EP0154889A1 - Constant-power supply means for a stepping motor fed by a variable-tension source - Google Patents

Constant-power supply means for a stepping motor fed by a variable-tension source Download PDF

Info

Publication number
EP0154889A1
EP0154889A1 EP85102158A EP85102158A EP0154889A1 EP 0154889 A1 EP0154889 A1 EP 0154889A1 EP 85102158 A EP85102158 A EP 85102158A EP 85102158 A EP85102158 A EP 85102158A EP 0154889 A1 EP0154889 A1 EP 0154889A1
Authority
EP
European Patent Office
Prior art keywords
voltage
duration
signal
motor
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85102158A
Other languages
German (de)
French (fr)
Inventor
Mohamed Mokdad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega SA
Original Assignee
Omega SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega SA filed Critical Omega SA
Publication of EP0154889A1 publication Critical patent/EP0154889A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Definitions

  • the present invention relates to a device for supplying constant energy from a variable voltage source U o a stepping motor, in particular for a timepiece, the supply consisting in supplying the motor with pulses of constant duration.
  • T j each being chopped according to a dependent hash rate. Dant from the value of the voltage of the source U and constituted by a series of elementary pulses of duration T separated by periods of interruption T r , the sum T + T defining a predetermined sampling period T e .
  • attack pulses of constant duration T i these pulses being chopped and constituted by a series of elementary pulses of duration T separated by periods interrupt T r, the chopping rate being a function of the value of the voltage present across the battery.
  • the present invention provides a device which supplies the stepping motor with constant energy whatever the voltage delivered by the battery and this by means of the means which appear in the claims.
  • FIG. 1 is a block diagram of the device according to the invention.
  • the motor M is of the stepping type and is supplied by a DC voltage source, a lithium battery for example, delivering a voltage U o . If, for a predetermined duration T i , the switch 1 is closed and at the same time the switch 2 is repeatedly pressed, a chopped driving pulse is obtained which will cause the rotor of the motor to advance by one step.
  • T i a predetermined duration
  • the time during which the switch 1 is closed is divided into a multiplicity of sampling periods T e fixed in advance, each of these periods consisting of a pulse of duration T o during which the switch 2 is closed followed by a rest period T r during which the switch 2 is open.
  • T e the ratio T o / T e is precisely the chopping rate which it is a question of controlling as a function of the supply voltage U o . If U o is high (start of battery life), T o will be short and the hash rate low. If, on the contrary, U o is low (end of the life of the battery), T will have to be lengthened, which will cause a high hash rate.
  • the first of these situations is illustrated in Figure 2a.
  • the battery voltage U is high (for example 3 V) and, while the switch 1 is closed, during the period T i , the appearance of the voltage U M at the terminals of the motor has a series of short pulses of duration T o , the amplitude of which is that of the voltage U o .
  • the hash rate T o / T e imposed by the switch 2 is of the order of 25%.
  • the second of these situations is illustrated in FIG. 2b where the battery voltage U o is reduced by half (for example 1.5 V).
  • the voltage U M is composed of pulses whose amplitude is reduced by half but of duration T o longer and having a chopping rate of the order of 50%. We see that in.
  • the sampling period T e is the same.
  • the period T e is fixed once and for all by construction and constitutes a predetermined period.
  • the average voltage U m applied to the motor is the same. This can be expressed analytically by the expression: where E is the energy applied to the motor and I the current flowing in its coil. We see that to maintain a constant energy E it is necessary to manage to maintain constant the average voltage U m represented by the expression U o T o / T e , given that if the average voltage remains constant, the current I also remains constant.
  • a first block 3 capable of supplying at its output 4 a voltage U AB strictly proportional to the voltage of the source U o .
  • the voltage U AB is then used in a second block 5 which has at its output 6 a first signal U c , the growth speed of which is all the more rapid the higher the voltage U AB .
  • This variable signal U c is repeated during each sampling period T e .
  • the signal U c is finally compared in a third block 7 to a reference threshold U r .
  • the block 7 produces a different logic state and shows on its output 8 and during each sampling period T e an elementary pulse of duration T o which closes the switch 2 the time that said lasts impulse.
  • FIG. 3 is a detailed diagram of the power supply to the motor and gives a preferred embodiment of the invention based on the block diagram of FIG. 1.
  • the DC voltage source U o supplies the motor M by the lines 10 and 11.
  • the motor M is for example of the Lavet type at two steps per revolution.
  • To form the bipolar pulses necessary for the advance of this motor there is, interposed between its terminals 12 and 13 and the power source, a set of four switches 31, 32, 33 and 34 which are constituted by switching transistors controlled by their base. When the transistors 31 and 32 are conductive, the current flows through the motor according to arrow 14 for a period T. and the rotor turns by a first half-turn.
  • the transistors 33 and 34 are driven for the same period T i , which has the effect of turning the rotor by a second half turn, the motor then being traversed by a current of opposite direction and according to arrow 15.
  • the length of the pulse T i the periodicity with which it repeats and the alternating control of the pairs of transistors 31, 32 and 33, 34 (T and T signals) generally come from a common time base which in turn controls a multi-stage frequency divider from which these signals are taken.
  • the production of signals T i , T and T is known from the state of the art. However, it will be explained later ( Figure 6).
  • control pulse T i will be chopped according to the device, the principle of which has been explained above.
  • the block 3 of FIG. 1 is, according to the preferred embodiment of FIG. 3, in the form of a bridge of resistors R 1 , R 2 , R 3 and R 4 .
  • the first diagonal of this bridge is connected across the voltage source U o , i.e. on lines 10 and 11. If the voltage U A across the resistor R 2 and the voltage U B across the resistor R 4 are written respectively: the voltage collected across the second diagonal AB of the bridge is written: where it is apparent that U AB is proportional to the voltage of the source U.
  • This voltage U AB is used to charge a capacitor C through a resistor R arranged in series with said capacitor, the network RC constituting in substance block 5 of FIG. 1.
  • the voltage U across the terminals of capacitor C is written:
  • This expression (2) shows that the time T x necessary to reach a determined voltage U c is shorter the higher the voltage U AB or, in other words, the higher the voltage U c across the capacitor a speed of growth all the more rapid as the amplitude of the proportional voltage U AB is high.
  • FIG. 3 also shows a comparator 16 which receives on its first input 17 the voltage U c and on its second input 18 a reference threshold voltage U r arranged in such a way that U r ⁇ U AB .
  • the comparator 16 essentially constitutes the block 7 illustrated on the block diagram of FIG. 1.
  • the output 19 of the comparator 16 is at logic level 1. As soon as U exceeds U, the output 19 goes to logic state 0.
  • FIG. 3 also shows that a switching transistor 20 has been placed at the terminals of the capacitor, the purpose of which is to periodically short-circuit said capacitor.
  • the transistor 20 is controlled on its base by a short duration pulse T c which makes it conductive, said pulse repeating at the rate T e .
  • T c short duration pulse
  • T e the voltage U c present at the terminals of the capacitor is reset to zero by short-circuiting it.
  • each interval T e or sampling period, is composed of an elementary pulse T o followed by an interruption period T r . That said, we can write the following expression which expresses that the duty cycle or hash rate T o / T e is inversely proportional to the value U o of the supply voltage:
  • the output 19 of the comparator 16 is connected to the first input of an AND gate 25, the second input receiving the duration signal T i .
  • the output of AND gate 25 is connected simultaneously to each of the first inputs of AND gates 21 and ET 22, the second input of each of said gates receiving signals T and T respectively which aim to change the polarity alternately of the driving pulse received by the coil of the motor M.
  • the diagram also shows that the transistors 32 and 34 are supplied through diodes 24 and 23 respectively, these diodes can moreover be eliminated if one chooses transistors 31 , 34 and 32, 33 which are complementary (P and N).
  • FIG. 4 is a diagram showing the various signals existing at various points in the diagram of FIG. 3 when the supply voltage U o is low (end of life of the battery, for example 1.5 V) and FIG. 5 shows these same signals when the voltage U 0 is high (start of battery life, for example 3 V).
  • FIG. 4 there is shown in a) the voltage U AB at the terminals of the diagonal of the resistance bridge R 1 , R 2 ' R 3 and R 4 .
  • the voltage U AB is used to periodically charge the network RC and the voltage U c across the capacitor appears in b) in FIG. 4.
  • the reference voltage U r is shown on the same diagram.
  • the voltage U c is periodically reset to zero by the switching transistor 20 itself controlled by a short duration pulse T c repeating at regular intervals T e . This control signal is shown in d).
  • the signal at the output 19 of the comparator 16 has a logic state 1 as long as U c ⁇ U r and a logic signal 0 as soon as U c > U r and the period d 'sampling T e then consists of an elementary pulse of duration T followed by an interruption period T. It is understood that the signal illustrated in e) is found at the output of gate 25 as long as the signal T i appearing in c) is present at the input of said gate 25.
  • FIG. 5 shows how the device according to the invention behaves when the supply voltage is doubled. Without going into details, we can see that the voltage U c is more quickly equal to the reference voltage U, which has the consequence of shortening the supply periods T o and reducing the chopping rate T o / T c . At the motor terminals, there are will finally see the power supply shown in FIG. 5f, of doubled amplitude but of application time T o markedly reduced.
  • the sampling period T e greater than 206 ⁇ s, or 244 ⁇ s, must be chosen to use a practical value, which can be obtained directly from the frequency divider.
  • the reference voltage U r must be chosen inter alia according to the characteristics of the engine we're dealing with. It is a rigorously stabilized voltage independent of fluctuations in the power source voltage.
  • a practical example of embodiment of such a generator can be found in the document CH-A-639 810 in FIG. 4e.
  • the duration T i of the pulse during which the sampling takes place must be chosen long enough so that in the most unfavorable cases of minimum voltage U o , the rotor will surely pass its pitch.
  • This duration is of the order of 7.8 ms, duration which can also be taken from the frequency divider available. It will be understood that 32 sampling periods T e each worth 244 ⁇ s may take place during a period T i of 7.8 ms.
  • the diagram in FIG. 6 shows how the pulses T, T, T i , T e and T c necessary to operate the device illustrated in FIG. 3 are produced. All the signals are obtained from a controlled time base 40 by a quartz 41 via a frequency divider 42.
  • the type D flip-flop 43 combines the signals at 16 384 Hz and at 4096 Hz to produce the sampling period T e at 244 ⁇ s, as well as at Within this period, the pulse T c which short-circuits the capacitor C.
  • Another flip-flop 44 of type D combines the signals at 64 Hz and 1 Hz to produce the pulse T i at 7.81 ms repeating every second.
  • the output Q of the flip-flop 44 in turn attacks a divider by two 45 which generates the pulses of polarity T and T.
  • FIG. 7 shows that the resistance bridge R 1 , R 3 , R 2 , R 4 , of which only the resistors R 1 and R 3 have been shown in the drawing, is supplied through a transistor 50 which is only conductive during the periods T i . It appears from this that the resistance bridge is switched off during the periods separating said periods T i . Again, the resistance values of the bridge will be taken as high as possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

The device enables a stepping motor (M) to be supplied at constant power whatever the value of the supply voltage. Using a bridge (R1 to R4), a voltage (UAB) proportional to the supply voltage (U0) is tapped. The signal (T1) required to advance the rotor by one step is split into a large number of sampling periods (Te) of predetermined duration. Each of these periods consists of an elementary pulse followed by a period of interruption. The duration (T0) of the elementary pulse is determined by the time taken by a capacitor (C) to become charged: this will become shorter as the proportional voltage (UAB) applied to terminals of a network (RC) becomes higher. A comparator (16) compares the voltage (Uc) across the terminals of the capacitor with a reference voltage (Ur) so as to determine the duration (T0) of the elementary pulse and to define a chopping rate for the supply signal to the motor (M) which is inversely proportional to the supply voltage (U0). <IMAGE>

Description

La présente invention est relative à un dispositif pour alimenter en énergie constante à partir d'une source de tension variable Uo un moteur pas à pas, notamment pour pièce d'horlogerie, l'alimentation consistant à fournir au moteur des impulsions de durée constante Tj , chacune étant hachée selon un taux de hachage dépen- . dant de la valeur de la tension de la source U et constituée par une suite d'impulsions élémentaires de durée T séparées par des périodes d'interruption Tr, la somme T + T définissant une période d'échantillonnage prédéterminée Te.The present invention relates to a device for supplying constant energy from a variable voltage source U o a stepping motor, in particular for a timepiece, the supply consisting in supplying the motor with pulses of constant duration. T j , each being chopped according to a dependent hash rate. Dant from the value of the voltage of the source U and constituted by a series of elementary pulses of duration T separated by periods of interruption T r , the sum T + T defining a predetermined sampling period T e .

Dans les pièces d'horlogerie électroniques que l'on trouve aujourd'hui sur le marché, il est d'usage courant de trouver un moteur pas à pas pour convertir les impulsions électriques issues d'une base de temps à quartz en mouvement mécanique pour afficher l'heure. Le système est alimenté par une source d'énergie, généralement une pile de petites dimensions qu'il faudra remplacer périodiquement. Pour économiser l'énergie livrée par la pile et donc la faire durer le plus longtemps possible, on a déjà proposé des systèmes de réglage qui asservissent la durée de l'impulsion qui meut le moteur à la charge qu'il doit entraîner; en d'autres termes, on allonge l'impulsion si la charge augmente et on la réduit si cette même charge diminue. De tels systèmes sont décrits par exemple dans les documents US-A-4,323,834 et US-A-4,346,463.In electronic timepieces that are found today on the market, it is common practice to find a stepper motor to convert the electrical pulses from a quartz time base into mechanical movement for show time. The system is powered by a power source, usually a small battery that will need to be replaced periodically. To save the energy delivered by the battery and therefore make it last as long as possible, adjustment systems have already been proposed which control the duration of the pulse which moves the motor to the load which it must drive; in other words, the pulse is lengthened if the charge increases and it is reduced if the same charge decreases. Such systems are described for example in documents US-A-4,323,834 and US-A-4,346,463.

Ces systèmes supposent généralement que le moteur est alimenté à tension constante et ne tiennent pas compte des écarts entre la tension délivrée par la pile au début puis à la fin de sa durée de vie. A première vue, cette simplification peut paraître légitime pour une pile à l'argent qui présente une caractéristique de décharge quasi constante de 1,5 V durant sa durée de vie. Cependant, si la source d'énergie choisie est une pile au peroxyde d'argent, la situation se présente différemment puisque sa tension de début de vie est d'environ 1,8 V et qu'on est obligé de lui faire subir un traitement spécial en cours de fabrication qui réduit sa capacité et qui amène sa tension à 1,5 V. Donc, dans ce cas, on n'utilise pas au mieux les caractéristiques de ce type de pile qui se distingue normalement par une capacité élevée compte tenu de son volume. La situation se présente encore plus défavorablement si l'on considère la pile au lithium nouvellement proposée sur le marché qui est remarquable en ce qui concerne sa fiabilité élevée et son importante densité d'énergie, mais qui montre une caractéristique de décharge extrêmement défavorable en ce sens que sa tension varie, au cours de sa durée de vie, de 3,6 à 2,4 V environ.These systems generally assume that the motor is supplied at constant voltage and do not take into account the differences between the voltage delivered by the battery at the beginning then at the end of its service life. At first glance, this simplification may seem legitimate for a silver battery which has an almost constant discharge characteristic of 1.5 V during its lifetime. However, if the chosen energy source is a silver peroxide battery, the situation presents itself differently since its start-of-life voltage is around 1.8 V and we have to subject it to treatment. special during manufacture which reduces its capacity and which brings its voltage to 1.5 V. So, in this case, we do not make the best use of the characteristics of this type of battery which is normally distinguished by a high capacity given its volume. The situation is even more unfavorable if we consider the newly offered lithium battery on the market which is remarkable in terms of its high reliability and its high energy density, but which shows an extremely unfavorable discharge characteristic in that meaning that its voltage varies, during its lifetime, from 3.6 to 2.4 V approximately.

Dans le cas des deux derniers types de piles cités ci-dessus, on comprendra qu'une diminution de tension, accompagnée généralement d'une augmentation de résistance de la pile, entraînera d'abord un fonctionnement instable du moteur puis un arrêt total et ceci bien avant la fin de la durée de vie de la pile. Pour pallier cet inconvénient, on pourrait dimensionner le moteur de telle sorte qu'il puisse fonctionner même lorsque la pile fournit sa tension la plus faible. Il en résulterait cependant une sur-consommation du moteur pendant une très grande partie de la durée de vie de la pile.In the case of the last two types of batteries mentioned above, it will be understood that a reduction in voltage, generally accompanied by an increase in resistance of the battery, will firstly cause unstable operation of the motor and then a total stop and this well before the end of the battery life. To overcome this drawback, the motor could be dimensioned so that it can operate even when the battery supplies its lowest voltage. However, this would result in overconsumption of the engine for a very large part of the life of the battery.

Pour obvier aux inconvénients inhérents aux solutions citées, on a déjà proposé d'alimenter le moteur par des impulsions d'attaque de durée constante Ti, ces impulsions étant hachées et constituées par une suite d'impulsions élémentaires de durée T séparées par des périodes d'interruption T r, le taux de hachage étant fonction de la valeur de la tension présente aux bornes de la pile.To obviate the drawbacks inherent in the solutions cited, it has already been proposed to supply the motor with attack pulses of constant duration T i , these pulses being chopped and constituted by a series of elementary pulses of duration T separated by periods interrupt T r, the chopping rate being a function of the value of the voltage present across the battery.

Un tel arrangement est décrit dans le document GB-A-2 054 916 qui préconise d'alimenter l'enroulement du moteur pas à pas avec des impulsions motrices formées chacune d'une suite d'impulsions élémentaires dont la largeur est déterminée en dépendance de la valeur de la tension qui est fournie par la pile lorsque cette dernière est branchée aux bornes de résistances de valeurs connues. Selon cet arrangement, on détermine, sensiblement toutes les millisecondes, dans quel domaine de valeurs se trouve cette tension et on choisit en conséquence une forme de signal moteur parmi cinq formes de signaux prédéterminés. Il s'agit donc là d'un réglage discontinu de la puissance des impulsions motrices en fonction de la tension de la source d'alimentation, et il en résulte des variations importantes du couple moteur pouvant causer des pas perdus. De plus, ce réglage étant discontinu, il ne permet pas de réaliser de façon efficace un asservissement de l'énergie des impulsions motrices à la charge que doit entraîner le moteur si un tel asservissement est souhaité.Such an arrangement is described in document GB-A-2 054 916 which recommends supplying the winding of the stepping motor with driving pulses each formed from a series of elementary pulses whose width is determined as a function of the value of the voltage which is supplied by the battery when the latter is connected to the terminals of resistors of known values. According to this arrangement, it is determined, roughly every millisecond, in which range of values this voltage is found and a motor signal form is chosen from among five predetermined signal forms. This is therefore a discontinuous adjustment of the power of the driving pulses as a function of the voltage of the power source, and this results in significant variations in the motor torque which can cause lost steps. In addition, this adjustment being discontinuous, it does not allow effective control of the energy of the driving pulses to the load which the motor must drive if such control is desired.

Une autre solution pour résoudre le problème posé est proposée dans le document EP-A1-0 077 293 où le dispositif de commande permet d'adapter de façon sensiblement continue la puissance de chaque impulsion d'attaque à la valeur de la tension de la source d'alimentation. Ici, la valeur du taux de hachage est recalibré périodiquement en dépendance de la tension d'alimentation, puis mise en mémoire, après quoi le taux de hachage est maintenu à cette valeur jusqu'à l'arrivée d'un prochain signal de recalibrage. Cependant, le système proposé exige l'emploi d'un calculateur et la mise en mémoire de l'écart calculé, ce qui complique le circuit électronique de la montre. De plus, ce système préconise la mesure du courant -circulant dans l'enroulement du moteur, ce qui exige l'emploi d'une résistance disposée en série avec ledit enroulement et un système de commutation qui complique également le circuit d'alimentation du moteur.Another solution for solving the problem posed is proposed in document EP-A1-0 077 293 where the control device makes it possible to adapt the power of each drive pulse substantially continuously to the value of the voltage of the source. power supply. Here, the value of the hash rate is recalibrated periodically depending on the supply voltage, then stored, after which the hash rate is kept at this value until the arrival of a next recalibration signal. However, the proposed system requires the use of a computer and the storage of the calculated difference, which complicates the electronic circuit of the watch. In addition, this system recommends the measurement of the circulating current in the motor winding, which requires the use of a resistor arranged in series with said winding and a switching system which also complicates the motor supply circuit. .

Pour obvier aux inconvénients qui viennent d'être mentionnés, la présente invention propose un dispositif qui alimente le moteur pas à pas en énergie constante quelle que soit la tension délivrée par la pile et ceci grâce aux moyens qui apparaissent dans les revendications.To obviate the drawbacks which have just been mentioned, the present invention provides a device which supplies the stepping motor with constant energy whatever the voltage delivered by the battery and this by means of the means which appear in the claims.

L'invention sera mieux comprise maintenant à la lumière de la description qui suit et pour l'intelligence de laquelle on se référera, à titre d'exemple, au dessin dans lequel :

  • La figure 1 est un schéma bloc du dispositif selon l'invention;
  • La figure 2 est un diagramme montrant comment se présente la tension aux bornes du moteur quand la pile qui l'alimente est au début de sa durée de vie (figure 2a) et quand cette même pile est à la fin de sa durée de vie (figure 2b) lorsque ledit moteur est alimenté selon le dispositif de la figure 1;
  • La figure 3 est un schéma détaillé de l'alimentation du moteur suivant le schéma de principe de la figure 1 et selon un mode de réalisation préféré;
  • Les figures 4 et 5 sont des diagrammes montrant les signaux en différents points du schéma de la figure 3 dans deux cas de tension de la source d'alimentation;
  • La figure 6 est un schéma montrant comment on prélève du diviseur de fréquence les diverses impulsions nécessaires au fonctionnement du dispositif illustré en figure 3;
  • La figure 7 est un schéma qui complète le schéma de la figure 3 selon une variante d'exécution de l'invention.
The invention will now be better understood in the light of the following description and for the understanding of which reference will be made, by way of example, to the drawing in which:
  • Figure 1 is a block diagram of the device according to the invention;
  • FIG. 2 is a diagram showing how the voltage across the terminals of the motor looks when the battery supplying it is at the start of its service life (FIG. 2a) and when this same battery is at the end of its service life ( Figure 2b) when said motor is powered according to the device of Figure 1;
  • Figure 3 is a detailed diagram of the motor supply according to the block diagram of Figure 1 and according to a preferred embodiment;
  • Figures 4 and 5 are diagrams showing the signals at different points in the diagram of Figure 3 in two cases of voltage of the power source;
  • FIG. 6 is a diagram showing how the various pulses necessary for the operation of the device illustrated in FIG. 3 are taken from the frequency divider;
  • Figure 7 is a diagram which supplements the diagram of Figure 3 according to an alternative embodiment of the invention.

La figure 1 est un schéma bloc du dispositif selon l'invention. Le moteur M est du type pas à pas et est alimenté par une source de tension continue, une pile au lithium par exemple, délivrant une tension Uo. Si, pendant une durée prédéterminée Ti, on ferme l'interrupteur 1 et qu'en même temps on agit sur l'interrupteur 2 de façon répétée, on obtient une impulsion motrice hachée qui fera progresser d'un pas le rotor du moteur. Comme on l'a dit plus haut, il s'agit de fournir au moteur une énergie constante quelle que soit la valeur de la tension de la pile et pour ce faire on fera dépendre le taux de hachage de ladite tension. On découpe le temps pendant lequel est fermé l'interrupteur 1 en une multiplicité de périodes d'échantillonnage Te fixées à l'avance, chacune de ces périodes étant constituée d'une impulsion de durée To pendant laquelle l'interupteur 2 est fermé suivie d'une période de repos Tr pendant laquelle l'interrupteur 2 est ouvert. On comprendra que le rapport To/Te est précisément le taux de hachage qu'il s'agit de contrôler en fonction de la tension d'alimentation Uo. Si Uo est élevé (début de la durée de vie de la pile), To sera court et le taux de hachage faible. Si au contraire Uo est faible (fin de la durée de vie de la pile), T devra être allongé, ce qui entraînera un taux de hachage élevé.Figure 1 is a block diagram of the device according to the invention. The motor M is of the stepping type and is supplied by a DC voltage source, a lithium battery for example, delivering a voltage U o . If, for a predetermined duration T i , the switch 1 is closed and at the same time the switch 2 is repeatedly pressed, a chopped driving pulse is obtained which will cause the rotor of the motor to advance by one step. As said above, it is a question of supplying the motor with constant energy whatever the value of the battery voltage and to do this we will make the hash rate depend on said voltage. The time during which the switch 1 is closed is divided into a multiplicity of sampling periods T e fixed in advance, each of these periods consisting of a pulse of duration T o during which the switch 2 is closed followed by a rest period T r during which the switch 2 is open. It will be understood that the ratio T o / T e is precisely the chopping rate which it is a question of controlling as a function of the supply voltage U o . If U o is high (start of battery life), T o will be short and the hash rate low. If, on the contrary, U o is low (end of the life of the battery), T will have to be lengthened, which will cause a high hash rate.

La première de ces situations est illustrée en figure 2a. Ici, la tension pile U est importante (par exemple 3 V) et, pendant que l'interrupteur 1 est fermé, durant la période Ti, l'allure de la tension UM aux bornes du moteur présente une série d'impulsions courtes de durée To dont l'amplitude est celle de la tension Uo. Le taux de hachage To/Te imposé par l'interrupteur 2 est de l'ordre de 25 %. La seconde de ces situations est illustrée en figure 2b où la tension pile Uo est réduite de moitié (par exemple 1,5 V). Dans ce cas, la tension UM est composée d'impulsions dont l'amplitude est réduite de moitié mais de durée To plus longue et présentant un taux de hachage de l' ordre de 50 %. On voit que dans . les deux situations la période d'échantillonnage Te est la même. En fait, la période Te est fixée une fois pour toutes par construction et constitue une période prédéterminée. Dans les deux cas, la tension moyenne Um appliquée au moteur est la même. Ceci peut s'exprimer analytiquement par l'expression :

Figure imgb0001
où E est l'énergie appliquée au moteur et I le courant circulant dans sa bobine. On voit que pour maintenir une énergie E constante il faut s'arranger pour maintenir constante la tension moyenne Um représentée par l'expression UoTo/Te , étant donné que si la tension moyenne reste constante, le courant I reste également constant.The first of these situations is illustrated in Figure 2a. Here, the battery voltage U is high (for example 3 V) and, while the switch 1 is closed, during the period T i , the appearance of the voltage U M at the terminals of the motor has a series of short pulses of duration T o , the amplitude of which is that of the voltage U o . The hash rate T o / T e imposed by the switch 2 is of the order of 25%. The second of these situations is illustrated in FIG. 2b where the battery voltage U o is reduced by half (for example 1.5 V). In this case, the voltage U M is composed of pulses whose amplitude is reduced by half but of duration T o longer and having a chopping rate of the order of 50%. We see that in. both situations the sampling period T e is the same. In fact, the period T e is fixed once and for all by construction and constitutes a predetermined period. In both cases, the average voltage U m applied to the motor is the same. This can be expressed analytically by the expression:
Figure imgb0001
where E is the energy applied to the motor and I the current flowing in its coil. We see that to maintain a constant energy E it is necessary to manage to maintain constant the average voltage U m represented by the expression U o T o / T e , given that if the average voltage remains constant, the current I also remains constant.

Si l'on se réfère à nouveau à la figure 1, on va expliquer maintenant comme on s'y prend, selon l'invention, pour livrer au moteur une énergie constante quelle que soit la valeur de la tension de la source U . Aux bornes de cette source, on trouve d'abord un premier bloc 3 apte à fournir sur sa sortie 4 une tension UAB strictement proportionnelle à la tension de la source Uo. La tension UAB est ensuite utilisée dans un deuxième bloc 5 qui présente sur sa sortie 6 un premier signal Uc dont la vitesse de croissance est d'autant plus rapide que la tension UAB est élevée. Ce signal variable Uc est répété pendant chaque période d'échantillonnage Te. Le signal Uc est enfin comparé dans un troisième bloc 7 à un seuil de référence Ur. Selon que le signal U est inférieur ou supérieur au seuil de référence U , le bloc 7 produit un état logique différent et fait apparaître sur sa sortie 8 et lors de chaque période d'échantillonnage Te une impulsion élémentaire de durée To qui ferme l'interrupteur 2 le temps que dure ladite impulsion.If we refer again to FIG. 1, we will now explain how we proceed, according to the invention, to deliver a constant energy to the motor regardless of the value of the voltage of the source U. At the terminals of this source, there is first a first block 3 capable of supplying at its output 4 a voltage U AB strictly proportional to the voltage of the source U o . The voltage U AB is then used in a second block 5 which has at its output 6 a first signal U c , the growth speed of which is all the more rapid the higher the voltage U AB . This variable signal U c is repeated during each sampling period T e . The signal U c is finally compared in a third block 7 to a reference threshold U r . Depending on whether the signal U is lower or higher than the reference threshold U, the block 7 produces a different logic state and shows on its output 8 and during each sampling period T e an elementary pulse of duration T o which closes the switch 2 the time that said lasts impulse.

La figure 3 est un schéma détaillé de l'alimentation du moteur et donne un mode de réalisation préféré de l'invention basé sur le schéma de principe de la figure 1. La source de tension continue Uo alimente le moteur M par les lignes 10 et 11. Le moteur M est par exemple du type Lavet à deux pas par tour. Pour former les impulsions bipolaires nécessaires à l'avance de ce moteur, on trouve, interposé entre ses bornes 12 et 13 et la source d'alimentation un ensemble de quatre interrupteurs 31, 32, 33 et 34 qui sont constitués par des transistors de commutation commandés par leur base. Quand les transistors 31 et 32 sont conducteurs, le courant traverse le moteur selon la flèche 14 pendant une période T. et le rotor tourne d'un premier demi-tour. Après un laps de temps pendant lequel le moteur est au repos (1 seconde par exemple), on fait conduire les transistors 33 et 34 pendant une même période Ti, ce qui a pour effet de faire tourner le rotor d'un deuxième demi-tour, le moteur étant alors parcouru par un courant de sens opposé et selon la flèche 15. La longueur de l'impulsion Ti, la périodicité avec laquelle elle se répète et la commande alternée des paires de transistors 31, 32 et 33, 34 (signaux T et T) proviennent généralement d'une base de temps commune qui commande à son tour un diviseur de fréquence à étages multiples d'où sont tirés ces signaux. La production des signaux Ti, T et T est connue de l'état de la technique. Elle sera cependant expliquée plus loin (figure 6).FIG. 3 is a detailed diagram of the power supply to the motor and gives a preferred embodiment of the invention based on the block diagram of FIG. 1. The DC voltage source U o supplies the motor M by the lines 10 and 11. The motor M is for example of the Lavet type at two steps per revolution. To form the bipolar pulses necessary for the advance of this motor, there is, interposed between its terminals 12 and 13 and the power source, a set of four switches 31, 32, 33 and 34 which are constituted by switching transistors controlled by their base. When the transistors 31 and 32 are conductive, the current flows through the motor according to arrow 14 for a period T. and the rotor turns by a first half-turn. After a period of time during which the motor is at rest (1 second for example), the transistors 33 and 34 are driven for the same period T i , which has the effect of turning the rotor by a second half turn, the motor then being traversed by a current of opposite direction and according to arrow 15. The length of the pulse T i , the periodicity with which it repeats and the alternating control of the pairs of transistors 31, 32 and 33, 34 (T and T signals) generally come from a common time base which in turn controls a multi-stage frequency divider from which these signals are taken. The production of signals T i , T and T is known from the state of the art. However, it will be explained later (Figure 6).

Pour alimenter le moteur en énergie constante, on va procéder au hachage de l'impulsion de commande Ti selon le dispositif dont le principe a été expliqué plus haut.To supply the motor with constant energy, the control pulse T i will be chopped according to the device, the principle of which has been explained above.

En particulier, le bloc 3 de la figure 1 se présente, selon la réalisation préférée de la figure 3, sous la forme d'un pont de résistances R1, R2, R3 et R4. La première diagonale de ce pont est branchée aux bornes de la source de tension Uo, soit sur les lignes 10 et 11. Si la tension UA aux bornes de la résistance R2 et la tension UB aux bornes de la résistence R4 s'écrivent respectivement :

Figure imgb0002
la tension recueillie aux bornes de la seconde diagonale AB du pont s'écrit :
Figure imgb0003
où il est apparent que UAB est proportionnelle à la tension de la source U .In particular, the block 3 of FIG. 1 is, according to the preferred embodiment of FIG. 3, in the form of a bridge of resistors R 1 , R 2 , R 3 and R 4 . The first diagonal of this bridge is connected across the voltage source U o , i.e. on lines 10 and 11. If the voltage U A across the resistor R 2 and the voltage U B across the resistor R 4 are written respectively:
Figure imgb0002
the voltage collected across the second diagonal AB of the bridge is written:
Figure imgb0003
where it is apparent that U AB is proportional to the voltage of the source U.

Cette tension UAB est utilisée pour charger un condensateur C à travers une résistance R disposée en série avec ledit condensateur, le réseau RC constituant en substance le bloc 5 de la figure 1. La tension U aux bornes du condensateur C s'écrit :

Figure imgb0004
This voltage U AB is used to charge a capacitor C through a resistor R arranged in series with said capacitor, the network RC constituting in substance block 5 of FIG. 1. The voltage U across the terminals of capacitor C is written:
Figure imgb0004

Cette expression (2) montre que le temps Tx nécessaire pour atteindre une tension Uc déterminée est d'autant plus courte que la tension UAB est élevée ou, en d'autres termes, que la tension Uc aux bornes du condensateur présente une vitesse de croissance d'autant plus rapide que l'amplitude de la tension proportionnelle UAB est élevée.This expression (2) shows that the time T x necessary to reach a determined voltage U c is shorter the higher the voltage U AB or, in other words, the higher the voltage U c across the capacitor a speed of growth all the more rapid as the amplitude of the proportional voltage U AB is high.

La figure 3 montre encore un comparateur 16 qui reçoit sur sa première entrée 17 la tension Uc et sur sa seconde entrée 18 une tension de seuil de référence Ur arrangée de telle façon que Ur < UAB. Le comparateur 16 constitue essentiellement le bloc 7 illustré sur le schéma de principe de la figure 1. Dans l'exemple de réalisation montré au schéma de la figure 3, tant que la tension Uc est plus petite que la tension Ur, la sortie 19 du comparateur 16 se trouve au niveau logique 1. Dès que U dépasse U , la sortie 19 passe à l'état logique 0.FIG. 3 also shows a comparator 16 which receives on its first input 17 the voltage U c and on its second input 18 a reference threshold voltage U r arranged in such a way that U r <U AB . The comparator 16 essentially constitutes the block 7 illustrated on the block diagram of FIG. 1. In the example of embodiment shown in the diagram of FIG. 3, as long as the voltage U c is smaller than the voltage U r , the output 19 of the comparator 16 is at logic level 1. As soon as U exceeds U, the output 19 goes to logic state 0.

De l'expression (2) ci-dessus on peut calculer le temps Tx = To mis par la tension Uc à atteindre la tension de référence Ur, soit :

Figure imgb0005
From expression (2) above we can calculate the time T x = T o taken by the voltage U c to reach the reference voltage U r , that is:
Figure imgb0005

Si l`on remplace maintenant UAB par sa valeur selon l'expression (1) et que l'on expose R1 = R2 = R3 = kR4, (3) devient :

Figure imgb0006
If we now replace U AB by its value according to expression (1) and we expose R 1 = R 2 = R 3 = kR 4 , (3) becomes:
Figure imgb0006

On voit d'après l'expression (4) que la période To pendant laquelle le comparateur livre un état logique 1 est d'autant plus grande que la tension Uo de la source d'alimentation est faible.It can be seen from expression (4) that the period T o during which the comparator delivers a logic state 1 is all the greater the lower the voltage U o of the power source.

La figure 3 montre encore qu'on a disposé aux bornes du condensateur un transistor de commutation 20 dont le but est de court-circuiter périodiquement ledit condensateur. Le transistor 20 est commandé sur sa base par une impulsion de courte durée Tc qui le rend conducteur, ladite impulsion se répétant à la cadence Te. Ainsi, à intervalles périodiques Te, on remet à zéro la tension Uc présente aux bornes du condensateur en le court-circuitant. On sait que chaque intervalle Te, ou période d'échantillonnage, est composé d'une impulsion élémentaire To suivie d'une période d'interruption Tr. Ceci étant, on peut écrire l'expression suivante qui exprime que le rapport cyclique ou taux de hachage To/Te est inversément proportionnel à la valeur Uo de la tension d'alimentation :

Figure imgb0007
FIG. 3 also shows that a switching transistor 20 has been placed at the terminals of the capacitor, the purpose of which is to periodically short-circuit said capacitor. The transistor 20 is controlled on its base by a short duration pulse T c which makes it conductive, said pulse repeating at the rate T e . Thus, at periodic intervals T e , the voltage U c present at the terminals of the capacitor is reset to zero by short-circuiting it. We know that each interval T e , or sampling period, is composed of an elementary pulse T o followed by an interruption period T r . That said, we can write the following expression which expresses that the duty cycle or hash rate T o / T e is inversely proportional to the value U o of the supply voltage:
Figure imgb0007

La sortie 19 du comparateur 16 est connectée à la première entrée d'une porte ET 25, la seconde entrée recevant le signal de durée Ti. A son tour, la sortie de la porte ET 25 est connectée simultanément à chacune des premières entrées des portes ET 21 et ET 22, la seconde entrée de chacune desdites portes recevant respectivement les signaux T et T qui ont pour but de changer alternativement la polarité de l'impulsion motrice reçue par la bobine du moteur M. Le schéma montre encore que les transistors 32 et 34 sont alimentés à travers des diodes 24 et 23 respectivement, ces diodes pouvant d'ailleurs être supprimées si l'on choisit des transistors 31, 34 et 32, 33 qui soient complémentaires (P et N).The output 19 of the comparator 16 is connected to the first input of an AND gate 25, the second input receiving the duration signal T i . In turn, the output of AND gate 25 is connected simultaneously to each of the first inputs of AND gates 21 and ET 22, the second input of each of said gates receiving signals T and T respectively which aim to change the polarity alternately of the driving pulse received by the coil of the motor M. The diagram also shows that the transistors 32 and 34 are supplied through diodes 24 and 23 respectively, these diodes can moreover be eliminated if one chooses transistors 31 , 34 and 32, 33 which are complementary (P and N).

La figure 4 est un diagramme montrant les divers signaux existant en divers points du schéma de la figure 3 quand la tension d'alimentation Uo est faible (fin de durée de vie de la pile, par exemple 1,5 V) et la figure 5 montre ces mêmes signaux quand la tension U0 est élevée (début de durée de vie de la pile, par exemple 3 V).FIG. 4 is a diagram showing the various signals existing at various points in the diagram of FIG. 3 when the supply voltage U o is low (end of life of the battery, for example 1.5 V) and FIG. 5 shows these same signals when the voltage U 0 is high (start of battery life, for example 3 V).

En figure 4, on a représenté en a) la tension UAB aux bornes de la diagonale du pont de résistances R1, R2' R3 et R4. La tension UAB est utilisée pour charger périodiquement le réseau RC et la tension Uc aux bornes du condensateur apparaît en b) sur la figure 4. On a représenté sur la même diagramme la tension de référence Ur. La tension Uc est périodiquement remise à zéro par le transistor de commutation 20 commandé lui-même par une impulsion Tc de courte durée se répétant à intervalles réguliers Te. Ce signal de commande est montré en d).In FIG. 4, there is shown in a) the voltage U AB at the terminals of the diagonal of the resistance bridge R 1 , R 2 ' R 3 and R 4 . The voltage U AB is used to periodically charge the network RC and the voltage U c across the capacitor appears in b) in FIG. 4. The reference voltage U r is shown on the same diagram. The voltage U c is periodically reset to zero by the switching transistor 20 itself controlled by a short duration pulse T c repeating at regular intervals T e . This control signal is shown in d).

Selon l'invention et comme on le voit en e), le signal à la sortie 19 du comparateur 16 présente un état logique 1 tant que Uc< Ur et un signal logique 0 dès que Uc > Ur et la période d'échantillonnage Te se compose alors d'une impulsion élémentaire de durée T suivie d'une période d'interruption T . On comprend que le signal illustré en e) se retrouve à la sortie de la porte 25 tant que le signal Ti apparaissant en c) est présent à l'entrée de ladite porte 25.According to the invention and as seen in e), the signal at the output 19 of the comparator 16 has a logic state 1 as long as U c <U r and a logic signal 0 as soon as U c > U r and the period d 'sampling T e then consists of an elementary pulse of duration T followed by an interruption period T. It is understood that the signal illustrated in e) is found at the output of gate 25 as long as the signal T i appearing in c) is present at the input of said gate 25.

On supposera maintenant que pour progresser d'un pas, le courant dans le moteur doit être dirigé dans le sens de la flèche 15. A ce moment, l'impulsion de polarité de durée T est à 1 alors que son homologue T est à 0. Les impulsions T (figure 4e) franchissent la porte ET 22, rendent conducteur le transistor 33 et bloquent le transistor 32 via l'inverseur 24. Les mêmes impulsions To ne peuvent pas franchir la porte 21 qui présente alors un état logique 0 à sa sortie. De ce fait, le transistor 31 est bloqué alors que le transistor 34 conduit puisqu'il reçoit sur sa base un signal 1 via l'inverseur 23. Les transistors 33 et34conduisant à chaque impulsion de durée To, le courant traverse donc le moteur dans le sens de la flèche 15. Lors de chaque impulsion de durée Tr (figure 4e), il y a un signal 0 à la sortie de la porte 25 de même qu'un signal 0 à la sortie de chacune des portes 21 et 22. On comprend alors que les transistors 31 et 33 sont bloqués et que les transistors 32 et 34 sont conducteurs : pendant la durée T , la bobine du moteur est court-circuitée. Ainsi, dans ce cas, le moteur est alimenté par la tension représentée en figure 4f, tension qui n'est plus continue, comme ce serait le cas avec la commande par simple impulsion de durée Ti, mais hachée au taux de To/Te et d'amplitude Uo.We will now suppose that to progress by one step, the current in the motor must be directed in the direction of arrow 15. At this moment, the polarity pulse of duration T is at 1 while its counterpart T is at 0 The pulses T (FIG. 4e) pass through the AND gate 22, make the transistor 33 conductive and block the transistor 32 via the inverter 24. The same pulses T o cannot pass through the gate 21 which then has a logic state 0 to his exit. Therefore, the transistor 31 is blocked while the transistor 34 conducts since it receives on its base a signal 1 via the inverter 23. The transistors 33 and 34 leading to each pulse of duration T o , the current therefore crosses the motor in the direction of the arrow 15. During each pulse of duration T r (FIG. 4e), there is a signal 0 at the output of gate 25 as well as a signal 0 at the output of each of the gates 21 and 22 It will then be understood that the transistors 31 and 33 are blocked and that the transistors 32 and 34 are conductive: during the period T, the motor coil is short-circuited. Thus, in this case, the motor is supplied by the voltage shown in FIG. 4f, a voltage which is no longer continuous, as would be the case with the control by simple pulse of duration T i , but chopped at the rate of T o / T e and amplitude U o .

Si l'on a affaire à un moteur à deux pas par tour, il faudra inverser le sens du courant (flèche 14) pour franchir le prochain pas. A ce moment-là, l'impulsion de polarité de durée T est à 0 alors que son homologue T passe à 1. Le même raisonnement que celui qui a été fait plus haut montre que dans ce cas, ce sont les transistors 31 et 32 qui sont conducteurs alors que les transistors 33 et 34 sont bloqués durant les périodes To. Durant les périodes Tr par contre, la bobine du moteur est court-circuitée sur les transistors 32 et 34 qui sont conducteurs.If you are dealing with a two-step motor, you will have to reverse the direction of the current (arrow 14) to take the next step. At this time, the polarity pulse of duration T is at 0 while its counterpart T goes to 1. The same reasoning as that which was made above shows that in this case, it is the transistors 31 and 32 which are conductive while the transistors 33 and 34 are blocked during the periods T o . On the other hand, during the periods T r , the motor coil is short-circuited on the transistors 32 and 34 which are conductive.

La figure 5 montre comment se comporte le dispositif selon l'invention dans le cas où l'on double la tension d'alimentation. Sans entrer dans les détails, on s'aperçoit que la tension Uc est plus rapidement égale à la tension de référence U , ce qui a pour conséquence de raccourcir les périodes d'alimentation To et de diminuer le taux de hachage To/Tc. Aux bornes du moteur, on trouvera finalement l'alimentation représentée en figure 5f, d'amplitude doublée mais de temps d'application To nettement diminué.FIG. 5 shows how the device according to the invention behaves when the supply voltage is doubled. Without going into details, we can see that the voltage U c is more quickly equal to the reference voltage U, which has the consequence of shortening the supply periods T o and reducing the chopping rate T o / T c . At the motor terminals, there are will finally see the power supply shown in FIG. 5f, of doubled amplitude but of application time T o markedly reduced.

Pour prendre un exemple pratique et en s'appuyant sur les équations données plus haut, on va supposer qu'il faut délivrer au moteur une énergie constante si la tension d'alimentation varie entre 3 et 1 volts. En choisissant R1= R2 = R3 = 1 MΩ et R4 = 250 kn, on trouve selon l'équation (1) UAB = 0,3 U0. En choisissant également une tension de référence Ur = 0,1 V, un condensateur C = 0,01 µF et une résistance R = 82 kΩ, on peut dresser le tableau suivant :

Figure imgb0008
To take a practical example and based on the equations given above, we will assume that it is necessary to supply the motor with constant energy if the supply voltage varies between 3 and 1 volts. By choosing R 1 = R 2 = R 3 = 1 MΩ and R 4 = 250 kn, we find according to equation (1) U AB = 0.3 U 0 . By also choosing a reference voltage U r = 0.1 V, a capacitor C = 0.01 µ F and a resistance R = 82 kΩ, we can draw up the following table:
Figure imgb0008

D'après ces données, il faut choisir la période d'échantillonnage Te plus grande que 206 µs, soit 244 µs, pour utiliser une valeur pratique, qu'on peut obtenir directement du diviseur de fréquence. On en tire directement le taux de hachage To/Te indiqué ci-dessus.According to these data, the sampling period T e greater than 206 µs, or 244 µs, must be chosen to use a practical value, which can be obtained directly from the frequency divider. We directly derive the hash rate T o / T e indicated above.

On doit remarquer qu'on n'a pas considéré, dans les valeurs ci-dessus données à titre d'exemple, le temps qu'il faut prendre pour court-circuiter le condensateur C, temps qu'on voit apparaître dans les figures 4d et 5d et symbolisé par la période Tc. Pour sortir cette période Tc de la période d'échantillonnage proprement dite T , on pourrait proposer à la place du simple transistor de commutation 20 (figure 3) un autre montage qui rendrait la période Te indépendante de la période Tc. La période Tc est choisie ici pour des raisons pratiques à 30 µs.It should be noted that, in the values given by way of example, the time which it takes to short-circuit the capacitor C has not been considered, time which is seen to appear in FIGS. 4d and 5d and symbolized by the period T c . To remove this period T c from the sampling period proper T, we could propose instead of the simple switching transistor 20 (FIG. 3) another arrangement which would make the period T e independent of the period T c . The period T c is chosen here for practical reasons at 30 µs.

Il est important de remarquer que la tension de référence Ur doit être choisie entre autres en fonction des caractéristiques du moteur auquel on a affaire. Il s'agit d'une tension rigoureusement stabilisée indépendante des fluctuations de la tension de source d'alimentation. Un exemple pratique de réalisation d'un tel générateur peut être trouvé dans le document CH-A-639 810 en figure 4e.It is important to note that the reference voltage U r must be chosen inter alia according to the characteristics of the engine we're dealing with. It is a rigorously stabilized voltage independent of fluctuations in the power source voltage. A practical example of embodiment of such a generator can be found in the document CH-A-639 810 in FIG. 4e.

La durée Ti de l'impulsion pendant laquelle s'exerce l'échantillonnage doit être choisie assez longue pour que dans les cas les plus défavorables de tension Uo minimum, le rotor franchisse son pas à coup sûr. Cette durée est de l'ordre de 7,8 ms, durée qui peut être tirée aussi du diviseur de fréquence à disposition. On comprendra que 32 périodes d'échantillonnage Te valant chacune 244 µs pourront prendre place durant une période Ti de 7,8 ms.The duration T i of the pulse during which the sampling takes place must be chosen long enough so that in the most unfavorable cases of minimum voltage U o , the rotor will surely pass its pitch. This duration is of the order of 7.8 ms, duration which can also be taken from the frequency divider available. It will be understood that 32 sampling periods T e each worth 244 µs may take place during a period T i of 7.8 ms.

Il faut remarquer que le système proposé dans la présente invention pourrait être combiné avec un système d'asservissement du moteur à la charge qu'il doit entraîner. Ces systèmes généralement rallongent l'impulsion motrice quand la charge augmente et inversément. Cette impulsion asservie pourrait être fournie à l'entrée de la porte 25 de la figure 3 en lieu et place de l'impulsion fixe Ti qu'on a considérée jusqu'ici.It should be noted that the system proposed in the present invention could be combined with a system for controlling the motor to the load which it must drive. These systems generally lengthen the driving impulse when the load increases and vice versa. This slave pulse could be supplied to the input of gate 25 of FIG. 3 in place of the fixed pulse T i that we have considered so far.

Le schéma de la figure 6 montre comment on fabrique les impulsions T, T, Ti, Te et Tc nécessaires à faire fonctionner le dispositif illustré en figure 3. Tous les signaux sont obtenus à partir d'une base de temps 40 pilotée par un quartz 41 via un diviseur de fréquence 42. Le flip-flop 43 du type D combine les signaux à 16 384 Hz et à 4 096 Hz pour produire la période d'échantillonnage Te à 244 µs, ainsi qu'à l'intérieur de cette période, l'impulsion Tc qui court-circuite le condensateur C. Un autre flip-flop 44 du type D combine les signaux à 64 Hz et à 1 Hz pour produire l'impulsion Ti à 7,81 ms se répétant toutes les secondes. La sortie Q du flip-flop 44 attaque à son tour un diviseur par deux 45 qui engendre les impulsions de polarité T et T.The diagram in FIG. 6 shows how the pulses T, T, T i , T e and T c necessary to operate the device illustrated in FIG. 3 are produced. All the signals are obtained from a controlled time base 40 by a quartz 41 via a frequency divider 42. The type D flip-flop 43 combines the signals at 16 384 Hz and at 4096 Hz to produce the sampling period T e at 244 µs, as well as at Within this period, the pulse T c which short-circuits the capacitor C. Another flip-flop 44 of type D combines the signals at 64 Hz and 1 Hz to produce the pulse T i at 7.81 ms repeating every second. The output Q of the flip-flop 44 in turn attacks a divider by two 45 which generates the pulses of polarity T and T.

Pour éviter que le dispositif proposé ne consomme de l'énergie entre les périodes d'alimentation Ti, on peut s'arranger à ce qu'il ne soit alimenté que pendant lesdites périodes d'alimentation. La figure 7 montre que le pont de résistance R1, R3, R2, R4, dont seules les résistances R1 et R3 ont été représentées au dessin est alimenté à travers un transistor 50 qui n'est conducteur que pendant les périodes Ti. Il ressort de cela que le pont de résistance est mis hors circuit pendant les périodes séparant lesdites périodes Ti. Quoiqu'il en soit, les valeurs des résistances du pont seront prises les plus élevées possible.To prevent the proposed device from consuming energy between the supply periods T i , it can be arranged that it is only supplied during said supply periods. FIG. 7 shows that the resistance bridge R 1 , R 3 , R 2 , R 4 , of which only the resistors R 1 and R 3 have been shown in the drawing, is supplied through a transistor 50 which is only conductive during the periods T i . It appears from this that the resistance bridge is switched off during the periods separating said periods T i . Anyway, the resistance values of the bridge will be taken as high as possible.

Claims (7)

1. Dispositif pour alimenter en énergie constante à partir d'une source de tension variable (Uo) un moteur pas à pas, notamment pour pièce d'horlogerie, l'alimentation consistant à fournir au moteur des impulsions de durée constante Ti, chacune étant hachée selon un taux de hachage dépendant de la valeur de la tension de la source (Uo) et constituée par une suite d'impulsions élémentaires de durée To séparées par des périodes d'interruption Tr, la somme To + Tr définissant une période d'échantillonnage prédéterminée Te, caractérisé par le fait qu'il comporte des premiers moyens pour prélever une tension (UAB) proportionnelle à la tension de la source (Uo), des deuxièmes moyens utilisant cette tension proportionnelle pour engendrer, pendant chaque période d'échantillonnage Te, un signal (Uc) présentant une vitesse de croissance variable d'autant plus rapide que l'amplitude de ladite tension proportionnelle (UAB) est élevée et des troisièmes moyens pour comparer ledit signal (Uc) à un seuil de référence (Ur), la comparaison déterminant un état logique différent selon que ledit signal (U ) est inférieur ou supérieur audit seuil de référence (Ur) pour engendrer ladite impulsion de durée élémentaire To et définir un rapport To/Te représentant ledit taux de hachage.1. Device for supplying constant energy from a variable voltage source (U o ) to a stepping motor, in particular for a timepiece, the supply consisting in supplying the motor with pulses of constant duration T i , each being chopped according to a chopping rate depending on the value of the source voltage (U o ) and constituted by a series of elementary pulses of duration T o separated by periods of interruption T r , the sum T o + T r defining a predetermined sampling period T e , characterized in that it comprises first means for taking a voltage (U AB ) proportional to the voltage of the source (U o ), second means using this proportional voltage to generate, during each sampling period T e , a signal (U c ) having a variable growth rate which is all the more rapid as the amplitude of said proportional voltage (U AB ) is high and third means for comparing the said signal (U c ) at a reference threshold (U r ), the comparison determining a different logic state depending on whether said signal (U) is less than or greater than said reference threshold (U r ) to generate said pulse of elementary duration T o and define a ratio T o / T e representing said hash rate. 2. Dispositif selon la revendication 1, caractérisé par le fait que les premiers moyens comportent un pont de résistances (R1, R2, R3, R4) dont la première diagonale est branchée aux bornes de la source de tension (U ) et dont la seconde diagonale (AB) fournit une tension proportionnelle (UAB) à la tension de ladite source.2. Device according to claim 1, characterized in that the first means comprise a resistance bridge (R 1 , R 2 , R 3 , R 4 ) the first diagonal of which is connected to the terminals of the voltage source (U) and the second diagonal (AB) of which provides a voltage proportional (U AB ) to the voltage of said source. 3. Dispositif selon la revendication 1, caractérisé par le fait que les deuxièmes moyens comportent une résistance (R) et un condensateur (C) disposés en série et alimentés par la tension proportionnelle (UAB) pour fournir aux bornes dudit condensateur le signal (U ) présentant une vitesse de croissance variable.3. Device according to claim 1, characterized in that the second means include a resistor (R) and a capacitor (C) arranged in series and supplied by the proportional voltage (U AB ) to supply the terminals of said capacitor with the signal ( U) having a variable growth rate. 4. Dispositif selon la revendication 3, caractérisé par le fait qu'il comprend en outre des quatrièmes moyens (20) pour court-circuiter le condensateur (C) et remettre ainsi à zéro le signal (U ) présent à ses bornes au début de chaque période d'échantillonnage T e.4. Device according to claim 3, characterized in that it further comprises fourth means (20) for short-circuiting the capacitor (C) and thus resetting to zero the signal (U) present at its terminals at the start of Sampling period each g e T e. 5. Dispositif selon la revendication 1, caractérisé par le fait que les troisièmes moyens comportent un circuit comparateur (16) à deux entrées, la première recevant le signal (Uc) à vitesse de croissance variable et la seconde entrée recevant une tension fixée au seuil de référence (Ur).5. Device according to claim 1, characterized in that the third means comprise a comparator circuit (16) with two inputs, the first receiving the signal (U c ) at variable growth speed and the second input receiving a voltage fixed to the reference threshold (U r ). 6. Dispositif selon la revendication 1, caractérisé par le fait que les impulsions motrices de durée Ti et chaque période d'échantillonnage Te sont produites à partir d'une base de temps commune (40, 41).6. Device according to claim 1, characterized in that the driving pulses of duration T i and each sampling period T e are produced from a common time base (40, 41). 7. Dispositif selon la revendication 1, caractérisé par le fait qu'il comprend en outre un arrangement (50) pour limiter le prélèvement de la tension proportionnelle (UAB) aux temps que durent les impulsions motrices de durée Ti.7. Device according to claim 1, characterized in that it further comprises an arrangement (50) for limiting the sampling of the proportional voltage (U AB ) to the times that the driving pulses of duration T i last .
EP85102158A 1984-02-29 1985-02-27 Constant-power supply means for a stepping motor fed by a variable-tension source Withdrawn EP0154889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH97184A CH653852GA3 (en) 1984-02-29 1984-02-29
CH971/84 1984-02-29

Publications (1)

Publication Number Publication Date
EP0154889A1 true EP0154889A1 (en) 1985-09-18

Family

ID=4199459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85102158A Withdrawn EP0154889A1 (en) 1984-02-29 1985-02-27 Constant-power supply means for a stepping motor fed by a variable-tension source

Country Status (3)

Country Link
EP (1) EP0154889A1 (en)
JP (1) JPS60204299A (en)
CH (1) CH653852GA3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704774A1 (en) * 1994-04-06 1996-04-03 Citizen Watch Co., Ltd. Electronic timepiece
EP1046969A1 (en) * 1999-04-23 2000-10-25 Eta SA Fabriques d'Ebauches Method for controlling a stepping motor and means to apply this method
US6327177B1 (en) 1999-04-23 2001-12-04 Eta S.A. Fabriques D'ebauches Method for controlling a stepping motor and device for implementing such method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550847Y2 (en) * 1991-07-15 1997-10-15 トヨタ車体株式会社 Seat truck

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530631A1 (en) * 1975-07-09 1977-01-20 Siemens Ag CIRCUIT ARRANGEMENT FOR REGULATED DC VOLTAGE CONVERTER
EP0014833A1 (en) * 1979-01-23 1980-09-03 Siemens Aktiengesellschaft Circuit for controlling the output voltage of a switching converter
GB2059649A (en) * 1979-09-18 1981-04-23 Seiko Instr & Electronics Electronic timepiece

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110100A (en) * 1980-12-25 1982-07-08 Casio Comput Co Ltd Driving system for pulse motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530631A1 (en) * 1975-07-09 1977-01-20 Siemens Ag CIRCUIT ARRANGEMENT FOR REGULATED DC VOLTAGE CONVERTER
EP0014833A1 (en) * 1979-01-23 1980-09-03 Siemens Aktiengesellschaft Circuit for controlling the output voltage of a switching converter
GB2059649A (en) * 1979-09-18 1981-04-23 Seiko Instr & Electronics Electronic timepiece

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, vol. 6, no. 200 (E-135)[1078], 9 octobre 1982; & JP - A - 57 110 100 (CASIO KEISANKI K.K.) 08-07-1982 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704774A1 (en) * 1994-04-06 1996-04-03 Citizen Watch Co., Ltd. Electronic timepiece
EP0704774A4 (en) * 1994-04-06 1996-09-11 Citizen Watch Co Ltd Electronic timepiece
EP1046969A1 (en) * 1999-04-23 2000-10-25 Eta SA Fabriques d'Ebauches Method for controlling a stepping motor and means to apply this method
US6327177B1 (en) 1999-04-23 2001-12-04 Eta S.A. Fabriques D'ebauches Method for controlling a stepping motor and device for implementing such method

Also Published As

Publication number Publication date
CH653852GA3 (en) 1986-01-31
JPS60204299A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
EP0859454B1 (en) Switch mode booster of a photovoltaic source voltage, especially for a timepiece
EP1854165B3 (en) Method for the balanced charging of a lithium-ion or lithium-polymer battery
CH686332B5 (en) timepiece driven by a mechanical energy source and controlled by an electronic circuit.
EP1685622A2 (en) Equilibrated charging method for a lithium-ion or lithium-polymer battery
EP0057663B1 (en) Control device for stepping motor
EP0171635A1 (en) Method and apparatus to recognise the position of the rotor of a stepping motor
FR2701609A1 (en) Progressive excitation regulator circuit for charging a battery by an alternator.
EP0077293B1 (en) Process and device for controlling a stepping motor in a clock mechanism
EP0154889A1 (en) Constant-power supply means for a stepping motor fed by a variable-tension source
FR2483097A1 (en) ELECTRONIC WATCH
CH690523A5 (en) Timepiece including a generator of electricity.
EP0135104A1 (en) Method and device for the control of a stepping motor
EP0253153A1 (en) Method and device for controlling a stepping motor
EP0076780B1 (en) Process for reducing the consumption of a stepping motor, and device to carry out this process
EP0856625A1 (en) Electric lock for a motor vehicle door comprising an emergency battery with controlled discharge
EP1346264A1 (en) Analog electronic watch having a time reset device following power shortage
FR2480956A1 (en) PIECE OF ELECTRONIC WATCHMAKING
EP0790539B1 (en) Method and device for controlling a monophased stepping motor
EP0848306B1 (en) Time piece having an electric energy generator
EP0875807B1 (en) Electronic timepiece powered by a generator driven by a mechanical energy source
FR2884981A1 (en) CONTROL DEVICE FOR AUTOMOBILE GENERATOR
EP0155661B1 (en) Control circuit for a stepping motor
CH621027B5 (en)
EP3779611B1 (en) Electromechanical watch
CA2528980A1 (en) Fuel cell protection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19851003

RHK1 Main classification (correction)

Ipc: G04C 3/14

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870903

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOKDAD, MOHAMED