EP0140089B1 - Process for feeding a stepping motor - Google Patents

Process for feeding a stepping motor Download PDF

Info

Publication number
EP0140089B1
EP0140089B1 EP84110852A EP84110852A EP0140089B1 EP 0140089 B1 EP0140089 B1 EP 0140089B1 EP 84110852 A EP84110852 A EP 84110852A EP 84110852 A EP84110852 A EP 84110852A EP 0140089 B1 EP0140089 B1 EP 0140089B1
Authority
EP
European Patent Office
Prior art keywords
motor
energy
voltage
supplied
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84110852A
Other languages
German (de)
French (fr)
Other versions
EP0140089A1 (en
Inventor
Mohamed Mokdad
Mai Tu Xuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega SA
Original Assignee
Omega SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega SA filed Critical Omega SA
Publication of EP0140089A1 publication Critical patent/EP0140089A1/en
Application granted granted Critical
Publication of EP0140089B1 publication Critical patent/EP0140089B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Definitions

  • the present invention relates to a method of supplying a stepping motor, in particular for a timepiece, method in which the quantity of energy E i (t) is compared during the duration of each control pulse. supplied to the motor at a predetermined amount of energy E; o , then the control pulse is interrupted as soon as said amounts of energy are equal.
  • EP-A-0 057 663 was cited in the research report (corresponding to US-A-4439717). It is a control device for a stepping motor in which the energy supplied to the motor is compared to a predetermined energy, then the control pulse is cut off when said energies are equal.
  • This device avoids the drawback which the known devices present and which is due to the fact that if the voltage of the power source varies, the power supplied to the motor also varies as indicated in the paragraph above.
  • the cited document proposes means which consist, on the one hand, in supplying the motor by keeping the current in the coil of said motor constant and, on the other hand, in analyzing the voltage signal present on the coil then to provide information on the induced voltage caused by the movement of the rotor.
  • the approach proposed by the present invention is completely different since it does not use the induced voltage any more than it requires keeping the current in the coil constant.
  • the process chosen here is limited to measuring the supply voltage at the motor terminals and the current flowing in its coil, integrating the product of the two measurements with respect to time and then cutting the supply when the energy thus measured is equal to a predetermined quantity of energy.
  • E s is generally smaller than E m and practically constant
  • the sum E m + E s is defined in the present case as representing the internal energy E; supplied to the engine. We can therefore write that: which means that the internal energy to be supplied to the motor is equal to the total energy supplied by the system (Et) minus the energy dissipated by the Joule effect (Eth).
  • This amount of energy E io can be determined for each caliber of watch that we are dealing with and it will play the role of threshold to limit the duration of the driving pulse sent to the motor. In other words, when the internal energy E i (t) supplied to the motor reaches the threshold value E io, the energy is cut. We will thus have sent to the motor just enough energy for its rotor to take the plunge, avoiding unnecessary overconsumption.
  • the process which has just been indicated is illustrated by the graph in FIG. 1.
  • the integration time t in seconds is plotted on the abscissa and, on the ordinate, the energy E i (t) in microjoules as well as a energy value E io for which it is ensured that the rotor will cross its pitch.
  • the pulse is cut off which gives a duration T; for this impulse.
  • Figure 1 also shows the variation of current 1 in the motor coil.
  • t T; max. It may indeed happen, for abnormally high load cases, that the energy E i (t) can never reach the threshold E io . It is then preferable to limit in time the duration of the control pulse, duration which will be chosen to be high, for example 10 ms.
  • FIG. 2 shows an example of simulation of the reaction of this servo-control during a variation of the voltage across the terminals of the motor or during a variation of the internal resistance of the supply battery.
  • E io required to drive the rotor is 1 ⁇ J.
  • This graph shows the same coordinates as those adopted for Figure 1.
  • the current I and energy E i curves referenced in 1 present a state in which the motor is supplied by a voltage U o equal to 1.7 V (new battery).
  • the command pulse length is short, about 4.8 ms.
  • the state referenced 2 is that for which the battery is at a discharge level for which the voltage U o is equal to 1.5 V.
  • the coincidence of E; and E io only intervenes when the pulse duration reaches 6.2 ms.
  • the command pulse has a duration of 6.8 ms.
  • the block diagram in FIG. 3 makes it possible to carry out all the operations mentioned above.
  • the actual control block 4 receives at its input the control pulses (timing) of duration T; max and for which it will be a question of adjusting the width, the supply voltage U o , the predetermined quantity of energy E io and the energy supplied to the motor E; (t).
  • This command 4 satisfies the following operating conditions: cut the pulse if E i (t) becomes larger than E io or maintain it until a previously defined value T; max if E i (t) always remains lower than E io .
  • the circuit 5 is a sensor block which makes it possible to read the value of the current I (t) in the coil of the motor 8 and the value of the voltage U o at its terminals and to make the difference U o- RI.
  • Circuit 6 is a multiplier which performs the operation [5] mentioned above.
  • circuit 7 is an integrator which integrates the product (U o ⁇ RI) I (t) in time space from which the value of internal energy E i (t) results.
  • FIG. 3 is a block diagram allowing the operations necessary to implement the method according to the invention to be carried out. In practice, there are several ways of achieving this and the diagram in FIG. 4 describes a possible embodiment which will be explained now.
  • the motor M is supplied at its terminals by the voltage U o .
  • the alternating polarity pulses are sent to the motor by a bridge of transistors 31, 32, 33 and 34.
  • the transistors 31 and 32 are conductive, the current flows in the direction of arrow 35 while it flows in the direction of the arrow 36 when it is the transistors 33 and 34 which conduct.
  • an operational amplifier 38 at the output 42 from which appears a voltage proportional to the product of the resistance R of the coil and the current 1 flowing in this coil.
  • a second operational amplifier 39 combines, via three resistors r of equal values, the voltage U o and the voltage R ⁇ to provide at its output 40 a voltage U o- RI.
  • the voltages formed on lines 40 and 42 are sent respectively to the inputs X and Y of a multiplier 43 which, at its output 44, delivers a voltage U proportional to (U o ⁇ RI) I (t) to a factor of scale close.
  • This voltage U in turn attacks an integrator circuit composed of the operational amplifier 45 to which a network formed by the resistor RM and the capacitor C is applied.
  • a transistor 47 is connected in parallel on the capacitor C, which makes it possible to short-circuit the said capacitor as soon as the control pulse has ceased (reset of the integrator). The control of transistor 47 is therefore linked by line 48 to the falling edge of the control pulse.
  • FIG. 4 also shows two type D flip-flops, 49 and 50 which each receive on their clock input CP the control pulses (timing) coming from the frequency divider (not shown) with which the watch is equipped. These flip-flops rock on the rising edge of the pulse and attack by their outputs Q and Q two NOR gates 51 and 52 and two inverters 53 and 54 to finally supply the signals A, B, C and D which control the transistors 31, 33, 34 and 32 respectively. There is at the output Q of the flip-flop 49 the control pulse 55 which begins with the rising edge (timing) and which ends as soon as the reset input of the same flip-flop is actuated. On the exit Q of the same flip-flop, we will find the same pulse 55 but inverted. The purpose of the flip-flop 50 is to ensure the alternating polarity of the control pulses.
  • the reset input of flip-flop 49 receives via line 60 and via an OR gate 56 the signal from a comparator 57.
  • the inputs + and-of this comparator respectively receive the signals E i (t) from which it was question above and E io which is a predetermined quantity of energy fixed once and for all and which depends on the type of watch to be adjusted. E io is practically in the form of a stabilized voltage.
  • E I (t) E io
  • the comparator 57 provides a signal 1 which, through the OR gate 56, resets the flip-flop 49 to zero and thus interrupts the motor pulse 55 ( falling edge T;).
  • the circuit of FIG. 4 is produced by means of conventional logic elements with regard to the doors 51, 52, 53, 54, 56 and 58 and the flip-flops 49 and 50.
  • the multiplier 43 can be of the AD 534 type from the manufacturer Analog Devices. We can choose as operational amplifiers 38, 39 and 45 those bearing the reference LF 355 N from the manufacturer National Semiconductor.
  • the comparator 57 may be of the LM 311 type from the same manufacturer National Semiconductor.

Abstract

A method of controlling a stepping motor comprises supplying the motor with a predetermined quantity of energy Eio from whence there will result an automatic adaptation of the width of the motor drive pulse to the voltage Uo at the motor terminals and the resistance Ri of the energy source. At the moment when the internal energy Ei(t) supplied to the motor, as defined by the integral over a time period of the product of Uo-RI and the current It circulating in the motor winding, becomes equal to Eio the drive pulse is cut off (R is the resistance of the motor winding). The circuit for practicing the method according to the invention includes means for measuring the voltage Uo and the energizing current I(t), means for obtaining the difference Uo-RI, a multiplier for forming the product (Uo-RI)I(t) and an integrator the output of which provides a voltage proportional to the internal energy Ei(t).

Description

La présente invention est relative à un procédé d'alimentation d'un moteur pas à pas, notamment pour pièce d'horlogerie, procédé dans lequel on compare, pendant la durée de chaque impulsion de commande la quantité d'énergie Ei(t) fournie au moteur à une quantité d'énergie prédéterminée E;o, puis on interrompt l'impulsion de commande dès que lesdites quantités d'énergie sont égales.The present invention relates to a method of supplying a stepping motor, in particular for a timepiece, method in which the quantity of energy E i (t) is compared during the duration of each control pulse. supplied to the motor at a predetermined amount of energy E; o , then the control pulse is interrupted as soon as said amounts of energy are equal.

Dans les pièces d'horlogerie électroniques que l'on trouve aujourd'hui sur le marché, il est d'usage courant de trouver un moteur pas à pas pour convertir les impulsions électriques issues d'une base de temps à quartz en mouvement mécanique pour afficher l'heure. Le système est alimenté par une source d'énergie, généralement une pile de petites dimensions qu'il faudra remplacer périodiquement. Pour économiser l'énergie livrée par la pile et donc la faire durer le plus longtemps possible, on a déjà proposé des systèmes de réglage qui asservissent la durée de l'impulsion qui meut le moteur à la charge qu'il doit entraîner; en d'autres termes, on allonge l'impulsion si la charge augmente et on la réduit si cette même charge diminue. De tels systèmes sont décrits par exemple dans les documents US 4 323 834 et US 4 346 463.In electronic timepieces that are found today on the market, it is common practice to find a stepper motor to convert the electrical pulses from a quartz time base into mechanical movement for show time. The system is powered by a power source, usually a small battery that will need to be replaced periodically. To save the energy delivered by the battery and therefore make it last as long as possible, adjustment systems have already been proposed which control the duration of the pulse which moves the motor to the load which it must drive; in other words, the pulse is lengthened if the charge increases and it is reduced if the same charge decreases. Such systems are described for example in documents US 4 323 834 and US 4 346 463.

On doit pourtant distinguer plusieurs sortes de charges agissant sur le rotor du moteur. Comme on veut une position angulaire bien déterminée du rotor entre les pas, il sera nécessaire d'exercer sur lui un couple de positionnement au repos qu'il faudra vaincre chaque fois qu'on voudra le faire progresser d'un pas. Le rotor aura également à vaincre les divers couples de frottement qui existent dans les paliers. Enfin le rotor aura à fournir un couple utile pour entraîner le mécanisme d'affichage de l'heure. L'énergie à fournir au moteur pour vaincre ces différents couples est généralement bien déterminée pour un type de montre donnée qui, lorsqu'elle marche normalement, consomme une énergie relativement constante. Toutefois, si la montre possède un calendrier, on comprendra qu'une fois par vingt-quatre heures le couple utile à fournir devra être plus important au changement de date. C'est alors que peut intervenir l'asservissement dont il a été question à l'alinéa ci-dessus et à condition bien sûr que la montre soit pourvue d'un tel système.However, we must distinguish several kinds of loads acting on the motor rotor. As we want a well-defined angular position of the rotor between the steps, it will be necessary to exert on it a positioning torque at rest which must be overcome each time we want to make it progress by one step. The rotor will also have to overcome the various friction couples that exist in the bearings. Finally the rotor will have to provide a useful torque to drive the time display mechanism. The energy to be supplied to the engine to overcome these different torques is generally well determined for a given type of watch which, when operating normally, consumes relatively constant energy. However, if the watch has a calendar, it will be understood that once every twenty-four hours the useful torque to be supplied will have to be greater at the change of date. It is then that the servo control mentioned in the paragraph above can intervene and provided of course that the watch is provided with such a system.

Les systèmes d'asservissement réagissant à la charge imposée au rotor supposent généralement que le moteur est alimenté à tension constante et ne tiennent donc pas compte des écarts entre la tension délivrée par la pile au début puis à la fin de sa durée de vie. A première vue, cette simplification pourrait paraître légitime pour une pile à l'argent dont les tensions de début et de fin de vie sont respectivement de l'ordre de 1,6 et 1,4 volts. Cependant, comme on le verra, l'écart indiqué conduit déjà à une surconsommation du système si des mesures ne sont pas prises pour asservir la longueur de l'impulsion motrice à la tension délivrée par la source d'alimentation de même que la résistance présentée par ladite source. Il est évident, d'autre part, que si cet écart augmente encore, comme c'est le cas par exemple dans les piles au lithium où les limites de fonctionnement peuvent être fixées entre 2,4 et 3,6 volts, la consommation en pure perte sera encore plus importante.The servo systems reacting to the load imposed on the rotor generally assume that the motor is supplied at constant voltage and therefore do not take into account the differences between the voltage delivered by the battery at the beginning then at the end of its service life. At first glance, this simplification might seem legitimate for a silver battery whose voltages at the beginning and end of life are respectively of the order of 1.6 and 1.4 volts. However, as will be seen, the difference indicated already leads to overconsumption of the system if measures are not taken to control the length of the driving pulse to the voltage delivered by the power source as well as the resistance presented. by said source. It is evident, on the other hand, that if this difference increases further, as is the case for example in lithium batteries where the operating limits can be set between 2.4 and 3.6 volts, the consumption in pure loss will be even greater.

On a cité dans le rapport de recherche le document EP-A-0 057 663 (correspondant à US-A-4439717). Il s'agit d'un dispositif de commande pour moteur pas à pas dans lequel on compare l'énergie fournie au moteur à une énergie prédéterminée, puis on coupe l'impulsion de commande quand lesdites énergies sont égales. Ce dispositif évite l'inconvénient que présentent les dispositifs connus et qui tient au fait que si la tension de la source d'alimentation varie, la puissance fournie au moteur varie également comme on l'a indiqué à l'alinéa ci-dessus. Pour pallier cet inconvénient, le document cité propose des moyens qui consistent, d'une part, à alimenter le moteur en maintenant constant le courant dans la bobine dudit moteur et, d'autre part, à analyser le signal en tension présent sur la bobine puis à fournir une information sur la tension induite provoquée par le mouvement du rotor. La démarche proposée par la présente invention est totalement différente puisqu'elle ne fait pas appel à la tension induite pas plus qu'elle ne nécessite de maintenir constant le courant dans la bobine. On le verra plus bas, le procédé choisi ici se contente de mesurer la tension d'alimentation aux bornes du moteur et le courant qui circule dans sa bobine, d'intégrer le produit des deux mesures par rapport au temps puis de couper l'alimentation quand l'énergie ainsi mesurée est égale à une quantité d'énergie prédéterminée.EP-A-0 057 663 was cited in the research report (corresponding to US-A-4439717). It is a control device for a stepping motor in which the energy supplied to the motor is compared to a predetermined energy, then the control pulse is cut off when said energies are equal. This device avoids the drawback which the known devices present and which is due to the fact that if the voltage of the power source varies, the power supplied to the motor also varies as indicated in the paragraph above. To overcome this drawback, the cited document proposes means which consist, on the one hand, in supplying the motor by keeping the current in the coil of said motor constant and, on the other hand, in analyzing the voltage signal present on the coil then to provide information on the induced voltage caused by the movement of the rotor. The approach proposed by the present invention is completely different since it does not use the induced voltage any more than it requires keeping the current in the coil constant. As we will see below, the process chosen here is limited to measuring the supply voltage at the motor terminals and the current flowing in its coil, integrating the product of the two measurements with respect to time and then cutting the supply when the energy thus measured is equal to a predetermined quantity of energy.

C'est le but de la présente invention d'adapter automatiquement la longueur d'impulsion de commande à la tension et à la résistance de la source d'alimentation par les moyens qui apparaissent dans la revendication.It is the object of the present invention to automatically adapt the control pulse length to the voltage and resistance of the power source by the means which appear in the claim.

L'invention sera mieux comprise maintenant à la lumière de la description qui suit et pour l'intelligence de laquelle on se référera, à titre d'exemple, au dessin dans lequel:

  • La figure 1 est un graphique illustrant le principe d'alimentation du moteur pas à pas selon l'invention.
  • La figure 2 est un graphique qui montre plus en détail comment varie la longueur d'impulsion d'alimentation du moteur quand la tension d'alimentation et la résistance de la source d'alimentation changent si l'on met à profit le procédé selon l'invention.
  • La figure 3 est un schéma bloc du circuit électronique de commande pour mettre en oeuvre le procédé selon l'invention.
  • La figure 4 est un exemple de réalisation possible du circuit électronique de principe donné en figure 3.
The invention will now be better understood in the light of the following description and for the understanding of which reference will be made, by way of example, to the drawing in which:
  • FIG. 1 is a graph illustrating the principle of supply of the stepping motor according to the invention.
  • FIG. 2 is a graph which shows in more detail how the supply pulse length of the motor varies when the supply voltage and the resistance of the supply source change if the method according to the invention is used. 'invention.
  • FIG. 3 is a block diagram of the electronic control circuit for implementing the method according to the invention.
  • FIG. 4 is an example of a possible embodiment of the electronic circuit in principle given in FIG. 3.

D'une manière générale, les courants et les tensions intervenant dans le fonctionnement du moteur sont donnés par l'équation électrique suivante:

Figure imgb0001
dans laquelle:

  • Uo = tension aux bornes du moteur;
  • U; = tension induite de mouvement;
  • L = self de la bobine du moteur;
  • R = résistance de la bobine du moteur;
  • I = courant dans la bobine du moteur.
In general, the currents and voltages involved in the operation of the motor are given by the following electrical equation:
Figure imgb0001
in which:
  • U o = voltage across the motor;
  • U; = induced movement voltage;
  • L = inductor of the motor coil;
  • R = resistance of the motor coil;
  • I = current in the motor coil.

En multipliant l'équation [1] par le terme 1(t)dt et en intégrant par rapport au temps t, on obtient:

  • otUol(t)dt = otRI2(t)dt + otLI(t)dl + otUiI(t)dt [2]
By multiplying equation [1] by the term 1 (t) dt and by integrating with respect to time t, we obtain:
  • ot U o l (t) dt = ot RI 2 (t) dt + ot LI (t) dl + ot U i I (t) dt [2]

Dans cette équation:

  • otUoI(t)dt = Et = énergie totale fournie au système;
  • otRI2(t)dt = Eth = énergie dissipée par effet Joule;
  • otLI(t)dl = Es = énergie emmagasinée par la self;
  • otUiI(t)dt = Em = énergie mécanique fournie par le moteur.
In this equation:
  • ot U o I (t) dt = Et = total energy supplied to the system;
  • ot RI 2 (t) dt = E th = energy dissipated by the Joule effect;
  • ot LI (t) dl = Es = energy stored by the self;
  • o U t U i I (t) dt = E m = mechanical energy supplied by the motor.

On désire fournir au moteur une énergie mécanique constante. Etant donné que Es est généralement plus petite que Em et pratiquement constante, le fait d'imposer Em = constante revient à dire que Em + Es = constante. La somme Em + Es est définie dans le cas présent comme représentant l'énergie interne E; fournie au moteur. On peut donc écrire que:

Figure imgb0002
ce qui signifie que l'énergie interne à fournir au moteur est égale à l'énergie totale fournie par le système (Et) moins l'énergie dissipée par effet Joule (Eth).We want to provide the engine with constant mechanical energy. Since E s is generally smaller than E m and practically constant, imposing E m = constant means that E m + E s = constant. The sum E m + E s is defined in the present case as representing the internal energy E; supplied to the engine. We can therefore write that:
Figure imgb0002
which means that the internal energy to be supplied to the motor is equal to the total energy supplied by the system (Et) minus the energy dissipated by the Joule effect (Eth).

De l'équation [3] ci-dessus, on conclut qu'il existe une valeur Ei(t) pour laquelle on est assuré que le rotor fera son pas, cette valeur dépendant de la combinaison d'une certaine tension Uo aux bornes du moteur, d'un certain courant I circulant dans la bobine et ceci pendant un certain temps déterminé Ti. Soit Eio cette valeur qui s'exprime alors par l'équation:

Figure imgb0003
From equation [3] above, we conclude that there is a value E i (t) for which we are sure that the rotor will take its pitch, this value depending on the combination of a certain voltage U o aux motor terminals, of a certain current I circulating in the coil and this for a certain determined time T i . Let E io be this value which is then expressed by the equation:
Figure imgb0003

Cette quantité d'énergie Eio peut être déterminée pour chaque calibre de montre auquel on a affaire et elle jouera le rôle de seuil pour limiter la durée de l'impulsion motrice envoyée au moteur. En d'autres termes, lorsque l'énergie interne Ei(t) fournie au moteur atteint la valeur de seuil Eio on coupe l'énergie. On aura ainsi envoyé au moteur une énergie juste suffisante pour que son rotor franchisse le pas en évitant une surconsommation inutile.This amount of energy E io can be determined for each caliber of watch that we are dealing with and it will play the role of threshold to limit the duration of the driving pulse sent to the motor. In other words, when the internal energy E i (t) supplied to the motor reaches the threshold value E io, the energy is cut. We will thus have sent to the motor just enough energy for its rotor to take the plunge, avoiding unnecessary overconsumption.

Le procédé qui vient d'être indiqué est illustré par le graphique de la figure 1. On a porté en abscisse le temps d'intégration t en secondes et, en ordonnée, l'énergie Ei(t) en microjoules ainsi qu'une valeur d'énergie Eio pour laquelle on est assuré que le rotor franchira son pas. Quand la valeur Ei(t) atteint la valeur de seuil Eio, on coupe l'impulsion ce qui donne une durée T; pour cette impulsion. La figure 1 montre aussi la variation de courant 1 dans la bobine du moteur. On a dessiné sur l'axe des temps une valeur t = T; max. Il peut arriver en effet, pour des cas de charge anormalement élevés, que l'énergie Ei(t) ne puisse jamais atteindre le seuil Eio. Il est alors préférable de limiter dans le temps la durée de l'impulsion de commande, durée qu'on choisira élevée, par exemple 10 ms.The process which has just been indicated is illustrated by the graph in FIG. 1. The integration time t in seconds is plotted on the abscissa and, on the ordinate, the energy E i (t) in microjoules as well as a energy value E io for which it is ensured that the rotor will cross its pitch. When the value E i (t) reaches the threshold value E io , the pulse is cut off which gives a duration T; for this impulse. Figure 1 also shows the variation of current 1 in the motor coil. We have drawn on the time axis a value t = T; max. It may indeed happen, for abnormally high load cases, that the energy E i (t) can never reach the threshold E io . It is then preferable to limit in time the duration of the control pulse, duration which will be chosen to be high, for example 10 ms.

Si l'on se réfère à nouveau à l'équation [4], on se rend compte que si la tension Uo aux bornes du moteur diminue (vieillissement de la pile) il faudra intégrer sur un temps T; plus long pour atteindre la valeur de seuil Eio, ce qui correspond à un allongement de l'impulsion motrice. De même, on constate qu'une augmentation de la résistance interne Ri de la pile occasionne une baisse de Uo et entraîne une augmentation de la durée d'impulsion Ti. Ainsi le procédé selon l'invention amène à un réglage continu de la longueur d'impulsion en fonction des variations de Uo et en conséquence de Ri.If we refer again to equation [4], we realize that if the voltage U o at the motor terminals decreases (aging of the battery) it will be necessary to integrate over a time T; longer to reach the threshold value E io , which corresponds to an elongation of the driving pulse. Similarly, it can be seen that an increase in the internal resistance R i of the cell causes a drop in U o and leads to an increase in the pulse duration T i . Thus the method according to the invention leads to a continuous adjustment of the pulse length as a function of the variations of U o and consequently of R i .

La figure 2 montre un exemple de simulation de la réaction de cet asservissement lors d'une variation de la tension aux bornes du moteur ou lors d'une variation de la résistance interne de la pile d'alimentation. Dans cet exemple, on a supposé que l'énergie minimum nécessaire Eio à entraîner le rotor était de 1 µJ. On retrouve dans ce graphique les mêmes coordonnées que celles adoptées pour la figure 1.FIG. 2 shows an example of simulation of the reaction of this servo-control during a variation of the voltage across the terminals of the motor or during a variation of the internal resistance of the supply battery. In this example, it has been assumed that the minimum energy E io required to drive the rotor is 1 µJ. This graph shows the same coordinates as those adopted for Figure 1.

Les courbes de courant I et d'énergie Ei référencées en 1 présentent un état dans lequel le moteur se trouve alimenté par une tension Uo valant 1,7 V (pile neuve). La longueur d'impulsion de commande est courte, soit environ 4,8 ms. L'état référencé 2 est celui pour lequel la pile se trouve à un niveau de décharge pour lequel la tension Uo vaut 1,5 V. La coïncidence de E; et de Eio n'intervient que lorsque la durée de l'impulsion atteint 6,2 ms. Enfin l'état 3 est relevé pour une tension Uo = 1,5V et pour une valeur de résistance Ri qui a passé de 100 Ω qu'elle avait pour les états 1 et 2 à 500 Ω. A ce moment, l'impulsion de commande a une durée de 6,8 ms.The current I and energy E i curves referenced in 1 present a state in which the motor is supplied by a voltage U o equal to 1.7 V (new battery). The command pulse length is short, about 4.8 ms. The state referenced 2 is that for which the battery is at a discharge level for which the voltage U o is equal to 1.5 V. The coincidence of E; and E io only intervenes when the pulse duration reaches 6.2 ms. Finally, state 3 is noted for a voltage U o = 1.5V and for a resistance value R i which has gone from 100 Ω that it had for states 1 and 2 to 500 Ω. At this time, the command pulse has a duration of 6.8 ms.

En conclusion de ce qui précède et selon la présente invention, on voit qu'on fournit au moteur une quantité d'énergie prédéterminée d'où il résultera une adaptation automatique de la longueur d'impulsion de commande T; à la tension Uo et à la résistance Ri de la source d'alimentation.In conclusion from the above and according to the present invention, it can be seen that a predetermined quantity of energy is supplied to the motor, from which there will result an automatic adaptation of the length of the control pulse T; at the voltage U o and at the resistance R i of the power source.

On va indiquer maintenant un moyen pour mettre en oeuvre le procédé selon l'invention.We will now indicate a means for implementing the method according to the invention.

Il s'agit en fait de mesurer l'énergie interne Ei(t) fournie au moteur, de comparer cette énergie interne à une quantité d'énergie prédéterminée Eio pour laquelle on est assuré que le moteur fera son pas dans tous les cas de charges normales qui peuvent se présenter et de couper l'alimentation du moteur dès que Ei(t) = Eio. La valeur de l'énergie interne Ei(t) est connue de l'équation [3] d'où il résulte que:

Figure imgb0004
It is in fact a question of measuring the internal energy E i (t) supplied to the motor, of comparing this internal energy with a predetermined quantity of energy E io for which one is assured that the motor will take its step in all cases normal loads that may occur and cut the power to the motor as soon as E i (t) = E io . The value of ener internal geometry E i (t) is known from equation [3] where it follows that:
Figure imgb0004

On mesurera donc la valeur Uo-RI et la valeur du courant I(t) circulant dans la bobine. On fera le produit de ces deux valeurs qu'on intégrera par rapport au temps t.We will therefore measure the value Uo-RI and the value of the current I (t) flowing in the coil. We will make the product of these two values which we will integrate with respect to time t.

Le schéma bloc de la figure 3 permet de réaliser toutes les opérations mentionnées ci-dessus. Le bloc de commande proprement dit 4 reçoit à son entrée les impulsions de commande (timing) de durée T; max et dont il s'agira de régler la largeur, la tension d'alimentation Uo, la quantité d'énergie prédéterminée Eio et l'énergie fournie au moteur E;(t). Cette commande 4 satisfait aux conditions de fonctionnement suivantes: couper l'impulsion si Ei(t) devient plus grand que Eio ou la maintenir jusqu'à une valeur préalablement définie T; max au cas où Ei(t) reste toujours inférieur à Eio. Le circuit 5 est un bloc capteur qui permet de lire la valeur du courant I(t) dans la bobine du moteur 8 et la valeur de la tension Uo à ses bornes et de faire la différence Uo-RI. Le circuit 6 est un multiplicateur qui réalise l'opération [5] citée ci-dessus. Enfin, le circuit 7 est un intégrateur qui intègre dans l'espace temps le produit (Uo―RI)I(t) d'où il résulte la valeur de l'énergie interne Ei(t).The block diagram in FIG. 3 makes it possible to carry out all the operations mentioned above. The actual control block 4 receives at its input the control pulses (timing) of duration T; max and for which it will be a question of adjusting the width, the supply voltage U o , the predetermined quantity of energy E io and the energy supplied to the motor E; (t). This command 4 satisfies the following operating conditions: cut the pulse if E i (t) becomes larger than E io or maintain it until a previously defined value T; max if E i (t) always remains lower than E io . The circuit 5 is a sensor block which makes it possible to read the value of the current I (t) in the coil of the motor 8 and the value of the voltage U o at its terminals and to make the difference U o- RI. Circuit 6 is a multiplier which performs the operation [5] mentioned above. Finally, circuit 7 is an integrator which integrates the product (U o ―RI) I (t) in time space from which the value of internal energy E i (t) results.

Le schéma bloc de la figure 3 est un schéma de principe permettant la réalisation des opérations nécessaires à mettre en oeuvre le procédé selon l'invention. En pratique, il existe plusieurs façons de le réaliser et le schéma de la figure 4 décrit un mode de réalisation possible qui va être expliqué maintenant.The block diagram of FIG. 3 is a block diagram allowing the operations necessary to implement the method according to the invention to be carried out. In practice, there are several ways of achieving this and the diagram in FIG. 4 describes a possible embodiment which will be explained now.

Le moteur M est alimenté à ses bornes par la tension Uo. Les impulsions de polarité alternées sont acheminées au moteur par un pont de transistors 31, 32, 33 et 34. Lorsque les transistors 31 et 32 sont conducteurs, le courant circule dans le sens de la flèche 35 alors qu'il circule dans le sens de la flèche 36 lorsque ce sont les transistors 33 et 34 qui conduisent. Entre la ligne 37 et la masse est intercalé un amplificateur opérationnel 38 à la sortie 42 duquel apparaît une tension proportionnelle au produit de la résistance R de la bobine et du courant 1 circulant dans cette bobine. Un second amplificateur opérationnel 39 combine par l'intermédiaire de trois résistances r d'égales valeurs la tension Uo et la tension R · pour fournir à sa sortie 40 une tension Uo-RI. Les tensions formées sur les lignes 40 et 42 sont envoyées respectivement aux entrées X et Y d'un multiplicateur 43 qui, à sa sortie 44, livre une tension U proportionnelle à (Uo―RI)I(t) à un facteur d'échelle près. Cette tension U attaque à son tour un circuit intégrateur composé de l'amplificateur opérationnel 45 auquel est appliqué un réseau formé par la résistance RM et le condensateur C. On trouve alors à la sortie de l'intégrateur, sur la ligne 46, une tension proportionnelle à la valeur de l'énergie interne Ei(t). Il faut noter aussi qu'un transistor 47 est connecté en parallèle sur le condensateur C, ce qui permet de court-circuiter ledit condensateur dès que l'impulsion de commande a cessé (remise à zéro de l'intégrateur). La commande du transistor 47 est donc liée par la ligne 48 au flanc descendant de l'impulsion de commande.The motor M is supplied at its terminals by the voltage U o . The alternating polarity pulses are sent to the motor by a bridge of transistors 31, 32, 33 and 34. When the transistors 31 and 32 are conductive, the current flows in the direction of arrow 35 while it flows in the direction of the arrow 36 when it is the transistors 33 and 34 which conduct. Between the line 37 and the ground is interposed an operational amplifier 38 at the output 42 from which appears a voltage proportional to the product of the resistance R of the coil and the current 1 flowing in this coil. A second operational amplifier 39 combines, via three resistors r of equal values, the voltage U o and the voltage R · to provide at its output 40 a voltage U o- RI. The voltages formed on lines 40 and 42 are sent respectively to the inputs X and Y of a multiplier 43 which, at its output 44, delivers a voltage U proportional to (U o ―RI) I (t) to a factor of scale close. This voltage U in turn attacks an integrator circuit composed of the operational amplifier 45 to which a network formed by the resistor RM and the capacitor C is applied. There is then at the output of the integrator, on the line 46, a voltage proportional to the value of the internal energy E i (t). It should also be noted that a transistor 47 is connected in parallel on the capacitor C, which makes it possible to short-circuit the said capacitor as soon as the control pulse has ceased (reset of the integrator). The control of transistor 47 is therefore linked by line 48 to the falling edge of the control pulse.

La figure 4 montre encore deux flip-flops du type D, 49 et 50 qui reçoivent chacun sur leur entrée d'horloge CP les impulsions de commande (timing) en provenant du diviseur de fréquence (non représenté) dont est équipée la montre. Ces flip-flops basculent sur le flanc montant de l'impulsion et attaquent par leurs sorties Q et Q deux portes NOR 51 et 52 et deux inverseurs 53 et 54 pour fournir finalement les signaux A, B, C et D qui commandent les transistors 31, 33, 34 et 32 respectivement. On trouve à la sortie Q du flip-flop 49 l'impulsion de commande 55 qui commence avec le flanc montant (timing) et qui se termine dès que l'entrée reset du même flip-flop est actionnée. Sur la sortie Q du même flip-flop, on trouvera la même impulsion 55 mais inversée. Le flip-flop 50, quant à lui, a pour but d'assurer la polarité alternée des impulsions de commande.FIG. 4 also shows two type D flip-flops, 49 and 50 which each receive on their clock input CP the control pulses (timing) coming from the frequency divider (not shown) with which the watch is equipped. These flip-flops rock on the rising edge of the pulse and attack by their outputs Q and Q two NOR gates 51 and 52 and two inverters 53 and 54 to finally supply the signals A, B, C and D which control the transistors 31, 33, 34 and 32 respectively. There is at the output Q of the flip-flop 49 the control pulse 55 which begins with the rising edge (timing) and which ends as soon as the reset input of the same flip-flop is actuated. On the exit Q of the same flip-flop, we will find the same pulse 55 but inverted. The purpose of the flip-flop 50 is to ensure the alternating polarity of the control pulses.

L'entrée reset du flip-flop 49 reçoit par la ligne 60 et via une porte OU 56 le signal issu d'un comparateur 57. Les entrées + et-de ce comparateur reçoivent respectivement les signaux Ei(t) dont il a été question plus haut et Eio qui est une quantité d'énergie prédéterminée fixée une fois pour toute et qui dépend du type de montre à régler. Eio se présente pratiquement sous la forme d'une tension stabilisée. Au moment où EI(t) = Eio, et selon l'invention, le comparateur 57 fournit un signal 1 qui au travers de la porte OU 56 remet à zéro le flip-flop 49 et interrompt ainsi l'impulsion moteur 55 (flanc descendant T;).The reset input of flip-flop 49 receives via line 60 and via an OR gate 56 the signal from a comparator 57. The inputs + and-of this comparator respectively receive the signals E i (t) from which it was question above and E io which is a predetermined quantity of energy fixed once and for all and which depends on the type of watch to be adjusted. E io is practically in the form of a stabilized voltage. When E I (t) = E io , and according to the invention, the comparator 57 provides a signal 1 which, through the OR gate 56, resets the flip-flop 49 to zero and thus interrupts the motor pulse 55 ( falling edge T;).

Il peut cependant se présenter des situations où Ei(t) n'atteint jamais Eio, par exemple lorsqu'un couple extraordinairement élevé est appliqué au moteur. Dans ce cas, on comprendra qu'il est nécessaire de limiter dans le temps la durée de l'impulsion motrice. Dans le schéma de la figure 4, les impulsions de commande (timing) apparaissant aux entrées CP des flip-flops 49 et 50 sont limitées dans leur durée à une longueur Ti max. S'il n'apparaît aucun signal à la sortie du comparateur 57, c'est le flanc descendant de l'impulsion de commande qui, au temps T; max, provoquera, via l'inverseur 58 et la porte 56, un signal de remise à zéro du flip-flop 49, entraînant l'interruption de l'impulsion de commande à la sortie Q du même flip-flop.However, situations may arise where E i (t) never reaches E io , for example when an extraordinarily high torque is applied to the engine. In this case, it will be understood that it is necessary to limit the duration of the motor pulse over time. In the diagram of FIG. 4, the control pulses (timing) appearing at the inputs CP of the flip-flops 49 and 50 are limited in their duration to a length T i max. If no signal appears at the output of comparator 57, it is the falling edge of the control pulse which, at time T; max, will cause, via the inverter 58 and the gate 56, a reset signal of the flip-flop 49, causing the interruption of the control pulse at the output Q of the same flip-flop.

Le circuit de la figure 4 est réalisé au moyen d'éléments logiques classiques en ce qui concerne les portes 51, 52, 53, 54, 56 et 58 et les flip-flops 49 et 50. Le multiplicateur 43 peut être du type AD 534 du fabricant Analog Devices. On pourra choisir comme amplificateurs opérationnels 38, 39 et 45 ceux portant la référence LF 355 N du fabricant National Semiconductor. Le comparateur 57 pourra être du type LM 311 du même fabricant National Semiconductor.The circuit of FIG. 4 is produced by means of conventional logic elements with regard to the doors 51, 52, 53, 54, 56 and 58 and the flip-flops 49 and 50. The multiplier 43 can be of the AD 534 type from the manufacturer Analog Devices. We can choose as operational amplifiers 38, 39 and 45 those bearing the reference LF 355 N from the manufacturer National Semiconductor. The comparator 57 may be of the LM 311 type from the same manufacturer National Semiconductor.

On fera remarquer pour terminer que le procédé qui vient d'être décrit ne réagit pas à la variation de charge qui peut se présenter sur l'arbre du moteur. Il est par conséquent nécessaire de choisir une valeur Eio qui soit suffisamment élevée pour que le moteur soit capable de faire son pas en toute circonstance. Ainsi, si l'asservissement de la longueur d'impulsion à l'énergie interne du moteur présente les avantages qui ont été décrits ici, on comprendra cependant que cet asservissement ne suffira pas si le moteur rate son pas en raison d'une forte surcharge passa- gère ou encore perd un pas à la suite d'un choc. Il peut donc être indiqué de combiner le système d'asservissement selon l'invention avec un système qui détecte les pas ratés et qui rattrape le retard accumulé comme cela est décrit par exemple dans la demande de brevet EP 0 022 270.Finally, it should be noted that the process which has just been described does not react to the load variation which may occur on the motor shaft. It is therefore necessary Please choose a value E io which is high enough for the motor to be able to take its step under any circumstances. Thus, if the enslavement of the pulse length to the internal energy of the motor has the advantages which have been described here, it will however be understood that this enslavement will not be sufficient if the motor misses its pitch due to a heavy overload pass or lose a step following a shock. It may therefore be advisable to combine the servo system according to the invention with a system which detects missed steps and which catches up with the accumulated delay as described for example in patent application EP 0 022 270.

Claims (1)

1. Process for feeding a stepping motor specially for timepiece comprising the steps of
- determining a predetermined quantity of energy Eio to be supplied to the motor for which stepping is assured in all cases of normally oc- curing loads,
- furnishing control pulses to the motor,
- measuring the voltage Uo across the motor winding terminals as well as the current I(t) circulating in said winding during each of said control pulses,
- forming the difference Uo-RI where R represents the winding resistance,
- forming the product (Uo-RI)I(t),
- integrating over a time period t, whereby the value of the integral represents the energy Ei(t) supplied to the motor and the limits of said integral being chosen between a first time corresponding to the beginning of the control pulse and a second time corresponding to the end of said control pulse,
- comparing the energy value Ei(t) to the predetermined energy Eio, and
- cutting off the control pulse when Ei(t) = Eio, process characterized by the fact that the duration of the control pulses feeding the motor is limited to a predetermined period T;max in such a manner that when the energy Ei(t) supplied to the motor is not sufficient to reach the predetermined energy Eio, the feeding of the motor is stopped after said predetermined period T;max, the steps skipped by the motor being then detected whereby accumulated losses may be recovered.
EP84110852A 1983-09-16 1984-09-12 Process for feeding a stepping motor Expired EP0140089B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5050/83 1983-09-16
CH505083A CH653206GA3 (en) 1983-09-16 1983-09-16

Publications (2)

Publication Number Publication Date
EP0140089A1 EP0140089A1 (en) 1985-05-08
EP0140089B1 true EP0140089B1 (en) 1988-11-17

Family

ID=4287109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84110852A Expired EP0140089B1 (en) 1983-09-16 1984-09-12 Process for feeding a stepping motor

Country Status (5)

Country Link
US (1) US4590412A (en)
EP (1) EP0140089B1 (en)
JP (1) JPS6088385A (en)
CH (1) CH653206GA3 (en)
DE (1) DE3475236D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253153B1 (en) * 1986-07-02 1991-08-28 Asulab S.A. Method and device for controlling a stepping motor
US4910543A (en) 1988-02-08 1990-03-20 Canon Kabushiki Kaisha Camera
CH672043B5 (en) * 1988-02-12 1990-04-30 Ebauchesfabrik Eta Ag
EP2251972B1 (en) * 2009-05-14 2014-07-02 STMicroelectronics Srl Method and hardware system for driving a stepper motor in feed-forward voltage mode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH616045B (en) * 1978-06-20 Ebauches Sa PROCESS FOR REDUCING THE CONSUMPTION OF AN ELECTRONIC WATCH PART AND ELECTRONIC WATCH PART IMPLEMENTING THIS PROCESS.
FR2464478A1 (en) * 1979-09-04 1981-03-06 Suisse Horlogerie ADVANCE DETECTOR OF A STEP BY STEP MOTOR
CH641921B (en) * 1980-02-19 Berney Sa Jean Claude WATCH PART WITH A STEP MOTOR CONTROL DEVICE.
CH640999B (en) * 1980-08-25 Ebauchesfabrik Eta Ag METHOD AND DEVICE FOR CONTROLLING A STEP MOTOR OF AN ELECTRONIC CLOCK PART.
CH647383GA3 (en) * 1981-02-04 1985-01-31
CH644989GA3 (en) * 1981-03-18 1984-09-14
CH646576GA3 (en) * 1981-10-02 1984-12-14

Also Published As

Publication number Publication date
DE3475236D1 (en) 1988-12-22
JPH038712B2 (en) 1991-02-06
JPS6088385A (en) 1985-05-18
EP0140089A1 (en) 1985-05-08
CH653206GA3 (en) 1985-12-31
US4590412A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
EP1854165B3 (en) Method for the balanced charging of a lithium-ion or lithium-polymer battery
FR2752070A1 (en) ELECTRONIC WATCH PIECE COMPRISING A GENERATOR DRIVEN BY A SPRING BARREL
EP0057663B1 (en) Control device for stepping motor
EP0611215B1 (en) Regulator circuit with progressive excitation for battery charge from an alternator
EP0140089B1 (en) Process for feeding a stepping motor
EP0022270B1 (en) Position detector for a stepping motor
EP0077293B1 (en) Process and device for controlling a stepping motor in a clock mechanism
EP0060806B1 (en) Method of reducing the power consumption of a stepping motor, and device for carrying out this method
EP0135104B1 (en) Method and device for the control of a stepping motor
EP0021320B1 (en) Operation detector for a stepping motor
EP0443294B1 (en) Method for feeding a monophase stepping motor
EP0024737B1 (en) Detector for the movement of a stepping motor
EP1544692B1 (en) Electromechanical timepiece comprising a power reserve indicator
EP0672975A1 (en) Single phase stepper motor supplying method
EP1346264B1 (en) Analog electronic watch having a time reset device following power shortage
EP0203330B1 (en) Electronic time piece with a detector of the end of the life span of the battery
WO2002035296A1 (en) Device indicating the state of batteries, designed to equip a watch
EP0345224A1 (en) Power supply method for a monophased stepping motor for a time piece
EP1014230B1 (en) Timepiece having an electrical energy generator
EP1273984A1 (en) Electronic regulating module for mechanically winded clockwork
EP0155661B1 (en) Control circuit for a stepping motor
EP0154889A1 (en) Constant-power supply means for a stepping motor fed by a variable-tension source
EP0062273A1 (en) Method of controlling a stepping motor
EP2901218A2 (en) Movement for mechanical chronograph with quartz regulator
EP0190591A1 (en) Motor assembly capable of functioning at a high speed

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19850816

17Q First examination report despatched

Effective date: 19870413

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3475236

Country of ref document: DE

Date of ref document: 19881222

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000831

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000928

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010912

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST