EP0135104B1 - Method and device for the control of a stepping motor - Google Patents

Method and device for the control of a stepping motor Download PDF

Info

Publication number
EP0135104B1
EP0135104B1 EP84109303A EP84109303A EP0135104B1 EP 0135104 B1 EP0135104 B1 EP 0135104B1 EP 84109303 A EP84109303 A EP 84109303A EP 84109303 A EP84109303 A EP 84109303A EP 0135104 B1 EP0135104 B1 EP 0135104B1
Authority
EP
European Patent Office
Prior art keywords
signal
rotor
circuit
motor
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84109303A
Other languages
German (de)
French (fr)
Other versions
EP0135104A1 (en
Inventor
Luciano Antognini
Yves Güérin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA Manufacture Horlogere Suisse SA
Original Assignee
ETA Manufacture Horlogere Suisse SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA Manufacture Horlogere Suisse SA filed Critical ETA Manufacture Horlogere Suisse SA
Publication of EP0135104A1 publication Critical patent/EP0135104A1/en
Application granted granted Critical
Publication of EP0135104B1 publication Critical patent/EP0135104B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Definitions

  • the present invention relates to a method and a device for controlling a stepping motor and its main purpose is to reduce the consumption of this motor as much as possible while guaranteeing perfect operating safety even in the worst conditions.
  • the invention finds a particularly interesting application in the field of watchmaking.
  • electronic timepieces with analog display which include a stepping motor to drive the display members
  • most of the energy supplied by the electric power source which is in generally a battery, is consumed by the engine. It is therefore important to limit, as much as possible the consumption of this motor to increase the life of the battery or, for a given life, to be able to reduce its volume, the space available in a timepiece being very limited. .
  • the duration of the driving pulses sent at regular intervals to the motor is fixed. This duration, generally 7.8 ms, is provided in order to guarantee the proper functioning of the motor even under the worst conditions, that is to say with a low battery voltage, during the drive of the calendar mechanism , in the presence of shocks or external magnetic field, etc. As these unfavorable conditions occur only rarely, the engine is mostly supercharged.
  • a known solution for reducing the power consumption of the motor consists in applying normal motor pulses of reduced duration, for example 3.9 ms, but sufficient to ensure correct operation under the best conditions and to provide a device which, after each of these pulses detects whether or not the motor has run. In the absence of rotation, this detection device controls the sending to the motor of a long-term catching pulse, which allows the latter to take the missed step.
  • this detection device controls the sending to the motor of a long-term catching pulse, which allows the latter to take the missed step.
  • the present invention also aims to eliminate this drawback.
  • the method according to the invention for controlling a stepping motor comprising a rotor and a coil receiving normal driving pulses from a control device associated with the motor to rotate the rotor when this device is energized, does not only consist in measuring, during each normal driving pulse, a physical quantity representative of the movement of the rotor and in interrupting said driving pulse at an instant determined as a function of the time taken by the physical quantity measured to reach a reference level, but also to detect the condition of rotation or non-rotation of the rotor in response to normal driving pulses and to modify the reference level by based on the information provided by this detection.
  • the reference level is adjustable in steps between a minimum value and a maximum value and it is increased by one step when N steps not taken by the rotor in response to normal driving pulses have have been detected in a determined time interval, N being a number which may be equal to or greater than 1.
  • the steps not taken by the rotor in response to normal driving pulses are caught up by applying to the motor coil correction driving pulses of sufficient duration to ensure the rotation of the rotor.
  • a stepper motor control system where the voltage induced in the motor coil by the movement of the rotor is measured and compared to a threshold or reference level to allow adaptation of the duration of the driving pulses to the instantaneous load of the engine has already been the subject of the European patent application filed on January 21, 1982 in the name of Asulab SA and published under the number 60806.
  • the threshold level is fixed. This does not prevent certain elements of the device described in this European application from being found as such or in a slightly modified form in the embodiment which has been chosen by way of example to demonstrate the invention.
  • the elements of the known device which are found in that of the invention are designated by the same references in the present application as in the aforementioned European application.
  • the circuit for calculating the induced voltage which bears the reference 11 in FIG. 4 of the European patent application is designated by the same number in FIG. 1 of this application. It is the same for the circuit for calculating the duration of the driving pulses 13. Note that the same rule also applies to the signals which are the same in both cases.
  • the elements which fulfill the same function in the device of the invention as in the known device but which had to be modified carry in the present application a reference which is increased by 100 compared to the corresponding reference used in the application anterior.
  • the AND gate 43 with two inputs which drives the motor control transistors of FIG. 12 of the European demand becomes, in fig. 5 of the present application, the AND gate 143 with 3 inputs, these two doors fulfilling basically the same role.
  • control device which will now be described and the general diagram of which is shown in FIG. 1, which is to be put in parallel with FIG. 4 of the aforementioned European patent application, is intended to equip an electronic watch with second hand.
  • This device comprises a periodic signal generator circuit 8 constituted by a quartz oscillator 300 which produces a signal whose frequency is substantially equal to 32768 Hz and by a frequency divider 400 which, after a division by fifteen binary stages of the frequency of the oscillator and a shaping of the wave, delivers at its output which also constitutes that of circuit 8 a signal S 8 of 1 Hz, formed of fine pulses whose duration is, for example, equal to the period of the signal of the oscillator, about 30 ⁇ s.
  • a periodic signal generator circuit 8 constituted by a quartz oscillator 300 which produces a signal whose frequency is substantially equal to 32768 Hz and by a frequency divider 400 which, after a division by fifteen binary stages of the frequency of the oscillator and a shaping of the wave, delivers at its output which also constitutes that of circuit 8 a signal S 8 of 1 Hz, formed of fine pulses whose duration is, for example, equal to the period of the signal of the oscillator, about 30 ⁇ s.
  • a combinational logic circuit 203 is connected to the various outputs of the binary stages of the frequency divider 400 by a series of connections to produce three logic signals SA, SB, SC, which are necessary for the operation of the device and whose form will be specified later.
  • This circuit 203 which also has the function of dividing the output signal of the last binary stage of the frequency divider and of providing periodically, for example every hour, a fourth signal SD whose usefulness will also appear later, can be produced in a simple way that is within the reach of the skilled person. It will therefore not be described in detail here.
  • a control circuit 109 fulfilling a role similar to circuit 9 of the cited European application, has a first input connected to the output of the frequency divider 400, which supplies the signal S 8 .
  • the output of circuit 109 delivers driving pulses I to a stepping motor 10.
  • a second input of circuit 109 receives a signal S 13 for stopping the driving pulse I, as described in the cited reference.
  • a third input of circuit 109 receives a signal Q211 to make up for missed steps.
  • a resistor 18, visible in FIG. 5, connected in series with the motor 10, makes it possible to obtain at its terminals a voltage U19 representative of the current which flows through the motor during the driving pulse I.
  • a computing circuit 11 represented by FIG. 11 in the European reference cited, receives on its input the signal U19 and develops a measurement voltage U m , representative of the voltage induced by the rotor during its rotation, which appears at the output of this circuit, across the resistor 82 of European demand.
  • a comparator circuit 12 has a first input connected to the output of circuit 11 while a second input receives a reference or threshold voltage U ' S.
  • This comparator 12 delivers at its output a logic signal S12 which is at the low logic level if U m is less than U ' s and at the high logic level if U m is more than U' s .
  • the threshold voltage U ' s is chosen as a function of the amplitude of the measurement voltage U m obtained under these normal engine operating conditions, as will appear below.
  • the moment of transition of the signal S 12 from the low logic level to the high logic level, counted from the start of the driving pulse I, defines a time T 2 which is representative of the torque C supplied by the motor.
  • the output of comparator 12 is connected to a first input of a calculation circuit 13, which determines the duration of the driving pulse I, and the output of the frequency divider 400 is connected to a second input of this circuit.
  • the logic signal S 13 appears. This signal is generated by the circuit 13 from the signals S 8 and S 12 and it is applied to the second input of the control circuit 109.
  • the signal S i3 is normally at the low logic level and goes to the high logic level T 3 seconds after the transition of signal S 12 .
  • a high logic level of the signal S 13 has the effect of stopping the driving pulse 1 produced by the control circuit 109.
  • the output of circuit 11, on which the measurement voltage U m appears, is connected to the input of a missed step detector circuit 200.
  • the output of circuit 200 is connected to the third input of circuit 109 and to the input of a missed step counting circuit 201.
  • a logic signal Q211 appears which is normally in the logic low state and goes to the logic high state for one second, for example, after detection with a failed step.
  • the output of the counting circuit 201 is connected to a first input of a voltage reference circuit 202.
  • the output of this latter circuit, supplying the threshold voltage U ' s is connected to the second input of the circuit 12.
  • the circuit 202 increments the threshold voltage U ' s by a fixed step.
  • the voltage U ' s can thus vary between a minimum level U' so , which can be equal to 0, and a maximum level U ' sp in P steps. P is for example 10.
  • U ' s has reached its maximum level, it remains there even if circuit 202 receives other impulses.
  • Circuit 202 has a second input to which a signal S226 is applied. This signal reduces the voltage U ' s to the minimum value U' so each time that the entire circuit of FIG. 1 is switched on, for example when the battery is changed.
  • the voltage U ' s is again periodically reduced to U' so , for example every hour, by the signal SD produced by the combinational logic circuit 203 and applied to a third input of the circuit 202.
  • the first, or the bottom one includes the elements referenced 109, 10, 11, 12 and 13.
  • the second loop, or the top loop includes the elements 109, 10, 11 and 200 with, in addition, a branch formed of the elements 201 and 202.
  • the upper loop for catching up on lost steps, in connection with the branch formed by circuits 201 and 202 which controls the threshold voltage U ' s , makes it possible to largely overcome the need to match the constants of circuit 13 to the constants k, K of the motor and to make the device less sensitive to variations in the parameters of the other circuits.
  • the failed step counting circuit 201 makes it possible to define a satisfactory operating criterion of the motor when it is subjected to external disturbances.
  • Each pulse on the signal S220 produces the incrementation of a step of the threshold voltage U ' s of the circuit 202.
  • U' s corresponds an energy of the driving pulse 1 plus big.
  • This adaptation process can continue until the energy of the motor impulses satisfies the satisfactory operating criterion adopted. All the steps missed during this adjustment process are naturally caught up.
  • the voltage U ' s is reset to the minimum value U' so using S226 or SD signals.
  • the value U ' s obtained after the readjustment process then corresponds to the new engine operating conditions.
  • the circuit 11 reacts to a driving pulse 1 applied to the motor 10 in various situations.
  • the motor is of the stepping type and the driving pulses 1 are polarized. This means that to turn the motor one step from a given position, the driving pulse 1 must have the correct polarity with respect to the position of the rotor or, as we say, be in phase with the latter. Otherwise, if the pulse I has the wrong polarity, that is to say that it is in counterphase with the position of the rotor, the motor will not run.
  • the induced rotation voltage is then zero while the measurement voltage U m produced by the circuit 11 in this situation, represented by the curve 206, shows a low amplitude oscillation.
  • the motor receives a pulse 1 in counterphase. It cannot then rotate and the induced voltage is therefore also zero.
  • the measurement voltage U m takes a strong negative value, as the curve shows. 207 corresponding to this case in fig. 2. This stems from the fact that the magnetic flux created by the magnet of the rotor and that produced by the pulse 1 are added and saturate certain parts of the stator. This saturation has the effect of modifying the time constant UR of the motor, L being its inductance and R the resistance of the coil.
  • this time constant is used in circuit 11 to determine U m .
  • the circuit 11 supplies a measurement voltage U m which is erroneous but easy to detect. It suffices, in fact, to compare it with a negative reference voltage U R. If the resulting voltage is positive, the motor has run, if it is negative the motor has missed a step.
  • Fig. 3 shows the constitution of the missed step detection circuit 200.
  • This circuit includes a differential amplifier 210 whose output is connected to the terminal S for setting a bistable flip-flop 211.
  • the non-inverting input of the amplifier 210 is connected to a voltage reference not shown, supplying the negative voltage U R.
  • the inverting input of the same amplifier constitutes the input of circuit 200.
  • This input is connected to the output of circuit 11 to receive the measurement voltage U m .
  • the flip-flop 211 has a reset input R which is connected to the output of the frequency divider 400 to receive the signal S 3 .
  • the output terminal Q of the flip-flop 211 also constitutes the output of the circuit 200.
  • the signal S ⁇ comes from the output of the frequency divider 400 and it includes fine seconds pulses. The duration of these pulses is equal to the period of the signal of 32768 Hz coming from the quartz oscillator 300.
  • the voltage U m is formed, in synchronism with the signal S 8 , of positive pulses when the driving pulse 1 is in phase with the position of the motor rotor, whether it rotates or not, and negative pulses when pulse 1 is in counterphase.
  • the comparison of the voltage U m with the negative reference voltage U R in the differential amplifier 210 produces at its output a signal S210.
  • the signal S210 will be at the low logic level when U m is greater than U R and at the high logic level during the time when U m is less than U R.
  • the signal S210 therefore contains a positive pulse of a few milliseconds, slightly behind the pulses of the signal S 8 , when a missed engine step is detected.
  • the flip-flop 211 receives on its inputs R and S respectively the signals S 8 and S210.
  • the signal Sa resets the flip-flop to zero every second, which causes a low logic level on its output Q.
  • the flip-flop is set to the state, causing a high logic level on the output Q until the next pulse of the signal S 8 .
  • the logic signal Q211 which appears on the output Q of the flip-flop 211 is thus normally at the low logic level. It goes to the high logic level after the detection of a missed step and goes back to the low level a second later.
  • the motor receives a driving pulse I in phase and it rotates normally.
  • the rotor of the motor is supposed to be locked at time TB when the driving pulse in phase produces a voltage U m of lower amplitude than previously.
  • the next driving pulse 1 then comes in counterphase at time TC, the motor cannot turn, whether the rotor is free or blocked, and the voltage U m produced is negative. This causes the Q211 signal to go to high logic state.
  • the motor receives, by means which will be described later, two driving pulses of recovery producing the two positive pulses close to the measurement voltage U m . The watch then caught up with the two lost steps. Finally, still half a second later, at time TE, the motor receives a driving pulse I in phase and turns normally.
  • FIG. 5 of the present invention is to be compared with FIG. 12 of the previous European application.
  • Block 9 of fig. 12 is however replaced by block 109 in FIG. 5.
  • Block 109 shows the composition of the motor control circuit 10 according to the present invention. This block has the same general structure as block 9, despite some modifications and the presence of additional elements.
  • the circuit represented by block 109 of FIG. 5 of the present invention comprises the elements 10, 14, 15, 16, 17, 42, 45 and 58 already described in the cited European document, the gates ET 143 and ET 144 which have one more entry than the gates ET 43 and ET 44 of the cited document and finally a door AND 215 and three doors OR 216, OR 217 and OR 218 additional.
  • the output of the frequency divider 400 is connected to the first input of the OR gate 216 of FIG. 5. This input thus receives the second signal S ⁇ .
  • the output of the missed step detection circuit 200 is connected to the first input of the gate with two AND inputs 215, which thus receives the signal Q211.
  • the output of the AND gate 215 is connected to the second input of the OR gate 216.
  • the output of the latter gate is connected to the clock input C K of the flip-flop 42, to the input of the AND gate 58 operating as an inverter and finally at the clock input C K of the flip-flop 46, the latter being part of block 13.
  • the first input of the OR gate 217 is connected to the terminal of the combinational logic circuit 203 which produces the logic signal HER.
  • the second inputs of the doors with two AND inputs 215 and OR 218 are connected together and the common point is connected to the output of the logic circuit 203 which generates the logic signal SB.
  • the second input of the OR gate 217 is connected to the output of the AND gate 215 and the first input of the OR gate 218 is connected to the output Q of the flip-flop 45.
  • the output of the OR gate 218 is connected to the second inputs doors with three inputs AND 143 and AND 144.
  • the third inputs of these same doors AND 143 and AND 144 are connected to the output of the OR gate 217.
  • the first input of the AND gate 143 is connected to the output Q of the flip-flop 42 and the first input of AND gate 144 at the output Q * of the same flip-flop.
  • the signal S 8 is composed of positive seconds pulses with a duration of around 30 ⁇ s.
  • the signal SA is also composed of seconds pulses, synchronous with the pulses of the signal S 8 , but their duration is 7.8 ms.
  • the signal SB is formed by a series of pairs of pulses. Each pulse of the signal SB has a duration of 7.8 ms and each pair of pulses is located between two successive pulses of the signal S 8 . In the example of fig.
  • the pulses of the signal SB forming a pair are separated by an interval of 7.8 ms and each pair of pulses is located in the middle of the interval formed by two successive pulses of the signal S 8 .
  • signal Q45 has been described in the European reference cited when the engine is running normally. This signal is then formed of positive pulses, the duration of which determines that of the driving pulses I and varies as a function of the motor torque supplied. When the motor is blocked and loses a step, the amplitude of the measurement signal U m is insufficient to reach the threshold voltage U 'and produce the signal S13 to reset the flip-flop 45 to zero.
  • the signal Q45 then remains at the level logic high until the next catch-up motor pulse whose fixed duration of 7.8 ms is assumed to be sufficient to run the motor in the most unfavorable cases.
  • the signal 0211 has already been described with reference to FIGS. 3 and 4. This signal goes to the high logic level after detection of a missed step and remains in this state until the next pulse of the signal S 8 .
  • the signals S143 and S144 represent the driving pulses of the control transistors 14, 15, 16, 17 of the motor 10 in the case of normal operation and in that of the recovery of the lost steps. With the exception of the catch-up pulse pairs, the start of all the other pulses are synchronous with the start of the pulses of signal S 8 .
  • the time scale t indicates, as in fig. 4, in TA a normal rotation of the motor, in TB a missed step, in TC the detection of a missed step, in TD 1 and TD 2 the two catch-up steps and in TE again a normal rotation step.
  • circuit 5 When the engine is operating normally, signal Q211 is at low logic level since there have been no missed steps.
  • the output of the AND gate 215 then also remains at the low logic level, whatever the level of the signal SB.
  • the OR gate 216 then transmits, without modifying it, the signal S 8 which is thus applied to the terminals C K of the flip-flops 42 and 46 and to the input of the gate 58.
  • the output of the OR gate 217 provides a signal formed by the signal SA in normal operation and by the superposition of the signals SA and SB just after the detection of a missed step.
  • the output of the OR gate 218 provides a signal formed by the superposition of the signals SB and Q45.
  • the normal driving pulses 1 coming in synchronism with the signal S 8 appear while the signal SB is at the low logic level.
  • the signal SB therefore has, in this case, no effect on the OR gate 218 which then transmits only the signal Q45 defining the duration of the driving pulse I.
  • the signal at the output of the OR gate 217 is at the high logic level for 7.8 ms and the signal at the output of the OR gate 218 at the logic level also high, but for the duration of the pulse of the signal Q45.
  • the duration of the Q45 signal pulse is approximately 4 ms, much less than the 7.8 ms duration of the SA signal pulse.
  • the signal S143 which is at the output of the AND gate 143, has a period of two seconds and that it is formed of pulses which are inserted in the middle of the distance separating two successive pulses from the similar signal S144 supplied by the AND gate 144.
  • the signals S143 and S144 drive the control transistors 14 to 17, which generate the driving pulse I.
  • the block 109 of FIG. 5 of the present invention operates identically to block 9 of FIG. 12 of the European reference cited. This situation corresponds to the instant TA of the time scale t of FIG. 6.
  • the driving pulse cannot last longer than the 7.8 ms of the pulse of the signal SA.
  • the signal SA passing through the OR gate 217, controls the AND gates 143 and AND 144 by allowing the passage of the signals applied to the inputs of these gates only during the time when the signal SA is in the high logic state.
  • the engine having missed a step the following driving impulse 1 comes in counterphase and it is in principle incapable of turning the engine. This corresponds to the instant EC of the time scale t of FIG. 6.
  • the circuit 200 makes it possible at this instant to detect the non-rotation of the motor during the previous driving pulse by passing the output signal Q211 from the low logic state to the high logic state.
  • the signal Q211 remains in this state until the next pulse of the signal Sa at the instant TE of the time scale t of FIG. 6, thus defining a window with a duration of 1 second.
  • the motor has thus lost two steps which must be caught up before time TE, for example in the middle of the time interval separating TC from TL, at the instants TD1 and TD2 defined by the corresponding pair of pulses of the signal SB .
  • the signal Q211 is then at the high logic level, which allows the two pulses of the signal SB to pass through the AND gates 215 and OR 216 to reach the terminal C K of the flip-flop 42 of FIG. 5.
  • the signal SB then also passes through the OR gate 217, to reach the third inputs of the AND gates 143 and AND 144.
  • the first pulse of the signal SB puts the flip-flop 42 in a state making it possible to produce a driving pulse in phase with the instant TD1, since the driving impulse at the instant TC was in counterphase and the engine had not turned. In the case shown in fig. 6, it is the output Q * of the flip-flop 42 which must pass to the high logic level.
  • the signal SA is at the low logic level in the vicinity of the instants TD1 and TD2, at the output of the OR gate 218 there are only the two pulses of the signal SB.
  • the logic level of the output signal from the OR gate 218 is in the high logic state because the logic signals SB and Q45 are also in this state.
  • N the missed step counting circuit 201, represented in FIG. 7. It essentially comprises a counter by N referenced 220.
  • the value of N is typically equal to 5.
  • This counter has an input terminal, an output terminal and a reset terminal R.
  • the input terminal receives the signal Q211 coming from the missed step detector 200.
  • the output terminal delivers a signal S220 formed by a pulse of arbitrary duration, each time the counter has counted by N.
  • the terminal R receives a reset signal SC taken at the output of circuit 203 whose period T n is, for example, 8 seconds.
  • T n is, for example, 8 seconds.
  • This circuit includes a counter by P, referenced 221, having an input terminal, a reset terminal S and p output terminals denoted a, bc .. p.
  • the value of P is typically equal to 10.
  • the input terminal receives the signal S220, coming from the missed step counting circuit 201, and the reset terminal S is connected to the output of an OR gate 225 with two entrances.
  • the first input of this gate receives the signal SD, supplied by the circuit 203, which gives, for example, a pulse every hour.
  • the second input is connected to a circuit 226, not described but known per se, which delivers an output signal S226 containing a pulse when the battery which supplies the supply voltage U a is placed in the watch.
  • the output terminals a, b, ... p of counter 221 are each connected to the control terminal of a transmission door, the transmission doors being denoted respectively 223a, 223b, ... 223p.
  • Each transmission door connects the first terminal of a first load resistor 224, common to all these doors, to the first terminal of a second load resistor.
  • Each transmission gate therefore corresponds to a second load resistance and these p resistors are denoted respectively 224a, 224b, ... 224p.
  • the second terminals of resistors 224, 224a, 224b, ... 224p are all connected to ground.
  • a transmission door is made conductive when its control terminal is brought to the high logic level. If not it is in the blocking state.
  • a current source 222 is connected between the supply terminal Ua, connected to the watch battery, and the first terminal of the resistor 224. This source delivers a constant current IR. Finally, the threshold voltage U ' s constituting the output of circuit 202, is taken from the first terminal of resistor 224.
  • FIG. 9 This last figure represents the variations of the signals S221 a, S221b, ... S221 p, appearing on the output terminals a, b, ... p of the counter 221, as a function of the pulses A, B, ... P contained in the signal S220, as well as the variations in the threshold voltage U ′ which result therefrom.
  • the counter 221 is reset by a pulse of the signal S220 or of the signal SD, this pulse being transmitted to the terminal S of the counter by the OR gate 225.
  • the signals S221 a, S221 b ,. .. S221 p are then all at the high logical level.
  • the transmission doors 223a, 223b, ... 223p, controlled by these signals, are thus all made conductive. It follows that the load resistors 224a, 224b, ... 224p all come in parallel on the load resistor 224. The paralleling of all these resistors defines a minimum equivalent load resistance.
  • the current source 222 delivering a constant current IR in this equivalent load resistance, produces at its terminals a minimum threshold voltage U ' so . If the energy of the driving pulse I corresponding to this threshold is insufficient for the motor to function satisfactorily within the meaning of the criterion stated above, a pulse A will be generated by the circuit 201 and transmitted by the signal S220 to the counter 211 , which will advance by one.
  • the output signal S221a goes to the low logic level, the other outputs remaining at the high logic level.
  • the transmission door 223a then passes from the conducting state to the blocking state and disconnects the resistor 224a from the resistor 224.
  • the equivalent load resistance therefore increases in value. It is the same for the threshold voltage which goes from U ' so to the directly higher value U' sa .
  • the same process can be repeated, if necessary, with the pulses B, C, ... P incrementing, each time, the threshold voltage by one step up to the maximum value U ' s p. With the P + 1 pulse, the threshold voltage drops to the minimum value U ' so and the cycle can start again. In practice, the threshold voltage must stabilize at a value below U ' sp , the return to the minimum value U' so being produced only by the pulses of signals S226 or SD.
  • the threshold voltage U ' is periodically reset to its minimum value U' so , this on the one hand in order to be able to decrease it in the event that, due to external disturbances, the rotor has failed more than the N not provided and where, consequently, this tension would have been brought to take too high a value and, on the other hand, to allow the control device to adapt automatically to the possible variations of the characteristics and the conditions of engine operation over time.
  • the missed step counting circuit 201 is provided to prevent the threshold level from being precipitously increased, as soon as a step is not crossed by the rotor, whereas this may be due for example to a shock or to an external magnetic field and not the fact that this level is too low. It is therefore especially useful in the two cases which have just been envisaged, that is to say when the reference voltage is set to its minimum value only when the device is turned on for the first time or when 'it is only reset to this value each time the battery is changed. Indeed, without this counter, by attacking the circuit 202 directly by the signal Q211, the threshold voltage could then be brought very quickly to take its maximum value and the energy consumption of the motor would be unnecessarily high throughout the lifetime of the watch or at least of a battery.
  • the counting circuit 201 can be eliminated without great inconvenience, by connecting the output of circuit 200 to the first input of circuit 202, because the energy consumption can then be excessive only for a limited period. In addition, it is always possible to reduce energy losses by increasing the frequency of readjustment of the reference level.
  • the block diagram in fig. 1 would remain valid for these different variants except as regards the missed step counting circuit which, as has just been indicated, can in certain cases be omitted and the circuit for calculating the duration of the driving pulses which is not not always necessary, the interruption of these pulses can sometimes be directly controlled by the output of the comparator.
  • the other circuits, at least the measurement circuit 11 and the missed step detector circuit 200 should be adapted to the physical quantity chosen as a representative parameter.
  • circuit 11 can be one of those described in German patent application No. 3132304.
  • the physical quantity chosen to regulate the duration of the driving pulses was also used for the detection of missed steps. It is clear that this is not mandatory and that different parameters can be used for the two things. If this is the case, the input of the missed step detection circuit 200 must no longer be connected to the output of the measurement circuit 11 but directly to the motor coil or possibly to the motor control circuit.

Abstract

The method involves supplying to the motor drive pulses generated by a control circuit, determining by means of a measurement circuit a physical magnitude representative of the motion of the rotor, interrupting the drive pulse at a given instant defined by a calculating circuit according to the time taken by the physical magnitude to reach, in a comparator, a reference level, controlling by means of a missed step detecting circuit whether or not the rotor has effected a step, retrieving if need be a non-effected step, summing the number of missed or non-effected steps in a counting circuit, and modifying in a reference circuit the reference level depending on the number of steps that have been missed in a given period of time. The device for putting this method into operation enables the motor to operate under optimal security and energy consumption conditions and can be used to advantage in timepieces.

Description

La présente invention concerne un procédé et un dispositif de commande d'un moteur pas-à-pas et a principalement pour but de réduire au maximum la consommation de ce moteur tout en garantissant une parfaite sécurité de fonctionnement même dans les plus mauvaises conditions.The present invention relates to a method and a device for controlling a stepping motor and its main purpose is to reduce the consumption of this motor as much as possible while guaranteeing perfect operating safety even in the worst conditions.

L'invention trouve une application particulièrement intéressante dans le domaine de l'horlogerie. En effet, dans les pièces d'horlogerie électronique à affichage analogique qui comportent un moteur pas-à-pas pour entraîner les organes d'affichage, la plus grande partie de l'énergie fournie par la source d'alimentation électrique, qui est en général une pile, est consommée par le moteur. Il est donc important de limiter, autant que possible la consommation de ce moteur pour augmenter la durée de vie de la pile ou, pour une durée de vie donnée, pouvoir diminuer son volume, la place disponible dans une pièce d'horlogerie étant très limitée.The invention finds a particularly interesting application in the field of watchmaking. In fact, in electronic timepieces with analog display which include a stepping motor to drive the display members, most of the energy supplied by the electric power source, which is in generally a battery, is consumed by the engine. It is therefore important to limit, as much as possible the consumption of this motor to increase the life of the battery or, for a given life, to be able to reduce its volume, the space available in a timepiece being very limited. .

Dans la plupart des pièces d'horlogerie actuellement sur le marché, la durée des impulsions motrices envoyées à intervalles réguliers au moteur est fixe. Cette durée, généralement de 7,8 ms, est prévu de manière à garantir le bon fonctionnement du moteur même dans les plus mauvaises conditions, c'est-à-dire avec une tension de pile faible, pendant l'entraînement du mécanisme de calendrier, en présence de chocs ou de champ magnétique externe, etc. Comme ces conditions défavorables ne se présentent que rarement, le moteur est la plupart du temps suralimenté.In most timepieces currently on the market, the duration of the driving pulses sent at regular intervals to the motor is fixed. This duration, generally 7.8 ms, is provided in order to guarantee the proper functioning of the motor even under the worst conditions, that is to say with a low battery voltage, during the drive of the calendar mechanism , in the presence of shocks or external magnetic field, etc. As these unfavorable conditions occur only rarely, the engine is mostly supercharged.

Une solution connue pour réduire la consommation en énergie du moteur consiste à lui appliquer des impulsions motrices normales de durée réduite, par exemple de 3,9 ms, mais suffisantes pour assurer un fonctionnement correct dans les meilleurs conditions et à prévoir un dispositif qui, après chacune de ces impulsions, détecte si le moteur a ou non tourné. En cas d'absence de rotation ce dispositif de détection commande l'envoi au moteur d'une impulsion de rattrapage de longue durée, qui permet à celui-ci d'effectuer le pas raté. Bien qu'il constitue assurément une amélioration par rapport au cas où le moteur n'est alimenté que par des impulsions de longue durée, un tel système n'est pas satisfaisant car, dans le cas où le moteur ne tourne pas en réponse à une impulsion normale, l'énergie de celle-ci est totalement perdue et très souvent la durée de l'impulsion de rattrapage est largement supérieure à celle nécessaire pour que le moteur effectue son pas.A known solution for reducing the power consumption of the motor consists in applying normal motor pulses of reduced duration, for example 3.9 ms, but sufficient to ensure correct operation under the best conditions and to provide a device which, after each of these pulses detects whether or not the motor has run. In the absence of rotation, this detection device controls the sending to the motor of a long-term catching pulse, which allows the latter to take the missed step. Although it undoubtedly constitutes an improvement on the case where the motor is powered only by long-lasting pulses, such a system is not satisfactory because, in the case where the motor does not run in response to a normal pulse, its energy is completely lost and very often the duration of the catch-up pulse is much greater than that necessary for the motor to take its step.

D'autres systèmes utilisent des moyens pour détecter des modifications de la charge du moteur et pour commuter la durée ou l'amplitude des impulsions motrices sur une valeur supérieure lorsqu'une augmentation de la charge est détectée. De tels systèmes, comme le précédent, ne sont en fait que des dispositifs de sécurité qui permettent simplement de délivrer au moteur un surcroît d'énergie souvent surabondant lorsque cela est nécessaire.Other systems use means for detecting changes in the engine load and for switching the duration or amplitude of the driving pulses to a higher value when an increase in the load is detected. Such systems, like the previous one, are in fact only safety devices which simply make it possible to deliver to the engine an additional energy, often overabundant when necessary.

En fait il n'est possible de réduire notablement la consommation en énergie du moteur qu'en lui associant des dispositifs de commande plus évolués qui permettent d'adapter l'énergie des impulsions motrices à la charge momentanée qu'il doit entraîner et à la tension d'alimentation.In fact, it is only possible to significantly reduce the energy consumption of the motor by associating it with more advanced control devices which make it possible to adapt the energy of the driving pulses to the momentary load which it must drive and to the supply voltage.

Il a été proposé notamment de prévoir un circuit formateur d'impulsions capable de produire des impulsions de plusieurs durées différentes associé à un dispositif qui, comme précédemment, détecte la rotation ou l'absence de rotation du moteur et de réduire progressivement la durée des impulsions envoyées au moteur jusqu'à ce qu'un pas non effectué soit détecté. Une impulsion de rattrapage de durée maximale est alors appliquée au moteur et l'énergie des impulsions motrices normales est fixée à la valeur supérieure la plus proche. Si le pas suivant n'est pas effectué on procède à une nouvelle incrémentation. Dans le cas contraire la valeur est maintenue pendant un certain temps. Si le moteur a tourné normalement pendant cette période, la durée des impulsions est à nouveau réduite. Une telle solution ne permet pas une adaptation permanente et rapide des impulsions motrices à la charge du moteur; cette adaptation n'est en effet réalisée qu'en moyenne. Par ailleurs, comme dans le cas du premier système mentionné ci-dessus, l'envoi d'impulsions de rattrapage en cas de non-rotation fait que la consommation en énergie est plus élevée qu'il n'est nécessaire.It has been proposed in particular to provide a pulse forming circuit capable of producing pulses of several different durations associated with a device which, as before, detects the rotation or the absence of rotation of the motor and gradually reduce the duration of the pulses. sent to the motor until a step not taken is detected. A catch-up pulse of maximum duration is then applied to the motor and the energy of the normal driving pulses is fixed at the nearest higher value. If the next step is not carried out, a new increment is carried out. Otherwise the value is maintained for a certain time. If the engine has been running normally during this period, the pulse duration is further reduced. Such a solution does not allow permanent and rapid adaptation of the driving pulses to the load of the motor; this adaptation is only carried out on average. Furthermore, as in the case of the first system mentioned above, the sending of catch-up pulses in the event of non-rotation means that the energy consumption is higher than necessary.

Il existe des systèmes qui permettent effectivement d'asservir en permanence l'énergie des impulsions motrices à la charge du moteur et à la tension de la pile. Ces dispositifs comportent des moyens pour mesurer, pendant l'application de l'impulsion motrice, un paramètre de fonctionnement représentatif de la position ou de la vitesse du rotor et à interrompre cette impulsion à un instant déterminé en fonction du temps mis par la grandeur physique mesurée à atteindre un niveau de référence prédéterminé, correspondant à l'instant où le rotor a effectué son pas ou, tout au moins, a tourné d'une quantité ou acquis une vitesse suffisante pour achever ce pas. Un tel système est assurément le plus efficace. Toutefois, dans la pratique, il est nécessaire, pour fixer le niveau de référence, de tenir compte des dispersions et des variations des caractéristiques qui peuvent exister pour le moteur et pour certains composants du circuit d'asservissement qui lui est associé. La valeur choisie n'est donc pas celle qui correspond à une consommation minimale.There are systems which effectively allow the energy of the driving pulses to be permanently controlled by the motor load and the battery voltage. These devices include means for measuring, during the application of the driving pulse, an operating parameter representative of the position or the speed of the rotor and for interrupting this pulse at an instant determined as a function of the time taken by the physical quantity. measured to reach a predetermined reference level, corresponding to the moment when the rotor has taken its step or, at least, has turned by an amount or acquired a speed sufficient to complete this step. Such a system is undoubtedly the most effective. However, in practice, in order to fix the reference level, it is necessary to take account of the dispersions and variations in the characteristics which may exist for the motor and for certain components of the control circuit which is associated with it. The value chosen is therefore not that which corresponds to minimum consumption.

La présente invention a également pour but de supprimer cet inconvénient.The present invention also aims to eliminate this drawback.

Ce but est atteint grâce au fait que le procédé selon l'invention de commande d'un moteur pas à pas comprenant un rotor et une bobine recevant d'un dispositif de commande associé au moteur des impulsions motrices normales pour faire tourner le rotor lorsque ce dispositif est mis sous tension, ne consiste pas seulement à mesurer, lors de chaque impulsion motrice normale, une grandeur physique représentative du mouvement du rotor et à interrompre ladite impulsion motrice à un instant déterminé en fonction du temps mis par la grandeur physique mesurée à atteindre un niveau de référence, mais également à détecter la condition de rotation ou de non-rotation du rotor en réponse aux impulsions motrices normales et à modifier le niveau de référence en fonction de l'information fournie par cette détection.This object is achieved thanks to the fact that the method according to the invention for controlling a stepping motor comprising a rotor and a coil receiving normal driving pulses from a control device associated with the motor to rotate the rotor when this device is energized, does not only consist in measuring, during each normal driving pulse, a physical quantity representative of the movement of the rotor and in interrupting said driving pulse at an instant determined as a function of the time taken by the physical quantity measured to reach a reference level, but also to detect the condition of rotation or non-rotation of the rotor in response to normal driving pulses and to modify the reference level by based on the information provided by this detection.

Grâce à cela il est possible d'adapter le niveau de référence aux caractéristiques propres de chaque moteur et à celle du dispositif de commande qui lui est associé, de façon à avoir un rendement optimal de l'ensemble, ceci tout en conservant une très grande sécurité de fonctionnement pour le moteur.Thanks to this it is possible to adapt the reference level to the specific characteristics of each motor and to that of the control device associated with it, so as to have an optimal performance of the assembly, this while maintaining a very high operating safety for the engine.

Selon une forme particulière du procédé selon l'invention le niveau de référence est réglable par pas entre une valeur minimale et une valeur maximale et il est augmenté d'un pas lorsque N pas non effectués par le rotor en réponse à des impulsions motrices normales ont été détectés dans un intervalle de temps déterminé, N étant un nombre qui peut être égal ou supérieur à 1.According to a particular form of the method according to the invention, the reference level is adjustable in steps between a minimum value and a maximum value and it is increased by one step when N steps not taken by the rotor in response to normal driving pulses have have been detected in a determined time interval, N being a number which may be equal to or greater than 1.

Avantageusement les pas non effectués par le rotor en réponse à des impulsions motrices normales sont rattrapés en appliquant à la bobine du moteur des impulsions motrices de correction de durée suffisante pour assurer la rotation du rotor.Advantageously, the steps not taken by the rotor in response to normal driving pulses are caught up by applying to the motor coil correction driving pulses of sufficient duration to ensure the rotation of the rotor.

Le dispositif de commande qui permet de mettre en oeuvre le procédé selon l'invention comprend des moyens générateurs de signaux produisant un signal de sortie chaque fois que le rotor doit faire un pas, des moyens de commande pour appliquer des impulsions motrices normales à la bobine du moteur en réponse aux signaux de sortie fournis par les moyens générateurs de signaux, des moyens couplés au moteur pour mesurer durant chaque impulsion motrice normale la grandeur physique caractéristique du mouvement du rotor et fournir un signal de mesure représentatif de cette grandeur, des moyens pour produire un signal de référence correspondant au niveau de référence, des moyens pour fournir un signal de comparaison entre le signal de mesure et ledit signal de référence, des moyens qui reçoivent le signal de comparaison et qui agissent sur les moyens de commande pour interrompre l'impulsion motrice normale à un instant déterminé en fonction du temps mis par la grandeur physique à atteindre le niveau de référence, ainsi que des moyens de détection pour détecter la condition de rotation ou de non rotation du rotor, les moyens qui produisent le signal de référence étant conçus pour pouvoir modifier la valeur de ce signal en fonction de l'information fournie par les moyens de détection.The control device which makes it possible to implement the method according to the invention comprises means generating signals producing an output signal each time the rotor must take a step, control means for applying normal driving pulses to the coil of the motor in response to the output signals supplied by the signal generating means, means coupled to the motor for measuring during each normal driving pulse the physical quantity characteristic of the movement of the rotor and supplying a measurement signal representative of this quantity, means for producing a reference signal corresponding to the reference level, means for providing a comparison signal between the measurement signal and said reference signal, means which receive the comparison signal and which act on the control means to interrupt the normal driving impulse at an instant determined as a function of the time taken by the physical quantity to reach n reference level, as well as detection means for detecting the condition of rotation or non-rotation of the rotor, the means which produce the reference signal being designed to be able to modify the value of this signal as a function of the information provided by the means of detection.

D'autres caractéristiques et avantages ressortiront de la description qui va suivre, faite en regard des dessins annexés et donnant, à titre explicatif mais nullement limitatif, un exemple de mise en oeuvre de la présente invention. Sur ces dessins:

  • la fig. 1 est un schéma bloc d'un exemple de dispositif de commande selon l'invention dans lequel le paramètre choisi pour l'asservissement de la durée des impulsions motrices à la charge du moteur est la tension induite dans la bobine de ce moteur par le mouvement du rotor;
  • la fig. 2 représente la tension délivrée par un circuit de mesure de la tension induite faisant partie du circuit de la fig. 1 lorsque le moteur tourne normalement, lorsque le rotor est bloqué et que l'impulsion motrice est en phase et enfin lorsque l'impulsion motrice est en contrephase;
  • la fig. 3 est un schéma d'un circuit de détection des pas ratés pouvant être utilisé dans le dispositif de commande selon l'invention;
  • la fig. 4 montre la forme des principaux signaux apparaissant dans le circuit de la fig. 3;
  • la fig. 5 est un schéma d'une forme possible de réalisation du circuit de commande du moteur pas-à-pas représenté sur le schéma-bloc de la fig.1;
  • la fig. 6 montre la forme des principaux signaux apparaissant dans le circuit de la fig. 5;
  • les fig. 7 et 8 sont des schémas respectivement d'un compteur de pas ratés et d'un circuit fournissant une tension de seuil variable U' qui peuvent être utilisés dans le dispositif de l'invention; enfin
  • la fig. 9 montre la forme des principaux signaux apparaissant dans les schémas des fig. 7 et 8, en particulier l'évolution de la tension de seuil Us en fonction du temps et des pas ratés.
Other characteristics and advantages will emerge from the description which follows, given with reference to the appended drawings and giving, by way of explanation but in no way limiting, an example of implementation of the present invention. In these drawings:
  • fig. 1 is a block diagram of an example of a control device according to the invention in which the parameter chosen for controlling the duration of the driving pulses at the load of the motor is the voltage induced in the coil of this motor by the movement rotor;
  • fig. 2 represents the voltage delivered by a circuit for measuring the induced voltage forming part of the circuit of FIG. 1 when the engine is running normally, when the rotor is locked and the driving pulse is in phase and finally when the driving pulse is in reverse;
  • fig. 3 is a diagram of a missed step detection circuit that can be used in the control device according to the invention;
  • fig. 4 shows the form of the main signals appearing in the circuit of FIG. 3;
  • fig. 5 is a diagram of a possible embodiment of the control circuit of the stepping motor shown in the block diagram of FIG. 1;
  • fig. 6 shows the form of the main signals appearing in the circuit of FIG. 5;
  • fig. 7 and 8 are diagrams respectively of a missed step counter and of a circuit providing a variable threshold voltage U ′ which can be used in the device of the invention; finally
  • fig. 9 shows the form of the main signals appearing in the diagrams of FIGS. 7 and 8, in particular the evolution of the threshold voltage U s as a function of time and missed steps.

Un système de commande d'un moteur pas-à-pas où la tension induite dans la bobine du moteur par le mouvement du rotor est mesurée et comparée à un niveau de seuil ou de référence pour permettre une adaptation de la durée des impulsions motrices à la charge instantanée du moteur a déjà fait l'objet de la demande de brevet européen déposée le 21 janvier 1982 au nom d'Asulab SA et publié sous le n° 60806. Naturellement, comme dans les autres systèmes connus du même genre où l'on fait appel à d'autres paramètres que la tension induite pour commander l'interruption des impulsions motrices, le niveau de seuil est fixe. Cela n'empêche pas que certains éléments du dispositif décrit dans cette demande européenne se retrouvent tels quels ou sous une forme légèrement modifiée dans le mode de réalisation qui a été choisi à titre d'exemple pour mettre en évidence l'invention.A stepper motor control system where the voltage induced in the motor coil by the movement of the rotor is measured and compared to a threshold or reference level to allow adaptation of the duration of the driving pulses to the instantaneous load of the engine has already been the subject of the European patent application filed on January 21, 1982 in the name of Asulab SA and published under the number 60806. Naturally, as in other known systems of the same kind where the other parameters than the induced voltage are used to control the interruption of the driving pulses, the threshold level is fixed. This does not prevent certain elements of the device described in this European application from being found as such or in a slightly modified form in the embodiment which has been chosen by way of example to demonstrate the invention.

On se référera donc fréquemment par la suite à cette demande européenne antérieure, que ce soit pour faire des comparaisons ou pour ne pas avoir à décrire à nouveau en détail des circuits ou parties de circuits qui l'ont déjà été dans le document en question.Reference will therefore frequently be made thereafter to this earlier European application, whether for the purpose of making comparisons or not having to describe again in detail the circuits or parts of circuits which have already been described in the document in question.

Pour éviter des confusions, les éléments du dispositif connu qui se retrouvent dans celui de l'invention sont désignés par les mêmes repères dans la présente demande que dans la demande européenne précitée. Par exemple, le circuit de calcul de la tension induite qui porte la référence 11 sur la fig. 4 de la demande de brevet européen est désigné par le même numéro sur la fig. 1 de la présente demande. Il en est de même pour le circuit de calcul de la durée des impulsions motrices 13. A noter que la même règle s'applique également aux signaux qui sont les mêmes dans les deux cas.To avoid confusion, the elements of the known device which are found in that of the invention are designated by the same references in the present application as in the aforementioned European application. For example, the circuit for calculating the induced voltage which bears the reference 11 in FIG. 4 of the European patent application is designated by the same number in FIG. 1 of this application. It is the same for the circuit for calculating the duration of the driving pulses 13. Note that the same rule also applies to the signals which are the same in both cases.

Par contre, les éléments qui remplissent la même fonction dans le dispositif de l'invention que dans le dispositif connu mais qui ont dû être modifiés portent dans la présente demande une référence qui est augmentée de 100 par rapport à la référence correspondante utilisée dans la demande antérieure. Par exemple la porte ET 43 à deux entrées qui attaque les transistors de commande du moteur de la fig. 12 de la demande européenne devient, sur la fig. 5 de la présente demande, la porte ET 143 à 3 entrées, ces deux portes remplissant fondamentalement le même rôle.On the other hand, the elements which fulfill the same function in the device of the invention as in the known device but which had to be modified carry in the present application a reference which is increased by 100 compared to the corresponding reference used in the application anterior. For example, the AND gate 43 with two inputs which drives the motor control transistors of FIG. 12 of the European demand becomes, in fig. 5 of the present application, the AND gate 143 with 3 inputs, these two doors fulfilling basically the same role.

Enfin tout élément qui n'apparaît que dans la présente demande porte une référence égale ou supérieure à 200.Finally, any element which appears only in the present application bears a reference equal to or greater than 200.

Le dispositif de commande selon l'invention qui va être décrit maintenant et dont le schéma général est représenté sur la fig. 1, laquelle est à mettre en parallèle avec la fig. 4 de la demande de brevet européen précitée, est prévu pour équiper une montre électronique avec aiguille de secondes.The control device according to the invention which will now be described and the general diagram of which is shown in FIG. 1, which is to be put in parallel with FIG. 4 of the aforementioned European patent application, is intended to equip an electronic watch with second hand.

Ce dispositif comprend un circuit générateur de signaux périodiques 8 constitué par un oscillateur à quartz 300 qui produit un signal dont la fréquence est sensiblement égale à 32768 Hz et par un diviseur de fréquence 400 qui, après une division par quinze étages binaires de la fréquence de l'oscillateur et une mise en forme de l'onde, délivre à sa sortie qui constitue également celle du circuit 8 un signal S8 de 1 Hz, formé de fines impulsions dont la durée est, par exemple, égale à la période du signal de l'oscillateur, soit environ 30 µs.This device comprises a periodic signal generator circuit 8 constituted by a quartz oscillator 300 which produces a signal whose frequency is substantially equal to 32768 Hz and by a frequency divider 400 which, after a division by fifteen binary stages of the frequency of the oscillator and a shaping of the wave, delivers at its output which also constitutes that of circuit 8 a signal S 8 of 1 Hz, formed of fine pulses whose duration is, for example, equal to the period of the signal of the oscillator, about 30 µs.

Un circuit logique combinatoire 203 est relié aux différentes sorties des étages binaires du diviseur de fréquence 400 par une série de connexions pour produire trois signaux logiques SA, SB, SC, qui sont nécessaires au fonctionnement du dispositif et dont la forme sera précisée ultérieurement. Ce circuit 203 qui a également pour fonction de diviser le signal de sortie du dernier étage binaire du diviseur de fréquence et de fournir périodiquement, par exemple toutes les heures, un quatrième signal SD dont l'utilité apparaîtra également par la suite, peut être réalisé de manière simple qui est à la portée de l'homme de métier. Il ne sera donc pas décrit en détail ici.A combinational logic circuit 203 is connected to the various outputs of the binary stages of the frequency divider 400 by a series of connections to produce three logic signals SA, SB, SC, which are necessary for the operation of the device and whose form will be specified later. This circuit 203 which also has the function of dividing the output signal of the last binary stage of the frequency divider and of providing periodically, for example every hour, a fourth signal SD whose usefulness will also appear later, can be produced in a simple way that is within the reach of the skilled person. It will therefore not be described in detail here.

Un circuit de commande 109, remplissant un rôle similaire au circuit 9 de la demande européenne citée, a une première entrée reliée à la sortie du diviseur de fréquence 400, laquelle fournit le signal S8. La sortie du circuit 109 délivre des impulsions motrices I à un moteur pas-à-pas 10. Une deuxième entrée du circuit 109 reçoit un signal S13 d'arrêt de l'impulsion motrice I, comme cela est décrit dans la référence citée. Enfin, conformément à la présente invention, une troisième entrée du circuit 109, reçoit un signal Q211 de rattrapage des pas ratés. Une résistance 18, visible sur la fig. 5, branchée en série avec le moteur 10, permet d'obtenir à ses bornes une tension U19 représentative du courant qui traverse le moteur durant l'impulsion motrice I.A control circuit 109, fulfilling a role similar to circuit 9 of the cited European application, has a first input connected to the output of the frequency divider 400, which supplies the signal S 8 . The output of circuit 109 delivers driving pulses I to a stepping motor 10. A second input of circuit 109 receives a signal S 13 for stopping the driving pulse I, as described in the cited reference. Finally, in accordance with the present invention, a third input of circuit 109 receives a signal Q211 to make up for missed steps. A resistor 18, visible in FIG. 5, connected in series with the motor 10, makes it possible to obtain at its terminals a voltage U19 representative of the current which flows through the motor during the driving pulse I.

Un circuit de calcul 11, représenté par la fig. 11 dans la référence européenne citée, reçoit sur son entrée le signal U19 et élabore une tension de mesure Um, représentative de la tension induite par le rotor durant sa rotation, laquelle apparaît à la sortie de ce circuit, aux bornes de la résistance 82 de la demande européenne.A computing circuit 11, represented by FIG. 11 in the European reference cited, receives on its input the signal U19 and develops a measurement voltage U m , representative of the voltage induced by the rotor during its rotation, which appears at the output of this circuit, across the resistor 82 of European demand.

Un circuit comparateur 12 a une première entrée reliée à la sortie du circuit 11 alors qu'une seconde entrée reçoit une tension de référence ou de seuil U'S. Ce comparateur 12 délivre à sa sortie un signal logique S12 qui se trouve au niveau logique bas si Um est inférieur à U's et au niveau logique haut si Um est supérieur à U's. La tension de seuil U's est choisie en fonction de l'amplitude de la tension de mesure Um obtenue dans ces conditions normales de fonctionnement du moteur, comme cela apparaîtra par la suite. Le moment de transition du signal S12 du niveau logique bas au niveau logique haut, compté à partir du début de l'impulsion motrice I, définit un temps T2 qui est représentatif du couple C fourni par le moteur.A comparator circuit 12 has a first input connected to the output of circuit 11 while a second input receives a reference or threshold voltage U ' S. This comparator 12 delivers at its output a logic signal S12 which is at the low logic level if U m is less than U ' s and at the high logic level if U m is more than U' s . The threshold voltage U ' s is chosen as a function of the amplitude of the measurement voltage U m obtained under these normal engine operating conditions, as will appear below. The moment of transition of the signal S 12 from the low logic level to the high logic level, counted from the start of the driving pulse I, defines a time T 2 which is representative of the torque C supplied by the motor.

La sortie du comparateur 12 est reliée à une première entrée d'un circuit de calcul 13, lequel détermine la durée de l'impulsion motrice I, et la sortie du diviseur de fréquence 400 est reliée à une seconde entrée de ce circuit. A la sortie du circuit 13 apparaît le signal logique S13. Ce signal est élaboré par le circuit 13 à partir des signaux S8 et S12 et il est appliqué sur la deuxième entrée du circuit de commande 109. Le signal Si3 est normalement au niveau logique bas et passe au niveau logique haut T3 secondes après la transition du signal S12. Un niveau logique haut du signal S13 a pour effet d'arrêter l'impulsion motrice 1 produite par le circuit de commande 109. La durée Tl de l'impulsion motrice tient donc compte du couple C que doit fournir le moteur et elle vaut T1 = T2 + T3.The output of comparator 12 is connected to a first input of a calculation circuit 13, which determines the duration of the driving pulse I, and the output of the frequency divider 400 is connected to a second input of this circuit. At the output of circuit 13, the logic signal S 13 appears. This signal is generated by the circuit 13 from the signals S 8 and S 12 and it is applied to the second input of the control circuit 109. The signal S i3 is normally at the low logic level and goes to the high logic level T 3 seconds after the transition of signal S 12 . A high logic level of the signal S 13 has the effect of stopping the driving pulse 1 produced by the control circuit 109. The duration T l of the driving pulse therefore takes account of the torque C which the motor must supply and it is worth T 1 = T 2 + T 3 .

La sortie du circuit 11, sur laquelle apparaît la tension de mesure Um, est reliée à l'entrée d'un circuit détecteur de pas ratés 200. La sortie du circuit 200 est connectée à la troisième entrée du circuit 109 et à l'entrée d'un circuit de comptage de pas ratés 201. Sur la sortie du circuit 200 apparaît un signal logique Q211 qui est normalement à l'état logique bas et passe à l'état logique haut pendant une seconde, par exemple, après la détection d'un pas raté. La sortie du circuit de comptage 201 est reliée à une première entrée d'un circuit de référence de tension 202. La sortie de ce dernier circuit, fournissant la tension de seuil U's, est reliée à la seconde entrée du circuit 12. Le signal S220 apparaissant à la sortie du circuit 201 est formé d'impulsions. Une impulsion est générée dès que le circuit 201 a compté N pas raté en Tn secondes. Typiquement N = 5 et Tn = 8s.The output of circuit 11, on which the measurement voltage U m appears, is connected to the input of a missed step detector circuit 200. The output of circuit 200 is connected to the third input of circuit 109 and to the input of a missed step counting circuit 201. On the output of circuit 200 a logic signal Q211 appears which is normally in the logic low state and goes to the logic high state for one second, for example, after detection with a failed step. The output of the counting circuit 201 is connected to a first input of a voltage reference circuit 202. The output of this latter circuit, supplying the threshold voltage U ' s , is connected to the second input of the circuit 12. The signal S220 appearing at the output of circuit 201 is formed by pulses. A pulse is generated as soon as the circuit 201 has counted N not missed in Tn seconds. Typically N = 5 and Tn = 8s.

A chaque impulsion du signal S220, le circuit 202 incrémente la tension de seuil U's d'un pas fixe. La tension U's peut ainsi varier entre un niveau minimum U'so, qui peut être égal à 0, et un niveau maximum U'sp en P pas. P vaut par exemple 10. Une fois que U's a atteint son niveau maximum, il y reste même si le circuit 202 reçoit d'autres impulsions. Le circuit 202 a une deuxième entrée sur laquelle est appliqué un signal S226. Ce signal ramène la tension U's à la valeur minimale U'so chaque fois que l'ensemble du circuit de la fig. 1 est mis sous tension, par exemple au moment du changement de la pile. Enfin la tension U's est encore ramenée périodiquement à U'so, par exemple toutes les heures, par le signal SD produit par le circuit logique combinatoire 203 et appliqué sur une troisième entrée du circuit 202.At each pulse of the signal S220, the circuit 202 increments the threshold voltage U ' s by a fixed step. The voltage U ' s can thus vary between a minimum level U' so , which can be equal to 0, and a maximum level U ' sp in P steps. P is for example 10. Once U ' s has reached its maximum level, it remains there even if circuit 202 receives other impulses. Circuit 202 has a second input to which a signal S226 is applied. This signal reduces the voltage U ' s to the minimum value U' so each time that the entire circuit of FIG. 1 is switched on, for example when the battery is changed. Finally, the voltage U ' s is again periodically reduced to U' so , for example every hour, by the signal SD produced by the combinational logic circuit 203 and applied to a third input of the circuit 202.

Pour expliquer le fonctionnement du dispositif de la fig. 1, il est avantageux de la décomposer en deux boucles. En excluant les circuits 8 et 203 placés à l'extérieur de ces boucles, la première, ou celle du bas, comprend les éléments référencés 109, 10, 11, 12 et 13. La seconde boucle, ou celle du haut, comprend les éléments 109, 10, 11 et 200 avec, en plus, une branche formée des éléments 201 et 202.To explain the operation of the device in fig. 1, it is advantageous to break it down into two loops. By excluding circuits 8 and 203 placed outside these loops, the first, or the bottom one, includes the elements referenced 109, 10, 11, 12 and 13. The second loop, or the top loop, includes the elements 109, 10, 11 and 200 with, in addition, a branch formed of the elements 201 and 202.

Si l'on fait abstraction du rattrapage des pas ratés et que l'on suppose que la tension de seuil U's reste constante, la boucle du bas se ramène au schéma de la fig. 4 de la demande européenne citée, le circuit 109 étant alors remplacé par le circuit 9. Dans cette demande se trouve la description détaillée des éléments et circuits 9, 10, 11, 12 et 13 ainsi que l'explication du fonctionnement de l'ensemble du dispositif. Il y a lieu de rappeler que ce dispositif permet d'adapter de façon optimale la durée Tl de l'impulsion motrice I au couple C que doit fournir le moteur en mesurant le temps T2 que met la tension de mesure Um à atteindre la tension de seuil U's. Ce fonctionnement optimal, correspondant à une consommation minimale du moteur, n'est cependant réalisé que si les caractéristiques k et K du moteur sont égales à celles introduites dans le circuit de calcul 13 lequel détermine, à partir du temps T2, un temps T3 qui, ajouté à T2, donne la durée T1 de l'impulsion motrice I.If we ignore the catching up of missed steps and assume that the threshold voltage U ' s remains constant, the bottom loop returns to the diagram in fig. 4 of the cited European application, the circuit 109 then being replaced by the circuit 9. In this request is found the detailed description of the elements and circuits 9, 10, 11, 12 and 13 as well as the explanation of the operation of the assembly of the device. It should be recalled that this device makes it possible to optimally adapt the duration T l of the driving pulse I to the torque C which the motor must supply by measuring the time T 2 which takes the measurement voltage U m to reach the threshold voltage U ' s . This optimal operation, corresponding to a minimum consumption of the engine, is however only achieved if the characteristics k and K of the engine are equal to those introduced into the calculation circuit 13 which determines, from time T 2 , a time T 3 which, added to T 2 , gives the duration T 1 of the driving impulse I.

Or comme cela a été déjà indiqué, en production, les caractéristiques du moteur, du circuit 13 et des autres circuits de la boucle du bas présentent inévitablement une certaine dispersion. Il en résulte que la condition de consommation minimale du moteur est rarement réalisée en pratique, encore moins si le moteur est remplacé par un autre modèle de caractéristiques différentes. Ceci représente naturellement une limitation grave dans l'utilisation de ce dispositif de commande.However, as has already been indicated, in production, the characteristics of the motor, of circuit 13 and of the other circuits of the bottom loop inevitably have a certain dispersion. As a result, the condition of minimum consumption of the engine is rarely achieved in practice, even less if the engine is replaced by another model with different characteristics. This naturally represents a serious limitation in the use of this control device.

La boucle supérieure de rattrapage des pas perdus, en liaison avec la branche formée des circuits 201 et 202 qui contrôle la tension de seuil U's, permet de s'affranchir dans une large mesure de la nécessité d'apparier les constantes du circuit 13 aux constantes k, K du moteur et de rendre moins sensible le dispositif aux variations des paramètres des autres circuits.The upper loop for catching up on lost steps, in connection with the branch formed by circuits 201 and 202 which controls the threshold voltage U ' s , makes it possible to largely overcome the need to match the constants of circuit 13 to the constants k, K of the motor and to make the device less sensitive to variations in the parameters of the other circuits.

En effet le circuit de comptage des pas ratés 201 permet de définir un critère de fonctionnement satisfaisant du moteur lorsqu'il est soumis à des perturbations extérieures. On peut estimer par exemple que si le moteur, à la suite de chocs angulaires ou d'un champ magnétique intense, ne perd pas plus de 4 pas par période de 8 secondes, l'énergie des impulsions motrices I est suffisante. Aucune impulsion ne sera produite par le circuit 201 et la tension de seuil U's continuera de garder sa valeur. Si par contre le nombre de pas perdus par période de 8 secondes dépasse 4, l'énergie des impulsions motrices sera considérée comme insuffisante. Une ou plusieurs impulsions seront alors générées par le circuit 201 dans lequel les constantes N = 5 et Tn = 8 secondes ont été introduites. Chaque impulsion sur le signal S220 produit l'incrémentation d'un pas de la tension de seuil U's du dircuit 202. Or, toutes choses égales, à une tension U's plus élevée correspond une énergie de l'impulsion motrice 1 plus grande. Ce processus d'adaptation peut se poursuivre jusqu'à ce que l'énergie des impulsions motrices remlisse le critère de fonctionnement satisfaisant adopté. Tous les pas ratés durant ce processus d'adjuste- ment sont naturellement rattrapés. Pour tenir compte de l'évolution des caractéristiques du moteur au cours du temps, à chaque changement de pile, ou périodiquement, par exemple une fois par heure, la tension U's est remise à la valeur minimale U'so à l'aide des signaux S226 ou SD. La valeur U's obtenue après le processus de réajustement correspond alors aux nouvelles conditions de fonctionnement du moteur.Indeed, the failed step counting circuit 201 makes it possible to define a satisfactory operating criterion of the motor when it is subjected to external disturbances. One can estimate for example that if the motor, following angular shocks or an intense magnetic field, does not lose more than 4 steps per period of 8 seconds, the energy of the driving impulses I is sufficient. No pulse will be produced by the circuit 201 and the threshold voltage U ' s will continue to keep its value. If, on the other hand, the number of steps lost per period of 8 seconds exceeds 4, the energy of the motor pulses will be considered as insufficient. One or more pulses will then be generated by the circuit 201 in which the constants N = 5 and Tn = 8 seconds have been introduced. Each pulse on the signal S220 produces the incrementation of a step of the threshold voltage U ' s of the circuit 202. Now, all other things being equal, at a higher voltage U' s corresponds an energy of the driving pulse 1 plus big. This adaptation process can continue until the energy of the motor impulses satisfies the satisfactory operating criterion adopted. All the steps missed during this adjustment process are naturally caught up. To take account of the evolution of the characteristics of the motor over time, at each change of battery, or periodically, for example once per hour, the voltage U ' s is reset to the minimum value U' so using S226 or SD signals. The value U ' s obtained after the readjustment process then corresponds to the new engine operating conditions.

Examinons maintenant comment réagit le circuit 11 à une impulsion motrice 1 appliquée au moteur 10 dans diverses situations. Dans notre exemple le moteur est du type pas-à-pas et les impulsions motrices 1 sont polarisées. Cela signifie que pour faire tourner le moteur d'un pas à partir d'une position donnée, l'impulsion motrice 1 doit avoir la bonne polarité par rapport à la position du rotor ou, comme on dit, être en phase avec ce dernier. Dans le cas contraire, si l'impulsion I a la mauvaise polarité, c'est-à-dire qu'elle est en contrephase avec la position du rotor, le moteur ne tournera pas.Let us now examine how the circuit 11 reacts to a driving pulse 1 applied to the motor 10 in various situations. In our example the motor is of the stepping type and the driving pulses 1 are polarized. This means that to turn the motor one step from a given position, the driving pulse 1 must have the correct polarity with respect to the position of the rotor or, as we say, be in phase with the latter. Otherwise, if the pulse I has the wrong polarity, that is to say that it is in counterphase with the position of the rotor, the motor will not run.

Trois cas sont à considérer et pour chacun la tension de mesure Um fournie par le circuit 11 de la présente invention, correspondant au circuit de - la fig. 11 de la référence européenne citée, est représentée par une courbe sur la fig. 2. Le premier correspond au cas normal, celui où le moteur 10 reçoit une impulsion motrice 1 en phase et effectue un pas. La tension de mesure Um représentée par la courbe 205 sur la fig. 2 est alors une image fidèle de la tension induite par la rotation du moteur. Cette courbe est caractérisée par une forte pointe positive. Le deuxième cas est celui où le moteur 10 reçoit une impulsion I en phase mais ne tourne pas, son rotor étant bloqué. La tension induite de rotation est alors nulle tandis que la tension de mesure Um produite par le circuit 11 dans cette situation, représentée par la courbe 206, montre une oscillation de faible amplitude. Enfin, dans le troisième cas, le moteur reçoit une impulsion 1 en contrephase. Il ne peut alors tourner et la tension induite est donc également nulle. La tension de mesure Um prend par contre une forte valeur négative, comme le montre la courbe 207 correspondant à ce cas dans la fig. 2. Cela provient du fait que le flux magnétique crée par l'aimant du rotor et celui produit par l'impulsion 1 s'ajoutent et saturent certaines parties du stator. Cette saturation a pour effet de modifier la constante de temps UR du moteur, L étant son inductance et R la résistance de la bobine. Or cette constante de temps est utilisée dans le circuit 11 pour déterminer Um. Ainsi dans le cas où l'impulsion motrice I est en contrephase, le circuit 11 fournit une tension de mesure Um erronée mais facile à détecter. Il suffit, en effet, de la comparer à une tension de référence négative UR. Si la tension résultante est positive, le moteur a tourné, si elle est négative le moteur a raté un pas.Three cases are to be considered and for each the measurement voltage U m supplied by the circuit 11 of the present invention, corresponding to the circuit of - FIG. 11 of the cited European reference, is represented by a curve in FIG. 2. The first corresponds to the normal case, that where the motor 10 receives a driving pulse 1 in phase and takes a step. The measurement voltage U m represented by curve 205 in FIG. 2 is then a faithful image of the voltage induced by the rotation of the motor. This curve is characterized by a strong positive point. The second case is that where the motor 10 receives a pulse I in phase but does not rotate, its rotor being blocked. The induced rotation voltage is then zero while the measurement voltage U m produced by the circuit 11 in this situation, represented by the curve 206, shows a low amplitude oscillation. Finally, in the third case, the motor receives a pulse 1 in counterphase. It cannot then rotate and the induced voltage is therefore also zero. On the other hand, the measurement voltage U m takes a strong negative value, as the curve shows. 207 corresponding to this case in fig. 2. This stems from the fact that the magnetic flux created by the magnet of the rotor and that produced by the pulse 1 are added and saturate certain parts of the stator. This saturation has the effect of modifying the time constant UR of the motor, L being its inductance and R the resistance of the coil. However, this time constant is used in circuit 11 to determine U m . Thus in the case where the driving pulse I is in counterphase, the circuit 11 supplies a measurement voltage U m which is erroneous but easy to detect. It suffices, in fact, to compare it with a negative reference voltage U R. If the resulting voltage is positive, the motor has run, if it is negative the motor has missed a step.

De ce qui précède, on voit que si le moteur rate un pas par blocage du rotor, l'impulsion motrice I suivante, venant en contrephase, permettra de détecter aisément le pas perdu. Comme l'impulsion motrice I en contrephase est inapte à faire tourner le moteur, il y aura en tout deux pas perdus.From the above, it can be seen that if the motor misses a step by blocking the rotor, the next driving impulse I, coming in counterphase, will allow the lost step to be easily detected. As the driving impulse I in counterphase is incapable of turning the motor, there will be a total of two lost steps.

La fig. 3 montre la constitution du circuit de détection de pas raté 200. Ce circuit comprend un amplificateur différentiel 210 dont la sortie est reliée à la borne S de mise à l'état d'une bascule bistable 211. L'entrée non-inverseuse de l'amplificateur 210 est reliée à un référence de tension non représentée, fournissant la tension négative UR. L'entrée inverseuse du même amplificateur constitue l'entrée du circuit 200. Cette entrée est reliée à la sortie du circuit 11 pour recevoir la tension de mesure Um. La bascule 211 a une entrée de remise à zéro R qui est reliée à la sortie du diviseur de fréquence 400 pour recevoir le signal S3. Enfin la borne de sortie Q de la bascule 211 constitue également la sortie du circuit 200.Fig. 3 shows the constitution of the missed step detection circuit 200. This circuit includes a differential amplifier 210 whose output is connected to the terminal S for setting a bistable flip-flop 211. The non-inverting input of the amplifier 210 is connected to a voltage reference not shown, supplying the negative voltage U R. The inverting input of the same amplifier constitutes the input of circuit 200. This input is connected to the output of circuit 11 to receive the measurement voltage U m . The flip-flop 211 has a reset input R which is connected to the output of the frequency divider 400 to receive the signal S 3 . Finally, the output terminal Q of the flip-flop 211 also constitutes the output of the circuit 200.

Le fonctionnement du circuit de la fig. 3 va maintenant être décrit en s'aidant des signaux représentés sur la fig. 4 qui apparaissent aux différents points de ce circuit. Le signal Sε provient de la sortie du diviseur de fréquence 400 et il comprend de fines impulsions de secondes. La durée de ces impulsions est égale à la période du signal de 32768 Hz provenant de l'oscillateur à quartz 300. La tension Um est formée, en synchronisme avec le signal S8, d'impulsions positives lorsque l'impulsion motrice 1 est en phase avec la position du rotor du moteur, que celui-ci tourne ou non, et d'impulsions négatives lorsque l'impulsion 1 est en contrephase. La comparaison de la tension Um avec la tension de référence négative UR dans l'amplificateur différentiel 210 produit à sa sortie un signal S210. Si le gain de l'amplificateur 210 est suffisamment élevé, le signal S210 sera au niveau logique bas lorsque Um est supérieur à UR et au niveau logique haut durant le temps où Um est inférieur à UR. Le signal S210 contient donc une impulsion positive de quelques millisecondes, légèrement en retard sur les impulsions du signal S8, au moment de la détection d'un pas raté du moteur.The operation of the circuit of fig. 3 will now be described with the help of the signals shown in FIG. 4 which appear at the different points of this circuit. The signal Sε comes from the output of the frequency divider 400 and it includes fine seconds pulses. The duration of these pulses is equal to the period of the signal of 32768 Hz coming from the quartz oscillator 300. The voltage U m is formed, in synchronism with the signal S 8 , of positive pulses when the driving pulse 1 is in phase with the position of the motor rotor, whether it rotates or not, and negative pulses when pulse 1 is in counterphase. The comparison of the voltage U m with the negative reference voltage U R in the differential amplifier 210 produces at its output a signal S210. If the gain of the amplifier 210 is sufficiently high, the signal S210 will be at the low logic level when U m is greater than U R and at the high logic level during the time when U m is less than U R. The signal S210 therefore contains a positive pulse of a few milliseconds, slightly behind the pulses of the signal S 8 , when a missed engine step is detected.

La bascule 211 reçoit sur ses entrées R et S respectivement les signaux S8 et S210. Le signal Sa remet la bascule à zéro toutes les secondes, ce qui entraîne sur sa sortie Q un niveau logique bas. A chaque impulsion positive du signal S210 la bascule est mise à l'état, entraînant un niveau logique haut sur la sortie Q jusqu'à la prochaine impulsion du signal S8. Le signal logique Q211 qui apparaît sur la sortie Q de la bascule 211 est ainsi normalement au niveau logique bas. Il passe au niveau logique haut après la détection d'un pas raté et repasse au niveau bas une seconde plus tard.The flip-flop 211 receives on its inputs R and S respectively the signals S 8 and S210. The signal Sa resets the flip-flop to zero every second, which causes a low logic level on its output Q. At each positive pulse of the signal S210 the flip-flop is set to the state, causing a high logic level on the output Q until the next pulse of the signal S 8 . The logic signal Q211 which appears on the output Q of the flip-flop 211 is thus normally at the low logic level. It goes to the high logic level after the detection of a missed step and goes back to the low level a second later.

Les instants correspondant au différentes situations du moteur qui viennent d'être décrites, sont notées sur l'échelle des temps t de la fig. 4. A l'instant TA le moteur reçoit une impulsion motrice I en phase et il tourne normalement. Le rotor du moteur est supposé être bloqué à l'instant TB où l'impulsion motrice en phase produit une tension Um d'amplitude plus faible que précédemment. L'impulsion motrice 1 suivante vient alors en contrephase à l'instant TC, le moteur ne peut tourner, que le rotor soit libre ou bloqué, et la tension Um produite est négative. Cela entraîne le passage à l'état logique haut du signal Q211. Environ une demi seconde plus tard, à l'instant TD, alors que le signal Q211 est toujours au niveau logique haut, la moteur reçoit, par des moyens qui seront décrits plus tard, deux impulsions motrices de rattrapage produisant les deux impulsions positives voisines de la tension de mesure Um. La montre a alors rattrapé les deux pas perdus. Enfin, encore une demi seconde plus tard, à l'instant TE, le moteur reçoit une impulsion motrice I en phase et tourne normalement.The instants corresponding to the different situations of the engine which have just been described, are noted on the time scale t of FIG. 4. At the instant TA the motor receives a driving pulse I in phase and it rotates normally. The rotor of the motor is supposed to be locked at time TB when the driving pulse in phase produces a voltage U m of lower amplitude than previously. The next driving pulse 1 then comes in counterphase at time TC, the motor cannot turn, whether the rotor is free or blocked, and the voltage U m produced is negative. This causes the Q211 signal to go to high logic state. About half a second later, at the instant TD, while the signal Q211 is still at the high logic level, the motor receives, by means which will be described later, two driving pulses of recovery producing the two positive pulses close to the measurement voltage U m . The watch then caught up with the two lost steps. Finally, still half a second later, at time TE, the motor receives a driving pulse I in phase and turns normally.

La fig. 5 de la présente invention est à mettre en parallèle avec la fig. 12 de la demande européenne antérieure. Dans ces deux figures on distingue les blocs 11, 12 et 13 déjà mentionnés. Le bloc 9 de la fig. 12 est par contre remplacé par le bloc 109 dans la fig. 5. Le bloc 109 montre la composition du circuit de commande du moteur 10 selon la présente invention. Ce bloc a la même structure générale que le bloc 9, malgré quelques modifications et la présence d'éléments supplémentaires.Fig. 5 of the present invention is to be compared with FIG. 12 of the previous European application. In these two figures, the blocks 11, 12 and 13 already mentioned are distinguished. Block 9 of fig. 12 is however replaced by block 109 in FIG. 5. Block 109 shows the composition of the motor control circuit 10 according to the present invention. This block has the same general structure as block 9, despite some modifications and the presence of additional elements.

Ces modifications ont deux buts. En premier lieu elles permettent de couper, après un temps déterminé, l'impulsion motrice 1 en cas d'absence du signal d'arrêt S13 = S57 de cette impulsion. Ceci peut se produire si la tension de mesure Um est insuffisante pour déclencher le signal S13 à la suite, par exemple, du blocage du moteur 10. En second lieu, ces modifications rendent possible l'introduction de deux impulsions motrices de rattrapage entre deux impulsions motrices normales, lorsqu'un pas raté a été détecté. Dans ces deux éventualités, la durée des impulsions motrices est fixe et correspond à la durée optimale, c'est-à-dire celle qui permet au moteur de transmettre le couple maximum. S'agissant d'un moteur pas-à-pas pour montre, la durée optimale est typiquement de 7,8 ms, égale à la période d'un signal de 128 Hz. C'est à cette valeur qu'il sera fait référence par la suite.These modifications have two purposes. First of all, they make it possible to cut off, after a determined time, the driving pulse 1 in the absence of the stop signal S 13 = S57 of this pulse. This can happen if the measurement voltage U m is insufficient to trigger the signal S13 following, for example, the blocking of the motor 10. Second, these modifications make it possible to introduce two catch-up driving pulses between two normal motor impulses, when a missed step has been detected. In these two possibilities, the duration of the driving pulses is fixed and corresponds to the optimal duration, that is to say that which allows the motor to transmit the maximum torque. In the case of a stepping motor for a watch, the optimal duration is typically 7.8 ms, equal to the period of a signal of 128 Hz. It is to this value that reference will be made thereafter.

Le circuit représenté par le bloc 109 de la fig. 5 de la présente invention comprend les éléments 10, 14, 15, 16, 17, 42, 45 et 58 déjà décrits dans le document européen cité, les portes ET 143 et ET 144 qui ont une entrée de plus que les portes ET 43 et ET 44 du document cité et enfin une porte ET 215 et trois portes OU 216, OU 217 et OU 218 supplémentaires.The circuit represented by block 109 of FIG. 5 of the present invention comprises the elements 10, 14, 15, 16, 17, 42, 45 and 58 already described in the cited European document, the gates ET 143 and ET 144 which have one more entry than the gates ET 43 and ET 44 of the cited document and finally a door AND 215 and three doors OR 216, OR 217 and OR 218 additional.

La sortie du diviseur de fréquence 400 est reliée à la première entrée de la porte OU 216 de la fig. 5. Cette entrée reçoit ainsi le signal de seconde Sε. La sortie du circuit de détection des pas ratés 200 est reliée à la première entrée de la porte à deux entrées ET 215, qui reçoit ainsi le signal Q211. La sortie de la porte ET 215 est reliée à la seconde entrée de la porte OU 216. La sortie de cette dernière porte est connectée à l'entrée d'horloge CK de la bascule 42, à l'entrée de la porte ET 58 fonctionnant en inverseur et enfin à l'entrée d'horloge CK de la bascule 46, cette dernière faisant partie du bloc 13. La première entrée de la porte OU 217 est reliée à la borne du circuit logique combinatoire 203 qui produit le signal logique SA. Les secondes entrées des portes à deux entrées ET 215 et OU 218 sont reliées ensemble et le point commun est connecté à la sortie du circuit logique 203 qui génère le signal logique SB. La seconde entrée de la porte OU 217 est reliée à la sortie de la porte ET 215 et la première entrée de la porte OU 218 est reliée à la sortie Q de la bascule 45. La sortie de la porte OU 218 est connectée aux deuxièmes entrées des portes à trois entrées ET 143 et ET 144. Les troisièmes entrées de ces mêmes portes ET 143 et ET 144 sont reliées à la sortie de la porte OU 217. La première entrée de la porte ET 143 est reliée à la sortie Q de la bascule 42 et la première entrée de la porte ET 144 à la sortie Q* de la même bascule. Enfin les sorties des portes ET 143 et ET 144 sont reliées aux transistors de commande 14, 16, 16, 17 du moteur 10 et les bornes Q* et R de la bascule 45 respectivement aux éléments 51 et 57 du bloc 13, comme cela est décrit dans le document européen cité.The output of the frequency divider 400 is connected to the first input of the OR gate 216 of FIG. 5. This input thus receives the second signal Sε. The output of the missed step detection circuit 200 is connected to the first input of the gate with two AND inputs 215, which thus receives the signal Q211. The output of the AND gate 215 is connected to the second input of the OR gate 216. The output of the latter gate is connected to the clock input C K of the flip-flop 42, to the input of the AND gate 58 operating as an inverter and finally at the clock input C K of the flip-flop 46, the latter being part of block 13. The first input of the OR gate 217 is connected to the terminal of the combinational logic circuit 203 which produces the logic signal HER. The second inputs of the doors with two AND inputs 215 and OR 218 are connected together and the common point is connected to the output of the logic circuit 203 which generates the logic signal SB. The second input of the OR gate 217 is connected to the output of the AND gate 215 and the first input of the OR gate 218 is connected to the output Q of the flip-flop 45. The output of the OR gate 218 is connected to the second inputs doors with three inputs AND 143 and AND 144. The third inputs of these same doors AND 143 and AND 144 are connected to the output of the OR gate 217. The first input of the AND gate 143 is connected to the output Q of the flip-flop 42 and the first input of AND gate 144 at the output Q * of the same flip-flop. Finally the outputs of the doors ET 143 and ET 144 are connected to the control transistors 14, 16, 16, 17 of the motor 10 and the terminals Q * and R of the rocker 45 respectively to the elements 51 and 57 of the block 13, as is described in the cited European document.

Avant de décrire le fonctionnement du circuit de la fig. 5, examinons les signaux représentés sur la fig. 6 que reçoit ce circuit. Le signal S8, déjà décrit dans la référence citée, est composé d'impulsions positives de secondes d'une durée d'environ 30 µs. Le signal SA est également composé d'impulsions de secondes, synchrones avec les impulsions du signal S8, mais leur durée est de 7,8 ms. Le signal SB est formé d'un série de paires d'impulsions. Chaque impulsion du signal SB a une durée de 7,8 ms et chaque paire d'impulsions est située entre deux impulsions successives du signal S8. Dans l'exemple de la fig. 6, les impulsions du signal SB formant une paire sont séparées par un intervalle de 7,8 ms et chaque paire d'impulsions est située au milieu de l'intervalle formé par deux impulsions successives du signal S8. le signal Q45 a été décrit dans la référence européenne citée lorsque le moteur tourne normalement. Ce signal est alors formé d'impulsions positives dont la durée détermine celle des impulsions motrices I et varie en fonction du couple moteur fourni. Lorsque le moteur est bloqué et perd un pas, l'amplitude du signal de mesure Um est insuffisante pour atteindre la tension de seuil U' et produire le signal S13 de remise à zéro de la bascule 45. Le signal Q45 reste alors au niveau logique haut jusqu'à la prochaine impulsion motrice de rattrapage dont la durée fixe de 7,8 ms est supposée être suffisante pour faire tourner le moteur dans le cas les plus défavorables. Le signal 0211 a déjà été décrit à propos des fig. 3 et 4. Ce signal passe au niveau logique haut après détection d'un pas raté et reste dans cet état jusqu'à la prochaine impulsion du signal S8. Les signaux S143 et S144 représentent les impulsions d'attaque des transistors de commande 14, 15, 16, 17 du moteur 10 dans le cas d'un fonctionnement normal et dans celui du rattrapage des pas perdus. A l'exception des paires d'impulsion de rattrapage, le début de toutes les autres impulsions sont synchrones avec le début des impulsions du signal S8. Enfin l'échelle des temps t indique, comme dans la fig. 4, en TA une rotation normale du moteur, en TB un pas raté, en TC la détection d'un pas raté, en TD 1 et TD 2 les deux pas de rattrapage et en TE de nouveau un pas de rotation normal.Before describing the operation of the circuit in fig. 5, let's examine the signals shown in fig. 6 that this circuit receives. The signal S 8 , already described in the cited reference, is composed of positive seconds pulses with a duration of around 30 µs. The signal SA is also composed of seconds pulses, synchronous with the pulses of the signal S 8 , but their duration is 7.8 ms. The signal SB is formed by a series of pairs of pulses. Each pulse of the signal SB has a duration of 7.8 ms and each pair of pulses is located between two successive pulses of the signal S 8 . In the example of fig. 6, the pulses of the signal SB forming a pair are separated by an interval of 7.8 ms and each pair of pulses is located in the middle of the interval formed by two successive pulses of the signal S 8 . signal Q45 has been described in the European reference cited when the engine is running normally. This signal is then formed of positive pulses, the duration of which determines that of the driving pulses I and varies as a function of the motor torque supplied. When the motor is blocked and loses a step, the amplitude of the measurement signal U m is insufficient to reach the threshold voltage U 'and produce the signal S13 to reset the flip-flop 45 to zero. The signal Q45 then remains at the level logic high until the next catch-up motor pulse whose fixed duration of 7.8 ms is assumed to be sufficient to run the motor in the most unfavorable cases. The signal 0211 has already been described with reference to FIGS. 3 and 4. This signal goes to the high logic level after detection of a missed step and remains in this state until the next pulse of the signal S 8 . The signals S143 and S144 represent the driving pulses of the control transistors 14, 15, 16, 17 of the motor 10 in the case of normal operation and in that of the recovery of the lost steps. With the exception of the catch-up pulse pairs, the start of all the other pulses are synchronous with the start of the pulses of signal S 8 . Finally the time scale t indicates, as in fig. 4, in TA a normal rotation of the motor, in TB a missed step, in TC the detection of a missed step, in TD 1 and TD 2 the two catch-up steps and in TE again a normal rotation step.

Le fonctionnement du circuit 5 et en particulier du bloc 109 va maintenant être décrit en s'aidant des signaux représentés sur la fig. 6. Lorsque le moteur fonctionne normalement, le signal Q211 est au niveau logique bas puisqu'il n'y a eu aucun pas raté. La sortie de la porte ET 215 reste alors également au niveau logique bas, quel que soit le niveau du signal SB. La porte OU 216 transmet alors, sans le modifier, le signal S8 qui se trouve ainsi être appliqué sur les bornes CK des bascules 42 et 46 et à l'entrée de la porte 58.The operation of circuit 5 and in particular of block 109 will now be described with the help of the signals shown in FIG. 6. When the engine is operating normally, signal Q211 is at low logic level since there have been no missed steps. The output of the AND gate 215 then also remains at the low logic level, whatever the level of the signal SB. The OR gate 216 then transmits, without modifying it, the signal S 8 which is thus applied to the terminals C K of the flip-flops 42 and 46 and to the input of the gate 58.

La sortie de la porte OU 217 fournit un signal formé par le signal SA en fonctionnement normal et par la superposition des signaux SA et SB juste après la détection d'un pas raté. De même la sortie de la porte OU 218 fournit un signal formé par la superposition des signaux SB et Q45. Les impulsions motrices 1 normales venant en synchronisme avec le signal S8, apparaissent alors que le signal SB est au niveau logique bas. Le signal SB n'a donc, dans ce cas, aucun effet sur la porte OU 218 qui ne transmet alors que le signal Q45 définissant la durée de l'impulsion motrice I. Ainsi au moment d'une impulsion motrice 1 normale, le signal à la sortie de la porte OU 217 se trouve au niveau logique haut pendant 7,8 ms et le signal à la sortie de la porte OU 218 au niveau logique également haut, mais pendant la durée de l'impulsion du signal Q45. Lorsque la charge du moteur est normale, la durée de l'impulsion du signal Q45 est d'environ 4 ms, bien inférieure à la durée de 7,8 ms de l'impulsion du signal SA. Ces signaux étant appliqués aux portes ET 143 et ET 144, on retrouve l'impulsion du signal Q45 à la sortie de la première porte si la sortie 0 de la bascule 42 est au niveau logique haut, et à la sortie de la seconde porte si c'est la sortie Q* de la même bascule qui se trouve dans cet état. Il en résulte que le signal S143, qui se trouve à la sortie de la porte ET 143, a une période de deux secondes et qu'il est formé d'impulsions qui viennent s'intercaler au milieu de la distance séparant deux impulsions successives du signal similaire S144 fournie par la porte ET 144. Les signaux S143 et S144 viennent attaquer les transistors de commande 14 à 17, lesquels génèrent l'impulsion motrice I.The output of the OR gate 217 provides a signal formed by the signal SA in normal operation and by the superposition of the signals SA and SB just after the detection of a missed step. Similarly, the output of the OR gate 218 provides a signal formed by the superposition of the signals SB and Q45. The normal driving pulses 1 coming in synchronism with the signal S 8 , appear while the signal SB is at the low logic level. The signal SB therefore has, in this case, no effect on the OR gate 218 which then transmits only the signal Q45 defining the duration of the driving pulse I. Thus at the time of a normal driving pulse 1, the signal at the output of the OR gate 217 is at the high logic level for 7.8 ms and the signal at the output of the OR gate 218 at the logic level also high, but for the duration of the pulse of the signal Q45. When the engine load is normal, the duration of the Q45 signal pulse is approximately 4 ms, much less than the 7.8 ms duration of the SA signal pulse. These signals being applied to the gates AND 143 and AND 144, we find the pulse of the signal Q45 at the output of the first gate if the output 0 of the flip-flop 42 is at the high logic level, and at the output of the second gate if it is the exit Q * of the same rocker which is in this state. As a result, the signal S143, which is at the output of the AND gate 143, has a period of two seconds and that it is formed of pulses which are inserted in the middle of the distance separating two successive pulses from the similar signal S144 supplied by the AND gate 144. The signals S143 and S144 drive the control transistors 14 to 17, which generate the driving pulse I.

Ainsi, lorsque le moteur travaille dans des conditions normales, le bloc 109 de la fig. 5 de la présente invention fonctionne de façon identique au bloc 9 de la fig. 12 de la référence européenne citée. Cette situation correspond à l'instant TA de l'échelle des temps t de la fig. 6.Thus, when the engine works under normal conditions, the block 109 of FIG. 5 of the present invention operates identically to block 9 of FIG. 12 of the European reference cited. This situation corresponds to the instant TA of the time scale t of FIG. 6.

Examinons à présent le cas où le moteur ne tourne pas, en réponse à une impulsion motrice I en phase, et perd donc un pas. Ceci correspond à l'instant TB de l'échelle des temps t de la fig. 6. Dans ces circonstances, la tension de mesure Um reste inférieure à la tension de seuil U's, comme cela a déjà été expliqué. Le signal S12 produit par le bloc 12 reste alors au niveau logique bas. Le bloc 13, ne recevant pas d'impulsion de commande du bloc 12, ne peut générer à son tour le signal S13 qui arrêterait l'impulsion motrice en faisant passer le signal Q45 de l'état logique haut à l'état logique bas. Ainsi, le moteur étant bloqué, l'impulsion motrice 1 une fois déclenchée se maintiendrait indéfiniment dans le cas du bloc 9 de la référence européenne citée. Par contre, avec le bloc 109 de la présente invention, même si le signal Q45 reste en permanence au niveau logique haut, l'impulsion motrice ne pourra pas durer plus longtemps que les 7,8 ms de l'impulsion du signal SA. En effet le signal SA, traversant la porte OU 217, commande les portes ET 143 et ET 144 en ne permettant le passage des signaux appliquées aux entrées de-ces portes que durant le temps où le signal SA est à l'état logique haut.Let us now examine the case where the motor does not turn, in response to a driving pulse I in phase, and therefore loses one step. This corresponds to the instant TB of the time scale t of FIG. 6. Under these circumstances, the measurement voltage U m remains lower than the threshold voltage U ' s , as already explained. The signal S12 produced by block 12 then remains at the low logic level. The block 13, not receiving a control pulse from the block 12, cannot in turn generate the signal S13 which would stop the driving pulse by passing the signal Q45 from the high logic state to the low logic state. Thus, the engine being blocked, the driving pulse 1 once triggered would be maintained indefinitely in the case of block 9 of the European reference cited. On the other hand, with the block 109 of the present invention, even if the signal Q45 remains permanently at the high logic level, the driving pulse cannot last longer than the 7.8 ms of the pulse of the signal SA. Indeed, the signal SA, passing through the OR gate 217, controls the AND gates 143 and AND 144 by allowing the passage of the signals applied to the inputs of these gates only during the time when the signal SA is in the high logic state.

Le moteur ayant raté un pas, l'impulsion motrice 1 suivante vient en contrephase et elle est inapte, par principe, à faire tourner le moteur. Ceci correspond à l'instant EC de l'échelle des temps t de la fig. 6. Le circuit 200 permet à cet instant de détecter la non-rotation du moteur lors de l'impulsion motrice précédente en faisant passer le signal de sortie Q211 de l'état logique bas à l'état logique haut. Le signal Q211 reste dans cet état jusqu'à la prochaine impulsion du signal Sa à l'instant TE de l'échelle des temps t de la fig. 6, définissant ainsi une fenêtre d'une durée de 1 seconde.The engine having missed a step, the following driving impulse 1 comes in counterphase and it is in principle incapable of turning the engine. This corresponds to the instant EC of the time scale t of FIG. 6. The circuit 200 makes it possible at this instant to detect the non-rotation of the motor during the previous driving pulse by passing the output signal Q211 from the low logic state to the high logic state. The signal Q211 remains in this state until the next pulse of the signal Sa at the instant TE of the time scale t of FIG. 6, thus defining a window with a duration of 1 second.

Juste après l'instant TC représenté sur la fig. 6, le moteur a ainsi perdu deux pas qui doivent être rattrapés avant l'instant TE, par exemple au milieu de l'intervalle de temps séparant TC de TL, aux instants TD1 et TD2 définis par la paire d'impulsions correspondante du signal SB. Le signal Q211 est alors au niveau logique haut, ce qui permet aux deux impulsions du signal SB de passer à travers les portes ET 215 et OU 216 pour atteindre la borne CK de la bascule 42 de la fig. 5. Le signal SB passe alors également à travers la porte OU 217, pour atteindre les troisièmes entrées des portes ET 143 et ET 144. La première impulsion du signal SB met la bascule 42 dans un état permettant de produire une impulsion motrice en phase à l'instant TD1, puisque l'impulsion motrice à l'instant TC était en contrephase et que le moteur n'avait pas tourné. Dans le cas représenté sur la fig. 6, c'est la sortie Q* de la bascule 42 qui doit passer au niveau logique haut. Comme le signal SA est au niveau logique bas au voisinage des instants TD1 et TD2, à la sortie de la porte OU 218 on retrouve uniquement les deux impulsions du signal SB. D'autre part à l'instant TD1 le niveau logique du signal de sortie de la porte OU 218 se trouve à l'état logique haut car les signaux logiques SB et Q45 sont également dans cet état. Il en résulte qu'à l'instant TD1 le signal S143 est au niveau logique bas et le signal S144 au niveau logique haut. Une impulsion motrice I en phase est alors produite par les transistors de commande 14 à 17. La rotation du moteur fait passer le signal Q45 au niveau logique bas environ 4 ms après le début de l'impulsion motrice comme dans le cas normal. Cette transition du signal Q45 n'entraîne cependant pas l'arrêt de l'impulsion motrice I dans le cas du rattrapage d'un pas perdu. En effet à la sortie des portes OU 217 et OU 218 on retrouve alors les deux impulsions du signal SB qui déterminent la durée des impulsions motrices, égale à 7,8 ms. A l'instant TE, après avoir rattrapé les deux pas perdus, le moteur fonctionne de nouveau normalement.Just after the moment TC shown in fig. 6, the motor has thus lost two steps which must be caught up before time TE, for example in the middle of the time interval separating TC from TL, at the instants TD1 and TD2 defined by the corresponding pair of pulses of the signal SB . The signal Q211 is then at the high logic level, which allows the two pulses of the signal SB to pass through the AND gates 215 and OR 216 to reach the terminal C K of the flip-flop 42 of FIG. 5. The signal SB then also passes through the OR gate 217, to reach the third inputs of the AND gates 143 and AND 144. The first pulse of the signal SB puts the flip-flop 42 in a state making it possible to produce a driving pulse in phase with the instant TD1, since the driving impulse at the instant TC was in counterphase and the engine had not turned. In the case shown in fig. 6, it is the output Q * of the flip-flop 42 which must pass to the high logic level. As the signal SA is at the low logic level in the vicinity of the instants TD1 and TD2, at the output of the OR gate 218 there are only the two pulses of the signal SB. On the other hand, at time TD1 the logic level of the output signal from the OR gate 218 is in the high logic state because the logic signals SB and Q45 are also in this state. It follows that at time TD1 the signal S143 is at the low logic level and the signal S144 at the high logic level. A driving pulse I in phase is then produced by the control transistors 14 to 17. The rotation of the motor brings the signal Q45 to the logic low level approximately 4 ms after the start of the driving pulse as in the normal case. This transition of the signal Q45 does not however stop the driving pulse I in the case of catching up with a lost step. Indeed, at the output of the OR gates 217 and OR 218, the two pulses of the signal SB are then found, which determine the duration of the driving pulses, equal to 7.8 ms. At the instant TE, after having caught the two lost steps, the motor works again normally.

Considérons maintenant le circuit de comptage de pas ratés 201, représenté sur la fig. 7. Il comprend essentiellement un compteur par N référencé 220. La valeur de N est typiquement égale à 5. Ce compteur a une borne d'entrée, une borne de sortie et une borne de remise à zéro R.Let us now consider the missed step counting circuit 201, represented in FIG. 7. It essentially comprises a counter by N referenced 220. The value of N is typically equal to 5. This counter has an input terminal, an output terminal and a reset terminal R.

La borne d'entrée reçoit le signal Q211 venant du détecteur de pas ratés 200. La borne de sortie délivre un signal S220 formé d'une impulsion de durée arbitraire, chaque fois que le compteur a compté par N. Enfin la borne R reçoit un signal de remise à zéro SC pris à la sortie du circuit 203 dont la période Tn est, par exemple, de 8 secondes. Ainsi s'il y a 5 pas ratés ou davantage en une période de 8 secondes, le signal de sortie S220 comprendra une impulsion à la fin de cette période. Les impulsions du signal S220, désignées par A, B,... P sur la fig. 9, se répartissent naturellement de façon irrégulière au cours du temps. Tous les pas ratés sont bien entendu rattrapés.The input terminal receives the signal Q211 coming from the missed step detector 200. The output terminal delivers a signal S220 formed by a pulse of arbitrary duration, each time the counter has counted by N. Finally, the terminal R receives a reset signal SC taken at the output of circuit 203 whose period T n is, for example, 8 seconds. Thus if there are 5 or more missed steps in an 8 second period, the output signal S220 will include a pulse at the end of this period. The pulses of signal S220, designated by A, B, ... P in fig. 9, are naturally distributed irregularly over time. All the missed steps are of course made up.

Examinons enfin le circuit de référence de tension 202, représenté sur la fig. 8. Ce circuit comprend un compteur par P, référencé 221, ayant une borne d'entrée, une borne de mise à l'état S et p bornes de sortie notée a, b.c... p. La valeur de P est typiquement égale à 10. La borne d'entrée reçoit le signal S220, issu du circuit de comptage de pas ratés 201, et la borne de mise à l'état S est reliée à la sortie d'une porte OU 225 à deux entrées. La première entrée de cette porte reçoit le signal SD, fourni par le circuit 203, qui donne, par exemple, une impulsion toutes les heures. La seconde entrée est reliée à un circuit 226, non décrit mais connu en soi, qui délivre un signal de sortie S226 contenant une impulsion au moment où la batterie qui fournit la tension d'alimentation Ua est placée dans la montre. Les bornes de sortie a, b,... p du compteur 221 sont reliées chacune à la borne de commande d'une porte de transmission, les portes de transmission étant notées respectivement 223a, 223b,... 223p. Chaque porte de transmission relie la première borne d'une première résistance de charge 224, commune à toutes ces portes, à la première borne d'une seconde résistance de charge. A chaque porte de transmission correspond donc une seconde résistance de charge et ces p résistances sont notées respectivement 224a, 224b,... 224p. Les secondes bornes des résistances 224, 224a, 224b,... 224p sont toutes réliées à la masse. Une porte de transmission est rendue conductrice lorsque sa borne de commande est portée au niveau logique haut. Si non elle se trouve à l'état bloquant. Entre la borne d'alimentation Ua, reliée à la batterie de la montre, et la première borne de la résistance 224 est connectée une source de courant 222. Cette source débite un courant constant IR. Enfin la tension de seuil U's constituant la sortie du circuit 202, est prise sur la première borne de la résistance 224.Finally, let us examine the voltage reference circuit 202, shown in FIG. 8. This circuit includes a counter by P, referenced 221, having an input terminal, a reset terminal S and p output terminals denoted a, bc .. p. The value of P is typically equal to 10. The input terminal receives the signal S220, coming from the missed step counting circuit 201, and the reset terminal S is connected to the output of an OR gate 225 with two entrances. The first input of this gate receives the signal SD, supplied by the circuit 203, which gives, for example, a pulse every hour. The second input is connected to a circuit 226, not described but known per se, which delivers an output signal S226 containing a pulse when the battery which supplies the supply voltage U a is placed in the watch. The output terminals a, b, ... p of counter 221 are each connected to the control terminal of a transmission door, the transmission doors being denoted respectively 223a, 223b, ... 223p. Each transmission door connects the first terminal of a first load resistor 224, common to all these doors, to the first terminal of a second load resistor. Each transmission gate therefore corresponds to a second load resistance and these p resistors are denoted respectively 224a, 224b, ... 224p. The second terminals of resistors 224, 224a, 224b, ... 224p are all connected to ground. A transmission door is made conductive when its control terminal is brought to the high logic level. If not it is in the blocking state. Between the supply terminal Ua, connected to the watch battery, and the first terminal of the resistor 224 is connected a current source 222. This source delivers a constant current IR. Finally, the threshold voltage U ' s constituting the output of circuit 202, is taken from the first terminal of resistor 224.

Le fonctionnement du circuit de la fig. 8 va maintenant être décrit en se référant aux signaux montrés sur la fig. 9. Cette dernière figure représente les variations des signaux S221 a, S221b,... S221 p, apparaissant sur les bornes de sortie a, b, ... p du compteur 221, en fonction des impulsions A, B,... P contenues dans le signal S220, ainsi que les variations de la tension de seuil U' qui en résultent. A l'instant initial le compteur 221 est remis à l'état par une impulsion du signal S220 ou du signal SD, cette impulsion étant transmise à la borne S du compteur par la porte OU 225. Les signaux S221 a, S221 b,... S221 p sont alors tous au niveau logique haut. Les portes de transmission 223a, 223b,... 223p, commandées par ces signaux, sont ainsi toutes rendues conductrices. Il en résulte que les résistances de charge 224a, 224b,... 224p viennent toutes en parallèle sur la résistance de charge 224. La mise en parallèle de toutes ces résistances définit une résistance de charge équivalent minimum. La source de courant 222 débitant un courant constant IR dans cette résistance de charge équivalente, produit à ses bornes une tension de seuil minimum U'so. Si l'énergie de l'impulsion motrice I correspondant à ce seuil est insuffisante pour que le moteur ait un fonctionnement satisfaisant au sens du critère énoncé plus haut, une impulsion A sera générée par le circuit 201 et transmise par le signal S220 au compteur 211, lequel avancera d'une unité. Dans ce nouvel état du compteur, le signal de sortie S221a passe au niveau logique bas, les autres sorties restant au niveau logique haut. La porte de transmission 223a passe alors de l'état conducteur à l'état bloquant et déconnecte la résistance 224a de la résistance 224. La résistance de charge équivalente augmente donc de valeur. Il en est de même de la tension de seuil qui passe de U'so à la valeur directement supérieure U'sa. La même processus pourra se reproduire, si nécessaire, avec les impulsions B, C,... P incrémentant, chaque fois, la tension de seuil d'un pas jusqu'à la valeur maximale U'sp. Avec l'impulsion P+1 la tension de seuil retombe à la valeur minimale U'so et le cycle pourra recommencer. En pratique la tension de seuil doit se stabiliser à une valeur inférieur à U'sp, le retour à la valeur minimale U'so n'étant produit que par les impulsions des signaux S226 ou SD.The operation of the circuit of fig. 8 will now be described with reference to the signals shown in FIG. 9. This last figure represents the variations of the signals S221 a, S221b, ... S221 p, appearing on the output terminals a, b, ... p of the counter 221, as a function of the pulses A, B, ... P contained in the signal S220, as well as the variations in the threshold voltage U ′ which result therefrom. At the initial instant the counter 221 is reset by a pulse of the signal S220 or of the signal SD, this pulse being transmitted to the terminal S of the counter by the OR gate 225. The signals S221 a, S221 b ,. .. S221 p are then all at the high logical level. The transmission doors 223a, 223b, ... 223p, controlled by these signals, are thus all made conductive. It follows that the load resistors 224a, 224b, ... 224p all come in parallel on the load resistor 224. The paralleling of all these resistors defines a minimum equivalent load resistance. The current source 222 delivering a constant current IR in this equivalent load resistance, produces at its terminals a minimum threshold voltage U ' so . If the energy of the driving pulse I corresponding to this threshold is insufficient for the motor to function satisfactorily within the meaning of the criterion stated above, a pulse A will be generated by the circuit 201 and transmitted by the signal S220 to the counter 211 , which will advance by one. In this new state of the counter, the output signal S221a goes to the low logic level, the other outputs remaining at the high logic level. The transmission door 223a then passes from the conducting state to the blocking state and disconnects the resistor 224a from the resistor 224. The equivalent load resistance therefore increases in value. It is the same for the threshold voltage which goes from U ' so to the directly higher value U' sa . The same process can be repeated, if necessary, with the pulses B, C, ... P incrementing, each time, the threshold voltage by one step up to the maximum value U ' s p. With the P + 1 pulse, the threshold voltage drops to the minimum value U ' so and the cycle can start again. In practice, the threshold voltage must stabilize at a value below U ' sp , the return to the minimum value U' so being produced only by the pulses of signals S226 or SD.

Naturellement, l'invention n'est pas limitée à la forme particulière de mise en oeuvre qui vient l'être décrite. Par exemple, dans ce mode de réalisation, la tension de seuil U' est périodiquement remise à sa valeur minimale U'so, ceci d'une part pour pouvoir la diminuer dans le cas où, à cause de perturbations extérieures, le rotor aurait raté plus que les N pas prévus et où, par conséquent, cette tension aurait été amenée à prendre une valeur trop élevée et, d'autre part, pour permettre au dispositif de commande de s'adapter automatiquement aux variations possibles des caractéristiques et des conditions de fonctionnement du moteur au cours du temps.Naturally, the invention is not limited to the particular form of implementation which has just been described. For example, in this embodiment, the threshold voltage U 'is periodically reset to its minimum value U' so , this on the one hand in order to be able to decrease it in the event that, due to external disturbances, the rotor has failed more than the N not provided and where, consequently, this tension would have been brought to take too high a value and, on the other hand, to allow the control device to adapt automatically to the possible variations of the characteristics and the conditions of engine operation over time.

Il est clair que l'on ne sortirait pas du cadre de l'invention si l'on se contenait de ramener le niveau de référence à sa valeur minimale lors de chaque mise sous tension du circuit de commande. A la limite on pourrait même prévoir de ne régler la tension de seuil à la valeur U'so que lorsque le moteur est mis en marche pour la première fois. De telles solutions seraient bien sûr moins avantageuses mais elles représenteraient tout de même une amélioration par rapport aux systèmes connus où la référence est fixe.It is clear that it would not go beyond the scope of the invention if one were to reduce the reference level to its minimum value each time the control circuit is energized. At the limit, it could even be provided to set the threshold voltage at the value U ' so only when the motor is started for the first time. Such solutions would of course be less advantageous but they would still represent an improvement compared to known systems where the reference is fixed.

Plutôt que de remettre périodiquement la tension de seuil à sa valeur minimale il est possible de la décrémenter progressivement, pas par pas, jusqu'à ce qu'apparaissent des arrêts du moteur et, si les arrêts sont trop fréquents, de l'augmenter à nouveau.Rather than periodically returning the threshold voltage to its minimum value, it is possible to decrement it gradually, step by step, until engine stops appear and, if the stops are too frequent, to increase it to new.

Par ailleurs le circuit de comptage de pas ratés 201 est prévu pour éviter que le niveau de seuil soit précipitamment augmenté, dès qu'un pas n'est pas franchi par le rotor, alors que ceci peut être dû par exemple à un choc ou à un champ magnétique externe et non pas au fait que ce niveau est trop bas. Il est donc surtout utile dans les deux cas qui viennent d'être envisagés, c'est-à-dire lorsque la tension de référence est mise à sa valeur minimale seulement au moment où le dispositif est mis en marche pour la première fois ou lorsqu'elle n'est ramenée à cette valeur qu'à chaque changement de pile. En effet, sans ce compteur, en attaquant le circuit 202 directement par le signal Q211, la tension de seuil pourrait alors être amenée très vite à prendre sa valeur maximale et la consommation l'énergie du moteur serait inutilement élevée pendant toute la durée de vie de la montre ou tout au moins d'une pile. Par contre, si le dispositif de commande est conçu pour que le niveau de référence soit fréquemment réajusté le circuit de comptage 201 peut sans grand inconvénient être supprimé, en reliant la sortie du circuit 200 à la première entrée de circuit 202, car l'énergie consommée ne peut alors être excessive que pendant une période limitée. De plus il est toujours possible de diminuer les pertes d'énergie en augmentant la fréquence de réajustement du niveau de référence.Furthermore, the missed step counting circuit 201 is provided to prevent the threshold level from being precipitously increased, as soon as a step is not crossed by the rotor, whereas this may be due for example to a shock or to an external magnetic field and not the fact that this level is too low. It is therefore especially useful in the two cases which have just been envisaged, that is to say when the reference voltage is set to its minimum value only when the device is turned on for the first time or when 'it is only reset to this value each time the battery is changed. Indeed, without this counter, by attacking the circuit 202 directly by the signal Q211, the threshold voltage could then be brought very quickly to take its maximum value and the energy consumption of the motor would be unnecessarily high throughout the lifetime of the watch or at least of a battery. On the other hand, if the control device is designed so that the reference level is frequently readjusted, the counting circuit 201 can be eliminated without great inconvenience, by connecting the output of circuit 200 to the first input of circuit 202, because the energy consumption can then be excessive only for a limited period. In addition, it is always possible to reduce energy losses by increasing the frequency of readjustment of the reference level.

D'autre part il est évident que l'invention reste valable pour tout paramètre représentatif du fonctionnement du moteur autre que la tension induite par le mouvement du rotor. Il pourrait tout aussi en s'agir de la tension induite globale qui inclut les effets dus à la self propre de la bobine, du courant qui traverse le moteur, de la variation de flux magnétique dans le stator ou de toute variable résultant d'opérations mathématiques sur ces grandeurs.On the other hand it is obvious that the invention remains valid for any parameter representative of the operation of the motor other than the voltage induced by the movement of the rotor. It could also be the global induced voltage which includes the effects due to the self of the coil, the current flowing through the motor, the variation of magnetic flux in the stator or any variable resulting from operations mathematics on these quantities.

Le schéma bloc de la fig. 1 resterait valable pour ces différentes variantes sauf en ce qui concerne le circuit de comptage des pas ratés qui, comme cela vient d'être indiqué, peut dans certains cas être supprimé et le circuit de calcul de la durée des impulsions motrices qui n'est pas toujours nécessaire, l'interruption de ces impulsions pouvant parfois être commandée directement par la sortie du comparateur. Bien entendu les autres circuits, tout au moins le circuit de mesure 11 et le circuit détecteur de pas ratés 200 devraient être adaptés à la grandeur physique choisie comme paramètre représentatif. Par exemple dans le cas où c'est la variation de flux magnétique à travers la bobine qui est retenu comme paramètre le circuit 11 peut être l'un de ceux qui sont décrits dans la demande de brevet allemand n° 3132304.The block diagram in fig. 1 would remain valid for these different variants except as regards the missed step counting circuit which, as has just been indicated, can in certain cases be omitted and the circuit for calculating the duration of the driving pulses which is not not always necessary, the interruption of these pulses can sometimes be directly controlled by the output of the comparator. Of course the other circuits, at least the measurement circuit 11 and the missed step detector circuit 200 should be adapted to the physical quantity chosen as a representative parameter. For example, in the case where it is the variation in magnetic flux through the coil which is retained as a parameter, circuit 11 can be one of those described in German patent application No. 3132304.

Enfin, dans la forme de réalisation du dispositif de commande selon l'invention qui a été décrite la grandeur physique choisie pour régler la durée des impulsions motrices servait aussi pour la détection des pas ratés. Il est clair que ceci n'est pas obligatoire et que des paramètres différents peuvent être utilisés pour les deux choses. S'il en est ainsi l'entrée du circuit de détection des pas ratés 200 ne doit plus être reliée à la sortie du circuit de mesure 11 mais directement à la bobine du moteur ou éventuellement au circuit de commande du moteur.Finally, in the embodiment of the control device according to the invention which has been described, the physical quantity chosen to regulate the duration of the driving pulses was also used for the detection of missed steps. It is clear that this is not mandatory and that different parameters can be used for the two things. If this is the case, the input of the missed step detection circuit 200 must no longer be connected to the output of the measurement circuit 11 but directly to the motor coil or possibly to the motor control circuit.

Claims (17)

1. Method for controlling a stepping motor comprising a rotor and a winding which receives normal driving pulses from a control arrangement associated with the motor so as to cause said rotor to turn when said control arrangement is placed under tension, said method consisting in measuring at the time of each normal driving pulse a physical magnitude representative of the rotor movement and to interrupt said driving pulse at an instant determined as a function of the time required by the measured physical magnitude to attain a reference level, characterized in that it likewise consists in detecting the condition of rotation or non rotation of the rotor in response to said normal driving pulses and to modify said reference level as a function of the information provided by said detection.
2. Method according to claim 1, characterized in that said reference level is adjustable by steps between a minimum and a maximum value and is increased by one step when N steps not effected by the rotor in response to said normal driving pulses have been detected within a predetermined time interval, N being a number equal to or greater than 1.
3. Method according to claim 2, characterized in that said reference level is adjusted to said minimum value when the control arrangement is initially placed under tension.
4. Method according to claim 2, characterized in that said reference level is returned to said minimum value each time said control arrangement is placed under tension.
5. Method according to claim 3 or 4, characterized in that said reference level is likewise periodically returned to said minimum value following each placing under tension of the control arrangement.
6. Method according to any of claims 2 to 5, characterized in that it likewise consists in applying correcting driving pulses to the motor winding of sufficient duration to enable the rotor to recover each step non effected in response to a normal driving pulse.
7. Method according to any of the preceding claims, characterized in that the measured physical magnitude is the tension induced in the winding by the rotor movement.
8. Method according to any of claims 1 to 6, characterized in that the measured physical magnitude is the magnetic flux variation across said winding.
9. Control arrangement for a stepping motor for putting into practice the method according to claim 1 comprising signal generating means producing an output signal each time that the rotor is to make a step, control means for applying normal driving pulses to the motor winding in response to the output signals provided by the signal generating means, means coupled to the motor for measuring during each normal driving pulse the physical magnitude characteristic of the rotor movement and furnishing a measurement signal representative of such magnitude, means for producing a reference sighal corresponding to said reference level, means for furnishing a comparison signal between said measurement signal and said reference signal and means receiving said comparison signal and acting on said control means to interrupt said driving pulse at an instant determined as a function of the time required for said physical magnitude to attain said reference level, characterized in that it further includes detection means (200, 201) for detecting the condition of rotation or non rotation of the rotor in response to the normal driving pulses and in that the means (202) producing said reference signal (U's) are conceived so as to be capable of modifying the value of this signal as a function of the information furnished by said detection means.
10. Arrangement according to claim 9, characterized in that said detection means (200, 201) detect the steps not effected by the rotor in response to normal driving pulses, in that the means producing said reference signal (U's) are conceived so as to be capable of modifying the value of this signal by steps between a minimum value (U'so) and a maximum value (U'sp) and in that the value of said reference signal is increased by a step when N steps not effected by the rotor have been detected in a predetermined time interval, N being a number greater than or equal to 1.
11. Arrangement according to claim 10, characterized in that it comprises means (226) for regulating the value of the reference signal (U's) to said minimum value (U'so) when it is initially placed under tension.
12. Arrangement according to claim 10, characterized in that it comprises means (226) for restoring the value of the reference signal (U's) to said minimum value each time it is placed under tension.
13. Arrangement according to claims 11 or 12, characterized in that it further includes means (203) for periodically restoring the value of the reference signal (U's) to said minimum value after said arrangement has been placed under tension.
14. Arrangement according to any of claims 10 to 13, characterized in that it further includes means (215,218) coupled to said detection means for applying correcting driving pulses to the motor winding (10) of sufficient duration to enable the rotor to recover each step not effected in response to a normal driving pulse.
15. Arrangement according to any of claims 10 to 14, characterized in that said detection means (200, 201) receive said measurement signal (Um) in order to detect the steps not effected by the rotor.
16. Arrangement according to any of claims 9 to 15, characterized in that the measured physical magnitude is the tension induced in the winding by the rotor movement.
17. Arrangement according to any of claims 9 to 15, characterized in that the measured physical magnitude is the magnetic flux variation across said winding.
EP84109303A 1983-08-12 1984-08-06 Method and device for the control of a stepping motor Expired EP0135104B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4412/83 1983-08-12
CH441283A CH653850GA3 (en) 1983-08-12 1983-08-12

Publications (2)

Publication Number Publication Date
EP0135104A1 EP0135104A1 (en) 1985-03-27
EP0135104B1 true EP0135104B1 (en) 1987-11-19

Family

ID=4275657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84109303A Expired EP0135104B1 (en) 1983-08-12 1984-08-06 Method and device for the control of a stepping motor

Country Status (6)

Country Link
US (1) US4551665A (en)
EP (1) EP0135104B1 (en)
JP (1) JPS6059995A (en)
CH (1) CH653850GA3 (en)
DE (1) DE3467645D1 (en)
HK (1) HK32293A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791343A (en) * 1987-08-31 1988-12-13 Allied-Signal Inc. Stepper motor shaft position sensor
US4851755A (en) * 1988-03-01 1989-07-25 Ampex Corporation Low power stepper motor drive system and method
JP3256342B2 (en) * 1993-08-04 2002-02-12 ティーアールダブリュ オートモーティブ ジャパン株式会社 Stepping motor step-out detection device
DE29609570U1 (en) * 1996-05-29 1996-10-24 Saia Ag Circuit for detecting the dropping of a stepper or synchronous motor
JP3541601B2 (en) 1997-02-07 2004-07-14 セイコーエプソン株式会社 Control device for stepping motor, control method thereof, and timing device
US6586898B2 (en) 2001-05-01 2003-07-01 Magnon Engineering, Inc. Systems and methods of electric motor control
JP4652610B2 (en) * 2001-05-30 2011-03-16 セイコーインスツル株式会社 Step motor rotation control device
JP2002365379A (en) * 2001-06-11 2002-12-18 Seiko Instruments Inc Analog electronic clock
EP2383620B1 (en) * 2010-04-27 2013-06-12 Swiss Timing Ltd. System for timing a sports competition using two chronometer devices
JP7219094B2 (en) * 2019-01-11 2023-02-07 セイコーインスツル株式会社 ANALOG ELECTRONIC WATCH, STEPPING MOTOR CONTROL DEVICE, AND CONTROL METHOD FOR ANALOG ELECTRONIC WATCH

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477169A (en) * 1977-12-02 1979-06-20 Seiko Instr & Electronics Ltd Electronic watch
JPS55127897A (en) * 1979-03-26 1980-10-03 Janome Sewing Mach Co Ltd Pulse-motor-driving circuit
FR2459579A1 (en) * 1979-06-21 1981-01-09 Suisse Horlogerie ADVANCE DETECTOR OF A STEP BY STEP MOTOR
GB2077002B (en) * 1980-05-21 1983-10-26 Berney Sa Jean Claude Electronic timepiece comprising a control circuit of the motor
JPS57106397A (en) * 1980-12-18 1982-07-02 Seiko Instr & Electronics Ltd Driving device for stepping motor
CH647383GA3 (en) * 1981-02-04 1985-01-31
CH644989GA3 (en) * 1981-03-18 1984-09-14

Also Published As

Publication number Publication date
JPH0121719B2 (en) 1989-04-21
DE3467645D1 (en) 1987-12-23
CH653850GA3 (en) 1986-01-31
HK32293A (en) 1993-04-08
EP0135104A1 (en) 1985-03-27
JPS6059995A (en) 1985-04-06
US4551665A (en) 1985-11-05

Similar Documents

Publication Publication Date Title
EP0806710B2 (en) Stabilisation of an electronic circuit for regulating the mechanical movement of a timepiece
EP0822470B1 (en) Electronic timepiece comprising a generator driven by a barrel spring
EP1521141B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
CH686332B5 (en) timepiece driven by a mechanical energy source and controlled by an electronic circuit.
EP0171635B1 (en) Method and apparatus to recognise the position of the rotor of a stepping motor
EP0135104B1 (en) Method and device for the control of a stepping motor
FR2529032A1 (en) PROCESS FOR SUPPLYING A STEP-BY-STEP MOTOR FOR A WATCHING PART
EP0060806B1 (en) Method of reducing the power consumption of a stepping motor, and device for carrying out this method
FR2489055A1 (en) METHOD FOR REDUCING THE ENERGY CONSUMPTION OF THE MOTOR NOT BY STEP OF AN ELECTRONIC WATCHING PIECE AND ELECTRONIC WATCHING PART USING THE SAME
EP3171231B1 (en) Shock detector circuit and operating method thereof
EP0077293B1 (en) Process and device for controlling a stepping motor in a clock mechanism
EP0022270A1 (en) Position detector for a stepping motor
EP0253153A1 (en) Method and device for controlling a stepping motor
EP0203330B1 (en) Electronic time piece with a detector of the end of the life span of the battery
EP0108711B1 (en) Method and device for controlling a step motor
EP0024737A1 (en) Detector for the movement of a stepping motor
WO2002050617A1 (en) Analog electronic watch having a time reset device following power shortage
EP0140089B1 (en) Process for feeding a stepping motor
EP0982846B1 (en) Process and device for controlling a stepper motor
CH696507A5 (en) An electronic timepiece comprising a generator driven by a spring barrel.
EP0250862A1 (en) Method and device for controlling a stepper motor
EP0155661B1 (en) Control circuit for a stepping motor
EP3779611B1 (en) Electromechanical watch
EP3502798A1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP1014230B1 (en) Timepiece having an electrical energy generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19850620

17Q First examination report despatched

Effective date: 19861126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3467645

Country of ref document: DE

Date of ref document: 19871223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950717

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950814

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950817

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960806

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST