oscillation 34 and passing through the center of the magnet 60 defines an angular position zero ('0') in a polar coordinate system centered on the axis d oscillation and fixed relative to the plate of the watch movement.
  • the coil 28, which completes the electromagnetic braking device in addition to the magnetic system, is integral with the plate and has an angular offset relative to the zero angular position.
  • the angular offset of the coil is substantially 180 °, as shown in Figure 21 .
  • the distinct time intervals T P defined by the short-circuit pulses 58A generated at the setpoint frequency F0c and thus occurring in each period d oscillation, are substantially equal to or greater (case shown) to the time zones without voltage induced in the coil around the two extreme positions of the mechanical resonator in the useful operating range.
  • this condition is not necessary, the time intervals T P possibly being less than the duration of these time zones without induced voltage.
  • this part d 'watchmaking enters a stable and synchronous phase and where the mechanical oscillator presents the setpoint frequency F0c at which the short-circuit pulses 58A are generated here, and this regardless of the angular position of the balance 8A during a first short-circuit pulse.
  • the Figure 22 corresponds to a situation where the natural oscillation frequency F0 of the mechanical oscillator is a little lower than the reference frequency F0c.
  • a first distinct braking pulse which is generated in the initial zone of each short-circuit pulse by an induced voltage pulse 74 A and which occurs in the second half-wave A2 2 of the second half-wave A2 (at the start of the separate time intervals T P ), is stronger than a second separate braking pulse which is generated in the end zone of each short-circuit pulse by a pulse of induced voltage 74 B and which occurs in the first half-wave A1 1 of the first half-wave A1 (at the end of the distinct time intervals T P ).
  • Two braking pulses are distinct when they are separated by a time interval having a non-zero duration.
  • the positive phase shift generated by the voltage pulse 74 B in each half-wave A2 2 is greater than the negative phase shift generated by the voltage pulse 74 A in each half-wave A1 1 , so that a correction of the rate of the timepiece takes place here in each period of oscillation to ensure the synchronization of the mechanical oscillator on the baseline time base.
  • the generation of short-circuit pulses at the reference frequency is a special case.
  • short-circuit pulses are generated with a lower frequency corresponding to a fraction of the reference frequency.
  • F D 2 ⁇ F0c / M
  • the electromagnetic braking device comprises a magnetic system formed by a pair of permanent magnets with axial magnetization and of opposite polarities, these two magnets being arranged symmetrically with respect to a reference semi-axis of the balance and sufficiently close to each other to add two lobes of induced voltage that they generate respectively when this pair of magnets pass in reel look.
  • the reference half-axis defines a zero angular position when the mechanical resonator is in its neutral position.
  • the coil has an angular offset relative to the zero angular position so that a voltage induced in this coil occurs, when the mechanical oscillator oscillates in the useful operating range, at least in one half-wave of each period of oscillation substantially before or after the passage of the mechanical resonator through its neutral position in this alternation.
  • the angular offset of the coil is also preferably equal to 180 °.
  • the extreme angular positions of the mechanical resonator in the useful operating range are, in absolute values, greater than the angular offset which is defined as the minimum angular distance between the zero angular position and the angular position of the center of the coil.
  • This second variant corresponds to the electromagnetic device shown in Figure 23 , but without the second pair of magnets 66, 67 which relates to the third embodiment which will be described below.
  • the magnetic system of the electromagnetic braking device consists of a first pair of bipolar magnets 64, 65 and a second pair of bipolar magnets 66, 67 both carried by the balance 8B of the mechanical resonator 6B, as well as of a coil 28.
  • Each pair of magnets has an axial magnetization of opposite polarities.
  • the two magnets of the first pair are arranged symmetrically with respect to a reference half-axis 62A of the balance 8B, this reference half-axis defining a zero angular position when the mechanical resonator is in its neutral position.
  • Coil 28 as in second embodiment, has an angular offset relative to the zero angular position, this offset being preferably substantially equal to 180; but other angular offsets can be provided in other variants.
  • the induced voltage curve 76 generated in the coil when the mechanical resonator oscillates is shown in figure Figure 24 , superimposed on the curve 70 giving the angular position of the balance 8B.
  • Positioning the coil 28 at an angle of 180 ° is a preferred variant, because the electromagnetic system that the coil forms with the first pair of magnets 64, 65 generates in each half-wave two induced voltage pulses 78 A and 78 B having a symmetry relative to the instant of passage of the resonator 6B by its neutral position. There is therefore a 78 A pulse in each first half-wave A1 1 , A2 1 and a 78 B pulse in each second half-wave A1 2 , A2 2 .
  • the induced voltage pulses 78 A and 78 B have substantially the same amplitude and are each located at the same temporal distance from a passage of the mechanical resonator 6B through an extreme angular position, so that they are all liable to generate, during a coil short-circuit, a braking torque of the same intensity and a phase shift, positive or negative as the case may be, of the same value in the oscillation of the mechanical resonator.
  • an angular offset of 180 ° also has the advantage of high efficiency for the braking pulses generated.
  • the amplitude of the balance in the useful operating range of the mechanical oscillator is conventionally expected to be greater than 180 °, which therefore makes it possible to generate the induced voltage pulses and thus to be able to generate braking pulses. , by reducing the impedance between the two terminals of coil 28 to correct the operation of the timepiece.
  • the value of the distinct time intervals T P is substantially equal to or greater than the duration of a temporal zone without voltage induced in the coil 28 around each extreme angular position of the mechanical resonator in the useful operating range of the mechanical oscillator.
  • this value of the distinct time intervals T P is expected to be less than the reference half-period, ie T P ⁇ T0c / 2.
  • the short-circuit pulses 58B are wedged between two induced voltage pulses 78 A , 78 B surrounding an extreme angular position and two distinct braking pulses occur respectively at the start and at the end of each time interval T P , these two distinct braking pulses corresponding to two quantities of energy taken from the mechanical resonator which are variable (the variation of one being opposed to the variation of the other, so that if one of the two quantities of energy increases or decreases the other respectively decreases or increases), as a function of a positive or negative time drift of the mechanical oscillator in question.
  • the Figure 24 corresponds to the particular case where the natural frequency of the mechanical oscillator is equal to the setpoint frequency, so that the two aforementioned quantities of energy are here identical.
  • a second variant is shown in which the value of the distinct time intervals T P is less than the duration of a time zone without voltage induced in the coil 28 around each extreme angular position of the mechanical resonator.
  • the desired synchronization is also obtained.
  • the short-circuit pulses 58C also remain in a time window which is framed by two induced voltage pulses 78 A , 78 B surrounding an extreme angular position.
  • the temporal position of the distinct time intervals T P can vary within this time window during at least a terminal part of the transient phase (pulse 58C 1 ) or in the synchronous phase if the frequency natural value of the mechanical oscillator is very close to the setpoint frequency, in particular if it varies very slightly around this value.
  • short-circuit pulses 58C 2 or 58C 3 are observed which respectively occur in the half-waves A1 2 and A2 1 of periods of oscillation partially simultaneously with the induced voltage pulses 78 B and 78 A , respectively, so that they generate braking pulses in the respective half-waves. Only the aforementioned electromagnetic system, formed of the coil and the first pair of magnets, intervenes to ensure the desired synchronization in the synchronous phase of the synchronization process, the second pair of magnets then having no influence for this synchronization process.
  • the second pair of bipolar magnets 66, 67 which is momentarily coupled to coil 28 in each half-wave of the mechanical resonator oscillation, serves primarily to supply power to the synchronization device, although it may be involved in an alternation. transient phase (initial phase after activation of the synchronization device) of the synchronization process.
  • the timepiece comprises a supply circuit, formed by a rectifier circuit of a voltage induced in the coil and a storage capacitor, and the second pair of bipolar magnets has a middle half-axis 68 between its two magnets.
  • the supply circuit is connected, on the one hand, to a terminal of the coil and, on the other hand, to a reference potential of the synchronization device at least periodically when the mechanical resonator passes through its neutral position, but preferably constantly.
  • the second pair of magnets generates induced voltage pulses 80 A and 80 B when passing through the balance 8B by the zero angular position, these pulses having a greater amplitude than the pulses generated by the first pair of magnets and serving to supply the storage capacitor, the voltage of which is represented by curve 82 at the bottom.
  • Figure 24 .
  • This fourth embodiment differs from the other embodiments essentially by the arrangement of the magnetic system.
  • the shaft 82 of the balance 8C is pivoted between the plate 5 and a balance bridge 7 about the axis of oscillation 34.
  • a bipolar magnet 84 with radial magnetization is arranged on the shaft 82 and placed in an opening 87 d a plate 86 made of a material with high magnetic permeability, in particular a ferromagnetic material.
  • the plate 86 defines a magnetic circuit with a core 89 around which a coil 28C is arranged, in the manner of a conventional watch motor.
  • the plate 86 has two isthmuses 88 at the opening 87 which partially prevent the magnetic flux of the magnet from closing on itself without passing through the coil core.
  • these isthmuses are made less thin than in the case of a clock motor in order to limit the variation of the magnetic potential energy of the permanent magnet 84 as a function of its angle of rotation.
  • the Figures 28A to 28C are similar to Figures 5A to 5C , but for the fourth embodiment.
  • the voltage curve induced at Figures 28A and 28B corresponds to a particular case where the oscillation amplitude is substantially equal to 180 °.
  • the voltage curve induced in coil 28C corresponds to the curve shown in Figure 28C .
  • This last figure relates to a particular case where the natural oscillation frequency F0 of the mechanical oscillator is equal to the reference frequency. Since the braking generated by the braking pulses 50C is small, the oscillation amplitude of the resonator 6C is a little greater than that occurring at the Figures 28A and 28B where the braking pulses 56, respectively 57 generate more substantial braking.
  • the pulses 50C do not generate a time phase shift in the oscillation of the mechanical resonator, given that they have a central symmetry relative to the instant of passage of the resonator 6C through an extreme angular position on the graph of the braking torque. It will be noted that the two parts T B and T A of distinct time intervals T P , occurring respectively on both sides of the instant at which the resonator 6C passes through an extreme angular position, are here equal since the natural frequency is equal to the setpoint frequency. Thus the adjacent half-waves A2 2 and A1 1 have the same duration.
  • the time intervals T P are defined by the short-circuit pulses 58 which have between their respective beginnings a time distance D T determined by the reference time base.
  • the short-circuit pulses 58 are generated with a triggering frequency F D equal to the setpoint frequency, so that the time distances D T are here equal to a setpoint period T0c.
  • the first part T B of the distant time intervals T P is less than the second part T A and the braking pulses 56 generated during these distant time intervals, by the pulses corresponding short-circuits, occur substantially in the first half-waves A1 1 (almost entirely in the specific example shown), so that they reduce the frequency of the mechanical oscillator to synchronize it on the auxiliary oscillator of the reference time base and thus impose the reference frequency F0c on this mechanical oscillator.
  • the first part T B of the distant time intervals T P is greater than the second part T A and the braking pulses 57 generated during these distant time intervals, by the pulses corresponding short-circuits, substantially intervene in second half-waves A2 2 (also almost entirely in the specific example shown), so that they increase the frequency of the mechanical oscillator to synchronize it with the auxiliary oscillator.

Description

Domaine techniqueTechnical area

La présente invention concerne une pièce d'horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction d'une dérive temporelle éventuelle dans le fonctionnement de l'oscillateur mécanique qui cadence la marche du mouvement mécanique. La pièce d'horlogerie comprend un oscillateur mécanique dont la fréquence moyenne est synchronisée sur une fréquence de consigne déterminée par un oscillateur électronique auxiliaire.The present invention relates to a timepiece comprising a mechanical movement the rate of which is improved by a device for correcting a possible time drift in the operation of the mechanical oscillator which rates the rate of the mechanical movement. The timepiece comprises a mechanical oscillator, the average frequency of which is synchronized to a reference frequency determined by an auxiliary electronic oscillator.

En particulier, la pièce d'horlogerie est formée, d'une part, par un mouvement mécanique comprenant :

  • un mécanisme indicateur d'au moins une donnée temporelle,
  • un résonateur mécanique susceptible d'osciller le long d'un axe général d'oscillation autour d'une position neutre correspondant à son état d'énergie potentielle minimale,
  • un dispositif d'entretien du résonateur mécanique formant avec ce dernier un oscillateur mécanique qui est agencé pour cadencer la marche du mécanisme indicateur,
et, d'autre part, par un dispositif de synchronisation agencé pour asservir la fréquence moyenne de l'oscillateur mécanique sur une fréquence de consigne déterminée par une base de temps de référence.In particular, the timepiece is formed, on the one hand, by a mechanical movement comprising:
  • a mechanism indicating at least one temporal datum,
  • a mechanical resonator capable of oscillating along a general axis of oscillation around a neutral position corresponding to its state of minimum potential energy,
  • a device for maintaining the mechanical resonator forming with the latter a mechanical oscillator which is arranged to rate the operation of the indicator mechanism,
and, on the other hand, by a synchronization device arranged to control the average frequency of the mechanical oscillator on a reference frequency determined by a reference time base.

Arrière-plan technologiqueTechnological background

Des pièces d'horlogerie telles que définies dans le domaine de l'invention ont été proposées dans quelques documents antérieurs. Le brevet CH 597 636, publié en 1977 , propose une telle pièce d'horlogerie en référence à sa figure 3. Le mouvement est équipé d'un résonateur formé par un balancier-spiral et d'un dispositif d'entretien classique comprenant une ancre et une roue d'échappement en liaison cinématique avec un barillet muni d'un ressort. Ce mouvement horloger comprend en outre un dispositif de régulation de la fréquence de son oscillateur mécanique. Ce dispositif de régulation comprend un circuit électronique et un dispositif de freinage électromagnétique formé d'une bobine plate, agencée sur un support sous la serge du balancier, et de deux aimants montés sur le balancier et agencés proches l'un de l'autre de manière à passer tous deux au-dessus de la bobine lorsque l'oscillateur est activé.Timepieces as defined in the field of the invention have been proposed in some prior documents. The patent CH 597 636, published in 1977 , offers such a timepiece in reference to his figure 3 . The movement is equipped with a resonator formed by a sprung balance and a conventional maintenance device comprising an anchor and an escape wheel in kinematic connection with a barrel provided with a spring. This watch movement further comprises a device for regulating the frequency of its mechanical oscillator. This regulation device comprises an electronic circuit and an electromagnetic braking device formed of a flat coil, arranged on a support under the rim of the balance, and two magnets mounted on the balance and arranged close to each other of so that they both pass over the coil when the oscillator is activated.

Le circuit électronique comprend une base de temps comprenant un résonateur à quartz et servant à générer un signal de fréquence de référence FR, cette fréquence de référence étant comparée avec la fréquence FG de l'oscillateur mécanique. La détection de la fréquence FG de l'oscillateur est réalisée via les signaux électriques générés dans la bobine par la paire d'aimants. La comparaison entre les deux fréquences FG et FR est effectuée par un compteur bidirectionnel recevant à ses deux entrées ces deux fréquences et fournissant en sortie un signal déterminant une différence de périodes comptabilisées pour les deux fréquences. Le circuit électronique comprend en outre un circuit logique qui analyse le signal de sortie du compteur pour commander un circuit d'application d'impulsions de freinage en fonction de ce signal de sortie, de manière à freiner le balancier lorsque le circuit logique a détecté une dérive temporelle correspondant à une valeur de la fréquence FG de l'oscillateur supérieure à la fréquence de référence FR. Le circuit d'application d'impulsions de freinage est agencé pour pouvoir engendrer un couple de freinage momentané sur le balancier via une interaction électromagnétique aimant-bobine et une charge commutable reliée à la bobine.The electronic circuit comprises a time base comprising a quartz resonator and serving to generate a reference frequency signal FR, this reference frequency being compared with the frequency FG of the mechanical oscillator. The detection of the FG frequency of the oscillator is carried out via the electrical signals generated in the coil by the pair of magnets. The comparison between the two frequencies FG and FR is carried out by a bidirectional counter receiving at its two inputs these two frequencies and providing at output a signal determining a difference of periods counted for the two frequencies. The electronic circuit further comprises a logic circuit which analyzes the output signal of the counter to control a brake pulse application circuit as a function of this output signal, so as to brake the balance when the logic circuit has detected a time drift corresponding to a value of the frequency FG of the oscillator greater than the reference frequency FR. The braking pulse application circuit is arranged to be able to generate a momentary braking torque on the balance wheel via an electromagnetic magnet-coil interaction and a switchable load connected to the coil.

Le document US 2005/036405 décrit un mouvement mécanique horloger muni d'un système électromagnétique de régulation de la fréquence d'oscillation du résonateur mécanique incorporé dans ce mouvement mécanique. Ce système de régulation est du type à boucle fermée et il est adapté seulement pour la correction de la marche du mouvement mécanique dans le cas où cette marche est trop rapide, c'est-à-dire dans le cas où ce mouvement mécanique prend de l'avance. Le circuit de commande détermine si le résonateur mécanique oscille avec une fréquence trop élevée et, le cas échéant, diminue ensuite cette fréquence par des impulsions de freinage appliquées au balancier via le système électromagnétique.The document US 2005/036405 describes a mechanical watch movement fitted with an electromagnetic frequency regulation system of oscillation of the mechanical resonator incorporated in this mechanical movement. This regulation system is of the closed loop type and it is suitable only for correcting the rate of the mechanical movement in the case where this rate is too fast, that is to say in the case where this mechanical movement becomes slow. advance. The control circuit determines whether the mechanical resonator oscillates with too high a frequency and, if so, then decreases this frequency by braking pulses applied to the balance wheel via the electromagnetic system.

Le document FR 2 162 404 décrit un mouvement mécanique et un système électromécanique prévu pour asservir la fréquence d'oscillation du résonateur mécanique sur une fréquence de consigne fournie par un oscillateur à quartz auxiliaire. Le système électromécanique comprend une butée faisant saillie de la serge du balancier et un actionneur dont le doigt est courtement actionné périodiquement en direction de la serge, à la fréquence de consigne, de manière à permettre à la butée de venir buter contre ce doigt dans la mesure où cette butée passe par la position angulaire fixe du doigt lorsque ce dernier est courtement dans sa position d'interaction possible avec le balancier via la butée. Le document EP 3 584 645 B1 expose plus en détails, dans sa section 'Arrière-plan technologique', pourquoi la synchronisation recherchée dans le document FR 2 162 404 paraît improbable, et pour le moins pas sûre.The document FR 2 162 404 describes a mechanical movement and an electromechanical system designed to control the oscillation frequency of the mechanical resonator to a reference frequency supplied by an auxiliary quartz oscillator. The electromechanical system comprises a stop projecting from the rim of the balance and an actuator whose finger is briefly actuated periodically in the direction of the rim, at the set frequency, so as to allow the stop to abut against this finger in the as this stop passes through the fixed angular position of the finger when the latter is briefly in its position of possible interaction with the balance via the stop. The document EP 3 584 645 B1 explains in more detail, in its section 'Technological background', why the synchronization sought in the document FR 2 162 404 seems unlikely, and at least not sure.

Résumé de l'inventionSummary of the invention

Un but de la présente invention est de simplifier au maximum le circuit électronique d'un dispositif de synchronisation agencé pour asservir la fréquence moyenne de l'oscillateur mécanique d'un mouvement mécanique sur une fréquence de consigne déterminée par un oscillateur électronique auxiliaire, sans pour autant perdre en précision dans la marche de la pièce d'horlogerie équipée d'un tel dispositif de synchronisation.An aim of the present invention is to simplify as much as possible the electronic circuit of a synchronization device arranged to control the average frequency of the mechanical oscillator of a mechanical movement on a reference frequency determined by an electronic oscillator. auxiliary, without losing precision in the operation of the timepiece equipped with such a synchronization device.

Dans le cadre de la présente invention, on cherche de manière générale à améliorer la précision de la marche d'un mouvement horloger mécanique, c'est-à-dire de diminuer l'erreur journalière maximale de ce mouvement mécanique et plus globalement de diminuer de manière très significative une dérive temporelle possible sur une plus longue période (par exemple une année). En particulier, la présente invention cherche à atteindre un tel but pour un mouvement horloger mécanique dont la marche est réglée initialement au mieux. En effet, un but général de l'invention est de trouver un dispositif de correction de la marche d'un mouvement mécanique pour le cas où le fonctionnement naturel de ce mouvement mécanique conduirait à une certaine erreur journalière et par conséquent à une dérive temporelle croissante (erreur cumulée croissante), sans pour autant renoncer à ce qu'il puisse fonctionner de manière autonome avec la meilleure précision qu'il lui est possible d'avoir grâce à ses propres caractéristiques, c'est-à-dire en l'absence du dispositif de correction ou lorsque ce dernier est inactif.In the context of the present invention, it is generally sought to improve the accuracy of the rate of a mechanical watch movement, that is to say to reduce the maximum daily error of this mechanical movement and more generally to decrease very significantly a possible time drift over a longer period (for example a year). In particular, the present invention seeks to achieve such an aim for a mechanical watch movement the rate of which is initially adjusted to the best. Indeed, a general aim of the invention is to find a device for correcting the rate of a mechanical movement in the event that the natural functioning of this mechanical movement would lead to a certain daily error and consequently to an increasing time drift. (increasing cumulative error), without however renouncing that it can operate autonomously with the best precision that it is possible for it to have thanks to its own characteristics, that is to say in the absence of the correction device or when the latter is inactive.

A cet effet, la présente invention concerne une pièce d'horlogerie telle que définie dans la revendication indépendante 1 annexée. Des modes de réalisation préférés sont définis dans les revendications dépendantes.To this end, the present invention relates to a timepiece as defined in independent claim 1 attached. Preferred embodiments are defined in the dependent claims.

Grâce aux caractéristiques de l'invention, de manière surprenante, l'oscillateur mécanique du mouvement horloger est asservi à l'oscillateur auxiliaire d'une manière efficace et rapide, comme ceci ressortira clairement de la description détaillée de l'invention qui suivra. La fréquence d'oscillation de l'oscillateur mécanique (oscillateur mécanique esclave) est synchronisée sur la fréquence de consigne déterminée par l'oscillateur auxiliaire (oscillateur maître), et ceci sans asservissement à boucle fermée et sans nécessiter de capteur de mesure du mouvement d'oscillation de l'oscillateur mécanique. Le dispositif de synchronisation fonctionne donc à boucle ouverte et il permet de corriger aussi bien une avance qu'un retard dans la marche naturelle du mouvement mécanique, comme ceci sera exposé par la suite. Ce résultat est tout-à-fait remarquable.Thanks to the characteristics of the invention, surprisingly, the mechanical oscillator of the horological movement is slaved to the auxiliary oscillator in an efficient and rapid manner, as will become clear from the detailed description of the invention which will follow. The oscillation frequency of the mechanical oscillator (slave mechanical oscillator) is synchronized to the setpoint frequency determined by the auxiliary oscillator (master oscillator), and this without closed-loop servo-control and without requiring a motion measurement sensor. oscillation of the mechanical oscillator. The synchronization device therefore operates in an open loop and it makes it possible to correct both an advance and a delay in the rate. of mechanical movement, as will be explained later. This result is quite remarkable.

On comprend par synchronisation sur un oscillateur maître' un asservissement (à boucle ouverte, donc sans rétroaction) de l'oscillateur mécanique esclave à l'oscillateur maître. Le fonctionnement du dispositif de synchronisation est tel que la fréquence à laquelle interviennent les intervalles de temps, où l'impédance du circuit relié aux deux bornes de la bobine est diminuée, est imposée à l'oscillateur mécanique esclave qui cadence la marche du mécanisme indicateur d'une donnée temporelle. Plus généralement, il n'est même pas nécessaire que la succession de tels intervalles de temps distincts interviennent périodiquement à une fréquence donnée, car il suffit que les débuts (ou, de manière équivalente, les instants milieux) de deux intervalles de temps successifs quelconques parmi ces intervalles de temps distincts présentent entre eux une distance temporelle DT telle que définie précédemment, avec un nombre entier positif N qui peut varier au cours du temps. Nous ne sommes pas ici dans le cas standard d'un oscillateur forcé, ni même dans la situation d'oscillateurs couplés.By synchronization on a master oscillator we understand a slaving (open loop, therefore without feedback) of the mechanical oscillator slave to the master oscillator. The operation of the synchronization device is such that the frequency at which the time intervals intervene, where the impedance of the circuit connected to the two terminals of the coil is reduced, is imposed on the slave mechanical oscillator which rates the operation of the indicator mechanism of a temporal data. More generally, it is not even necessary that the succession of such distinct time intervals occur periodically at a given frequency, since it suffices that the beginnings (or, in an equivalent manner, the middle instants) of any two successive time intervals among these distinct time intervals have between them a time distance D T as defined above, with a positive integer N which can vary over time. We are not here in the standard case of a forced oscillator, nor even in the situation of coupled oscillators.

Dans la présente invention, les distances temporelles DT possibles, pour une période de consigne T0c prédéfinie, déterminent la fréquence moyenne de l'oscillateur mécanique et donc le cadencement de la marche du mécanisme. Comme les distances temporelles sont déterminées par un oscillateur auxiliaire précis, la fréquence moyenne est déterminée par cet oscillateur auxiliaire de sorte que la précision de la marche du mécanisme est en relation directe avec celle de l'oscillateur auxiliaire. On comprend par 'cadencer la marche d'un mécanisme' le fait de rythmer le mouvement des éléments mobiles de ce mécanisme lorsqu'il fonctionne, en particulier de déterminer les vitesses de rotation de ses roues et ainsi d'au moins un indicateur d'une donnée temporelle.In the present invention, the possible temporal distances D T , for a predefined reference period T0c, determine the average frequency of the mechanical oscillator and therefore the timing of the operation of the mechanism. As the temporal distances are determined by a precise auxiliary oscillator, the average frequency is determined by this auxiliary oscillator so that the precision of the rate of the mechanism is in direct relation with that of the auxiliary oscillator. By 'timing the operation of a mechanism' is understood the fact of timing the movement of the movable elements of this mechanism when it is operating, in particular of determining the speeds of rotation of its wheels and thus of at least one indicator of a temporal datum.

Dans un mode de réalisation principal, le résonateur mécanique est formé par un balancier oscillant autour d'un axe d'oscillation, et le dispositif de synchronisation est agencé de manière à déclencher périodiquement les intervalles de temps distincts TP, lesquels présentent une même valeur, et de manière que la fréquence de déclenchement FD de ces intervalles de temps distincts vaut deux fois une fréquence de consigne F0c, égale par définition à l'inverse de la période de consigne T0c, divisée par un nombre entier positif M, soit FD = 2·F0c / M, la valeur des intervalles de temps distincts TP étant inférieure à la demi-période de consigne, soit TP < T0c / 2. Dans une variante préférée, la valeur des intervalles de temps distincts TP est prévue inférieure au quart de la période de consigne T0c, soit TP < T0c / 4.In a main embodiment, the mechanical resonator is formed by a balance oscillating around an axis of oscillation, and the synchronization device is arranged so as to periodically trigger the distinct time intervals T P , which have the same value. , and so that the trigger frequency F D of these distinct time intervals is equal to twice a setpoint frequency F0c, equal by definition to the inverse of the setpoint period T0c, divided by a positive integer M, i.e. F D = 2 · F0c / M, the value of the distinct time intervals T P being less than the reference half-period, that is to say T P <T0c / 2. In a preferred variant, the value of the distinct time intervals T P is expected less than a quarter of the setpoint period T0c, i.e. T P <T0c / 4.

Brève description des figuresBrief description of the figures

L'invention sera décrite ci-après en détails à l'aide des dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

  • La Figure 1 montre un premier mode de réalisation d'une pièce d'horlogerie selon l'invention,
  • La Figure 2 est une vue partielle du premier mode de réalisation selon la Figure 1,
  • La Figure 3 montre le schéma électronique d'une première variante du circuit de commande du dispositif de freinage électromagnétique selon l'invention,
  • La Figure 4 montre le schéma électronique d'une deuxième variante du circuit de commande du dispositif de freinage électromagnétique selon l'invention,
  • Les Figures 5A, 5B et 5C sont des graphes donnant l'évolution temporelle de divers paramètres physiques de l'oscillateur mécanique et du dispositif de synchronisation du premier mode de réalisation pour diverses relations entre la fréquence de consigne F0c et la fréquence naturelle F0 de l'oscillateur mécanique, respectivement F0 > F0c, F0 < F0c, F0 = F0c,
  • La Figure 6 montre l'application d'une première impulsion de freinage à un résonateur mécanique dans une certaine alternance de son oscillation avant qu'il passe par sa position neutre, ainsi que la vitesse angulaire du balancier de ce résonateur mécanique et sa position angulaire dans un intervalle temporel au cours duquel intervient la première impulsion de freinage,
  • La Figure 7 est une figure similaire à la Figure 6 mais pour l'application d'une deuxième impulsion de freinage dans une certaine alternance de l'oscillation d'un oscillateur mécanique après qu'il a passé par sa position neutre,
  • Les Figures 8A, 8B et 8C montrent respectivement la position angulaire d'un balancier-spiral au cours d'une période d'oscillation, la variation de la marche du mouvement horloger obtenue pour une impulsion de freinage de durée fixe, pour trois valeurs d'un couple de freinage constant, en fonction de la position angulaire du balancier spiral, et la puissance de freinage correspondante,
  • Les Figures 9, 10 et 11 montrent respectivement trois situations différentes pouvant intervenir dans une phase initiale suite à l'enclenchement du dispositif de correction dans une pièce d'horlogerie selon l'invention,
  • La Figure 12 est un graphe explicatif du processus physique intervenant suite à l'enclenchement du dispositif de correction dans la pièce d'horlogerie selon l'invention et conduisant à la synchronisation voulue pour le cas où la fréquence naturelle de l'oscillateur mécanique esclave est supérieure à la fréquence de consigne,
  • La Figure 13 représente, dans le cas de la Figure 12, une oscillation de l'oscillateur mécanique esclave et les impulsions de freinage dans une phase synchrone stable pour une variante où une impulsion de freinage intervient dans chaque alternance,
  • La Figure 14 est un graphe explicatif du processus physique intervenant suite à l'enclenchement du dispositif de correction dans la pièce d'horlogerie selon l'invention et conduisant à la synchronisation voulue pour le cas où la fréquence naturelle de l'oscillateur mécanique esclave est inférieure à la fréquence de consigne,
  • La Figure 15 représente, dans le cas de la Figure 14, une oscillation de l'oscillateur mécanique esclave et les impulsions de freinage dans une phase synchrone stable pour une variante où une impulsion de freinage intervient dans chaque alternance,
  • Les Figures 16 et 17 donnent, respectivement pour les deux cas des Figures 12 et 14, le graphe de la position angulaire d'un oscillateur mécanique et les périodes d'oscillation correspondantes pour un mode de fonctionnement du dispositif de correction où une impulsion de freinage intervient toutes les quatre périodes d'oscillation,
  • Les Figures 18 et 19 sont respectivement des agrandissements partiels des Figures 16 et 17,
  • La Figure 20 représente, de manière similaire aux deux figures précédentes, une situation spécifique dans laquelle la fréquence d'un oscillateur mécanique est égale à la fréquence de freinage,
  • La Figure 21 montre schématiquement l'oscillateur mécanique et le dispositif électromagnétique d'un deuxième mode de réalisation,
  • La Figure 22 donne, dans le cadre du deuxième mode de réalisation, des graphes de l'évolution temporelle de la position angulaire de l'oscillateur mécanique, de la tension induite dans une bobine du dispositif électromagnétique en fonction d'un signal de commande de ce dispositif électromagnétique en régime stationnaire,
  • La Figure 23 montre schématiquement l'oscillateur mécanique et le dispositif électromagnétique d'un troisième mode de réalisation,
  • La Figure 24 donne, dans le cadre du troisième mode de réalisation, des graphes de l'évolution temporelle de la position angulaire de l'oscillateur mécanique, de la tension induite dans une bobine du dispositif électromagnétique en fonction d'un signal de commande de ce dispositif électromagnétique en régime stationnaire,
  • La Figure 25 est similaire à la Figure 24 pour une variante de commande du dispositif électromagnétique dans le cadre du troisième mode de réalisation,
  • La Figure 26 est une vue en coupe de l'oscillateur mécanique et du dispositif électromagnétique d'un quatrième mode de réalisation,
  • La Figure 27 est coupe transversale, selon la ligne A-A de l'oscillateur mécanique et du dispositif électromagnétique de la Figure 26, et
  • Les Figures 28A, 28B et 28C sont des graphes donnant l'évolution temporelle de divers paramètres physiques de l'oscillateur mécanique et du dispositif de synchronisation du quatrième mode de réalisation pour diverses relations entre la fréquence de consigne F0c et la fréquence naturelle F0 de l'oscillateur mécanique, respectivement F0 > F0c, F0 < F0c, F0 = F0c.
The invention will be described below in detail with the aid of the appended drawings, given by way of non-limiting examples, in which:
  • The Figure 1 shows a first embodiment of a timepiece according to the invention,
  • The Figure 2 is a partial view of the first embodiment according to Figure 1 ,
  • The Figure 3 shows the electronic diagram of a first variant of the control circuit of the electromagnetic braking device according to the invention,
  • The Figure 4 shows the electronic diagram of a second variant of the control circuit of the electromagnetic braking device according to the invention,
  • The Figures 5A , 5B and 5C are graphs giving the temporal evolution of various physical parameters of the mechanical oscillator and of the synchronization device of the first embodiment for various relationships between the setpoint frequency F0c and the natural frequency F0 of the mechanical oscillator, respectively F0> F0c, F0 <F0c, F0 = F0c,
  • The Figure 6 shows the application of a first braking pulse to a mechanical resonator in a certain alternation of its oscillation before it passes through its neutral position, as well as the angular speed of the balance of this mechanical resonator and its angular position in an interval time during which the first braking pulse occurs,
  • The Figure 7 is a figure similar to the Figure 6 but for the application of a second braking pulse in a certain alternation of the oscillation of a mechanical oscillator after it has passed through its neutral position,
  • The Figures 8A, 8B and 8C respectively show the angular position of a sprung balance during a period of oscillation, the variation in the rate of the watch movement obtained for a braking pulse of fixed duration, for three values of a constant braking torque, depending on the angular position of the spiral balance, and the corresponding braking power,
  • The Figures 9 , 10 and 11 respectively show three different situations that may occur in an initial phase following the engagement of the correction device in a timepiece according to the invention,
  • The Figure 12 is an explanatory graph of the physical process occurring following the engagement of the correction device in the timepiece according to the invention and leading to the desired synchronization for the case where the natural frequency of the slave mechanical oscillator is greater than the setpoint frequency,
  • The Figure 13 represents, in the case of Figure 12 , an oscillation of the slave mechanical oscillator and the braking pulses in a stable synchronous phase for a variant where a braking pulse occurs in each alternation,
  • The Figure 14 is an explanatory graph of the physical process occurring following the engagement of the correction device in the timepiece according to the invention and leading to the desired synchronization for the case where the natural frequency of the slave mechanical oscillator is lower than the setpoint frequency,
  • The Figure 15 represents, in the case of Figure 14 , an oscillation of the slave mechanical oscillator and the braking pulses in a stable synchronous phase for a variant where a braking pulse occurs in each alternation,
  • The Figures 16 and 17 give, respectively for the two cases Figures 12 and 14 , the graph of the angular position of a mechanical oscillator and the corresponding oscillation periods for an operating mode of the correction device where a braking pulse occurs every four oscillation periods,
  • The Figures 18 and 19 are respectively partial enlargements of the Figures 16 and 17 ,
  • The Figure 20 represents, similarly to the two previous figures, a specific situation in which the frequency of a mechanical oscillator is equal to the braking frequency,
  • The Figure 21 schematically shows the mechanical oscillator and the electromagnetic device of a second embodiment,
  • The Figure 22 gives, within the framework of the second embodiment, graphs of the temporal evolution of the angular position of the mechanical oscillator, of the voltage induced in a coil of the electromagnetic device as a function of a control signal of this electromagnetic device in steady state,
  • The Figure 23 schematically shows the mechanical oscillator and the electromagnetic device of a third embodiment,
  • The Figure 24 gives, in the context of the third embodiment, graphs of the temporal evolution of the angular position of the mechanical oscillator, of the voltage induced in a coil of the electromagnetic device as a function of a control signal of this electromagnetic device in steady state,
  • The Figure 25 is similar to Figure 24 for a control variant of the electromagnetic device in the context of the third embodiment,
  • The Figure 26 is a sectional view of the mechanical oscillator and the electromagnetic device of a fourth embodiment,
  • The Figure 27 is cross section, along line AA of the mechanical oscillator and the electromagnetic device of the Figure 26 , and
  • The Figures 28A , 28B and 28C are graphs giving the temporal evolution of various physical parameters of the mechanical oscillator and of the synchronization device of the fourth embodiment for various relations between the reference frequency F0c and the natural frequency F0 of the mechanical oscillator, respectively F0> F0c, F0 <F0c, F0 = F0c.

Description détaillée de l'inventionDetailed description of the invention

Un premier mode de réalisation d'une pièce d'horlogerie selon l'invention sera décrit en référence aux Figures 1 à 4 et 5A à 5C. A la Figure 1 est représentée, en partie schématiquement, une pièce d'horlogerie 2 comprenant un mouvement mécanique 4 qui comporte au moins un mécanisme 12 indicateur d'une donnée temporelle. Le mécanisme 12 comprend un rouage 16 entraîné par un barillet 14 (le mécanisme est représenté partiellement à la Figure 1). Le mouvement mécanique comprend encore un résonateur mécanique 6, formé par un balancier 8 et un spiral 10, qui est agencé sur une platine 5 définissant un support du résonateur mécanique, et un dispositif d'entretien de ce résonateur mécanique qui est formé par un échappement 18, ce dispositif d'entretien formant avec le résonateur mécanique un oscillateur mécanique qui cadence la marche du mécanisme indicateur. L'échappement 18 comprend classiquement une ancre et une roue d'échappement, cette dernière étant reliée cinématiquement au barillet par l'intermédiaire du rouage 16. Le résonateur mécanique est susceptible d'osciller, autour d'une position neutre (position de repos / position angulaire zéro) correspondant à son état d'énergie potentielle minimale, le long d'un axe circulaire (le rayon de cet axe est sans importance puisque la position du balancier le long de cet axe est donnée par un angle). L'axe circulaire définit un axe général d'oscillation qui indique la nature du mouvement du résonateur mécanique, lequel peut être par exemple linéaire dans un autre mode de réalisation.A first embodiment of a timepiece according to the invention will be described with reference to Figures 1 to 4 and 5A to 5C . To the Figure 1 is shown, in part schematically, a timepiece 2 comprising a mechanical movement 4 which comprises at least one mechanism 12 indicating time data. The mechanism 12 comprises a cog 16 driven by a barrel 14 (the mechanism is shown partially on the Figure 1 ). The mechanical movement further comprises a mechanical resonator 6, formed by a balance 8 and a hairspring 10, which is arranged on a plate 5 defining a support for the mechanical resonator, and a device for maintaining this mechanical resonator which is formed by an escapement. 18, this maintenance device forming with the mechanical resonator a mechanical oscillator which rates the operation of the indicator mechanism. The escapement 18 conventionally comprises an anchor and an escape wheel, the latter being kinematically connected to the barrel via the gear 16. The mechanical resonator is capable of oscillating around a neutral position (position rest / zero angular position) corresponding to its state of minimum potential energy, along a circular axis (the radius of this axis is irrelevant since the position of the balance along this axis is given by an angle). The circular axis defines a general axis of oscillation which indicates the nature of the movement of the mechanical resonator, which may for example be linear in another embodiment.

Chaque oscillation du résonateur mécanique définit une période d'oscillation qui est formée de deux alternances, chacune entre deux positions angulaires extrêmes de l'oscillation et avec une rotation en sens inverse de l'autre. Lorsque le résonateur mécanique atteint une position angulaire extrême, définissant l'amplitude d'oscillation, sa vitesse de rotation est nulle et le sens de rotation s'inverse. Chaque alternance présente deux demi-alternances (dont la durée peut être différente en fonction d'événements perturbateurs), soit une première demi-alternance intervenant avant le passage du résonateur mécanique par sa position neutre et une seconde demi-alternance intervenant après ce passage par la position neutre.Each oscillation of the mechanical resonator defines an oscillation period which is formed by two alternations, each between two extreme angular positions of the oscillation and with a rotation in the opposite direction of the other. When the mechanical resonator reaches an extreme angular position, defining the oscillation amplitude, its speed of rotation is zero and the direction of rotation is reversed. Each half-cycle has two half-cycles (the duration of which may be different depending on disturbing events), i.e. a first half-cycle occurring before the mechanical resonator passes through its neutral position and a second half-cycle occurring after this passage through the neutral position.

La pièce d'horlogerie 2 comprend un dispositif de synchronisation 20 de l'oscillateur mécanique, formé du résonateur mécanique 6 et de l'échappement 18, sur une base de temps de référence 22 constituée par un oscillateur auxiliaire qui comprend un résonateur à quartz 35 et un circuit d'horloge 36 entretenant le résonateur à quartz et délivrant un signal de fréquence de référence SR. L'oscillateur à quartz définit un oscillateur maître. La base de temps de référence est associée au dispositif de commande 24 du dispositif de synchronisation auquel elle fournit le signal SR. On notera que d'autres types d'oscillateurs auxiliaires peuvent être prévus, notamment un oscillateur intégré entièrement dans un circuit électronique avec le circuit de commande. Généralement, l'oscillateur auxiliaire est par nature ou par construction plus précis que l'oscillateur mécanique agencé dans le mouvement horloger, cet oscillateur mécanique définissant un oscillateur esclave dans le cadre de l'invention. De manière générale, comme on le comprendra par la suite, le dispositif de synchronisation 20 est agencé pour asservir la fréquence moyenne de l'oscillateur mécanique sur une fréquence de consigne déterminée par l'oscillateur auxiliaire.The timepiece 2 comprises a device 20 for synchronizing the mechanical oscillator, formed by the mechanical resonator 6 and the escapement 18, on a reference time base 22 constituted by an auxiliary oscillator which comprises a quartz resonator 35 and a clock circuit 36 maintaining the quartz resonator and delivering a reference frequency signal S R. The crystal oscillator defines a master oscillator. The reference time base is associated with the control device 24 of the synchronization device to which it supplies the signal S R. It will be noted that other types of auxiliary oscillators can be provided, in particular an oscillator integrated entirely into an electronic circuit with the control circuit. Generally, the auxiliary oscillator is by nature or by construction more precise than the mechanical oscillator arranged in the watch movement, this mechanical oscillator defining an oscillator slave in the context of the invention. In general, as will be understood below, the synchronization device 20 is arranged to control the average frequency of the mechanical oscillator to a reference frequency determined by the auxiliary oscillator.

Ensuite, le dispositif de synchronisation 20 comprend un dispositif de freinage électromagnétique 26 du résonateur mécanique 6. Par 'freinage électromagnétique' on comprend un freinage du résonateur mécanique engendré via une interaction électromagnétique entre au moins un aimant permanent, porté par le résonateur mécanique ou un support de ce résonateur mécanique, et au moins une bobine portée respectivement par le support ou le résonateur mécanique et associée à un circuit électronique dans lequel un courant induit dans la bobine par l'aimant peut être engendré. De manière générale, le dispositif de freinage électromagnétique est ainsi formé d'au moins une bobine 28 et d'au moins un aimant permanent qui sont agencés de manière qu'une tension induite est générée entre les deux bornes 28A, 28B de la bobine 28 dans chaque alternance de l'oscillation du résonateur mécanique pour une plage de fonctionnement utile de l'oscillateur mécanique. La bobine 28 est du type galette (disque ayant une hauteur inférieure à son diamètre), sans noyau ferromagnétique. Dans le premier mode de réalisation, il est prévu une pluralité d'aimants bipolaires 30, 32 qui sont agencés de manière juxtaposée sur la serge 9 du balancier avec une alternance des polarités magnétiques selon la direction de l'axe d'oscillation 34. Dans une variante équivalente, il est prévu un aimant annulaire ayant une aimantation axiale avec des secteurs successifs correspondant aux aimants bipolaires 30, 32, ces secteurs successifs présentant des polarités alternées et définissant chacun un angle au centre (une 'ouverture' angulaire) ayant sensiblement une même valeur. Dans la variante représentée, les aimants bipolaires 30, 32 définissent huit secteurs annulaires aimantés présentant chacun une distance angulaire de 45° avec des polarités magnétiques alternées. Dans le cas du premier mode de réalisation, on a un nombre pair 2N de secteurs annulaires aimantés, N étant un nombre entier positif, ces secteurs étant agencés de manière circulaire, notamment sur la serge 9 du balancier 8 formant le résonateur mécanique 6.Then, the synchronization device 20 comprises an electromagnetic braking device 26 of the mechanical resonator 6. By 'electromagnetic braking' is understood a braking of the mechanical resonator generated via an electromagnetic interaction between at least one permanent magnet, carried by the mechanical resonator or a support of this mechanical resonator, and at least one coil carried respectively by the support or the mechanical resonator and associated with an electronic circuit in which a current induced in the coil by the magnet can be generated. In general, the electromagnetic braking device is thus formed of at least one coil 28 and at least one permanent magnet which are arranged so that an induced voltage is generated between the two terminals 28A, 28B of the coil 28 in each alternation of the oscillation of the mechanical resonator for a useful operating range of the mechanical oscillator. The coil 28 is of the wafer type (disc having a height less than its diameter), without a ferromagnetic core. In the first embodiment, there is provided a plurality of bipolar magnets 30, 32 which are arranged juxtaposed on the rim 9 of the balance with an alternation of the magnetic polarities in the direction of the axis of oscillation 34. In an equivalent variant, there is provided an annular magnet having an axial magnetization with successive sectors corresponding to the bipolar magnets 30, 32, these successive sectors having alternating polarities and each defining an angle at the center (an angular 'opening') having substantially a same value. In the variant shown, the bipolar magnets 30, 32 define eight magnetized annular sectors each having an angular distance of 45 ° with alternating magnetic polarities. In the case of the first embodiment, there is an even number 2N of magnetized annular sectors, N being a positive integer, these sectors being arranged in a circular manner, in particular on the rim 9 of the balance 8 forming the mechanical resonator 6.

La bobine 28 est agencée sur la platine 5 de manière à être traversée par le flux magnétique des aimants bipolaires / secteurs annulaires aimantés lorsque le balancier oscille. Avantageusement, le diamètre de la bobine 28 est prévu de manière qu'elle soit substantiellement comprise dans une ouverture angulaire, relativement à l'axe d'oscillation, qui soit sensiblement égale à celle définie par chaque aimant bipolaire / secteur annulaire aimanté. Cependant, dans d'autres variantes, le diamètre de la bobine 28 peut être prévu plus grand et présenter par exemple une ouverture angulaire correspondant sensiblement au double de celle d'un secteur annulaire aimanté. De plus, dans une autre variante, il est prévu une pluralité de bobines galette présentant entre elles, prises deux à deux, un décalage angulaire correspondant à un nombre entier de périodes magnétiques (une période magnétique étant donnée par la distance angulaire de deux secteurs annulaires aimantés adjacents). Ces bobines ne présentant ainsi pas de déphasage électromagnétique (c'est-à-dire que les déphasages sont des multiples entiers de 360°), les tensions induites dans ces bobines présentent chacune une variation temporelle identique et simultanée aux autres, de sorte que ces tensions induites s'additionnent. La pluralité des bobines peuvent être agencées en série ou en parallèle. Le nombre de secteurs annulaires aimantés, le nombre de bobines et leurs dimensions caractéristiques sont sélectionnés en fonction de la force de l'interaction électromagnétique souhaitée pour permettre l'asservissement voulu de l'oscillateur mécanique.The coil 28 is arranged on the plate 5 so as to be traversed by the magnetic flux of the bipolar magnets / magnetized annular sectors when the balance oscillates. Advantageously, the diameter of the coil 28 is provided so that it is substantially included in an angular opening, relative to the axis of oscillation, which is substantially equal to that defined by each bipolar magnet / magnetized annular sector. However, in other variants, the diameter of the coil 28 can be made larger and have for example an angular opening corresponding to substantially twice that of a magnetized annular sector. In addition, in another variant, there is provided a plurality of wafer coils having between them, taken in pairs, an angular offset corresponding to an integer number of magnetic periods (a magnetic period being given by the angular distance of two annular sectors adjacent magnets). These coils thus not exhibiting any electromagnetic phase shift (that is to say that the phase shifts are integer multiples of 360 °), the voltages induced in these coils each have an identical time variation and simultaneous with the others, so that these induced voltages add up. The plurality of coils can be arranged in series or in parallel. The number of magnetized annular sectors, the number of coils and their characteristic dimensions are selected as a function of the strength of the electromagnetic interaction desired to allow the desired servo-control of the mechanical oscillator.

Selon l'invention, le dispositif de synchronisation est agencé pour pouvoir diminuer momentanément l'impédance entre les deux bornes de la bobine. Selon un mode de synchronisation général implémenté dans le dispositif de synchronisation de l'invention, ce dernier est agencé de manière à diminuer l'impédance entre les deux bornes de la bobine au cours d'intervalles de temps distincts TP et de manière que les débuts respectifs de deux intervalles de temps successifs quelconques, parmi ces intervalles de temps distincts, présentent entre eux une distance temporelle DT égale à un nombre entier positif N multiplié par la moitié d'une période de consigne T0c (c'est-à-dire par une demi-période de consigne) pour l'oscillateur mécanique, soit DT=N·T0c/2. Le dispositif de synchronisation est agencé pour déterminer au moyen de la base de temps de référence 22 le début de chacun des intervalles de temps distincts de manière à satisfaire la relation mathématique susmentionnée entre la distance temporelle DT et la période de consigne T0c.According to the invention, the synchronization device is designed to be able to temporarily reduce the impedance between the two terminals of the coil. According to a general synchronization mode implemented in the synchronization device of the invention, the latter is arranged so as to reduce the impedance between the two terminals of the coil during distinct time intervals T P and so that the respective beginnings of any two successive time intervals, among these distinct time intervals, have between them a time distance D T equal to a positive whole number N multiplied by half of a set period T0c (that is to say by a reference half-period) for the mechanical oscillator, i.e. D T = N · T0c / 2. The synchronization device is arranged to determine by means of the reference time base 22 the start of each of the distinct time intervals so as to satisfy the aforementioned mathematical relationship between the time distance D T and the reference period T0c.

Dans les modes de réalisation décrits, le résonateur mécanique est formé par un balancier tournant autour d'un axe d'oscillation. Dans les modes de synchronisation implémentés dans les dispositifs de synchronisation qui sont représentés aux Figures 5A à 5C et 28A à 28C, il est prévu de déclencher périodiquement les intervalles de temps distincts TP au cours desquels l'impédance entre les bornes de la bobine est diminuée, c'est-à-dire que ces intervalles de temps sont prévus avec une distance temporelle TD entre eux qui est constante. La fréquence de déclenchement FD de ces intervalles de temps distincts vaut deux fois la fréquence de consigne F0c, égale par définition à l'inverse de la période de consigne T0c, divisée par un nombre entier positif M, soit FD = 2·F0c / M. Ensuite, de préférence, les intervalles de temps distincts TP ont une même valeur qui est prévue inférieure à la demi-période de consigne, soit TP < T0c/2. Finalement, le dispositif de synchronisation est agencé de manière à engendrer un court-circuit entre les deux bornes 28A et 28B de la bobine 28 durant les intervalles de temps distincts TP pour diminuer l'impédance entre les deux bornes de cette bobine.In the embodiments described, the mechanical resonator is formed by a balance rotating around an axis of oscillation. In the synchronization modes implemented in the synchronization devices which are shown in Figures 5A to 5C and 28A to 28C , provision is made to periodically trigger the distinct time intervals T P during which the impedance between the terminals of the coil is reduced, that is to say that these time intervals are provided with a time distance T D between them that is constant. The tripping frequency F D of these distinct time intervals is equal to twice the setpoint frequency F0c, equal by definition to the inverse of the setpoint period T0c, divided by a positive integer M, i.e. F D = 2F0c / M. Next, preferably, the distinct time intervals T P have the same value which is expected to be less than the reference half-period, ie T P <T0c / 2. Finally, the synchronization device is arranged so as to generate a short-circuit between the two terminals 28A and 28B of the coil 28 during the distinct time intervals T P in order to reduce the impedance between the two terminals of this coil.

Dans la variante du premier mode de réalisation décrite à l'aide des Figures 5A à 5C, le nombre entier M vaut deux (M=2), de sorte que la fréquence de déclenchement FD est égale à la fréquence de consigne F0c et les distances temporelles TD successives sont égales à la période de consigne T0c. Ensuite, la valeur des intervalles de temps distincts TP est avantageusement inférieure au quart de la période de consigne T0c, soit TP < T0c/4. Dans ce premier mode de réalisation, comme on peut le voir aux Figures 5A à 5C, le dispositif de freinage électromagnétique 26 est agencé de manière qu'une tension induite est engendrée dans la bobine 28 sensiblement sans interruption pour toute oscillation du résonateur mécanique 6 dans la plage de fonctionnement utile de l'oscillateur mécanique formé par ce résonateur mécanique.In the variant of the first embodiment described using the Figures 5A to 5C , the integer M is equal to two (M = 2), so that the tripping frequency F D is equal to the setpoint frequency F0c and the successive time distances T D are equal to the period of setpoint T0c. Then, the value of the distinct time intervals T P is advantageously less than a quarter of the reference period T0c, ie T P <T0c / 4. In this first embodiment, as can be seen in Figures 5A to 5C , the electromagnetic braking device 26 is arranged so that an induced voltage is generated in the coil 28 substantially without interruption for any oscillation of the mechanical resonator 6 in the useful operating range of the mechanical oscillator formed by this mechanical resonator.

Avant de considérer plus en détails les Figures 5A à 5C, le comportement d'un oscillateur mécanique soumis à des impulsions de freinage de courte durée sera premièrement résumé ici, bien qu'un exposé plus détaillé à ce sujet soit donné par la suite. On a observé que, lorsque l'impulsion de freinage est générée entre le début d'une alternance et le passage du résonateur par sa position neutre dans cette alternance, une telle impulsion de freinage induit un déphasage temporel négatif dans l'oscillation du résonateur. Ainsi, la durée de l'alternance concernée est augmentée relativement à la durée T0/2 d'une alternance lors de l'oscillation naturelle de l'oscillateur mécanique. Ceci engendre donc une diminution ponctuelle de la fréquence de l'oscillateur mécanique et permet d'engendrer un certain retard dans la marche de la pièce d'horlogerie pour corriger, le cas échéant, une avance prise par cet oscillateur mécanique. Par contre, lorsque l'impulsion de freinage est générée entre le passage du résonateur par sa position neutre dans une alternance et la fin de cette alternance, une telle impulsion de freinage induit un déphasage temporel positif dans l'oscillation du résonateur. Ainsi, la durée de l'alternance concernée est diminuée relativement à la durée T0/2 d'une alternance lors de l'oscillation naturelle de l'oscillateur mécanique. Ceci engendre donc une augmentation ponctuelle de la fréquence de l'oscillateur mécanique et permet d'engendrer une certaine avance dans la marche de la pièce d'horlogerie pour corriger, le cas échéant, un retard pris par cet oscillateur mécanique.Before considering in more detail the Figures 5A to 5C , the behavior of a mechanical oscillator subjected to short duration braking pulses will first be summarized here, although a more detailed discussion on this subject will be given later. It has been observed that, when the braking pulse is generated between the start of an alternation and the passage of the resonator through its neutral position in this alternation, such a braking pulse induces a negative time phase shift in the oscillation of the resonator. Thus, the duration of the alternation concerned is increased relative to the duration T0 / 2 of an alternation during the natural oscillation of the mechanical oscillator. This therefore generates a punctual reduction in the frequency of the mechanical oscillator and makes it possible to generate a certain delay in the operation of the timepiece in order to correct, if necessary, an advance taken by this mechanical oscillator. On the other hand, when the braking pulse is generated between the passage of the resonator through its neutral position in one half-wave and the end of this half-wave, such a braking pulse induces a positive time phase shift in the oscillation of the resonator. Thus, the duration of the alternation concerned is reduced relative to the duration T0 / 2 of an alternation during the natural oscillation of the mechanical oscillator. This therefore generates a one-off increase in the frequency of the mechanical oscillator and makes it possible to generate a certain advance in the operation of the timepiece in order to correct, if necessary, a delay taken by this mechanical oscillator.

Aux Figures 5A à 5C sont représentées, dans une phase stable de la synchronisation obtenue par le dispositif de synchronisation selon l'invention, les courbes de la position angulaire et de la vitesse angulaire du balancier-spiral 6 ainsi qu'un signal digital de commande Sc engendré dans le circuit de commande 24 et fourni à un interrupteur 40 agencé pour court-circuiter les deux bornes 28A, 28B de la bobine 28 (voir Figures 3 et 4) durant des impulsions 58 qui définissent les intervalles de temps distincts TP. De plus, sur ces figures sont représentés un signal de la tension induite dans la bobine 28, résultant de l'oscillation du résonateur mécanique 6 et des impulsions de court-circuit 58, et un signal du couple de freinage appliqué au résonateur mécanique durant les impulsions de court-circuit. On notera que la phase stable représentée ici intervient suite à une phase transitoire (phase initiale) qui sera décrite par la suite. De manière remarquable, au cours de la phase stable, aussi nommée phase synchrone, la fréquence d'oscillation du résonateur mécanique est asservie à la fréquence de consigne F0c et les première et deuxième parties TB et TA des impulsions de court-circuit 58 présentent un rapport sensiblement constant et défini. Dans cette phase stable, le dispositif de synchronisation stabilise de manière automatique, sans capteur mesurant un paramètre de l'oscillation du résonateur mécanique 6 et sans boucle de rétroaction, la fréquence d'oscillation de ce résonateur mécanique à la fréquence de consigne F0c.To Figures 5A to 5C are shown, in a stable phase of the synchronization obtained by the synchronization device according to the invention, the curves of the angular position and of the angular speed of the sprung balance 6 as well as a digital control signal Sc generated in the circuit control 24 and supplied to a switch 40 arranged to short-circuit the two terminals 28A, 28B of coil 28 (see Figures 3 and 4 ) during pulses 58 which define the distinct time intervals T P. In addition, in these figures are shown a signal of the voltage induced in the coil 28, resulting from the oscillation of the mechanical resonator 6 and short-circuit pulses 58, and a signal of the braking torque applied to the mechanical resonator during short circuit pulses. It will be noted that the stable phase represented here occurs following a transient phase (initial phase) which will be described below. Remarkably, during the stable phase, also called synchronous phase, the oscillation frequency of the mechanical resonator is slaved to the reference frequency F0c and the first and second parts T B and T A of the short-circuit pulses 58 exhibit a substantially constant and defined ratio. In this stable phase, the synchronization device automatically stabilizes, without a sensor measuring a parameter of the oscillation of the mechanical resonator 6 and without a feedback loop, the oscillation frequency of this mechanical resonator at the setpoint frequency F0c.

La Figure 5A correspond à une situation où la fréquence naturelle F0 de l'oscillateur mécanique de la pièce d'horlogerie est supérieure à la fréquence de consigne F0c, de sorte que cette pièce d'horlogerie sans le dispositif de synchronisation présenterait une dérive temporelle positive correspondant à une avance dans la marche de la pièce d'horlogerie. On observe que les impulsions de court-circuit 58 interviennent autour d'une position angulaire extrême, c'est-à-dire que les intervalles de temps distincts TP englobent une inversion du sens du mouvement d'oscillation qui intervient entre une alternance A2 et une alternance A1 de l'oscillation alors que la vitesse de rotation (vitesse angulaire) est nulle. Les périodes d'oscillation sont égales à la période de consigne T0c, mais on remarque que les deux alternances A1 et A2 qui constituent chaque période d'oscillation ne sont pas égales. En effet, l'alternance A1 dure ici plus longtemps que l'alternance A2, car un freinage plus important intervient dans l'alternance A1, avant le passage du résonateur mécanique par sa position neutre (angle 0°), que dans l'alternance A2 après le passage du résonateur mécanique par sa position neutre. On notera qu'aucun couple de freinage n'est appliqué au résonateur mécanique ni après le passage du résonateur mécanique par sa position neutre dans l'alternance A1, ni avant le passage du résonateur mécanique par sa position neutre dans l'alternance A2.The Figure 5A corresponds to a situation where the natural frequency F0 of the mechanical oscillator of the timepiece is greater than the setpoint frequency F0c, so that this timepiece without the synchronization device would exhibit a positive time drift corresponding to a advance in the march of the timepiece. It is observed that the short-circuit pulses 58 intervene around an extreme angular position, that is to say that the distinct time intervals T P include a reversal of the direction of the oscillation movement which occurs between an alternation A2 and an alternation A1 of the oscillation while the speed of rotation (angular speed) is zero. The oscillation periods are equal to the reference period T0c, but it is noted that the two vibrations A1 and A2 which constitute each oscillation period are not equal. In fact, the alternation A1 lasts here longer than the alternation A2, because more braking occurs in the alternation A1, before the passage of the mechanical resonator through its neutral position (angle 0 °), than in the alternation A2 after the mechanical resonator has passed through its neutral position. It will be noted that no braking torque is applied to the mechanical resonator neither after the passage of the mechanical resonator through its neutral position in the half-wave A1, nor before the passage of the mechanical resonator through its neutral position in the half-wave A2.

L'impulsion de freinage est formée de deux petits lobes 50 situés respectivement de chaque côté de l'instant du passage du résonateur mécanique par la position angulaire extrême, en présentant une symétrie centrale relativement à cet instant (les signes mathématiques opposés des deux lobes 50 provient du changement de sens dans le mouvement d'oscillation), et d'un lobe 52 de plus grande amplitude qui intervient dans l'alternance A1 de chaque période d'oscillation, dans la première demi-alternance avant le passage du résonateur mécanique par sa position neutre. Les effets des deux lobes 50 se compensent et n'engendrent donc globalement aucun déphasage dans l'oscillation du résonateur mécanique, alors que le couple de freinage occasionné par le lobe 52 dans chaque alternance A1 engendre une augmentation de la durée de celle-ci, de sorte que la durée de la période d'oscillation concernée est égale à celle de la période de consigne T0c. La fréquence d'oscillation instantanée est ainsi égale à la fréquence de consigne F0c qui est, comme indiqué, inférieure à la fréquence naturelle F0 de l'oscillateur mécanique. L'apparition du lobe 52 seulement dans les alternances A1 résulte du fait que les instants milieu des impulsions de court-circuit 58 interviennent avec un certain retard relativement aux passages du résonateur mécanique par une position angulaire extrême, ceci découlant du fait que la fréquence naturelle F0 de l'oscillateur mécanique est supérieure à la fréquence de consigne F0c. En effet, la partie TB des impulsions 58 intervenant avant le passage du résonateur mécanique par une position extrême est inférieure à la partie TA des impulsions 58 intervenant après ce passage.The braking pulse is formed by two small lobes 50 located respectively on each side of the instant of passage of the mechanical resonator through the extreme angular position, exhibiting central symmetry relative to this instant (the opposite mathematical signs of the two lobes 50 originates from the change of direction in the oscillation movement), and from a lobe 52 of greater amplitude which intervenes in the alternation A1 of each period of oscillation, in the first half-wave before the passage of the mechanical resonator through its neutral position. The effects of the two lobes 50 are compensated for and therefore generally do not generate any phase shift in the oscillation of the mechanical resonator, while the braking torque caused by the lobe 52 in each alternation A1 causes an increase in the duration of the latter, so that the duration of the oscillation period concerned is equal to that of the reference period T0c. The instantaneous oscillation frequency is thus equal to the reference frequency F0c which is, as indicated, lower than the natural frequency F0 of the mechanical oscillator. The appearance of the lobe 52 only in the halfwaves A1 results from the fact that the mid-instants of the short-circuit pulses 58 occur with a certain delay relative to the passages of the mechanical resonator through a position extreme angular, this resulting from the fact that the natural frequency F0 of the mechanical oscillator is greater than the reference frequency F0c. In fact, the part T B of the pulses 58 occurring before the passage of the mechanical resonator through an extreme position is less than the part T A of the pulses 58 occurring after this passage.

La Figure 5B correspond à une situation où la fréquence naturelle F0 de l'oscillateur mécanique de la pièce d'horlogerie est inférieure à la fréquence de consigne F0c, de sorte que cette pièce d'horlogerie sans le dispositif de synchronisation présenterait une dérive temporelle négative correspondant à un retard dans la marche de la pièce d'horlogerie. On observe encore que les impulsions de court-circuit 58 interviennent autour d'une position angulaire extrême et que l'alternance A1 dure plus longtemps que l'alternance A2, car un freinage plus important intervient dans l'alternance A2, ici après le passage du résonateur mécanique par sa position neutre (angle 0°), que dans l'alternance A1 avant le passage du résonateur mécanique par sa position neutre. Comme dans la situation précédente, aucun couple de freinage n'est appliqué au résonateur mécanique ni après le passage du résonateur mécanique par sa position neutre dans l'alternance A1, ni avant le passage du résonateur mécanique par sa position neutre dans l'alternance A2. L'impulsion de freinage est ici formée des deux petits lobes 50 situés respectivement de chaque côté de la position angulaire extrême et d'un lobe 54 de plus grande amplitude qui intervient dans l'alternance A2 de chaque période d'oscillation, dans la seconde demi-alternance après le passage du résonateur mécanique par sa position neutre.The Figure 5B corresponds to a situation where the natural frequency F0 of the mechanical oscillator of the timepiece is lower than the setpoint frequency F0c, so that this timepiece without the synchronization device would exhibit a negative time drift corresponding to a delay in the progress of the timepiece. It is also observed that the short-circuit pulses 58 occur around an extreme angular position and that the alternation A1 lasts longer than the alternation A2, because a greater braking occurs in the alternation A2, here after the passage of the mechanical resonator by its neutral position (angle 0 °), than in the alternation A1 before the passage of the mechanical resonator through its neutral position. As in the previous situation, no braking torque is applied to the mechanical resonator neither after the passage of the mechanical resonator through its neutral position in the half-wave A1, nor before the passage of the mechanical resonator through its neutral position in the half-wave A2 . The braking pulse is here formed of two small lobes 50 located respectively on each side of the extreme angular position and of a lobe 54 of greater amplitude which occurs in the alternation A2 of each oscillation period, in the second half-wave after the mechanical resonator has passed through its neutral position.

Les effets des deux lobes 50 se compensent toujours, alors que le couple de freinage occasionné par le lobe 54 dans chaque alternance A2 engendre une diminution de la durée de celle-ci, de sorte que la durée de la période d'oscillation concernée est égale à celle de la période de consigne T0c. La fréquence d'oscillation instantanée est ainsi égale à la fréquence de consigne F0c qui est, comme indiqué, supérieure à la fréquence naturelle F0 de l'oscillateur mécanique. L'apparition du lobe 54 seulement dans les alternances A2 résulte du fait que les instants milieu des impulsions de court-circuit 58 interviennent ici avec une certaine avance relativement aux passages du résonateur mécanique par une position angulaire extrême, ceci découlant du fait que la fréquence naturelle F0 de l'oscillateur mécanique est inférieure à la fréquence de consigne F0c. En effet, la partie TA des impulsions 58 intervenant après le passage du résonateur mécanique par une position extrême est inférieure à la partie TB des impulsions 58 intervenant avant ce passage.The effects of the two lobes 50 are always compensated for, while the braking torque caused by the lobe 54 in each alternation A2 causes a reduction in the duration of the latter, so that the duration of the period of oscillation concerned is equal to that of the setpoint period T0c. The instantaneous oscillation frequency is thus equal to the reference frequency F0c which is, as indicated, greater than the natural frequency F0 of the mechanical oscillator. The appearance of the lobe 54 only in the alternations A2 results from the fact that the mid-instants of the short-circuit pulses 58 occur here with a certain advance relative to the passages of the mechanical resonator through an extreme angular position, this resulting from the fact that the frequency natural F0 of the mechanical oscillator is lower than the reference frequency F0c. In fact, the part T A of the pulses 58 occurring after the passage of the mechanical resonator through an extreme position is less than the part T B of the pulses 58 occurring before this passage.

Pour être complet, on a représenté à la Figure 5C une situation où la fréquence naturelle F0 de l'oscillateur mécanique de la pièce d'horlogerie est égale à la fréquence de consigne F0c. Il résulte de cette situation que la partie TA des impulsions 58 intervenant après le passage du résonateur mécanique par une position angulaire extrême est égale à la partie TB des impulsions 58 intervenant avant ce passage, de sorte que les parties 50A des impulsions de freinage intervenant dans les alternances A2 juste avant le passage du résonateur mécanique par une position extrême ont un même profil, avec un signe mathématique opposé, que les parties 50B des impulsions de freinage intervenant dans les alternances A1 juste après ce passage et présentent ainsi une symétrie centrale relativement à l'instant du passage par la position angulaire extrême concernée. Par conséquent, les effets des parties 50A et 50B des impulsions de freinage intervenant au court de chaque impulsion de court-circuit 58, et donc de chaque intervalle de temps distincts TP, se compensent mutuellement de sorte que, dans ce cas particulier, le dispositif de synchronisation n'influence pas la marche de la pièce d'horlogerie, laquelle est précise dans la mesure où elle est naturellement synchrone avec la base de temps de référence 22.For the sake of completeness, we have shown Figure 5C a situation where the natural frequency F0 of the mechanical oscillator of the timepiece is equal to the setpoint frequency F0c. It follows from this situation that the part T A of the pulses 58 occurring after the passage of the mechanical resonator through an extreme angular position is equal to the part T B of the pulses 58 occurring before this passage, so that the parts 50A of the braking pulses intervening in the halfwaves A2 just before the passage of the mechanical resonator through an extreme position have the same profile, with an opposite mathematical sign, that the parts 50B of the braking pulses intervening in the halfwaves A1 just after this passage and thus have a central symmetry relative to the instant of passage through the extreme angular position concerned. Consequently, the effects of the parts 50A and 50B of the braking pulses occurring during the short of each short-circuit pulse 58, and therefore of each separate time interval T P , compensate each other so that, in this particular case, the synchronization device does not influence the operation of the timepiece, which is precise insofar as it is naturally synchronous with the reference time base 22.

La Figure 3 est un schéma qui montre une première variante de réalisation 24A du circuit de commande 24 du dispositif de synchronisation 20. Le circuit de commande 24A est relié d'une part au circuit d'horloge 36 et, d'autre part, à la bobine 28. Le circuit d'horloge entretient le résonateur à quartz 35 et génère en retour un signal d'horloge SR à une fréquence de référence, notamment égale à 215 Hz. Le signal d'horloge SR est fourni successivement à deux diviseurs DIV1 et DIV2 (ces deux diviseurs pouvant former deux étages d'un même diviseur). Le Diviseur DIV2 fournit un signal périodique SD directement à un minuteur 38 ('Timer'). A chaque détection d'une transition caractéristique dans le signal périodique SD, le minuteur rend passant l'interrupteur 40 durant un intervalle de temps TP, pour court-circuiter la bobine 28, en lui fournissant un signal de commande Sc, ayant une fréquence de déclenchement FD identique à celle du signal périodique SD, qui déclenche périodiquement le minuteur 38. Comme la durée des impulsions de freinage (correspondant à celle des impulsions de court-circuit) est prévue ici de préférence inférieure à T0c/4 (par exemple T0c = 250 ms) et même bien inférieure à cette valeur dans le cas considéré, notamment entre 10 ms et 30 ms, le minuteur 38 reçoit un signal de cadencement du diviseur DIV1.The Figure 3 is a diagram which shows a first variant embodiment 24A of the control circuit 24 of the synchronization device 20. The control circuit 24A is connected on the one hand to the clock circuit 36 and, on the other hand, to the coil 28. The clock circuit maintains the quartz resonator 35 and in return generates a clock signal S R at a reference frequency, in particular equal to 2 15 Hz. The signal d The clock S R is supplied successively to two dividers DIV1 and DIV2 (these two dividers being able to form two stages of the same divider). Divider DIV2 supplies a periodic signal S D directly to a timer 38 ('Timer'). On each detection of a characteristic transition in the periodic signal S D , the timer turns on the switch 40 during a time interval T P , to short-circuit the coil 28, by supplying it with a control signal Sc, having a trigger frequency F D identical to that of the periodic signal S D , which periodically triggers the timer 38. Since the duration of the braking pulses (corresponding to that of the short-circuit pulses) is provided here preferably less than T0c / 4 ( for example T0 c = 250 ms) and even much lower than this value in the case considered, in particular between 10 ms and 30 ms, the timer 38 receives a timing signal from the divider DIV1.

Par exemple, dans le cas d'une fréquence de consigne F0c = 4 Hz et d'une fréquence de déclenchement FD égale à cette fréquence de consigne, comme dans l'exemple donné aux Figures 5A à 5C, le diviseur DIV2 fournit directement des impulsions de déclenchement au minuteur à la fréquence FD = 4 Hz. Si il est prévu de fournir une impulsion de court-circuit chaque seconde, c'est-à-dire toutes les quatre périodes d'oscillation, et d'avoir ainsi une distance temporelle DT = 1 s entre les intervalles de temps distincts TP où l'impédance entre les bornes 28A et 28B de la bobine est diminuée, alors on peut utiliser la sortie terminale d'un circuit diviseur horloger classique qui fournit, à la sortie de l'étage terminal de sa chaîne de division par deux, un signal périodique à la fréquence de 1 Hz. Pour une fréquence de déclenchement FD = 4 Hz mentionnée ci-avant, on peut aussi utiliser un circuit diviseur horloger classique, mais en prenant en sortie le signal fourni deux étages avant la sortie terminale dans la chaîne de division. On remarquera que le circuit de commande 24A du dispositif de synchronisation est très simple. Il peut être miniaturisé aisément et sa consommation électrique est très faible. Aucun microcontrôleur n'est nécessaire.For example, in the case of a reference frequency F0c = 4 Hz and a tripping frequency F D equal to this reference frequency, as in the example given in Figures 5A to 5C , the divider DIV2 directly supplies trigger pulses to the timer at the frequency F D = 4 Hz. If it is intended to provide a short-circuit pulse every second, that is to say every four periods of oscillation , and thus to have a temporal distance D T = 1 s between the distinct time intervals T P where the impedance between the terminals 28A and 28B of the coil is reduced, then we can use the terminal output of a divider circuit classic watchmaker who supplies, at the output of the terminal stage of his division by two chain, a periodic signal at a frequency of 1 Hz. For a triggering frequency F D = 4 Hz mentioned above, it is also possible to use a conventional clockwork divider circuit, but taking as output the signal supplied two stages before the terminal output in the division chain. It will be noted that the control circuit 24A of the synchronization device is very simple. It can be miniaturized easily and its power consumption is very low. No microcontroller is needed.

On notera que dans un mode particulier de synchronisation, on peut prévoir de générer les impulsions de court-circuit par groupes, par exemple une succession de séquences avec quatre impulsions dans quatre périodes d'oscillation successives puis aucune impulsion pendant dix secondes, soit pendant quarante périodes pour une fréquence F0c = 4 Hz. Dans un autre mode de synchronisation, on peut prévoir de varier les intervalles de temps TP (donc la durée des impulsions de court-circuit), par exemple en prévoyant une durée plus longue dans une phase initiale, pour engendrer un couple de freinage plus important, que dans un régime nominal qui lui succède. On notera que procédé de synchronisation est robuste. Par exemple, il n'est pas nécessaire que les intervalles de temps TP soient mesurés précisément, c'est-à-dire avec autant de précision que les distances temporelles DT entre les débuts de ces intervalles de temps. Ainsi, on pourrait prévoir un minuteur avec son propre circuit de cadencement, moins précis que la base de temps de référence 22.It will be noted that in a particular mode of synchronization, provision can be made to generate the short-circuit pulses in groups, for example a succession of sequences with four pulses in four successive oscillation periods then no pulse for ten seconds, i.e. for forty periods for a frequency F0c = 4 Hz. In another synchronization mode, provision can be made to vary the time intervals T P (therefore the duration of the short-circuit pulses), for example by providing a longer duration in a phase initial, to generate a greater braking torque, than in a nominal speed which follows it. It will be noted that the synchronization method is robust. For example, it is not necessary for the time intervals T P to be measured precisely, that is to say with as much precision as the time distances D T between the beginnings of these time intervals. Thus, one could provide a timer with its own timing circuit, less precise than the reference time base 22.

Dans une deuxième variante de réalisation 24B, montrée à la Figure 4, du circuit de commande 24 du dispositif de synchronisation 20, les diviseurs DIV1 et DIV2 forment ensemble un circuit diviseur horloger classique qui fournit donc en sortie un signal périodique SD ayant une fréquence égale à 1Hz. Ce signal SD est fourni à un compteur à N qui définit un diviseur additionnel, lequel génère le signal périodique SP qu'il fournit au minuteur 38. Le signal de commande Sc fourni par le minuteur à l'interrupteur 40 présente une fréquence de déclenchement FD égale à celle du signal périodique SP. Ainsi, dans un exemple où la fréquence de consigne F0c de l'oscillateur mécanique est égal à 4 Hz (F0c = 4 Hz) et le nombre N est égal à huit, la fréquence de déclenchement FD des signaux périodiques SP et Sc est alors de 1/8 Hz, ce qui veut dire qu'il est prévu une impulsion de freinage (impulsion de court-circuit) par 32 périodes de consigne T0c, soit environ une impulsion après 32 périodes de l'oscillateur mécanique dans la mesure où sa fréquence naturelle F0 est prévue proche de la fréquence de consigne F0c.In a second variant embodiment 24B, shown in Figure 4 , of the control circuit 24 of the synchronization device 20, the dividers DIV1 and DIV2 together form a conventional clockwork divider circuit which therefore provides at output a periodic signal S D having a frequency equal to 1 Hz. This signal S D is supplied to a counter at N which defines an additional divider, which generates the periodic signal S P which it supplies to the timer 38. The control signal Sc supplied by the timer to the switch 40 has a frequency of trigger F D equal to that of the periodic signal S P. Thus, in an example where the reference frequency F0c of the mechanical oscillator is equal to 4 Hz (F0c = 4 Hz) and the number N is equal to eight, the trigger frequency F D of the periodic signals S P and Sc is then 1/8 Hz, which means that there is a braking pulse (short-circuit pulse) per 32 setpoint periods T0c, i.e. about one pulse after 32 periods of the mechanical oscillator insofar as its natural frequency F0 is expected to be close to the reference frequency F0c.

A la Figure 4, le dispositif de synchronisation comprend en outre un dispositif d'alimentation 44 formé par un circuit redresseur 46 (du type simple ou double alternance) et par une capacité de stockage CAL reliée à la masse (potentiel de référence du dispositif de synchronisation). Le circuit redresseur est constamment relié en entrée à une borne de la bobine de sorte qu'en dehors des impulsions de court-circuit il peut redresser une tension induite dans la bobine 28 par les aimants permanents 30,32. Cette tension induite redressée et accumulée dans la capacité de stockage sert à l'alimentation électrique du dispositif de synchronisation dans la plage de fonctionnement utile de l'oscillateur mécanique. Le circuit de commande 24B du dispositif de synchronisation est très simple et autonome. Il consomme peu et prend un minimum d'énergie à l'oscillateur mécanique pour effectuer efficacement la synchronisation selon l'invention.To the Figure 4 , the synchronization device further comprises a power supply device 44 formed by a rectifier circuit 46 (of the single or full-wave type) and by a storage capacitor C AL connected to ground (reference potential of the synchronization device). The rectifier circuit is constantly connected at the input to a terminal of the coil so that apart from the short-circuit pulses it can rectify a voltage induced in the coil 28 by the permanent magnets 30, 32. This induced voltage, rectified and accumulated in the storage capacity, is used for the power supply of the synchronization device in the useful operating range of the mechanical oscillator. The control circuit 24B of the synchronization device is very simple and autonomous. It consumes little and takes a minimum of energy from the mechanical oscillator to efficiently perform the synchronization according to the invention.

On décrira ci-après, en référence aux Figures 6 et 7, un phénomène physique remarquable mis en lumière dans le cadre de développements ayant conduit à la présente invention et intervenant dans le procédé de synchronisation implémenté dans la pièce d'horlogerie selon l'invention. La compréhension de ce phénomène permettra de mieux comprendre la synchronisation obtenue par le dispositif de synchronisation régulant la marche du mouvement mécanique.Hereinafter, with reference to Figures 6 and 7 , a remarkable physical phenomenon brought to light in the context of developments which led to the present invention and which intervenes in the synchronization method implemented in the timepiece according to the invention. Understanding this phenomenon will make it possible to better understand the synchronization obtained by the synchronization device regulating the rate of the mechanical movement.

Aux Figures 6 et 7, le premier graphe indique l'instant tP1 auquel une impulsion de freinage P1, respectivement P2 est appliquée au résonateur mécanique considéré pour effectuer une correction de la marche du mécanisme qui est cadencée par l'oscillateur mécanique formé par ce résonateur. Les deux derniers graphes montrent respectivement la vitesse angulaire (valeurs en radian par seconde : [rad/s] ) et la position angulaire (valeurs en radian : [rad]) de l'organe oscillant (par la suite aussi 'le balancier') du résonateur mécanique au cours du temps. Les courbes 90 et 92 correspondent respectivement à la vitesse angulaire et à la position angulaire du balancier oscillant librement (oscillation à sa fréquence naturelle) avant l'intervention d'une impulsion de freinage. Après l'impulsion de freinage sont représentées les courbes de vitesse 90a et 90b correspondant au comportement du résonateur respectivement dans le cas perturbé par l'impulsion de freinage et le cas non perturbé. De même, les courbes de position 92a et 92b correspondent au comportement du résonateur respectivement dans le cas perturbé par l'impulsion de freinage et le cas non perturbé. Aux figures, les instants tP1 et tP2 auxquels interviennent les impulsions de freinage P1 et P2 correspondent aux positions temporelles du milieu de ces impulsions. Cependant, on considère le début de l'impulsion de freinage et sa durée comme les deux paramètres qui définissent temporellement une impulsion de freinage.To Figures 6 and 7 , the first graph indicates the instant t P1 at which a braking pulse P1, respectively P2 is applied to the mechanical resonator considered in order to correct the rate of the mechanism which is clocked by the mechanical oscillator formed by this resonator. The last two graphs show respectively the angular velocity (values in radians per second: [rad / s]) and the angular position (values in radians: [rad]) of the oscillating member (subsequently also 'the balance ') of the mechanical resonator over time. The curves 90 and 92 correspond respectively to the angular speed and to the angular position of the freely oscillating balance (oscillation at its natural frequency) before the intervention of a braking pulse. After the braking pulse, the speed curves 90a and 90b are shown corresponding to the behavior of the resonator respectively in the case disturbed by the braking pulse and in the undisturbed case. Likewise, the position curves 92a and 92b correspond to the behavior of the resonator respectively in the case disturbed by the braking pulse and the undisturbed case. In the figures, the instants t P1 and t P2 at which the braking pulses P1 and P2 intervene correspond to the temporal positions of the middle of these pulses. However, the start of the braking pulse and its duration are considered as the two parameters which temporally define a braking pulse.

Par impulsion de freinage, on comprend l'application momentanée d'un couple de force au résonateur mécanique qui freine son organe oscillant (balancier), c'est-à-dire qui s'oppose au mouvement d'oscillation de cet organe oscillant. Dans le cas d'un couple non nul qui est variable, la durée de l'impulsion est définie généralement comme la partie de cette impulsion qui présente un couple de force significatif pour freiner le résonateur mécanique. On notera qu'une impulsion de freinage peut présenter une forte variation. Elle peut même être hachée et former une succession d'impulsions plus courtes.By braking pulse, one understands the momentary application of a torque of force to the mechanical resonator which brakes its oscillating member (balance), that is to say which opposes the oscillating movement of this oscillating member. In the case of a non-zero torque which is variable, the duration of the pulse is generally defined as the part of this pulse which presents a significant force torque to brake the mechanical resonator. It will be noted that a braking pulse can exhibit a strong variation. It can even be chopped and form a succession of shorter pulses.

Chaque période d'oscillation libre T0 de l'oscillateur mécanique définit une première alternance A01 suivie d'une deuxième alternance A02 intervenant chacune entre deux positions extrêmes définissant l'amplitude d'oscillation de cet oscillateur mécanique, chaque alternance ayant une durée identique T0/2 et présentant un passage du résonateur mécanique par sa position zéro à un instant médian. Les deux alternances successives d'une oscillation définissent deux demi-périodes au cours desquelles le balancier subit respectivement un mouvement d'oscillation dans un sens et ensuite un mouvement d'oscillation dans l'autre sens. En d'autres termes, une alternance correspond ici à un balancement du balancier dans un sens ou l'autre sens entre ses deux positions extrêmes définissant l'amplitude d'oscillation. De manière générale, on observe une variation de la période d'oscillation au cours de laquelle interviennent une impulsion de freinage et donc une variation ponctuelle de la fréquence de l'oscillateur mécanique. De fait, la variation temporelle concerne la seule alternance au cours de laquelle intervient l'impulsion de freinage. Par instant médian', on comprend un instant intervenant sensiblement au milieu des alternances. C'est précisément le cas lorsque l'oscillateur mécanique oscille librement. Par contre, pour les alternances où interviennent des impulsions de régulation, cet instant médian ne correspond plus exactement au milieu de la durée de chacune de ces alternances du fait de la perturbation de l'oscillateur mécanique engendrée par le dispositif de régulation.Each period of free oscillation T0 of the mechanical oscillator defines a first half-wave A0 1 followed by a second half-wave A0 2 each occurring between two extreme positions defining the amplitude of oscillation of this mechanical oscillator, each half-wave having an identical duration T0 / 2 and having a passage of the mechanical resonator through its zero position at a median instant. The two successive alternations of an oscillation define two half-periods during which the balance respectively undergoes an oscillating movement in one direction and then an oscillating movement in the other direction. In other words, an alternation corresponds here to a swing of the balance in one direction or the other direction between its two extreme positions defining the amplitude of oscillation. In general, there is a variation in the oscillation period during which a braking pulse occurs and therefore a punctual variation in the frequency of the mechanical oscillator. In fact, the temporal variation concerns the only half-wave during which the braking pulse occurs. By median instant ', we understand an instant occurring substantially in the middle of the alternations. This is precisely the case when the mechanical oscillator oscillates freely. On the other hand, for the half-waves in which regulation pulses intervene, this median instant no longer corresponds exactly to the middle of the duration of each of these half-waves due to the disturbance of the mechanical oscillator generated by the regulation device.

On décrira premièrement le comportement de l'oscillateur mécanique dans un premier cas de correction de sa fréquence d'oscillation, qui correspond à celui montré à la Figure 6. Après une première période T0 commence alors une nouvelle période T1, respectivement une nouvelle alternance A1 au cours de laquelle intervient une impulsion de freinage P1. A l'instant initial tD1 débute l'alternance A1, le résonateur 14 occupant une position angulaire positive maximale correspondant à une position extrême. Ensuite intervient l'impulsion de freinage P1 à l'instant tP1 qui est situé avant l'instant médian tN1 auquel le résonateur passe par sa position neutre et donc également avant l'instant médian correspondant tN0 de l'oscillation non perturbée. Finalement l'alternance A1 se termine à l'instant final tF1. L'impulsion de freinage est déclenchée après un intervalle de temps TA1 suivant l'instant tD1 marquant le début de l'alternance A1. La durée TA1 est inférieure à une demi-alternance T0/4 diminuée de la durée de l'impulsion de freinage P1. Dans l'exemple donné, la durée de cette impulsion de freinage est bien inférieure à une demi-alternance T0/4.We will first describe the behavior of the mechanical oscillator in a first case of correction of its oscillation frequency, which corresponds to that shown in Figure 6 . After a first period T0 then begins a new period T1, respectively a new alternation A1 during which a braking pulse P1 occurs. At the initial instant t D1 the alternation A1 begins, the resonator 14 occupying a maximum positive angular position corresponding to an extreme position. Then the braking pulse P1 intervenes at the instant t P1 which is situated before the median instant t N1 at which the resonator passes through its neutral position and therefore also before the corresponding median instant t N0 of the undisturbed oscillation. Finally, the alternation A1 ends at the final instant t F1 . The braking pulse is triggered after a time interval T A1 following the instant t D1 marking the start of the alternation A1. The duration T A1 is less than one half-wave T0 / 4 minus the duration of the pulse of braking P1. In the example given, the duration of this braking pulse is much less than one half-wave T0 / 4.

Dans ce premier cas, l'impulsion de freinage est donc générée entre le début d'une alternance et le passage du résonateur par sa position neutre dans cette alternance. La vitesse angulaire en valeur absolue diminue au moment de l'impulsion de freinage P1. Une telle impulsion de freinage induit un déphasage temporel négatif TC1 dans l'oscillation du résonateur, comme le montrent à la Figure 6 les deux courbes 90a et 90b de la vitesse angulaire et aussi les deux courbes 92a et 92b de la position angulaire, c'est-à-dire un retard relativement au signal théorique non perturbé (représenté en traits interrompus). Ainsi, la durée de l'alternance A1 est augmentée d'un intervalle de temps TC1. La période d'oscillation T1, comprenant l'alternance A1, est donc prolongée relativement à la valeur T0. Ceci engendre une diminution ponctuelle de la fréquence de l'oscillateur mécanique et un ralentissement momentané du mécanisme associé dont la marche est cadencée par cet oscillateur mécanique.In this first case, the braking pulse is therefore generated between the start of a half-wave and the passage of the resonator through its neutral position in this half-wave. The angular speed in absolute value decreases at the moment of the braking pulse P1. Such a braking pulse induces a negative time phase shift T C1 in the oscillation of the resonator, as shown in Figure 6 the two curves 90a and 90b of the angular speed and also the two curves 92a and 92b of the angular position, that is to say a delay relative to the theoretical undisturbed signal (shown in broken lines). Thus, the duration of the alternation A1 is increased by a time interval T C1 . The oscillation period T1, comprising the alternation A1, is therefore prolonged relative to the value T0. This generates a punctual reduction in the frequency of the mechanical oscillator and a momentary slowing down of the associated mechanism, the operation of which is clocked by this mechanical oscillator.

En référence à la Figure 7, on décrira ci-après le comportement de l'oscillateur mécanique dans un deuxième cas de correction de sa fréquence d'oscillation. Après une première période T0 commence alors une nouvelle période d'oscillation T2, respectivement une alternance A2 au cours de laquelle intervient une impulsion de freinage P2. A l'instant initial tD2 débute l'alternance A2, le résonateur mécanique étant alors dans une position extrême (position angulaire négative maximale). Après un quart de période T0/4 correspondant à une demi-alternance, le résonateur atteint sa position neutre à l'instant médian tN2. Ensuite intervient l'impulsion de freinage P2 à l'instant tP2 qui est situé dans l'alternance A2 après l'instant médian tN2 auquel le résonateur passe par sa position neutre. Finalement, après l'impulsion freinage P2, cette alternance A2 se termine à l'instant final tF2 auquel le résonateur occupe à nouveau une position extrême (position angulaire positive maximale dans la période T2) et donc également avant l'instant final correspondant tF0 de l'oscillation non perturbée. L'impulsion de freinage est déclenchée après un intervalle de temps TA2 suivant l'instant initial tD2 de l'alternance A2. La durée TA2 est supérieure à une demi-alternance T0/4 et inférieure à une alternance T0/2 diminuée de la durée de l'impulsion de freinage P2. Dans l'exemple donné, la durée de cette impulsion de freinage est bien inférieure à une demi-alternance.With reference to the Figure 7 , the behavior of the mechanical oscillator will be described below in a second case of correction of its oscillation frequency. After a first period T0 then begins a new period of oscillation T2, respectively an alternation A2 during which a braking pulse P2 occurs. At the initial instant t D2 the alternation A2 begins, the mechanical resonator then being in an extreme position (maximum negative angular position). After a quarter of a period T0 / 4 corresponding to a half-wave, the resonator reaches its neutral position at the median instant t N2 . Then comes the braking pulse P2 at the instant t P2 which is located in the halfwave A2 after the median instant t N2 at which the resonator passes through its neutral position. Finally, after the braking pulse P2, this alternation A2 ends at the final instant t F2 at which the resonator again occupies an extreme position (maximum positive angular position in the period T2) and therefore also before the final instant corresponding t F0 of the undisturbed oscillation. The braking pulse is triggered after a time interval T A2 following the initial instant t D2 of the alternation A2. The duration T A2 is greater than one half-wave T0 / 4 and less than one half-wave T0 / 2 reduced by the duration of the braking pulse P2. In the example given, the duration of this braking pulse is much less than half a wave.

Dans le deuxième cas considéré, l'impulsion de freinage est donc générée, dans une alternance, entre l'instant médian auquel le résonateur passe par sa position neutre (position zéro) et l'instant final auquel se termine cette alternance. La vitesse angulaire en valeur absolue diminue au moment de l'impulsion de freinage P2. De manière remarquable, l'impulsion de freinage induit ici un déphasage temporel positif TC2 dans l'oscillation du résonateur, comme le montrent à la Figure 4 les deux courbes 90b et 90c de la vitesse angulaire et aussi les courbes 92b et 92c de la position angulaire, soit une avance relativement au signal théorique non perturbé (représenté en traits interrompus). Ainsi, la durée de l'alternance A2 est diminuée de l'intervalle de temps TC2. La période d'oscillation T2 comprenant l'alternance A2 est donc plus courte que la valeur T0. Ceci engendre par conséquent une augmentation ponctuelle de la fréquence de l'oscillateur mécanique et une accélération momentanée du mécanisme associé dont la marche est cadencée par cet oscillateur mécanique. Ce phénomène est surprenant et non intuitif, raison pour laquelle l'homme du métier l'a ignoré par le passé. En effet, obtenir une accélération du mécanisme par une impulsion de freinage est a priori étonnant, mais tel est bien le cas lorsque cette marche est cadencée par un oscillateur mécanique et que l'impulsion de freinage est appliquée à son résonateur.In the second case considered, the braking pulse is therefore generated, in an alternation, between the median instant at which the resonator passes through its neutral position (zero position) and the final instant at which this alternation ends. The angular speed in absolute value decreases at the moment of the braking pulse P2. Remarkably, the braking pulse here induces a positive time phase shift T C2 in the oscillation of the resonator, as shown in Figure 4 the two curves 90b and 90c of the angular speed and also the curves 92b and 92c of the angular position, ie an advance relative to the theoretical undisturbed signal (shown in broken lines). Thus, the duration of the alternation A2 is reduced by the time interval T C2 . The oscillation period T2 including the alternation A2 is therefore shorter than the value T0. This consequently generates a punctual increase in the frequency of the mechanical oscillator and a momentary acceleration of the associated mechanism, the operation of which is clocked by this mechanical oscillator. This phenomenon is surprising and not intuitive, which is why those skilled in the art have ignored it in the past. Indeed, obtaining an acceleration of the mechanism by a braking pulse is a priori astonishing, but such is the case when this rate is clocked by a mechanical oscillator and the braking pulse is applied to its resonator.

Le phénomène physique susmentionné pour des oscillateurs mécaniques intervient dans le procédé de synchronisation implémenté dans une pièce d'horlogerie selon l'invention. Contrairement à l'enseignement général dans le domaine horloger, il est possible non seulement de diminuer la fréquence d'un oscillateur mécanique par des impulsions de freinage, mais il est aussi possible d'augmenter la fréquence d'un tel oscillateur mécanique également par des impulsions de freinage. L'homme du métier s'attend à pouvoir pratiquement seulement réduire la fréquence d'un oscillateur mécanique par des impulsions de freinage et, comme corolaire, à pouvoir seulement augmenter la fréquence d'un tel oscillateur mécanique par l'application d'impulsions motrices lors d'un apport d'énergie à cet oscillateur. Une telle intuition, qui s'est imposée dans le domaine horloger et vient donc de prime à bord à l'esprit d'un homme du métier, s'avère fausse pour un oscillateur mécanique. Ainsi, comme cela sera exposé par la suite en détail, il est possible de synchroniser, via un oscillateur auxiliaire définissant un oscillateur maître, un oscillateur mécanique par ailleurs très précis, qu'il présente momentanément une fréquence légèrement trop haute ou trop basse. On peut donc corriger une fréquence trop haute ou une fréquence trop basse seulement au moyen d'impulsions de freinage. En résumé, l'application d'un couple de freinage pendant une alternance de l'oscillation d'un balancier-spiral provoque un déphasage négatif ou positif dans l'oscillation de ce balancier-spiral selon que ce couple de freinage est appliqué respectivement avant ou après le passage du balancier-spiral par sa position neutre.The aforementioned physical phenomenon for mechanical oscillators occurs in the synchronization method implemented in a timepiece according to the invention. Unlike general education in the watchmaking field, it is not only possible to reduce the frequency of a mechanical oscillator by braking pulses, but it is also possible to increase the frequency of such a mechanical oscillator also by braking pulses. Those skilled in the art expects to be able to reduce the frequency of a mechanical oscillator practically only by braking pulses and, as a corollary, to be able only to be able to increase the frequency of such a mechanical oscillator by the application of driving pulses. when energy is supplied to this oscillator. Such an intuition, which has prevailed in the watchmaking field and therefore comes first on board in the mind of a person skilled in the art, turns out to be false for a mechanical oscillator. Thus, as will be explained in detail below, it is possible to synchronize, via an auxiliary oscillator defining a master oscillator, a mechanical oscillator which is moreover very precise, whether it momentarily presents a frequency that is slightly too high or too low. It is therefore possible to correct too high a frequency or too low a frequency only by means of braking pulses. In summary, the application of a braking torque during an alternation of the oscillation of a sprung balance causes a negative or positive phase shift in the oscillation of this sprung balance depending on whether this braking torque is applied respectively before or after the sprung balance has passed through its neutral position.

Le procédé de synchronisation résultant du dispositif de correction incorporé dans une pièce d'horlogerie selon l'invention est décrit ci-après. A la Figure 8A est montrée la position angulaire (en degrés) d'un résonateur mécanique horloger oscillant avec une amplitude de 300° au cours d'une période d'oscillation de 250 ms. A la Figure 8B est montrée l'erreur journalière engendrée par des impulsions de freinage d'une milliseconde (1 ms) appliquées dans des périodes d'oscillation successives du résonateur mécanique en fonction de l'instant de leur application à l'intérieur de ces périodes et donc en fonction de la position angulaire du résonateur mécanique. Ici, on part du fait que l'oscillateur mécanique fonctionne librement à une fréquence propre de 4 Hz (cas non perturbé). Trois courbes sont données respectivement pour trois couples de force (100 nNm, 300 nNm et 500 nNm) appliqués par chaque impulsion de freinage. Le résultat confirme le phénomène physique exposé précédemment, à savoir qu'une impulsion de freinage intervenant dans le premier quart de période ou le troisième quart de période engendre un retard provenant d'une diminution de la fréquence de l'oscillateur mécanique, alors qu'une impulsion de freinage intervenant dans le deuxième quart de période ou le quatrième quart de période engendre une avance provenant d'une augmentation de la fréquence de l'oscillateur mécanique. Ensuite, on observe que, pour un couple de force donné, l'erreur journalière est égale à zéro pour une impulsion de freinage intervenant à la position neutre du résonateur, cette erreur journalière augmentant (en valeur absolue) à mesure qu'on s'approche d'une position extrême de l'oscillation. A cette position extrême où la vitesse du résonateur passe par zéro et où le sens du mouvement change, il y a une brusque inversion du signe de l'erreur journalière. Finalement, à la Figure 8C est donnée la puissance de freinage consommée pour les trois valeurs de couple de force susmentionnées en fonction de l'instant d'application de l'impulsion de freinage au cours d'une période d'oscillation. Comme la vitesse diminue en s'approchant des positions extrêmes du résonateur, la puissance de freinage diminue. Ainsi, alors que l'erreur journalière engendrée augmente en s'approchant des positions extrêmes, la puissance de freinage nécessaire (et donc l'énergie perdue par l'oscillateur) diminue de manière importante.The synchronization method resulting from the correction device incorporated in a timepiece according to the invention is described below. To the Figure 8A is shown the angular position (in degrees) of a mechanical clock resonator oscillating with an amplitude of 300 ° during an oscillation period of 250 ms. To the Figure 8B is shown the daily error generated by braking pulses of one millisecond (1 ms) applied in successive oscillation periods of the mechanical resonator as a function of the instant of their application within these periods and therefore in function of the angular position of the mechanical resonator. Here, we start from the fact that the mechanical oscillator works freely at a natural frequency of 4 Hz (undisturbed case). Three curves are given respectively for three pairs of force (100 nNm, 300 nNm and 500 nNm) applied by each braking pulse. The result confirms the physical phenomenon explained previously, namely that a braking pulse occurring in the first quarter of a period or the third quarter of a period generates a delay resulting from a decrease in the frequency of the mechanical oscillator, whereas a braking pulse occurring in the second quarter of a period or the fourth quarter of a period generates an advance originating from an increase in the frequency of the mechanical oscillator. Then, it is observed that, for a given torque of force, the daily error is equal to zero for a braking pulse occurring at the neutral position of the resonator, this daily error increasing (in absolute value) as we increase approaching an extreme position of the oscillation. At this extreme position where the speed of the resonator passes through zero and where the direction of movement changes, there is a sudden reversal of the sign of the daily error. Finally, at the Figure 8C The braking power consumed for the three above-mentioned force torque values is given as a function of the instant of application of the braking pulse during a period of oscillation. As the speed decreases as it approaches the extreme positions of the resonator, the braking power decreases. Thus, while the daily error generated increases as it approaches extreme positions, the braking power required (and therefore the energy lost by the oscillator) decreases significantly.

L'erreur engendrée à la Figure 8B peut correspondre de fait à une correction pour le cas où l'oscillateur mécanique présente une fréquence propre qui ne correspond pas à une fréquence de consigne. Ainsi, si l'oscillateur présente une fréquence propre trop basse, des impulsions de freinage intervenant dans le deuxième ou quatrième quart de la période d'oscillation peuvent permettre une correction du retard pris par l'oscillation libre (non perturbée), cette correction étant plus ou moins forte en fonction de l'instant des impulsions de freinage au sein de la période d'oscillation. Par contre, si l'oscillateur présente une fréquence propre trop haute, des impulsions de freinage intervenant dans le premier ou troisième quart de la période d'oscillation peuvent permettre une correction de l'avance prise par l'oscillation libre, cette correction étant plus ou moins forte en fonction de l'instant des impulsions de freinage dans la période d'oscillation.The error generated at the Figure 8B can correspond in fact to a correction for the case where the mechanical oscillator has a natural frequency which does not correspond to a reference frequency. Thus, if the oscillator has a natural frequency that is too low, braking pulses occurring in the second or fourth quarter of the oscillation period can allow a correction of the delay taken by the free oscillation (not disturbed), this correction being more or less strong depending on the instant of the braking pulses within the oscillation period. On the other hand, if the oscillator has a too high natural frequency, braking pulses occurring in the first or third quarter of the oscillation period can allow a correction of the advance taken by the free oscillation, this correction being more or weaker depending on the instant of the braking pulses in the oscillation period.

L'enseignement donné précédemment permet de comprendre le phénomène remarquable de la synchronisation d'un oscillateur mécanique principal (oscillateur esclave) sur un oscillateur auxiliaire, formant un oscillateur maître, par la seule application périodique d'impulsions de freinage sur le résonateur mécanique esclave à une fréquence de freinage FFR correspondant avantageusement au double de la fréquence de consigne F0c divisée par un nombre entier positif N, soit FFR = 2·F0c / N. La fréquence de freinage est ainsi proportionnelle à la fréquence de consigne pour l'oscillateur maître et dépend seulement de cette fréquence de consigne dès que le nombre entier positif N est donné. Comme la fréquence de consigne est prévue égale à un nombre fractionnaire multiplié par la fréquence de référence, la fréquence de freinage est donc proportionnelle à la fréquence de référence et déterminée par cette fréquence de référence, laquelle est fournie par l'oscillateur auxiliaire qui est par nature ou par construction plus précis que l'oscillateur mécanique principal.The teaching given previously makes it possible to understand the remarkable phenomenon of the synchronization of a main mechanical oscillator (slave oscillator) on an auxiliary oscillator, forming a master oscillator, by the only periodic application of braking pulses on the slave mechanical resonator to a braking frequency F FR advantageously corresponding to double the setpoint frequency F0c divided by a positive integer N, i.e. F FR = 2 · F0 c / N. The braking frequency is thus proportional to the setpoint frequency for the master oscillator and depends only on this reference frequency as soon as the positive integer number N is given. As the reference frequency is provided equal to a fractional number multiplied by the reference frequency, the braking frequency is therefore proportional to the reference frequency and determined by this reference frequency, which is supplied by the auxiliary oscillator which is by nature or construction more precise than the main mechanical oscillator.

La synchronisation susmentionnée obtenue par le dispositif de correction incorporé dans la pièce d'horlogerie de l'invention sera maintenant décrite plus en détails à l'aide des Figures 9 à 22.The aforementioned synchronization obtained by the correction device incorporated in the timepiece of the invention will now be described in more detail with the aid of the Figures 9 to 22 .

A la Figure 9 est représentée sur le graphe du haut la position angulaire du résonateur mécanique esclave, notamment du balancier-spiral d'un résonateur horloger, oscillant librement (courbe 100) et oscillant avec freinage (courbe 102). La fréquence de l'oscillation libre est supérieure à la fréquence de consigne F0c = 4 Hz. Les premières impulsions de freinage 104 (ci-après aussi nommées 'impulsions') interviennent ici une fois par période d'oscillation dans une demi-alternance entre le passage par une position extrême et le passage par zéro. Ce choix est arbitraire car le système prévu ne détecte pas la position angulaire du résonateur mécanique ; c'est donc juste une hypothèse possible parmi d'autres qui seront analysées par la suite. On est donc ici dans le cas d'un ralentissement de l'oscillateur mécanique. Le couple de freinage pour la première impulsion de freinage est prévu ici supérieur à un couple de freinage minimum pour compenser l'avance que prend l'oscillateur libre sur une période d'oscillation. Ceci a pour conséquence que la seconde impulsion de freinage a lieu un peu avant la première à l'intérieur du quart de période où interviennent ces impulsions. La courbe 106, qui donne la fréquence instantanée de l'oscillateur mécanique, indique en effet que la fréquence instantanée diminue en-dessous de la fréquence de consigne dès la première impulsion. Ainsi, la seconde impulsion de freinage est plus proche de la position extrême qui précède, de sorte que l'effet du freinage augmente et ainsi de suite avec les impulsions suivantes. Dans une phase transitoire, la fréquence instantanée de l'oscillateur diminue donc progressivement et les impulsions se rapprochent progressivement d'une position extrême de l'oscillation. Après un certain temps, les impulsions de freinage comprennent le passage par la position extrême où la vitesse du résonateur mécanique change de sens et la fréquence instantanée commence alors à augmenter.To the Figure 9 the angular position of the slave mechanical resonator, in particular of the sprung balance of a watch resonator, freely oscillating (curve 100) and oscillating with braking (curve 102) is shown in the top graph. The frequency of the free oscillation is greater than the reference frequency F0 c = 4 Hz. The first braking pulses 104 (hereinafter also called 'pulses') occur here once per period of oscillation in a half-cycle between the passage through an extreme position and the passage through zero. This choice is arbitrary because the system provided does not detect the angular position of the mechanical resonator; it is therefore just one possible hypothesis among others that will be analyzed subsequently. We are therefore here in the case of a slowdown of the mechanical oscillator. The braking torque for the first braking pulse is provided here greater than a minimum braking torque to compensate for the advance that the free oscillator takes over a period of oscillation. This has the consequence that the second braking pulse takes place a little before the first within the quarter period in which these pulses occur. Curve 106, which gives the instantaneous frequency of the mechanical oscillator, in fact indicates that the instantaneous frequency decreases below the setpoint frequency from the first pulse. Thus, the second braking pulse is closer to the preceding extreme position, so that the effect of braking increases and so on with subsequent pulses. In a transient phase, the instantaneous frequency of the oscillator therefore gradually decreases and the pulses gradually approach an extreme position of the oscillation. After a certain time, the braking pulses include the passage through the extreme position where the speed of the mechanical resonator changes direction and the instantaneous frequency then begins to increase.

Le freinage a ceci de particulier qu'il s'oppose au mouvement du résonateur quel que soit le sens de son mouvement. Ainsi, lorsque le résonateur passe par une inversion du sens de son oscillation au cours d'une impulsion de freinage, le couple de freinage change automatiquement de signe à l'instant de cette inversion. On a alors des impulsions de freinage 104a qui présentent, pour le couple de freinage, une première partie avec un premier signe et une seconde partie avec un deuxième signe opposé au premier signe. Dans cette situation, on a donc la première partie du signal qui intervient avant la position extrême et qui s'oppose à l'effet de la seconde partie qui intervient après cette position extrême. Si la seconde partie diminue la fréquence instantanée de l'oscillateur mécanique, la première partie l'augmente. La correction diminue alors pour se stabiliser finalement et relativement rapidement à une valeur pour laquelle la fréquence instantanée de l'oscillateur est égale à la fréquence de consigne (correspondant ici à la fréquence de freinage). Ainsi, à la phase transitoire succède une phase stable, aussi nommée phase synchrone, où la fréquence d'oscillation est sensiblement égale à la fréquence de consigne et où les première et deuxième parties des impulsions de freinage présente un rapport sensiblement constant et défini.Braking is unique in that it opposes the movement of the resonator whatever the direction of its movement. Thus, when the resonator goes through a reversal of the direction of its oscillation during a braking pulse, the braking torque automatically changes sign at the instant of this reversal. There are then braking pulses 104a which have, for the braking torque, a first part with a first sign and a second part with a second sign opposite to the first sign. In this situation, we therefore have the first part of the signal which occurs before the extreme position and which opposes the effect of the second part which occurs after this extreme position. If the second part decreases the instantaneous frequency of the mechanical oscillator, the first part increases it. The correction then decreases to stabilize finally and relatively quickly at a value for which the instantaneous frequency of the oscillator is equal to the reference frequency (corresponding here to the braking frequency). Thus, the transient phase is followed by a stable phase, also called synchronous phase, where the oscillation frequency is substantially equal to the setpoint frequency and where the first and second parts of the braking pulses have a substantially constant and defined ratio.

Les graphes de la Figure 10 sont analogues à ceux de la Figure 9. La différence majeure est la valeur de la fréquence naturelle de l'oscillateur mécanique libre qui est inférieure à la fréquence de consigne F0c = 4 Hz. Les premières impulsions 104 interviennent dans la même demi-alternance qu'à la Figure 9. On observe comme attendu une diminution de la fréquence instantanée donnée par la courbe 110. L'oscillation avec freinage 108 prend donc momentanément encore plus de retard dans la phase transitoire, ceci jusqu'à ce que les impulsions 104b commence à englober le passage du résonateur par une position extrême. A partir de ce moment, la fréquence instantanée commence à augmenter jusqu'à atteindre la fréquence de consigne, car la première partie des impulsions intervenant avant la position extrême augmente la fréquence instantanée. Ce phénomène est automatique. En effet, tant que la durée des périodes d'oscillation est supérieure à la durée de la période de consigne T0c, la première partie de l'impulsion augmente alors que la seconde partie diminue et par conséquent la fréquence instantanée continue à augmenter jusqu'à une situation stable où la période de consigne est sensiblement égale à la période d'oscillation. On a donc la synchronisation voulue.The graphs of the Figure 10 are analogous to those of Figure 9 . The major difference is the value of the natural frequency of the free mechanical oscillator which is lower than the reference frequency F0c = 4 Hz. The first pulses 104 occur in the same half-wave as at the Figure 9 . As expected, a decrease in the instantaneous frequency given by the curve 110 is observed. The oscillation with braking 108 therefore momentarily takes even more delay in the transient phase, this until the pulses 104b begin to encompass the passage of the resonator. by an extreme position. From this moment, the instantaneous frequency begins to increase until it reaches the setpoint frequency, because the first part of the pulses occurring before the extreme position increases the instantaneous frequency. This phenomenon is automatic. Indeed, as long as the duration of the oscillation periods is greater than the duration of the setpoint period T0c, the first part of the pulse increases while the second part decreases and consequently the instantaneous frequency continues to increase until a stable situation where the setpoint period is substantially equal to the oscillation period. We therefore have the desired synchronization.

Les graphes de la Figure 11 sont analogues à ceux de la Figure 10. La différence majeure vient du fait que les premières impulsions de freinage 114 interviennent dans une autre demi-alternance qu'à la Figure 10, à savoir dans une demi-alternance entre le passage par zéro et le passage par une position extrême. Selon ce qui a été exposé précédemment, on observe ici dans une phase transitoire une augmentation de la fréquence instantanée donnée par la courbe 112. Le couple de freinage pour la première impulsion de freinage est prévu ici supérieur à un couple de freinage minimum pour compenser le retard que prend l'oscillateur mécanique libre sur une période d'oscillation. Ceci a pour conséquence que la seconde impulsion de freinage a lieu un peu après la première à l'intérieur du quart de période où interviennent ces impulsions. La courbe 112 indique en effet que la fréquence instantanée de l'oscillateur augmente au-dessus de la fréquence de consigne dès la première impulsion. Ainsi, la seconde impulsion de freinage est plus proche de la position extrême qui suit, de sorte que l'effet du freinage augmente et ainsi de suite avec les impulsions suivantes. Dans la phase transitoire, la fréquence instantanée de l'oscillation avec freinage 114 augmente donc et les impulsions de freinage se rapprochent progressivement d'une position extrême de l'oscillation. Après un certain temps, les impulsions de freinage comprennent le passage par la position extrême où la vitesse du résonateur mécanique change de sens. Dès ce moment-là, on a un phénomène similaire à celui exposé ci-avant. Les impulsions de freinage 114a présentent alors deux parties et la seconde partie diminue la fréquence instantanée. Cette diminution de la fréquence instantanée continue jusqu'à ce qu'elle ait une valeur égale à la valeur de consigne pour de mêmes raisons que données en référence aux Figures 9 et 10. La diminution de fréquence s'arrête automatiquement lorsque la fréquence instantanée est sensiblement égale à la fréquence de consigne. On obtient alors une stabilisation de la fréquence de l'oscillateur mécanique à la fréquence de consigne dans une phase synchrone.The graphs of the Figure 11 are analogous to those of Figure 10 . The major difference comes from the fact that the first braking pulses 114 occur in a different half-wave than at the Figure 10 , namely in a half-cycle between the passage through zero and the passage through an extreme position. According to what has been explained previously, an increase in the instantaneous frequency given by the curve 112 is observed here in a transient phase. The braking torque for the first braking pulse is here provided greater than a minimum braking torque to compensate for the braking torque. delay that the free mechanical oscillator takes over a period of oscillation. This has the consequence that the second braking pulse takes place a little after the first within the quarter period in which these pulses occur. Curve 112 in fact indicates that the instantaneous frequency of the oscillator increases above the reference frequency from the first pulse. Thus, the second braking pulse is closer to the following extreme position, so that the effect of braking increases and so on with subsequent pulses. In the transient phase, the instantaneous frequency of the oscillation with braking 114 therefore increases and the braking pulses gradually approach an extreme position of the oscillation. After a certain time, the braking pulses include passing through the extreme position where the speed of the mechanical resonator changes direction. From that moment, we have a phenomenon similar to the one explained above. The braking pulses 114a then have two parts and the second part decreases the instantaneous frequency. This decrease in the instantaneous frequency continues until it has a value equal to the setpoint for the same reasons as given with reference to the Figures 9 and 10 . The decrease in frequency stops automatically when the instantaneous frequency is approximately equal to the reference frequency. This results in stabilization of the frequency of the mechanical oscillator at the reference frequency in a synchronous phase.

A l'aide des Figures 12 à 15, on exposera le comportement de l'oscillateur mécanique dans la phase de transition pour n'importe quel instant où intervient une première impulsion de freinage au cours d'une période d'oscillation, ainsi que la situation finale correspondant à la phase synchrone où la fréquence d'oscillation est stabilisée sur la fréquence de consigne. La Figure 12 représente une période d'oscillation avec la courbe S1 des positions d'un résonateur mécanique. Dans le cas considéré ici, la fréquence d'oscillation naturelle F0 de l'oscillateur mécanique libre (sans impulsions de freinage) est supérieure à la fréquence de consigne F0c (F0 > F0c). La période d'oscillation comprend classiquement une première alternance A1 suivie d'une deuxième alternance A2, chacune entre deux positions extrêmes (tm-1, Am-1; tm, Am ; tm+1, Am+1correspondant à l'amplitude d'oscillation. Ensuite, on a représenté, dans la première alternance, une impulsion de freinage 'Imp1' dont la position temporelle milieu intervient à un instant t1 et, dans la seconde alternance, une autre impulsion de freinage 'Imp2' dont la position temporelle milieu intervient à un instant t2. Les impulsions Imp1 et Imp2 présentent un déphasage de T0/2, et elles sont particulières car elles correspondent, pour un profil donné du couple de freinage, à des corrections engendrant deux équilibres instables du système. Comme ces impulsions interviennent respectivement dans le premier et le troisième quart de la période d'oscillation, elles freinent donc l'oscillateur mécanique dans une mesure qui permet exactement de corriger la fréquence naturelle trop élevée de l'oscillateur mécanique libre (avec la fréquence de freinage sélectionnée pour l'application des impulsions de freinage). On notera que les impulsions Imp1 et Imp2 sont toutes deux des premières impulsions, chacune étant considérée pour elle-même en l'absence de l'autre. On remarquera que les effets des impulsions Imp1 et Imp2 sont identiques.Using the Figures 12 to 15 , we will present the behavior of the mechanical oscillator in the transition phase for any instant when a first braking pulse occurs during an oscillation period, as well as the final situation corresponding to the synchronous phase where the oscillation frequency is stabilized on the reference frequency. The Figure 12 represents a period of oscillation with the curve S1 of the positions of a mechanical resonator. In the case considered here, the natural oscillation frequency F0 of the free mechanical oscillator (without braking pulses) is greater than the reference frequency F0c (F0> F0 c ). The oscillation period conventionally comprises a first alternation A1 followed by a second alternation A2, each between two extreme positions (t m-1 , A m-1 ; t m , A m ; t m + 1 , A m + 1 corresponding to the oscillation amplitude. Next, there is shown, in the first half-wave, a braking pulse 'Imp1' whose middle time position occurs at an instant t 1 and, in the second half-wave, another braking pulse 'Imp2' whose middle temporal position occurs at an instant t 2. The pulses Imp1 and Imp2 have a phase shift of T0 / 2, and they are particular because they correspond, for a given profile of the braking torque, to corrections generating two unstable equilibria of the system As these pulses intervene respectively in the first and the third quarter of the period of oscillation, they therefore brake the mechanical oscillator to an extent which makes it possible to correct exactly the too high natural frequency of the o Free mechanical scillator (with the braking frequency selected for the application of the braking pulses). Note that the pulses Imp1 and Imp2 are both first pulses, each being considered for itself in the absence of the other. It will be noted that the effects of the pulses Imp1 and Imp2 are identical.

Si une première impulsion intervient au temps t1 ou t2, on aura donc théoriquement une répétition de cette situation lors des prochaines périodes d'oscillation et une fréquence d'oscillation égale à la fréquence de consigne. Deux choses sont à relever pour un tel cas. Premièrement, la probabilité qu'une première impulsion intervienne exactement au temps t1 ou t2 est relativement faible bien que possible. Deuxièmement, au cas où une telle situation particulière se présente, elle ne pourra durer longtemps. En effet, la fréquence instantanée d'un balancier-spiral dans une pièce d'horlogerie varie un peu au cours du temps pour diverses raisons (amplitude d'oscillation, température, changement d'orientation spatiale, etc.). Bien que ces raisons constituent des perturbations qu'on cherche généralement à minimiser en haute horlogerie, il n'en demeure pas moins qu'en pratique un tel équilibre instable ne va pas durer bien longtemps. On notera que plus le couple de freinage est élevé, plus les temps t1 et t2 se rapprochent des deux temps de passage du résonateur mécanique par sa position neutre qui les suivent respectivement. On notera encore que plus la différence entre la fréquence d'oscillation naturelle F0 et la fréquence de consigne F0c est petite, plus les temps t1 et t2 se rapprochent également des deux temps de passage du résonateur mécanique par sa position neutre qui les suivent respectivement.If a first pulse occurs at time t 1 or t 2 , there will therefore theoretically be a repetition of this situation during the next periods of oscillation and an oscillation frequency equal to the setpoint frequency. Two things should be noted for such a case. First, the probability that a first pulse occurs exactly at time t 1 or t 2 is relatively small although possible. Second, in case such a special situation arises, it cannot last for long. Indeed, the instantaneous frequency of a sprung balance in a timepiece varies a little over time for various reasons (oscillation amplitude, temperature, change in spatial orientation, etc.). Although these reasons constitute disturbances that one generally seeks to minimize in fine watchmaking, the fact remains that in practice such an unstable balance will not last very long. It will be noted that the higher the braking torque, the closer the times t 1 and t 2 are to the two times of passage of the mechanical resonator through its neutral position which respectively follow them. It will also be noted that the smaller the difference between the natural oscillation frequency F0 and the reference frequency F0 c , the more the times t 1 and t 2 also approach the two transit times of the mechanical resonator through its neutral position which makes them. follow respectively.

Considérons maintenant ce qui se passe dès qu'on s'écarte un peu des positions temporelles t1 ou t2 lors de l'application des impulsions. Selon l'enseignement donné en référence à la Figure 8B, si une impulsion intervient à gauche (position temporelle antérieure) de l'impulsion Imp1 dans la zone Z1a, la correction augmente de sorte qu'au cours des périodes suivantes, la position extrême précédente Am-1 va progressivement se rapprocher de l'impulsion de freinage. Par contre, si une impulsion intervient à droite (position temporelle postérieure) de l'impulsion Imp1, à gauche de la position zéro, la correction diminue de sorte qu'au cours des périodes suivantes les impulsions dérivent vers cette position zéro où la correction devient nulle. Ensuite, l'effet de l'impulsion change et une augmentation de la fréquence instantanée intervient. Comme la fréquence naturelle est déjà trop élevée, l'impulsion va rapidement dériver vers la position extrême Am. Ainsi, si une impulsion a lieu à droite de l'impulsion Imp1 dans la zone Z1b, les impulsions suivantes vont progressivement se rapprocher de la position extrême suivante Am. On observe un même comportement dans la seconde alternance A2. Si une impulsion a lieu à gauche de l'impulsion Imp2 dans la zone Z2a, les impulsions suivantes vont progressivement se rapprocher de la position extrême précédente Am. Par contre, si une impulsion a lieu à droite de l'impulsion Imp2 dans la zone Z2b, les impulsions suivantes vont progressivement se rapprocher de la position extrême suivante Am+1. On remarquera que cette formulation est relative car en réalité la fréquence d'application des impulsions de freinage est imposée par l'oscillateur maître (fréquence de freinage donnée), de sorte que ce sont les périodes d'oscillation qui varient et de fait c'est la position extrême en question qui se rapproche de l'instant d'application d'une impulsion de freinage. En conclusion, si une impulsion intervient dans la première alternance A1 à un autre instant que t1, la fréquence d'oscillation instantanée évolue dans une phase transitoire au cours des périodes d'oscillation suivantes de manière qu'une des deux positions extrêmes de cette première alternance (positions d'inversion du sens du mouvement du résonateur mécanique) s'approche progressivement des impulsions de freinage. Il en va de même pour la seconde alternance A2.Let us now consider what happens as soon as we deviate a little from the time positions t 1 or t 2 during the application of the pulses. According to the teaching given with reference to the Figure 8B , if a pulse occurs to the left (previous temporal position) of the pulse Imp1 in the zone Z1a, the correction increases so that during the following periods, the previous extreme position A m-1 will gradually approach the braking pulse. On the other hand, if a pulse occurs to the right (posterior time position) of the pulse Imp1, to the left of the zero position, the correction decreases so that during the following periods the pulses drift towards this zero position where the correction becomes nothing. Then the effect of the pulse changes and an increase in instantaneous frequency occurs. As the natural frequency is already too high, the pulse will quickly drift towards the extreme position A m . Thus, if a pulse takes place to the right of the pulse Imp1 in the zone Z1b, the pulses following will gradually approach the next extreme position A m . The same behavior is observed in the second half-wave A2. If a pulse takes place to the left of the pulse Imp2 in the zone Z2a, the following pulses will gradually approach the previous extreme position A m. On the other hand, if a pulse takes place to the right of the pulse Imp2 in the zone Z2b, the following pulses will gradually approach the next extreme position A m + 1 . It will be noted that this formulation is relative because in reality the frequency of application of the braking pulses is imposed by the master oscillator (given braking frequency), so that it is the periods of oscillation which vary and therefore is the extreme position in question which approaches the instant of application of a braking pulse. In conclusion, if a pulse occurs in the first half wave A1 at an instant other than t 1 , the instantaneous oscillation frequency evolves in a transient phase during the following oscillation periods so that one of the two extreme positions of this first alternation (positions of reversal of the direction of movement of the mechanical resonator) gradually approaches the braking pulses. The same goes for the second alternation A2.

La Figure 13 montre la phase synchrone correspondant à une situation stable finale intervenant après la phase transitoire décrite ci-avant. Comme déjà exposé, dès que le passage par une position extrême intervient durant une impulsion de freinage, cette position extrême va se caler sur les impulsions de freinage pour autant que ces impulsions de freinage soient configurées (le couple de force et la durée) pour pouvoir corriger suffisamment la dérive temporelle de l'oscillateur mécanique libre au moins par une impulsion de freinage intervenant entièrement, selon le cas, juste avant ou juste après une position extrême. Ainsi, dans la phase synchrone, si une première impulsion intervient dans la première alternance A1, soit la position extrême Am-1 de l'oscillation est calée sur les impulsions Imp1a, soit la position extrême Am de l'oscillation est calée sur les impulsions Imp1b. Dans le cas d'un couple sensiblement constant, les impulsions Imp1a et Imp1b présentent chacune une première partie dont la durée est plus courte que celle de leur seconde partie, de manière à corriger exactement la différence entre la fréquence naturelle trop élevée de l'oscillateur principal esclave et la fréquence de consigne imposée par l'oscillateur auxiliaire maître. De même, dans la phase synchrone, si une première impulsion intervient dans la seconde alternance A2, soit la position extrême Am de l'oscillation est calée sur les impulsions Imp2a, soit la position extrême Am+1 de l'oscillation est calée sur les impulsions Imp2b.The Figure 13 shows the synchronous phase corresponding to a final stable situation occurring after the transient phase described above. As already explained, as soon as the passage through an extreme position occurs during a braking pulse, this extreme position will lock onto the braking pulses as long as these braking pulses are configured (the force torque and the duration) to be able to sufficiently correcting the time drift of the free mechanical oscillator at least by a braking pulse occurring entirely, as the case may be, just before or just after an extreme position. Thus, in the synchronous phase, if a first pulse occurs in the first halfwave A1, either the extreme position A m-1 of the oscillation is set on the pulses Imp1a, or the extreme position A m of the oscillation is set on the pulses Imp1b. In the case of a substantially constant torque, the pulses Imp1a and Imp1b each have a first part the duration of which is shorter than that of their second part, so as to correct exactly the difference between the too high natural frequency of the oscillator main slave and the setpoint frequency imposed by the master auxiliary oscillator. Likewise, in the synchronous phase, if a first pulse occurs in the second half-wave A2, either the extreme position A m of the oscillation is set on the pulses Imp2a, or the extreme position A m + 1 of the oscillation is set on Imp2b pulses.

On remarquera que les impulsions Imp1a, respectivement Imp1b, Imp2a et Imp2b occupent des positions temporelles relatives stables. En effet, une légère déviation à gauche ou à droite d'une de ces impulsions, dû à une perturbation externe, aura pour effet de ramener une impulsion suivante vers la position temporelle relative initiale. Ensuite, si la dérive temporelle de l'oscillateur mécanique varie durant la phase synchrone, l'oscillation va automatiquement subir un léger déphasage de sorte que le rapport entre la première partie et la seconde partie des impulsions Imp1a, respectivement Imp1b, Imp2a et Imp2b varie dans une mesure qui adapte la correction engendrée par les impulsions de freinage à la nouvelle différence de fréquence. Un tel comportement de la pièce d'horlogerie selon la présente invention est vraiment remarquable.It will be noted that the pulses Imp1a, respectively Imp1b, Imp2a and Imp2b occupy stable relative temporal positions. Indeed, a slight deviation to the left or to the right of one of these pulses, due to an external disturbance, will have the effect of bringing a following pulse back to the initial relative temporal position. Then, if the time drift of the mechanical oscillator varies during the synchronous phase, the oscillation will automatically undergo a slight phase shift so that the ratio between the first part and the second part of the pulses Imp1a, respectively Imp1b, Imp2a and Imp2b varies to an extent which adapts the correction generated by the braking pulses to the new frequency difference. Such behavior of the timepiece according to the present invention is truly remarkable.

Les Figures 14 et 15 sont similaires aux Figures 12 et 13, mais pour une situation où la fréquence naturelle de l'oscillateur est inférieure à la fréquence de consigne. Par conséquent, les impulsions Imp3 et Imp4, correspondant à une situation d'équilibre instable dans la correction apportée par les impulsions de freinage, sont respectivement situées dans le deuxième et le quatrième quart de période (instants t3 et t4) où les impulsions engendrent une augmentation de la fréquence d'oscillation. On ne redonnera pas ici les explications en détails car le comportement du système découle des considérations précédentes. Dans la phase transitoire (Figure 14), si une impulsion a lieu dans l'alternance A3 à gauche de l'impulsion Imp3 dans la zone Z3a, la position extrême précédente (tm-1 , Am-1) va progressivement se rapprocher des impulsions suivantes Par contre, si une impulsion a lieu à droite de l'impulsion Imp3 dans la zone Z3b, la position extrême suivante (tm, Am) va progressivement se rapprocher des impulsions suivantes. De même, si une impulsion a lieu dans l'alternance A4 à gauche de l'impulsion Imp4 dans la zone Z4a, la position extrême précédente (tm, Am) va progressivement se rapprocher des impulsions suivantes Finalement, si une impulsion a lieu à droite de l'impulsion Imp4 dans la zone Z4b, la position extrême suivante (tm+1, Am+1) va progressivement se rapprocher des impulsions suivantes durant la phase de transition.The Figures 14 and 15 are similar to Figures 12 and 13 , but for a situation where the natural frequency of the oscillator is lower than the reference frequency. Consequently, the impulses Imp3 and Imp4, corresponding to an unstable equilibrium situation in the correction made by the braking impulses, are respectively located in the second and the fourth quarter of a period (instants t 3 and t 4 ) where the impulses cause an increase in the oscillation frequency. The explanations in detail will not be given here again because the behavior of the system follows of the preceding considerations. In the transitional phase ( Figure 14 ), if an impulse takes place in the alternation A3 to the left of impulse Imp3 in zone Z3a, the previous extreme position (t m-1 , A m-1 ) will gradually approach the following impulses On the other hand, if a pulse takes place to the right of the pulse Imp3 in the zone Z3b, the next extreme position (t m , A m ) will gradually approach the following pulses. Likewise, if a pulse takes place in the alternation A4 to the left of pulse Imp4 in zone Z4a, the previous extreme position (t m , A m ) will gradually approach the following pulses. Finally, if a pulse takes place to the right of the pulse Imp4 in the zone Z4b, the next extreme position (t m + 1 , A m + 1 ) will gradually approach the following pulses during the transition phase.

Dans la phase synchrone (Figure 15), si une première impulsion intervient dans la première alternance A3, soit la position extrême Am-1 de l'oscillation est calée sur les impulsions Imp3a, soit la position extrême Am de l'oscillation est calée sur les impulsions Imp3b. Dans le cas d'un couple sensiblement constant, les impulsions Imp3a et Imp3b présentent chacune une première partie dont la durée est plus longue que celle de leur seconde partie, de manière à corriger exactement la différence entre la fréquence naturelle trop faible de l'oscillateur principal esclave et la fréquence de consigne imposée par l'oscillateur auxiliaire maître. De même, dans la phase synchrone, si une première impulsion intervient dans la seconde alternance A4, soit la position extrême Am de l'oscillation est calée sur les impulsions Imp4a, soit la position extrême Am+1 de l'oscillation est calée sur les impulsions Imp4b. Les autres considérations faîtes dans le cadre du cas décrit précédemment en référence aux Figures 12 et 13 s'appliquent par analogie au cas des Figures 14 et 15. En conclusion, que la fréquence naturelle de l'oscillateur mécanique libre soit trop élevée ou trop basse et quel que soit l'instant de l'application d'une première impulsion de freinage à l'intérieur d'une période d'oscillation, le dispositif de correction de l'invention est efficace et synchronise rapidement la fréquence de l'oscillateur mécanique, cadençant la marche du mouvement mécanique, sur la fréquence de consigne qui est déterminée par la fréquence de référence de l'oscillateur auxiliaire maître, lequel pilote la fréquence de freinage à laquelle les impulsions de freinage sont appliquées au résonateur de l'oscillateur mécanique. Ceci reste vrai si la fréquence naturelle de l'oscillateur mécanique varie et même si elle est, dans certaines périodes de temps, supérieure à la fréquence de consigne, alors que dans d'autres périodes de temps elle est inférieure à cette fréquence de consigne.In the synchronous phase ( Figure 15 ), if a first pulse occurs in the first half wave A3, either the extreme position A m-1 of the oscillation is set on the impulses Imp3a, or the extreme position A m of the oscillation is set on the pulses Imp3b. In the case of a substantially constant torque, the impulses Imp3a and Imp3b each have a first part the duration of which is longer than that of their second part, so as to correct exactly the difference between the too low natural frequency of the oscillator main slave and the setpoint frequency imposed by the master auxiliary oscillator. Likewise, in the synchronous phase, if a first pulse occurs in the second half-wave A4, either the extreme position A m of the oscillation is set on the pulses Imp4a, or the extreme position A m + 1 of the oscillation is set on Imp4b pulses. The other considerations made in the context of the case described above with reference to Figures 12 and 13 apply by analogy to the case of Figures 14 and 15 . In conclusion, whether the natural frequency of the free mechanical oscillator is too high or too low and whatever the instant of the application of a first braking pulse within an oscillation period, the correction device of the invention is efficient and quickly synchronizes the frequency of the mechanical oscillator, timing the operation of the mechanical movement, on the reference frequency which is determined by the reference frequency of the master auxiliary oscillator, which controls the braking frequency at which the pulses braking are applied to the resonator of the mechanical oscillator. This remains true if the natural frequency of the mechanical oscillator varies and even if it is, in certain periods of time, higher than the reference frequency, while in other periods of time it is lower than this reference frequency.

L'enseignement donné ci-avant et la synchronisation obtenue grâce aux caractéristiques de la pièce d'horlogerie selon l'invention s'appliquent également au cas où la fréquence de freinage pour l'application des impulsions de freinage n'est pas égale à la fréquence de consigne. Dans le cas de l'application d'une impulsion par période d'oscillation, les impulsions ayant lieu aux positions instables (t1, Imp1 ; t2, Imp2 ; t3, Imp3 ; t4, Imp4) correspondent à des corrections pour compenser la dérive temporelle au cours d'une seule période d'oscillation. Par contre, si les impulsions de freinage prévues ont un effet suffisant pour corriger une dérive temporelle au cours de plusieurs périodes d'oscillation, il est alors possible d'appliquer une seule impulsion par intervalle de temps égal à ces plusieurs périodes d'oscillation. On observera alors le même comportement que pour le cas où une impulsion est engendrée par période d'oscillation. En considérant les périodes d'oscillation où interviennent les impulsions, on a les mêmes phases transitoires et les mêmes phases synchrones que dans le cas exposé précédemment. De plus, ces considérations sont aussi correctes s'il y a un nombre entier d'alternances entre chaque impulsion de freinage. Dans le cas d'un nombre impair d'alternances, on passe alternativement, selon le cas, de l'alternance A1 ou A3 à l'alternance A2 ou A4 sur les Figures 12 à 15. Comme l'effet de deux impulsions décalées d'une alternance est identique, on comprend que la synchronisation est réalisée comme pour un nombre pair d'alternances entre deux impulsions de freinage successives. En conclusion, comme déjà indiqué, le comportement du système décrit en référence aux Figures 12 à 15 est observé dès que la fréquence de freinage FFR est égale à 2F0c / N, FOc étant la fréquence de consigne pour la fréquence d'oscillation et N un nombre entier positif.The teaching given above and the synchronization obtained by virtue of the characteristics of the timepiece according to the invention also apply to the case where the braking frequency for the application of the braking pulses is not equal to the setpoint frequency. In the case of the application of a pulse per period of oscillation, the pulses taking place at unstable positions (t 1 , Imp 1 ; t 2 , Imp 2 ; t 3 , Imp3; t 4 , Imp4) correspond to corrections to compensate for time drift during a single oscillation period. On the other hand, if the planned braking pulses have a sufficient effect to correct a time drift during several oscillation periods, it is then possible to apply a single pulse per time interval equal to these several oscillation periods. The same behavior will then be observed as for the case where a pulse is generated per period of oscillation. By considering the oscillation periods in which the pulses intervene, we have the same transient phases and the same synchronous phases as in the case described above. In addition, these considerations are also correct if there is an integer number of alternations between each braking pulse. In the case of an odd number of alternations, one passes alternately, according to the case, from the alternation A1 or A3 to the alternation A2 or A4 on the Figures 12 to 15 . As the effect of two pulses shifted by one half-wave is identical, it is understood that the synchronization is carried out as for an even number of alternations between two successive braking pulses. In conclusion, as already indicated, the behavior of the system described with reference to Figures 12 to 15 is observed as soon as the braking frequency F FR is equal to 2F0 c / N, FO c being the reference frequency for the oscillation frequency and N a positive integer.

Bien que peu intéressant, on remarquera que la synchronisation est aussi obtenue pour une fréquence de freinage FFR supérieure au double de la fréquence de consigne (2F0), à savoir pour une valeur égale à N fois F0 avec N > 2. Dans une variante avec FFR = 4F0, on ajuste une perte d'énergie dans le système sans effet dans la phase synchrone, car une impulsion sur deux intervient au point neutre du résonateur mécanique. Pour une fréquence de freinage FFR plus élevée, les impulsions dans la phase synchrone qui n'interviennent pas aux positions extrêmes annulent leurs effets deux à deux. On comprend donc qu'il s'agit de cas théoriques sans grand sens pratique.Although not very interesting, it will be noted that the synchronization is also obtained for a braking frequency F FR greater than double the reference frequency (2F0), namely for a value equal to N times F0 with N> 2. In a variant with F FR = 4F0, we adjust a loss of energy in the system without effect in the synchronous phase, because every other pulse occurs at the neutral point of the mechanical resonator. For a higher braking frequency F FR , the pulses in the synchronous phase which do not occur at the extreme positions cancel their effects two by two. We therefore understand that these are theoretical cases without much practical meaning.

Les Figures 16 et 17 montrent la phase synchrone pour une variante avec une fréquence de freinage FFR égale au quart de la fréquence de consigne, une impulsion de freinage intervenant donc toutes les quatre périodes d'oscillation. Les Figures 18 et 19 sont des agrandissements partiels respectivement des Figures 16 et 17. La Figure 16 concerne un cas où la fréquence naturelle de l'oscillateur principal est supérieure à la fréquence de consigne F0c = 4 Hz, alors que la Figure 17 concerne un cas où la fréquence naturelle de l'oscillateur principal est supérieure à cette fréquence de consigne. On observe que seules les périodes d'oscillation T1* et T2*, dans lesquelles interviennent des impulsions de freinage Imp1b ou Imp2a, respectivement Imp3b ou Imp4a, présentent une variation relativement à la période naturelle T0*. Les impulsions de freinage engendrent un déphasage seulement dans les périodes correspondantes. Ainsi, les périodes instantanées oscillent ici autour d'une valeur moyenne qui est égale à celle de la période de consigne. On notera que, aux Figures 16 à 19, les périodes instantanées sont mesurées d'un passage par zéro sur un flanc montant du signal d'oscillation à un tel passage suivant. Ainsi, les impulsions synchrones qui interviennent aux positions extrêmes sont entièrement englobées dans des périodes d'oscillation. Pour être complet, la Figure 20 montre le cas spécifique où la fréquence naturelle est égale à la fréquence de consigne. Dans ce cas, les périodes d'oscillation T0* demeurent toutes égales, les impulsions de freinage Imp5 intervenant exactement à des positions extrêmes de l'oscillation libre avec des première et seconde parties de ces impulsions qui ont des durées identiques (cas d'un couple de freinage constant), de sorte que l'effet de la première partie est annulé par l'effet opposé de la deuxième partie.The Figures 16 and 17 show the synchronous phase for a variant with a braking frequency F FR equal to a quarter of the reference frequency, a braking pulse therefore occurring every four oscillation periods. The Figures 18 and 19 are partial enlargements respectively of Figures 16 and 17 . The Figure 16 concerns a case where the natural frequency of the main oscillator is greater than the reference frequency F0 c = 4 Hz, while the Figure 17 relates to a case where the natural frequency of the main oscillator is greater than this reference frequency. It is observed that only the periods of oscillation T1 * and T2 *, in which braking pulses Imp1b or Imp2a, respectively Imp3b or Imp4a, exhibit a variation relative to the natural period T0 *. The braking pulses generate a phase shift only in the corresponding periods. Thus, the instantaneous periods here oscillate around an average value which is equal to that of the setpoint period. It will be noted that, at Figures 16 to 19 , the instantaneous periods are measured from a zero crossing on a rising edge of the oscillation signal at such next pass. Thus, the synchronous pulses which occur at the extreme positions are entirely included in periods of oscillation. To be complete, the Figure 20 shows the specific case where the natural frequency is equal to the reference frequency. In this case, the oscillation periods T0 * all remain equal, the braking pulses Imp5 occurring exactly at the extreme positions of the free oscillation with the first and second parts of these pulses which have identical durations (case of a constant braking torque), so that the effect of the first part is canceled by the opposite effect of the second part.

Dans une variante perfectionnée, le dispositif de synchronisation est agencé de manière que la fréquence de freinage peut prendre plusieurs valeurs, de préférence une première valeur dans une phase initiale du fonctionnement du dispositif de synchronisation et une deuxième valeur, inférieure à la première valeur, dans une phase de fonctionnement normal succédant à la phase initiale. En particulier, on sélectionnera la durée de la phase initiale de manière que la phase de fonctionnement normal intervienne alors que la phase synchrone a vraisemblablement déjà commencée. Plus généralement, la phase initiale englobe au moins les premières impulsions de freinage, suite à l'enclenchement du dispositif de synchronisation, et de préférence la majeure partie de la phase transitoire. En augmentant la fréquence des d'impulsions de freinage, on diminue la durée de la phase transitoire. De plus, cette variante permet, d'une part, d'optimiser l'efficacité du freinage durant la phase initiale pour assurer le processus physique conduisant à la synchronisation et, d'autre part, de minimiser l'énergie de freinage et donc les pertes d'énergie pour l'oscillateur principal durant la phase synchrone qui perdure tant que le dispositif de synchronisation n'est pas désactivé et que le mouvement mécanique fonctionne. Les premières impulsions de freinage peuvent intervenir à proximité de la position neutre du résonateur où l'effet du freinage est moindre sur le déphasage temporel engendré pour l'oscillation de l'oscillateur principal. Par contre, une fois la synchronisation établie, les impulsions de freinage ont lieu à proximité des positions extrêmes de cette oscillation où l'effet du freinage est le plus important.In an improved variant, the synchronization device is arranged so that the braking frequency can take several values, preferably a first value in an initial phase of the operation of the synchronization device and a second value, less than the first value, in a normal operating phase following the initial phase. In particular, the duration of the initial phase will be selected so that the normal operating phase occurs when the synchronous phase has probably already started. More generally, the initial phase includes at least the first braking pulses, following the engagement of the synchronization device, and preferably the major part of the transient phase. By increasing the frequency of the braking pulses, the duration of the transient phase is reduced. In addition, this variant makes it possible, on the one hand, to optimize the braking efficiency during the initial phase to ensure the physical process leading to synchronization and, on the other hand, to minimize the braking energy and therefore the energy losses for the main oscillator during the synchronous phase which continues as long as the synchronization device is not deactivated and the mechanical movement is functioning. The first braking pulses can occur near the neutral position of the resonator where the effect of braking is less on the time phase shift generated for the oscillation of the main oscillator. On the other hand, once the synchronization established, the braking pulses take place near the extreme positions of this oscillation where the braking effect is the greatest.

En référence aux Figures 21 et 22, on décrira une première variante d'un deuxième mode de réalisation de l'invention qui est surprenant par la simplicité de son dispositif de freinage électromagnétique. Ce deuxième mode de réalisation se distingue du premier mode essentiellement par le système magnétique du dispositif de freinage électromagnétique qui est constitué, dans la première variante, d'un seul aimant bipolaire 60 porté par le balancier 8A du résonateur mécanique 6A et, dans une deuxième variante, par une seule paire d'aimants bipolaires. Dans la première variante, lorsque le résonateur 6A est dans sa position neutre (situation représentée à la Figure 21), un demi-axe de référence 62 partant de l'axe d'oscillation 34 et passant par le centre de l'aimant 60 définit une position angulaire zéro ('0') dans un système de coordonnées polaires centré sur l'axe d'oscillation et fixe relativement à la platine du mouvement horloger. La bobine 28, qui complète le dispositif de freinage électromagnétique en sus du système magnétique, est solidaire de la platine et présente un décalage angulaire relativement à la position angulaire zéro. De préférence, le décalage angulaire de la bobine vaut sensiblement 180°, comme représenté à la Figure 21.With reference to Figures 21 and 22 , we will describe a first variant of a second embodiment of the invention which is surprising by the simplicity of its electromagnetic braking device. This second embodiment differs from the first embodiment essentially by the magnetic system of the electromagnetic braking device which consists, in the first variant, of a single bipolar magnet 60 carried by the balance 8A of the mechanical resonator 6A and, in a second variant, by a single pair of bipolar magnets. In the first variant, when the resonator 6A is in its neutral position (situation shown in Figure 21 ), a reference semi-axis 62 starting from the axis of oscillation 34 and passing through the center of the magnet 60 defines an angular position zero ('0') in a polar coordinate system centered on the axis d oscillation and fixed relative to the plate of the watch movement. The coil 28, which completes the electromagnetic braking device in addition to the magnetic system, is integral with the plate and has an angular offset relative to the zero angular position. Preferably, the angular offset of the coil is substantially 180 °, as shown in Figure 21 .

A la Figure 22 sont représentées la courbe 70 de la position angulaire du balancier 8A en fonction du temps, dans la plage de fonctionnement utile de l'oscillateur mécanique considéré qui présente dans cette plage une amplitude supérieure à 180° et de préférence supérieure à 200° (cas représenté), et la courbe 72 de la tension induite dans une phase synchrone du fonctionnement du dispositif de synchronisation. Ainsi, dans chaque alternance de l'oscillation du résonateur mécanique 6A on observe deux impulsions de tension induite 74A et 74B ayant sensiblement la forme d'une période d'un sinus. On remarque que les impulsions 74A et 74B sont séparées deux à deux par des zones temporelles sans tension induite dans la bobine 28. Dans une variante assurant une grande stabilité à la marche de la pièce d'horlogerie, les intervalles de temps distincts TP, définis par les impulsions de court-circuit 58A générés à la fréquence de consigne F0c et intervenant ainsi dans chaque période d'oscillation, sont sensiblement égaux ou supérieurs (cas représenté) aux zones temporelles sans tension induite dans la bobine autour des deux positions extrêmes du résonateur mécanique dans la plage de fonctionnement utile. Cependant, comme on le verra par la suite, cette condition n'est pas nécessaire, les intervalles de temps TP pouvant être inférieurs à la durée de ces zones temporelles sans tension induite.To the Figure 22 are shown the curve 70 of the angular position of the balance 8A as a function of time, in the useful operating range of the mechanical oscillator considered which has in this range an amplitude greater than 180 ° and preferably greater than 200 ° (case shown ), and the curve 72 of the voltage induced in a synchronous phase of the operation of the synchronization device. Thus, in each alternation of the oscillation of the mechanical resonator 6A, two induced voltage pulses 74 A and 74 B are observed having substantially the shape of a period of a sine. Note that the pulses 74 A and 74 B are separated two by two by time zones without voltage induced in the coil. 28. In a variant ensuring great running stability of the timepiece, the distinct time intervals T P , defined by the short-circuit pulses 58A generated at the setpoint frequency F0c and thus occurring in each period d oscillation, are substantially equal to or greater (case shown) to the time zones without voltage induced in the coil around the two extreme positions of the mechanical resonator in the useful operating range. However, as will be seen below, this condition is not necessary, the time intervals T P possibly being less than the duration of these time zones without induced voltage.

On observe que, pour autant que la dérive temporelle naturelle de la pièce d'horlogerie reste dans une plage nominale pour laquelle le dispositif de synchronisation a été dimensionné et généralement après une phase transitoire qui suit l'activation du dispositif de synchronisation, cette pièce d'horlogerie entre dans une phase stable et synchrone et où l'oscillateur mécanique présente la fréquence de consigne F0c à laquelle sont générées ici les impulsions de court-circuit 58A, et ceci quelle que soit la position angulaire du balancier 8A lors d'une première impulsion de court-circuit. La Figure 22 correspond à une situation où la fréquence d'oscillation naturelle F0 de l'oscillateur mécanique est un peu inférieure à la fréquence de consigne F0c. Il résulte de cette situation que, dans chaque période d'oscillation T0c, une première impulsion de freinage distincte, qui est engendrée dans la zone initiale de chaque impulsion de court-circuit par une impulsion de tension induite 74A et qui intervient dans la seconde demi-alternance A22 de la seconde alternance A2 (au début des intervalles de temps distincts TP), est plus forte qu'une deuxième impulsion de freinage distincte qui est engendrée dans la zone finale de chaque impulsion de court-circuit par une impulsion de tension induite 74B et qui intervient dans la première demi-alternance A11 de la première alternance A1 (à la fin des intervalles de temps distincts TP). Deux impulsions de freinage sont distinctes lorsqu'elles sont séparées par un intervalle de temps présentant une durée non nulle.It is observed that, provided that the natural time drift of the timepiece remains within a nominal range for which the synchronization device has been dimensioned and generally after a transient phase which follows the activation of the synchronization device, this part d 'watchmaking enters a stable and synchronous phase and where the mechanical oscillator presents the setpoint frequency F0c at which the short-circuit pulses 58A are generated here, and this regardless of the angular position of the balance 8A during a first short-circuit pulse. The Figure 22 corresponds to a situation where the natural oscillation frequency F0 of the mechanical oscillator is a little lower than the reference frequency F0c. It follows from this situation that, in each oscillation period T0c, a first distinct braking pulse, which is generated in the initial zone of each short-circuit pulse by an induced voltage pulse 74 A and which occurs in the second half-wave A2 2 of the second half-wave A2 (at the start of the separate time intervals T P ), is stronger than a second separate braking pulse which is generated in the end zone of each short-circuit pulse by a pulse of induced voltage 74 B and which occurs in the first half-wave A1 1 of the first half-wave A1 (at the end of the distinct time intervals T P ). Two braking pulses are distinct when they are separated by a time interval having a non-zero duration.

Ainsi, dans la phase synchrone, lors de chaque intervalle de temps TP où intervient un court-circuit de la bobine, le déphasage positif généré par l'impulsion de tension 74B dans chaque demi-alternance A22 est supérieur au déphasage négatif généré par l'impulsion de tension 74A dans chaque demi-alternance A11, de sorte qu'une correction de la marche de la pièce d'horlogerie intervient ici dans chaque période d'oscillation pour assurer la synchronisation de l'oscillateur mécanique sur la base de temps de référence. Comme indiqué précédemment, la génération des impulsions de court-circuit à la fréquence de consigne est un cas particulier. Dans une autre variante, des impulsions de court-circuit sont engendrées avec une fréquence inférieure correspondant à une fraction de la fréquence de consigne. Plus généralement, il est prévu que la distance temporelle DT, séparant un même instant caractéristique de deux impulsions de court-circuit successives quelconques, satisfait la relation mathématique DT = M·T0c / 2, M étant un nombre entier positif quelconque. Ainsi, dans le cas d'une génération périodique des impulsions de freinage, la fréquence de déclenchement FD de ces impulsions de freinage est sélectionnée pour satisfaire la relation mathématique FD = 2·F0c / M (à noter que les deux impulsions de freinage distinctes, engendrées dans chaque intervalle de temps TP respectivement lors de l'apparition des deux impulsions de tension induite 74A et 74B, sont considérées ensemble comme une même impulsion de freinage pour la question des distances temporelles et de la fréquence de déclenchement). L'homme du métier saura sélectionner une fréquence suffisamment élevée, et donc une valeur de M pas trop élevée, pour assurer la synchronisation voulue.Thus, in the synchronous phase, during each time interval T P where a short-circuit of the coil occurs, the positive phase shift generated by the voltage pulse 74 B in each half-wave A2 2 is greater than the negative phase shift generated by the voltage pulse 74 A in each half-wave A1 1 , so that a correction of the rate of the timepiece takes place here in each period of oscillation to ensure the synchronization of the mechanical oscillator on the baseline time base. As indicated previously, the generation of short-circuit pulses at the reference frequency is a special case. In another variant, short-circuit pulses are generated with a lower frequency corresponding to a fraction of the reference frequency. More generally, provision is made for the temporal distance D T , separating a same characteristic instant of any two successive short-circuit pulses, satisfies the mathematical relationship D T = M · T0c / 2, M being any positive integer. Thus, in the case of periodic generation of the braking pulses, the trigger frequency F D of these braking pulses is selected to satisfy the mathematical relationship F D = 2 · F0c / M (note that the two braking pulses distinct, generated in each time interval T P respectively upon the appearance of the two induced voltage pulses 74 A and 74 B , are considered together as the same braking pulse for the question of temporal distances and the triggering frequency) . Those skilled in the art will know how to select a sufficiently high frequency, and therefore a value of M not too high, to ensure the desired synchronization.

Dans une deuxième variante du deuxième mode de réalisation, le dispositif de freinage électromagnétique comprend un système magnétique formé par une paire d'aimants permanents à aimantation axiale et de polarités opposées, ces deux aimants étant agencés symétriquement par rapport à un demi-axe de référence du balancier et suffisamment proches l'un de l'autre pour additionner deux lobes de tension induite qu'ils génèrent respectivement lorsque cette paire d'aimants passent en regard de la bobine. Le demi-axe de référence définit une position angulaire zéro lorsque le résonateur mécanique est dans sa position neutre. La bobine présente un décalage angulaire relativement à la position angulaire zéro de manière qu'une tension induite dans cette bobine intervienne, lorsque l'oscillateur mécanique oscille dans la plage de fonctionnement utile, au moins dans une alternance de chaque période d'oscillation substantiellement avant ou après le passage du résonateur mécanique par sa position neutre dans cette alternance. Le décalage angulaire de la bobine est aussi de préférence égale à 180°. Les positions angulaires extrêmes du résonateur mécanique dans la plage de fonctionnement utile sont, en valeurs absolues, supérieures au décalage angulaire qui est défini comme la distance angulaire minimale entre la position angulaire zéro et la position angulaire du centre de la bobine. Cette deuxième variante correspond au dispositif électromagnétique représenté à la Figure 23, mais sans la deuxième paire d'aimants 66, 67 qui concerne le troisième mode de réalisation qui va être décrit ci-après.In a second variant of the second embodiment, the electromagnetic braking device comprises a magnetic system formed by a pair of permanent magnets with axial magnetization and of opposite polarities, these two magnets being arranged symmetrically with respect to a reference semi-axis of the balance and sufficiently close to each other to add two lobes of induced voltage that they generate respectively when this pair of magnets pass in reel look. The reference half-axis defines a zero angular position when the mechanical resonator is in its neutral position. The coil has an angular offset relative to the zero angular position so that a voltage induced in this coil occurs, when the mechanical oscillator oscillates in the useful operating range, at least in one half-wave of each period of oscillation substantially before or after the passage of the mechanical resonator through its neutral position in this alternation. The angular offset of the coil is also preferably equal to 180 °. The extreme angular positions of the mechanical resonator in the useful operating range are, in absolute values, greater than the angular offset which is defined as the minimum angular distance between the zero angular position and the angular position of the center of the coil. This second variant corresponds to the electromagnetic device shown in Figure 23 , but without the second pair of magnets 66, 67 which relates to the third embodiment which will be described below.

Dans un troisième mode de réalisation, représenté aux Figures 23 à 25, le système magnétique du dispositif de freinage électromagnétique est constitué d'une première paire d'aimants bipolaires 64, 65 et d'une deuxième paire d'aimants bipolaires 66, 67 toutes deux portées par le balancier 8B du résonateur mécanique 6B, ainsi que d'une bobine 28. Chaque paire d'aimants présente une aimantation axiale de polarités opposées. Les deux aimants de la première paire sont agencés symétriquement relativement à un demi-axe de référence 62A du balancier 8B, ce demi-axe de référence définissant une position angulaire zéro lorsque le résonateur mécanique est dans sa position neutre. A la Figure 23, on notera que le balancier est dans une position angulaire θ égale à 90° (θ = 90°). La bobine 28, comme dans le deuxième mode de réalisation, présente un décalage angulaire relativement à la position angulaire zéro, ce décalage étant de préférence sensiblement égal à 180 ; mais d'autres décalages angulaires peuvent être prévus dans d'autres variantes. La courbe de tension induite 76 générée dans la bobine lorsque le résonateur mécanique oscille est représentée à la Figure 24, en superposition de la courbe 70 donnant la position angulaire du balancier 8B.In a third embodiment, shown in Figures 23 to 25 , the magnetic system of the electromagnetic braking device consists of a first pair of bipolar magnets 64, 65 and a second pair of bipolar magnets 66, 67 both carried by the balance 8B of the mechanical resonator 6B, as well as of a coil 28. Each pair of magnets has an axial magnetization of opposite polarities. The two magnets of the first pair are arranged symmetrically with respect to a reference half-axis 62A of the balance 8B, this reference half-axis defining a zero angular position when the mechanical resonator is in its neutral position. To the Figure 23 , it will be noted that the balance is in an angular position θ equal to 90 ° (θ = 90 °). Coil 28, as in second embodiment, has an angular offset relative to the zero angular position, this offset being preferably substantially equal to 180; but other angular offsets can be provided in other variants. The induced voltage curve 76 generated in the coil when the mechanical resonator oscillates is shown in figure Figure 24 , superimposed on the curve 70 giving the angular position of the balance 8B.

Le positionnement de la bobine 28 à un angle de 180° (variante représentée à la Figure 23) est une variante préférée, car le système électromagnétique que la bobine forme avec la première paire d'aimants 64, 65 engendre dans chaque alternance deux impulsions de tension induite 78A et 78B présentant une symétrie relativement à l'instant du passage du résonateur 6B par sa position neutre. On a donc une impulsion 78A dans chaque première demi-alternance A11, A21 et une impulsion 78B dans chaque seconde demi-alternance A12, A22. Ainsi, les impulsions de tension induite 78A et 78B ont sensiblement une même amplitude et sont chacune situées à une même distance temporelle d'un passage du résonateur mécanique 6B par une position angulaire extrême, de sorte qu'elles sont toutes susceptibles d'engendrer, lors d'un court-circuit de la bobine, un couple de freinage de même intensité et un déphasage, positif ou négatif selon le cas, de même valeur dans l'oscillation du résonateur mécanique. Ensuite, comme ceci a été exposé précédemment, on notera qu'un décalage angulaire de 180° présente en plus l'avantage d'une grande efficacité pour les impulsions de freinage engendrées. De plus, on notera que l'amplitude du balancier dans la plage de fonctionnement utile de l'oscillateur mécanique est classiquement prévue supérieure à 180°, ce qui permet donc la génération des impulsions de tension induite et ainsi de pouvoir engendrer des impulsions de freinage, par une diminution de l'impédance entre les deux bornes de la bobine 28 pour corriger la marche de la pièce d'horlogerie.Positioning the coil 28 at an angle of 180 ° (variant shown in Figure 23 ) is a preferred variant, because the electromagnetic system that the coil forms with the first pair of magnets 64, 65 generates in each half-wave two induced voltage pulses 78 A and 78 B having a symmetry relative to the instant of passage of the resonator 6B by its neutral position. There is therefore a 78 A pulse in each first half-wave A1 1 , A2 1 and a 78 B pulse in each second half-wave A1 2 , A2 2 . Thus, the induced voltage pulses 78 A and 78 B have substantially the same amplitude and are each located at the same temporal distance from a passage of the mechanical resonator 6B through an extreme angular position, so that they are all liable to generate, during a coil short-circuit, a braking torque of the same intensity and a phase shift, positive or negative as the case may be, of the same value in the oscillation of the mechanical resonator. Then, as has been explained previously, it will be noted that an angular offset of 180 ° also has the advantage of high efficiency for the braking pulses generated. In addition, it will be noted that the amplitude of the balance in the useful operating range of the mechanical oscillator is conventionally expected to be greater than 180 °, which therefore makes it possible to generate the induced voltage pulses and thus to be able to generate braking pulses. , by reducing the impedance between the two terminals of coil 28 to correct the operation of the timepiece.

Dans une première variante représentée à la Figure 24, la valeur des intervalles de temps distincts TP est sensiblement égale ou supérieure à la durée d'une zone temporelle sans tension induite dans la bobine 28 autour de chaque position angulaire extrême du résonateur mécanique dans la plage de fonctionnement utile de l'oscillateur mécanique. Toutefois, cette valeur des intervalles de temps distincts TP est prévue inférieure à la demi-période de consigne, soit TP < T0c / 2. Dans la phase synchrone du procédé de synchronisation selon cette première variante, les impulsions de court-circuit 58B sont callées entre deux impulsions de tension induite 78A, 78B entourant une position angulaire extrême et deux impulsions de freinage distinctes interviennent respectivement au début et à la fin de chaque intervalle de temps TP, ces deux impulsions de freinage distinctes correspondant à deux quantités d'énergie prélevées au résonateur mécanique qui sont variables (la variation de l'une étant opposée à la variation de l'autre, de sorte que si une des deux quantités d'énergie augmente ou diminue l'autre respectivement diminue ou augmente), en fonction d'une dérive temporelle positive ou négative de l'oscillateur mécanique en question. On notera que la Figure 24 correspond au cas particulier où la fréquence naturelle de l'oscillateur mécanique est égale à la fréquence de consigne, de sorte que les deux quantités d'énergie susmentionnées sont ici identiques.In a first variant shown in Figure 24 , the value of the distinct time intervals T P is substantially equal to or greater than the duration of a temporal zone without voltage induced in the coil 28 around each extreme angular position of the mechanical resonator in the useful operating range of the mechanical oscillator. However, this value of the distinct time intervals T P is expected to be less than the reference half-period, ie T P <T0c / 2. In the synchronous phase of the synchronization method according to this first variant, the short-circuit pulses 58B are wedged between two induced voltage pulses 78 A , 78 B surrounding an extreme angular position and two distinct braking pulses occur respectively at the start and at the end of each time interval T P , these two distinct braking pulses corresponding to two quantities of energy taken from the mechanical resonator which are variable (the variation of one being opposed to the variation of the other, so that if one of the two quantities of energy increases or decreases the other respectively decreases or increases), as a function of a positive or negative time drift of the mechanical oscillator in question. Note that the Figure 24 corresponds to the particular case where the natural frequency of the mechanical oscillator is equal to the setpoint frequency, so that the two aforementioned quantities of energy are here identical.

A la figure 25, similaire à la Figure 24, est représentée une deuxième variante dans laquelle la valeur des intervalles de temps distincts TP est inférieure à la durée d'une zone temporelle sans tension induite dans la bobine 28 autour de chaque position angulaire extrême du résonateur mécanique. La synchronisation voulue est également obtenue. En effet, dans la phase synchrone, les impulsions de court-circuit 58C demeurent aussi dans une fenêtre temporelle qui est cadrée par deux impulsions de tension induite 78A, 78B entourant une position angulaire extrême. La position temporelle des intervalles de temps distincts TP peut varier à l'intérieur de cette fenêtre temporelle durant au moins une partie terminale de la phase transitoire (impulsion 58C1) ou dans la phase synchrone si la fréquence naturelle de l'oscillateur mécanique est très proche de la fréquence de la consigne, notamment si elle varie très légèrement autour de cette valeur. Généralement, on observe dans la phase synchrone, selon que la dérive temporelle de l'oscillateur mécanique est négative ou positive, des impulsions de court-circuit 58C2 ou 58C3 qui interviennent respectivement dans les demi-alternances A12 et A21 de périodes d'oscillation de manière partiellement simultanée respectivement avec les impulsions de tension induites 78B et 78A, de sorte qu'elles engendrent dans les demi-alternances respectives des impulsions de freinage. Seul le système électromagnétique susmentionné, formé de la bobine et de la première paire d'aimants, intervient pour assurer la synchronisation voulue dans la phase synchrone du procédé de synchronisation, la seconde paire d'aimants étant alors sans influence pour ce procédé de synchronisation.To the figure 25 , similar to Figure 24 , a second variant is shown in which the value of the distinct time intervals T P is less than the duration of a time zone without voltage induced in the coil 28 around each extreme angular position of the mechanical resonator. The desired synchronization is also obtained. In fact, in the synchronous phase, the short-circuit pulses 58C also remain in a time window which is framed by two induced voltage pulses 78 A , 78 B surrounding an extreme angular position. The temporal position of the distinct time intervals T P can vary within this time window during at least a terminal part of the transient phase (pulse 58C 1 ) or in the synchronous phase if the frequency natural value of the mechanical oscillator is very close to the setpoint frequency, in particular if it varies very slightly around this value. Generally, in the synchronous phase, depending on whether the time drift of the mechanical oscillator is negative or positive, short-circuit pulses 58C 2 or 58C 3 are observed which respectively occur in the half-waves A1 2 and A2 1 of periods of oscillation partially simultaneously with the induced voltage pulses 78 B and 78 A , respectively, so that they generate braking pulses in the respective half-waves. Only the aforementioned electromagnetic system, formed of the coil and the first pair of magnets, intervenes to ensure the desired synchronization in the synchronous phase of the synchronization process, the second pair of magnets then having no influence for this synchronization process.

La seconde paire d'aimants bipolaires 66, 67, laquelle est couplée momentanément à la bobine 28 dans chaque alternance de l'oscillation du résonateur mécanique, sert essentiellement à l'alimentation électrique du dispositif de synchronisation, bien qu'elle puisse intervenir dans une phase transitoire (phase initiale après activation du dispositif de synchronisation) du procédé de synchronisation. La pièce d'horlogerie comprend un circuit d'alimentation, formé par un circuit redresseur d'une tension induite dans la bobine et une capacité de stockage, et la deuxième paire d'aimants bipolaires présente un demi-axe milieu 68 entre ses deux aimants qui est décalé du décalage angulaire que présente la bobine 28 relativement au demi-axe de référence 62A, de sorte que cet axe milieu est aligné sur le centre de la bobine lorsque le résonateur mécanique est dans sa position de repos. Le circuit d'alimentation est relié, d'une part, à une borne de la bobine et, d'autre part, à un potentiel de référence du dispositif de synchronisation au moins périodiquement lors de passage du résonateur mécanique par sa position neutre, mais de préférence constamment. La deuxième paire d'aimants génère des impulsions de tension induite 80A et 80B lors des passages du balancier 8B par la position angulaire zéro, ces impulsions présentant une plus grande amplitude que les impulsions générées par la première paire d'aimants et servant à l'alimentation de la capacité de stockage dont la tension est représentée par la courbe 82 à la Figure 24.The second pair of bipolar magnets 66, 67, which is momentarily coupled to coil 28 in each half-wave of the mechanical resonator oscillation, serves primarily to supply power to the synchronization device, although it may be involved in an alternation. transient phase (initial phase after activation of the synchronization device) of the synchronization process. The timepiece comprises a supply circuit, formed by a rectifier circuit of a voltage induced in the coil and a storage capacitor, and the second pair of bipolar magnets has a middle half-axis 68 between its two magnets. which is offset by the angular offset exhibited by the coil 28 relative to the reference semi-axis 62A, so that this middle axis is aligned with the center of the coil when the mechanical resonator is in its rest position. The supply circuit is connected, on the one hand, to a terminal of the coil and, on the other hand, to a reference potential of the synchronization device at least periodically when the mechanical resonator passes through its neutral position, but preferably constantly. The second pair of magnets generates induced voltage pulses 80 A and 80 B when passing through the balance 8B by the zero angular position, these pulses having a greater amplitude than the pulses generated by the first pair of magnets and serving to supply the storage capacitor, the voltage of which is represented by curve 82 at the bottom. Figure 24 .

En référence aux Figures 26, 27 et 28A-28C, on décrira ci-après un quatrième mode de réalisation de l'invention. Ce quatrième mode de réalisation se distingue des autres modes de réalisation essentiellement par l'agencement du système magnétique. L'arbre 82 du balancier 8C est pivoté entre la platine 5 et un pont de balancier 7 autour de l'axe d'oscillation 34. Un aimant bipolaire 84 à aimantation radiale est agencé sur l'arbre 82 et placé dans une ouverture 87 d'une plaque 86 en matériau à haute perméabilité magnétique, notamment en matériau ferromagnétique. La plaque 86 définit un circuit magnétique avec un noyau 89 autour duquel est agencée une bobine 28C, à la manière d'un moteur horloger classique. La plaque 86 présente deux isthmes 88 au niveau de l'ouverture 87 qui empêchent partiellement au flux magnétique de l'aimant de se refermer sur lui-même sans passer par le noyau de bobine. Toutefois, de préférence, ces isthmes sont prévus moins fins que dans le cas d'un moteur horloger pour limiter la variation d'énergie potentielle magnétique de l'aimant permanent 84 en fonction de son angle de rotation.With reference to Figures 26, 27 and 28A-28C , a fourth embodiment of the invention will be described below. This fourth embodiment differs from the other embodiments essentially by the arrangement of the magnetic system. The shaft 82 of the balance 8C is pivoted between the plate 5 and a balance bridge 7 about the axis of oscillation 34. A bipolar magnet 84 with radial magnetization is arranged on the shaft 82 and placed in an opening 87 d a plate 86 made of a material with high magnetic permeability, in particular a ferromagnetic material. The plate 86 defines a magnetic circuit with a core 89 around which a coil 28C is arranged, in the manner of a conventional watch motor. The plate 86 has two isthmuses 88 at the opening 87 which partially prevent the magnetic flux of the magnet from closing on itself without passing through the coil core. However, preferably, these isthmuses are made less thin than in the case of a clock motor in order to limit the variation of the magnetic potential energy of the permanent magnet 84 as a function of its angle of rotation.

Les Figures 28A à 28C sont similaires aux Figures 5A à 5C, mais pour le quatrième mode de réalisation. La courbe de tension induite aux Figures 28A et 28B correspond à un cas particulier où l'amplitude d'oscillation est sensiblement égale à 180°. Pour une amplitude supérieure, la courbe de tension induite dans la bobine 28C correspond à la courbe représentée à la Figure 28C. Cette dernière figure concerne un cas particulier où la fréquence d'oscillation naturelle F0 de l'oscillateur mécanique est égale à la fréquence de consigne. Comme le freinage généré par les impulsions de freinage 50C est faible, l'amplitude d'oscillation du résonateur 6C est un peu supérieure à celle intervenant aux Figures 28A et 28B où les impulsions de freinage 56, respectivement 57 engendrent un freinage plus conséquent. Les impulsions 50C n'engendrent pas de déphasage temporel dans l'oscillation du résonateur mécanique, étant donné qu'elles présentent une symétrie centrale relativement à l'instant du passage du résonateur 6C par une position angulaire extrême sur le graphe du couple de freinage. On notera que les deux parties TB et TA des intervalles de temps distincts TP, intervenant respectivement des deux côtés de l'instant du passage du résonateur 6C par une position angulaire extrême, sont ici égales puisque la fréquence naturelle est égale à la fréquence de consigne. Ainsi les demi-alternances adjacentes A22 et A11 ont une même durée.The Figures 28A to 28C are similar to Figures 5A to 5C , but for the fourth embodiment. The voltage curve induced at Figures 28A and 28B corresponds to a particular case where the oscillation amplitude is substantially equal to 180 °. For a higher amplitude, the voltage curve induced in coil 28C corresponds to the curve shown in Figure 28C . This last figure relates to a particular case where the natural oscillation frequency F0 of the mechanical oscillator is equal to the reference frequency. Since the braking generated by the braking pulses 50C is small, the oscillation amplitude of the resonator 6C is a little greater than that occurring at the Figures 28A and 28B where the braking pulses 56, respectively 57 generate more substantial braking. The pulses 50C do not generate a time phase shift in the oscillation of the mechanical resonator, given that they have a central symmetry relative to the instant of passage of the resonator 6C through an extreme angular position on the graph of the braking torque. It will be noted that the two parts T B and T A of distinct time intervals T P , occurring respectively on both sides of the instant at which the resonator 6C passes through an extreme angular position, are here equal since the natural frequency is equal to the setpoint frequency. Thus the adjacent half-waves A2 2 and A1 1 have the same duration.

Pour mémoire, les intervalles de temps TP sont définis par les impulsions de court-circuit 58 qui présentent entre leurs débuts respectifs une distance temporelle DT déterminée par la base de temps de référence. Dans le présent exemple, les impulsions de court-circuit 58 sont générées avec une fréquence de déclenchement FD égale à la fréquence de consigne, de sorte que les distances temporelles DT sont ici égales à une période de consigne T0c.As a reminder, the time intervals T P are defined by the short-circuit pulses 58 which have between their respective beginnings a time distance D T determined by the reference time base. In the present example, the short-circuit pulses 58 are generated with a triggering frequency F D equal to the setpoint frequency, so that the time distances D T are here equal to a setpoint period T0c.

Dans le cas d'une fréquence naturelle F0 trop élevée, la première partie TB des intervalles de temps distants TP est inférieure à la seconde partie TA et les impulsions de freinage 56 engendrées lors de ces intervalles de temps distants, par les impulsions de court-circuit correspondantes, interviennent substantiellement dans des premières demi-alternances A11 (quasi entièrement dans l'exemple spécifique représenté), de sorte qu'elles diminuent la fréquence de l'oscillateur mécanique pour le synchroniser sur l'oscillateur auxiliaire de la base de temps de référence et ainsi imposer à cet oscillateur mécanique la fréquence de consigne F0c. Dans le cas d'une fréquence naturelle F0 trop faible, la première partie TB des intervalles de temps distants TP est supérieure à la seconde partie TA et les impulsions de freinage 57 engendrées lors de ces intervalles de temps distants, par les impulsions de court-circuit correspondantes, interviennent substantiellement dans des secondes demi-alternances A22 (aussi quasi entièrement dans l'exemple spécifique représenté), de sorte qu'elles augmentent la fréquence de l'oscillateur mécanique pour le synchroniser sur l'oscillateur auxiliaire.In the case of a natural frequency F0 that is too high, the first part T B of the distant time intervals T P is less than the second part T A and the braking pulses 56 generated during these distant time intervals, by the pulses corresponding short-circuits, occur substantially in the first half-waves A1 1 (almost entirely in the specific example shown), so that they reduce the frequency of the mechanical oscillator to synchronize it on the auxiliary oscillator of the reference time base and thus impose the reference frequency F0c on this mechanical oscillator. In the case of a too low natural frequency F0, the first part T B of the distant time intervals T P is greater than the second part T A and the braking pulses 57 generated during these distant time intervals, by the pulses corresponding short-circuits, substantially intervene in second half-waves A2 2 (also almost entirely in the specific example shown), so that they increase the frequency of the mechanical oscillator to synchronize it with the auxiliary oscillator.

Claims (13)

  1. Timepiece (2) comprising a mechanical movement (4) which comprises:
    - an indicator mechanism (12) of at least one time data item,
    - a mechanical resonator (6,6A,6B,6C) suitable for oscillating along a general oscillation axis about a neutral position corresponding to the minimum potential energy state thereof,
    - a maintenance device (18) of the mechanical resonator forming therewith a mechanical oscillator which is arranged to time the running of the indicator mechanism,
    - an auxiliary oscillator (35) forming a reference time base (22) and determining a set-point frequency F0c, as well as a set-point period T0c equal by definition to the inverse of the set-point frequency, for the mechanical resonator;
    the timepiece further comprising a synchronisation device (20) arranged to slave the mean frequency of the mechanical oscillator on the set-point frequency F0c, the synchronisation device comprising an electromagnetic braking device of the mechanical resonator, this electromagnetic braking device being formed of at least one coil (28,28C) and at least one permanent magnet (30,32; 60; 64,65; 84) which are arranged such that, within a usable operating range of the mechanical oscillator, an induced voltage is generated between the two terminals of the coil in each alternation of this oscillation; the synchronisation device being arranged to be able to momentarily reduce the impedance between the two terminals of the coil;
    characterised in that the synchronisation device is arranged so as to reduce the impedance between the two terminals of the coil during distinct time intervals Tp and such that the starts of any two successive time intervals, among said distinct time intervals, exhibit therebetween a time distance DT equal to a positive whole number N multiplied by half of the set-point period T0c for the mechanical oscillator, i.e. a mathematical relation DT = N·T0c/2, the synchronisation device being arranged to determine by means of the reference time base the start of each of the distinct time intervals so as to fulfil the mathematical relation between the time distance DT and the set-point period T0c.
  2. Timepiece according to claim 1, characterised in that the synchronisation device is arranged to trigger periodically said distinct time intervals TP, which have the same value, and such that the triggering frequency FD is equal to twice the set-point frequency F0c divided by a positive whole number M, i.e. FD = 2·F0c/ M, the value of the distinct time intervals Tp being less than half of the set-point period, i.e. TP < T0c/2.
  3. Timepiece according to claim 1 or 2, characterised in that the mechanical resonator is formed by a balance (8,8A,8B,8C) oscillating about an oscillation axis (34).
  4. Timepiece according to claim 3, characterised in that the balance bears said at least one permanent magnet and a support (5) of the mechanical resonator bears said at least one coil.
  5. Timepiece according to any one of the preceding claims, characterised in that the electromagnetic braking device is arranged such that an induced voltage is generated in said at least one coil substantially continuously for any oscillation of the mechanical resonator within the usable operating range of the mechanical oscillator.
  6. Timepiece according to claim 5, characterised in that the value of the distinct time intervals TP is advantageously less than one quarter of the set-point period T0c, i.e. TP < T0c / 4.
  7. Timepiece according to claim 4, characterised in that the electromagnetic braking device comprises a magnetic system borne by the balance and formed by a pair of bipolar magnets (64,65) with axial magnetisation and opposite polarities, these two bipolar magnets being arranged symmetrically relative to a reference half-axis (62A) of the balance, this reference half-axis defining a zero angular position when the mechanical resonator is in the neutral position thereof; and in that said coil exhibits an angular lag relative to the zero angular position such that an induced voltage in this coil occurs substantially, when the mechanical oscillator oscillates in the usable operating range, in each alternation alternately before and after the passage of the mechanical resonator via the neutral position thereof in this alternation, the end angular positions of the mechanical resonator in said usable operating range being, in absolute values, greater than said angular lag which is defined as the minimum angular distance between the zero angular position and the angular position of the centre of the coil.
  8. Timepiece according to claim 7, characterised in that, within the usable operating range of the mechanical oscillator, the distinct time intervals TP are substantially equal to or greater than time zones with no induced voltage in said coil about the two end positions of the mechanical resonator.
  9. Timepiece according to claim 7 or 8, characterised in that said angular lag is substantially equal to 180°.
  10. Timepiece according to any one of the preceding claims, characterised in that it comprises a power supply circuit (44) formed by a storage capacitor and by a rectifier circuit of a voltage induced in the coil by at least one permanent magnet when the mechanical resonator oscillates.
  11. Timepiece according to claim 10, characterised in that the power supply circuit is constantly connected, on one hand, to a terminal of said coil and, on the other, to a reference potential of the synchronisation device; and in that said at least one permanent magnet generating the induced voltage rectified by the rectifier circuit, the coil and the power supply circuit are arranged such that, in the usable operating range of the mechanical oscillator, the electrical energy stored in the storage capacitor is sufficient to power the synchronisation device.
  12. Timepiece according to any one of claims 7 to 9, characterised in that it comprises a power supply circuit (44) formed by a storage capacitor and by a rectifier circuit of a voltage induced in the coil by a further pair of permanent magnets (66,67) when the mechanical resonator oscillates, the further pair of permanent magnets having a midpoint axis (68) between the two permanent magnets thereof and being momentarily coupled with the coil in each alternation of the oscillation of the mechanical resonator, said midpoint axis being substantially offset by said angular lag relative to said reference half-axis (62A) such that this midpoint axis is substantially aligned on the centre of the coil when the mechanical resonator is in the neutral position thereof; and in that the power supply circuit is connected, on one hand, to a terminal of said coil and, on the other, to a reference potential of the synchronisation device at least periodically when the mechanical resonator passes via the neutral position thereof.
  13. Timepiece according to any one of the preceding claims, characterised in that the synchronisation device is arranged so as to generate a short-circuit between the two terminals of said coil during said distinct time intervals.
EP18192469.7A 2018-09-04 2018-09-04 Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator Active EP3620867B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18192469.7A EP3620867B1 (en) 2018-09-04 2018-09-04 Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator
US16/520,402 US11687041B2 (en) 2018-09-04 2019-07-24 Timepiece comprising a mechanical oscillator wherein the medium frequency is synchronised on that of a reference electronic oscillator
JP2019153408A JP6951389B2 (en) 2018-09-04 2019-08-26 A timekeeper with a mechanical oscillator that synchronizes the intermediate frequency with the frequency of the electronic oscillator.
CN201910827874.7A CN110874049B (en) 2018-09-04 2019-09-03 Timepiece comprising a mechanical oscillator with intermediate frequency synchronized with the frequency of a reference electronic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18192469.7A EP3620867B1 (en) 2018-09-04 2018-09-04 Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator

Publications (2)

Publication Number Publication Date
EP3620867A1 EP3620867A1 (en) 2020-03-11
EP3620867B1 true EP3620867B1 (en) 2022-01-05

Family

ID=63491497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18192469.7A Active EP3620867B1 (en) 2018-09-04 2018-09-04 Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator

Country Status (4)

Country Link
US (1) US11687041B2 (en)
EP (1) EP3620867B1 (en)
JP (1) JP6951389B2 (en)
CN (1) CN110874049B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4009119B1 (en) * 2020-12-07 2023-07-05 The Swatch Group Research and Development Ltd Timepiece movement provided with a generator and a circuit for controlling the frequency of rotation of said generator
EP4020100B1 (en) * 2020-12-24 2023-08-16 Montres Breguet S.A. Timepiece including a rotating bezel
WO2022176453A1 (en) 2021-02-17 2022-08-25 シチズン時計株式会社 Mechanical timepiece
EP4174586A1 (en) * 2021-10-29 2023-05-03 The Swatch Group Research and Development Ltd Timepiece assembly comprising a watch and a system for correcting the time
WO2023176378A1 (en) * 2022-03-14 2023-09-21 シチズン時計株式会社 Mechanical timepiece

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618311A (en) * 1970-01-13 1971-11-09 Timex Corp Synchronized horological system
CH1801671A4 (en) * 1971-12-10 1975-05-30
JPS4966161A (en) 1972-10-26 1974-06-26
CH1691872A4 (en) 1972-11-21 1977-05-31
CH1810272A4 (en) 1972-12-13 1977-02-28
ES430659A1 (en) * 1973-10-24 1976-11-01 Jauch Method and apparatus for synchronizing andoscillating system which is driven by an energy storage device
ATE363676T1 (en) 2003-10-01 2007-06-15 Asulab Sa CLOCK WITH A MECHANICAL MOVEMENT COUPLED WITH AN ELECTRONIC REGULATOR
ATE363675T1 (en) * 2003-10-01 2007-06-15 Asulab Sa CLOCK WITH A MECHANICAL MOVEMENT COUPLED WITH AN ELECTRONIC REGULATOR
CN101091141B (en) * 2004-10-26 2012-03-21 Lvmh瑞士制造业股份公司 Regulating element for wristwatch and mechanical movement comprising one such regulating element
CH705679B1 (en) * 2011-10-28 2017-01-31 Swatch Group Res & Dev Ltd A circuit for self-regulating the oscillation frequency of an oscillating mechanical system, and a device comprising the same.
EP2990885B1 (en) 2013-12-23 2017-07-26 ETA SA Manufacture Horlogère Suisse Mechanical clock movement with magnetic escapement
CH709279B1 (en) * 2014-02-17 2018-12-14 Swatch Group Res & Dev Ltd Frequency regulation of a clock resonator by action on the stiffness of an elastic return means.
EP3130966B1 (en) 2015-08-11 2018-08-01 ETA SA Manufacture Horlogère Suisse Mechanical clockwork provided with a motion feedback system
CH713306B1 (en) * 2016-12-23 2021-05-31 Swatch Group Res & Dev Ltd Watchmaking assembly comprising a mechanical oscillator associated with a device for regulating its average frequency.
EP3339982B1 (en) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Regulation by mechanical breaking of a horological mechanical oscillator

Also Published As

Publication number Publication date
JP6951389B2 (en) 2021-10-20
EP3620867A1 (en) 2020-03-11
US20200073331A1 (en) 2020-03-05
CN110874049B (en) 2021-06-01
CN110874049A (en) 2020-03-10
JP2020038206A (en) 2020-03-12
US11687041B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
EP3620867B1 (en) Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator
EP3339982B1 (en) Regulation by mechanical breaking of a horological mechanical oscillator
EP1521141B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP1521142B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP3602207B1 (en) Timepiece comprising a mechanical movement of which the operation is improved by a correction device
EP3130966B1 (en) Mechanical clockwork provided with a motion feedback system
EP3602206B1 (en) Mechanical timepiece comprising a movement of which the operation is improved by a correction device
EP3629104B1 (en) Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece
EP3191899A1 (en) Magnetic timepiece escapement and regulator device for the operation of a timepiece movement
CH713306A2 (en) Watchmaking assembly comprising a mechanical oscillator associated with a device for regulating its average frequency.
EP3579058B1 (en) Timepiece comprising a tourbillon
CH715049B1 (en) Timepiece comprising a tourbillon.
EP3502796B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3842876A1 (en) Timepiece fitted with a mechanical movement and a device for correcting the time displayed
EP0135104B1 (en) Method and device for the control of a stepping motor
CH715295A2 (en) Timepiece including a mechanical oscillator whose average frequency is synchronized with that of a reference electronic oscillator.
CH713637A2 (en) Timepiece comprising a mechanical movement whose running is improved by a correction device.
EP3502798B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3502797A1 (en) Timepiece comprising a mechanical oscillator associated with a control system
CH713636A2 (en) Mechanical timepiece comprising a movement whose progress is improved by a correction device.
CH713332A2 (en) Clock assembly comprising a mechanical oscillator associated with a regulating device.
CH715399A2 (en) Timepiece comprising a mechanical oscillator associated with an electronic device for regulating its average frequency.
CH714483A2 (en) Timepiece comprising a mechanical oscillator associated with a control system.
EP3719588B1 (en) Auto-adjustable clock oscillator
EP0108711A1 (en) Method and device for controlling a step motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200911

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20211014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20211118

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1461126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018029019

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1461126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220505

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018029019

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

26N No opposition filed

Effective date: 20221006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220904

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220904

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 6

Ref country code: DE

Payment date: 20230822

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180904