EP3579058B1 - Timepiece comprising a tourbillon - Google Patents

Timepiece comprising a tourbillon Download PDF

Info

Publication number
EP3579058B1
EP3579058B1 EP19173161.1A EP19173161A EP3579058B1 EP 3579058 B1 EP3579058 B1 EP 3579058B1 EP 19173161 A EP19173161 A EP 19173161A EP 3579058 B1 EP3579058 B1 EP 3579058B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
escapement
energy
tourbillon
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19173161.1A
Other languages
German (de)
French (fr)
Other versions
EP3579058A1 (en
Inventor
Polychronis Nakis Karapatis
Marc Stranczl
Benoît LÉGERET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montres Breguet SA
Original Assignee
Montres Breguet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Breguet SA filed Critical Montres Breguet SA
Publication of EP3579058A1 publication Critical patent/EP3579058A1/en
Application granted granted Critical
Publication of EP3579058B1 publication Critical patent/EP3579058B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • G04B17/285Tourbillons or carrousels
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/22Compensation of changes in the motive power of the mainspring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • G04B45/02Time pieces of which the clockwork is visible partly or wholly

Definitions

  • the present invention relates to timepieces comprising a watch movement equipped with a tourbillon carrying in a cage a mechanical resonator, formed of a balance and a hairspring, and an escapement device.
  • a watch movement equipped with a tourbillon carrying in a cage a mechanical resonator, formed of a balance and a hairspring, and an escapement device.
  • a carousel By vortex, we also understand what a person skilled in the art sometimes calls a carousel.
  • a watch movement comprises a barrel arranged to accumulate mechanical energy and a gear train kinematically connecting the tourbillon cage to the barrel.
  • Watch movements equipped with a tourbillon have been known for a long time. Such a watch movement and even a watch equipped with such a watch movement is generally called a 'tourbillon'.
  • a particular embodiment of a tourbillon provided with a cage carrying a sprung balance and an anchor, which is arranged to cooperate with a fixed escape wheel coaxial with the cage, is disclosed in the patent application WO 2011/006617 .
  • the cage In a classic tourbillon, the cage generally functions as a second mobile. It has a second gear and is driven via this second gear by a middle wheel.
  • the cage carries a classic escapement formed by an escapement mobile and an anchor, in particular a Swiss anchor. The force is transmitted to the escapement mobile via its pinion which meshes, like a satellite, with a fixed seconds wheel integral with the plate.
  • the operation of a conventional Swiss lever escapement is well known to those skilled in the art.
  • the escape wheel has a plurality of teeth which cooperate with two vanes carried by the anchor.
  • Each pallet has at its free end an inclined plane.
  • To generate a maintenance pulse for the sprung balance one of the teeth of the escape wheel comes to rest tangentially against the inclined plane of one of the two pallets, so as to exert a torque on the anchor which is thus driven in rotation by the escape wheel, the latter being driven in rotation by the rotation of the cage via the fixed seconds wheel.
  • the maintenance pulse ends when the pulse nozzle, in each tooth of the escape wheel, is at the bottom of the inclined plane.
  • the escape wheel To generate a maintenance pulse, the escape wheel must be able to undergo a rotation over an angular distance corresponding to the angular distance, relative to the axis of rotation of the escape wheel set, of the inclined plane of the pallet with which it interacts with.
  • the rotation of the escape wheel is intimately linked to that of the tourbillon cage, a kinematic connection being provided between the escape wheel and the tourbillon cage. Consequently, in order to drive the escape wheel in rotation, the tourbillon, which has a relatively high inertia, must be set in rotation.
  • the maintenance pulse transmitted to the balance is therefore limited in intensity by the inertia of the tourbillon and also of the gear train kinematically connecting the tourbillon cage to the barrel.
  • the inertia of the tourbillon cage is related to the escape wheel, which increases the inertia of the latter.
  • the tourbillon mechanism is known to average vertical positions and therefore improve the rate of a horological movement in a wristwatch when it is worn.
  • the tourbillon increases the inertia of the escapement device because the tourbillon cage is integral in rotation with the escape wheel. This limits the acceleration that the escape wheel can undergo The impulse given to the balance being dependent on the rotation of the escape wheel, it is not possible to increase the frequency above 5 Hz in such a way. reliable in terms of time.
  • the possible oscillation frequency for the sprung balance of such a mechanism whirlpool is limited.
  • the frequency of oscillation of a conventional sprung balance in a tourbillon is generally less than five Hertz (5 Hz) and can in certain specific cases reach 5 Hz. It is usually for example three Hertz. It will be understood that this limits the running precision that can be obtained with a watch movement equipped with a conventional tourbillon.
  • the aim of the present invention is to provide a solution to the problem of the conventional tourbillon mentioned above, so as to make it possible to further increase the chronometric benefit of a tourbillon, in particular to increase the running precision of the watch movement equipped with 'a tourbillon according to the invention by the arrangement of a mechanical resonator in the tourbillon cage, having an oscillation frequency Fo greater than the conventional frequencies, preferably greater than five Hertz (Fo> 5Hz).
  • the invention relates to a timepiece comprising a watch movement equipped with a tourbillon, which comprises a cage arranged rotating around a main axis, a barrel, arranged to accumulate mechanical energy, and a cog kinematically connecting the tourbillon cage to the barrel.
  • the tourbillon carries a mechanical resonator, made up of a balance and a hairspring, and an escapement device.
  • the magnetic escapement further comprising a magnetic element which, or a plurality of magnetic elements each of which is arranged to have an oscillating movement which is synchronous with the oscillation of the mechanical resonator and which has a non-zero radial component relative to said rotation axis.
  • the magnetic element or each of the magnetic elements of the plurality of magnetic elements is coupled, at least momentarily periodically, with the magnetic structure or the magnetic structures so that the escape mobile performs a rotation by an angular period predetermined at each period of oscillation of the balance.
  • the magnetic escapement presents, in normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.
  • the energy pulses transmitted to the mechanical resonator to maintain it are no longer limited in intensity by the inertia of the tourbillon cage.
  • the inertia of the cog no longer influences the generation of these energy impulses.
  • the anchor here forms a magneto-mechanical converter.
  • the magnetic escapement according to the present invention therefore makes it possible to temporally dissociate the periodic transmission of a certain quantity of energy from the barrel to the magnetic escapement, which is arranged to accumulate it momentarily, and the transmission of this accumulated energy from the barrel.
  • magnetic escapement with mechanical resonator therefore makes it possible to temporally dissociate the periodic transmission of a certain quantity of energy from the barrel to the magnetic escapement, which is arranged to accumulate it momentarily, and the transmission of this accumulated energy from the barrel.
  • the sustaining pulses supplied by the magnetic escapement to the mechanical resonator can be generated mainly without rotation of the escape wheel and substantially independent of such rotation.
  • the inertia of the gear train and the inertia of the tourbillon cage no longer hinder the generation of the maintenance pulses.
  • the radial nature of the force which intervenes mainly to generate each sustaining pulse after a phase of accumulation of magnetic potential energy in the magnetic escapement so that the fact that the cage rotates either not or only at a small angle is substantially inconsequential on the generation of sustain pulses.
  • the tourbillon mechanism equipped with a magnetic escapement according to the invention can deliver sustain pulses of short duration and of relatively high intensity.
  • the mechanical resonator comprises a balance which is pivoted magnetically in the tourbillon cage, which for this purpose comprises two magnetic bearings.
  • the timepiece comprises a horological movement 2 equipped with a tourbillon 4 comprising a cage 6 arranged to rotate around a main axis 8, a barrel 10 arranged to accumulate mechanical energy and a gear 11 connecting kinematically the tourbillon cage to the barrel.
  • the tourbillon carries a mechanical resonator 14, formed of a balance 16 and a hairspring 15, and an escapement device 18.
  • the tourbillon is pivoted between a plate 3 and a bridge 9.
  • the escape device consists of a magnetic escapement which comprises an escapement mobile 20 formed of an escapement pinion 24 and a first escape wheel 22, the latter comprising a first magnetic structure 26 having a generally annular shape and centered on an axis of rotation 28 of the escape unit.
  • the magnetic escapement comprises a stopper 30 which momentarily couples, in each alternation of the oscillation of the mechanical resonator 14, this mechanical resonator to the exhaust mobile 20.
  • This stopper and the exhaust mobile are pivoted between a part of the cage. 6 and an exhaust bridge 19 carried by this cage.
  • the stopper undergoes, when the mechanical resonator oscillates, a back and forth movement interspersed with rest phases where the stopper is stopped alternately in two rest positions where it is respectively in abutment against two pins 36 and 37.
  • the stopper is formed by an anchor which carries two magnetic elements 32 and 33 each arranged so as to present an oscillating movement which is synchronous with the oscillation of the mechanical resonator and which is oriented mainly in a radial direction relative to the axis of rotation 28 of the anchor.
  • the two magnetic elements are similar and located on the same side of the escape wheel 22. They are both coupled simultaneously in a similar manner to the first magnetic structure, which is arranged so that these two magnetic elements are coupled with it. continuously (or almost continuously) and so that their respective magnetic couplings add up. The operation of this magnetic escapement will be described in more detail below.
  • the escapement mobile 20 comprises a second wheel 38 comprising a second magnetic structure 40 which has planar symmetry with the first magnetic structure 26 and which is located at a distance from the latter so as to allow the two magnetic elements 32 and 33 to be located, when they oscillate, at least momentarily between the first and second magnetic structures.
  • the two magnetic elements 32 and 33 interact, in a similar manner, simultaneously with the first and second magnetic structures, so that the effects add up.
  • the two magnetic elements are coupled with the first and second magnetic structures so that the escapement mobile performs a rotation of a predetermined angular period at each period of oscillation of the balance 16.
  • the first and second magnetic structures and are formed respectively. a first permanent magnet and a second permanent magnet which each have an axial magnetization and the same polarity.
  • the two magnetic elements of the anchor are each formed by a permanent magnet having axial magnetization and reverse polarity relative to the first and second magnets, so as to undergo a magnetic repulsion force with each of the two magnetic structures.
  • the first and second wheels 22 and 38 respectively carry a first ferromagnetic structure 44 and a second ferromagnetic structure 46 which respectively cover the first and second magnetic structures on the two outer sides of the assembly consisting of these first and second magnetic structures, so as to form in combination with a few fixing pins (see Figure 3 ) rising from each of the two ferromagnetic structures, some shielding of the first and second magnetic structures and of each magnetic element located between them and thus magnetically coupled with them.
  • the two ferromagnetic structures respectively form two supports for the two magnetic structures.
  • the magnetic escapement is partially shielded.
  • the magnetic fields of magnetic structures and magnetic elements are confined by the first and second ferromagnetic structures.
  • the magnetic escapement is arranged so as to present, in normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.
  • Each energy accumulation phase and the energy transfer phase which follows it occur during a time interval equal to half of a period of oscillation of the mechanical resonator.
  • the Figure 5 shows two energy curves magnetic potential 66 and 68, respectively for the two rest positions of the anchor 30 where the latter is respectively resting against the stops 36 and 37, which each correspond to the magnetic potential energy E PM in the magnetic escapement in function of the angle ⁇ giving the angular position of the exhaust mobile 20 and therefore of the magnetic structures 26 and 40 (it will be noted that this angle ⁇ is measured according to the direction of rotation of the exhaust mobile, namely the clockwise direction in the example shown in Figures 6 to 9 ).
  • a magnetic escapement of the type selected for the first embodiment of the invention is disclosed in the patent application EP 3 208 667 A1 . Its operation and the characteristics specific to this operation which are used in the context of the present invention will be described below.
  • the Figures 6 to 9 show four successive instants of an alternation of the balance 16 and an alternation of the anchor 30 which is momentarily coupled to this balance.
  • the two magnetic structures 26 and 40 together define, in each of the two rest positions of the anchor 30, increasing portions of magnetic potential energy PC1, respectively PC2 for the magnetic elements 32 and 33 of the anchor 30 which are both coupled, here continuously, to the two magnetic structures.
  • these increasing portions are defined substantially by a magnetic track 58 which each of the two magnetic structures 26 and 40 comprises, this magnetic track having a particular line, alternately entering and exiting relative to a median geometric circle.
  • this particular line is adapted to an accumulation of potential magnetic energy during a rotation of the escapement mobile over a certain angular distance, while the anchor is alternately in its two positions. rest.
  • Each magnetic track 58 is formed by the permanent magnet which constitutes the corresponding magnetic structure, this permanent magnet being arranged in magnetic repulsion with the permanent magnets which constitute the two magnetic elements 32 and 33, as already described.
  • the increasing portions PC1 and PC2 thus define angular ramps for the accumulation of magnetic potential energy in the magnetic escapement.
  • the two magnetic structures 26, 40 and therefore the exhaust mobile undergo a torque of magnetic force (shown diagrammatically in Figures 8 and 9 by two tangential arrows FT) having a direction opposite to the direction of rotation of the escapement mobile (given in these figures by a circular arrow), that is to say opposite to a driving torque applied by the barrel via the tourbillon cage to the exhaust mobile, and an intensity less than that of this driving torque, so that the exhaust mobile rotates through a certain angle to allow the accumulation of a certain magnetic potential energy in the magnetic exhaust.
  • a torque of magnetic force shown diagrammatically in Figures 8 and 9 by two tangential arrows FT having a direction opposite to the direction of rotation of the escapement mobile (given in these figures by a circular arrow), that is to say opposite to a driving torque applied by the barrel via the tourbillon cage to the exhaust mobile, and an intensity less than that of this driving torque
  • each magnetic force FM1, respectively FM2 having, on the one hand, a non-zero tangential component relative to the axis of rotation of the exhaust mobile (c ' ie a component tangent at all points to a geometric circle centered on the axis of rotation 28).
  • these magnetic forces FM1 and FM2 are oriented so that the anchor also undergoes a torque of magnetic force, which maintains the fork 52 in support against the stop pin 36, respectively 37 depending on whether the anchor is in one to the other of its two rest positions in the phase of energy accumulation considered.
  • the magnetic forces FM1 and FM2 are oriented so that the torque of magnetic force applied to the anchor is greater than the torque of magnetic force applied to this anchor at the end of an energy accumulation phase (situation corresponding to that of the Figure 6 , but already visible at the Figure 9 showing an intermediate situation of the magnetic escapement during an energy accumulation phase).
  • the magnetic escapement is arranged so that the increasing portions PC1 of the first magnetic potential energy curve 66 are respectively offset by an angular half-period P / 2 relative to the increasing portions PC2 of the second curve d 'magnetic potential energy 68.
  • the two magnetic structures define for the two magnetic elements 32 and 33, in each of the two rest positions of the anchor, magnetic barriers BM1, respectively BM2 which succeed the increasing portions PC1, respectively PC2 .
  • the magnetic barriers BM1 and BM2 of a magnetic potential energy curve 66, 68 are formed respectively by magnetized areas 60 and 62 which are located alternately on either side of the magnetic track 58. Each barrier magnetic BM1 is thus located angularly between two successive magnetic barriers BM2 (and therefore vice versa).
  • two successive magnetic barriers BM1 or BM2 are angularly offset by an angular period P.
  • the two magnetic elements of the anchor are angularly offset, relative to the axis of rotation 28, substantially by one. angle equal to 3P / 2 (generally an odd number of half-periods P / 2).
  • the two anchor rest positions when one of the two magnetic elements is coupled with an exiting part of the track 58, the other is coupled with a reentrant part of this track. Then, when the first magnetic element presents itself in front of an external magnetized pad 60, the second presents itself in front of an internal magnetized pad 62, and vice versa.
  • the magnetic barriers are arranged so as to generate, on the two magnetic elements having climbed a preceding angular ramp, a relatively large torque of magnetic force which is opposed to the driving torque applied by the barrel to the escape wheel set, so as to be able to stop the angular advance of the escape wheel set.
  • the exhaust mobile finally stops at a substantially determined angular position (situation corresponding to the Figure 6 ), corresponding on the Figure 5 at the stable points E 1 , E 3 , E 2N + 1 , with N> 0, alternately on curves 66 and 68.
  • the watch movement 2 comprises a rocket 12 for equalizing the torque supplied by the barrel 10 to the tourbillon cage 6, so that the escapement mobile is subjected to a substantially constant torque in the cylinder.
  • the two magnetic elements 32 and 33 each undergo a radial magnetic force FR1 and FR2 (situation corresponding to the Figure 7 ), relative to the axis of rotation 28 of the exhaust mobile, during an alternation of its oscillating movement and in the direction of this oscillating movement during this alternation.
  • this radial magnetic force is generally a radial component of the total magnetic force exerted on each of the magnetic elements.
  • the oscillating movement of each of the magnetic elements is, in the preferred variant which is shown, substantially radial relative to the axis of rotation 28 of the exhaust mobile and therefore of the magnetic structures 26 and 40 which are generally centered on this rotation axis.
  • the axis of rotation of the anchor is positioned for this purpose in the watch movement.
  • the magnetic forces, acting respectively on the magnetic elements of the anchor, which provide mechanical energy to this anchor, in the form of a work of a couple of magnetic force, are therefore here substantially the radial components FR1, FR2, called also radial magnetic forces, respective total magnetic forces.
  • each alternation of the anchor 30 is started by an initial drive of this anchor by the balance via a pin 50 (pin having a truncated disc profile) which is placed between the two horns. of the fork 52 of the anchor.
  • This initial phase allows the magnetic elements 32 and 33 to each undergo an initial radial displacement before they undergo, in a following phase of the considered alternation of their oscillating movement, a drop in magnetic potential energy so that the magnetic escapement undergoes an overall decrease in potential energy magnetic, referenced D1 and D2 at the Figure 5 , during each alternation of the oscillation of the balance 16 and consequently of each alternation of the oscillating movement of the anchor 30.
  • the anchor passes from one rest position to the other of so that the magnetic potential energy in the magnetic escapement varies from a situation described by curve 66 to a situation described by curve 68 or vice versa, depending on whether the anchor is initially in one or the other of its two rest positions at the beginning of the considered alternation.
  • the arrangement of the magnetic escapement described above from which derives the profile of each of the two curves 66 and 68, therefore allows this magnetic escapement to convert into mechanical energy the magnetic potential energy accumulated in the accumulation phase of previous energy to deliver it to the anchor in the form of a torque force that works as the anchor rotates.
  • the anchor becomes driving and provides an energy pulse to the balance via its fork 50, as in a conventional mechanical escapement, to maintain the oscillation of the balance spring.
  • the magnetic escapement selected in the context of the first embodiment is substantially at constant force; that is to say that the decreases in magnetic potential energy in the phases of energy transmission to the balance remain substantially constant in the useful operating range of the timepiece. It is a property of the magnetic system of the selected magnetic escapement (see Figure 5 ). Indeed, even in the absence of a device for equalizing the force torque applied to the exhaust mobile by the barrel, the sustain pulses supplied to the mechanical resonator in said useful operating range (torque forces applied by the barrel to the escapement mobile varying within a given range of values) correspond respectively to quantities of energy having similar values.
  • the spindle 12 for equalizing the torque supplied by the barrel to the tourbillon cage / to the escape wheel set therefore serves here to improve the efficiency of the entire system (watch movement).
  • the increasing portions of the first magnetic potential energy curve are respectively angularly offset relative to the increasing portions of the second magnetic potential energy curve, each magnetic barrier of one of the first and second magnetic potential energy curves being located angularly between two successive magnetic barriers on the other of these first and second magnetic potential energy curves.
  • the variant of the first embodiment shown comprises six external magnetized pads 60 forming as many magnetic stops to temporarily stop the escape wheel and also six internal magnetized pads 62 also forming as many magnetic stops. It will be noted that the number of external / internal magnetized pads may be different and preferably greater. Thus in another variant, the number of external / internal magnetized pads is equal to ten or twelve. It will also be noted that, in another variant, provision is made to have only internal magnetized pads or, preferably, only external magnetized pads.
  • the invention makes it possible to increase the frequency of oscillation of the sprung balance, even greatly, it is provided for this purpose, in particular to maintain the angular speed of the tourbillon cage at one revolution per minute, which the tourbillon carries an intermediate mobile 74, the intermediate wheel 76 of which meshes with the escape pinion 24 and of which the intermediate pinion 78 meshes with the fixed seconds wheel 80 which the watch movement comprises.
  • the intermediate wheel is a wheel that reduces the frequency of rotation of the escape wheel and is here arranged so that the tourbillon cage performs one revolution on itself per minute.
  • the oscillation frequency Fo of the mechanical resonator is greater than five Hertz (Fo> 5 Hz).
  • the frequency of rotation F Rot of the escape wheel is determined by the frequency of the mechanical resonator Fo and by the number of external magnetized areas 60, respectively by the number of internal magnetized areas 62.
  • FIG. 10 To the Figure 10 is shown, in cross section similar to that of the Figure 3 , a second embodiment of the invention. Onne will describe below that the distinctive elements of this second embodiment.
  • the magnetic escapement is identical to that of the first embodiment and that all the variants which have been described for this first embodiment also apply for the second embodiment, which is distinguished by the arrangement of the mechanical resonator 14A which comprises a balance 16A magnetically pivoted in the cage 6A of the tourbillon 4A.
  • the cage comprises for this purpose two magnetic bearings 84 and 86 which are formed respectively by two magnets 88 and 90, the shaft 92 of the balance 16A being provided in ferromagnetic material to ensure its alignment between the two magnets.
  • the first variant is shown on Figure 11 , in a simplified way.
  • the escapement device 18B comprises an anchor 30B and an escapement mobile 20B, formed of a single wheel 22 similar to that of the variants described above and therefore carrying a magnetic structure 26 which will not be described here again.
  • On this Figure 11 there is shown the median geometric circle 96 around which substantially intervenes each energy pulse supplied to the anchor 30B which transmits it to the mechanical resonator 14B (of which only the balance 16A has been shown schematically). This median geometric circle 96 separates the re-entrant portions of the entering portions of the magnetic track 58 and also the outer stopping areas 60 from the inner stopping areas 62, which form the magnetic barriers described above.
  • this circle 96 separates two annular and contiguous magnetic tracks 98 and 100 opposite which are located the only magnetic element 32B of the anchor respectively in the two rest positions of this anchor and therefore alternately during the accumulation phases of successive magnetic potential energy in the magnetic escapement.
  • the operation of this magnetic escapement is similar to that already described.
  • the major distinction of this variant lies in the anchor 30B which is provided with a single magnet 32B, arranged in repulsion of the magnetized magnetic structure 26, and in the escape mobile which comprises only a single magnetic structure arranged at a level lower / higher than that in which the magnet oscillates when the watch movement is in operation.
  • the variant of Figure 12 is distinguished by the material arrangement of various parts forming the 18C magnetic escapement.
  • the operation is similar to that already described, the magnetic structure 26C having in plan substantially the same design as the structure 26.
  • the escape mobile 20C and its wheel 22C, carrying the magnetic structure 26C differ respectively from the mobile 20B. and its wheel 22 of the previous figure by the fact the structure 26C extends laterally to a core 23, at its periphery, while the structure 26 is arranged on a support disc (with high magnetic permeability or not depending on the variant) .
  • the anchor 30C is, depending on the variant, similar to the anchor 30 or 30B, except for the arrangement of the magnetic elements.
  • the anchor 30C comprises at least one pair of similar magnetic elements 32C and 33C (two identical magnets in the example shown) which are located respectively above and below the magnetic structure 26C and which are both coupled in a similar manner. to this magnetic structure and so that their respective magnetic couplings add up.
  • each pair of magnets is carried by a support 31 made of a material with high magnetic permeability (in particular ferromagnetic) having a general 'C' shape.
  • a third embodiment of the invention will be described below which is characterized by a magnetic escapement 118 without a stopper, the escape mobile 120 being directly magnetically coupled to the mechanical resonator 114 (shown schematically) whose balance 116 carries the magnetic elements 102 and 103.
  • the balance is associated with a hairspring 115.
  • the tourbillon cage 106 is shown schematically by a block to which is fixed one end of the hairspring and which carries the balance 116 and the mobile 120, which are arranged pivoting in the cage 106, respectively around two axes of rotation 8 and 28 as in the two previous embodiments.
  • the escapement mobile 120 rotates continuously and synchronously with the oscillation of the mechanical resonator (that is to say, the escape wheel rotates by a predetermined angular period during each period of oscillation of the balance 116) . It will be noted that the angular speed of the escapement mobile may exhibit a certain variation during each period of oscillation, in particular depending on whether one is in an energy accumulation phase or an energy transfer phase. .
  • the magnetic structure 126 is annular and formed alternately of annular sectors 128, in which are arranged magnets in magnetic repulsion with the magnets 102 and 103 when they appear alternately opposite these annular sectors, and of annular sectors 130 formed of a non-magnetic material, such as brass or aluminum.
  • Each pair of adjacent annular sectors defines an angular period of the magnetic structure.
  • the magnets of the magnetic structure 126 angularly have an increasing thickness in the direction opposite to the direction of rotation provided for the escape wheel set, so as to have an air gap which decreases between each of them and the magnet 102, 103 which passes above (when the exhaust mobile rotates) and also a magnetic flux which intensifies.
  • the Figure 14 represents curves level 134 for the magnetic potential energy in the magnetic escapement (here made up of the magnetic structure 126 and the two magnets 102 and 103 integral with the balance) as a function of the relative angular position of one or the other of the two magnets 102 and 103.
  • the mechanical resonator 114 oscillates, these two magnets oscillate with a phase shift of 180 °, each according to a path represented by the curve 140 in a reference frame of polar coordinates linked to the exhaust mobile.
  • Each annular sector 128 defines a set 128A of level curves, two successive sets 128A being separated by a sector 126A of zero magnetic potential energy defined by an annular sector 126.
  • the level curves 134 are increasing inwardly thereof. ci, i.e. the outer curve has less potential energy than the next curve inside the latter, and so on.
  • EP 2,891,930 describes magnetic escapements of the type selected in the context of the third embodiment.
  • the two magnets 102, 103 are located on a circle 132 of zero position.
  • the mechanical resonator oscillates, these two magnets alternately penetrate above the magnetic structure so that the balance is constantly magnetically coupled to this magnetic structure. So that these two magnets alternately experience the same coupling with the magnetic structure, they exhibit an angular shift of an odd number of angular half-periods of the magnetic structure.
  • the escapement mobile performs a rotation of a determined angular period for each period of oscillation of the balance.
  • the two magnets 102 and 103 mainly undergo a radial movement, relative to the axis of rotation 28 of the escape wheel set, when the balance oscillates. Preferably, their movement is oriented radially when they cross the zero position circle 132 (corresponding to the outer circle of the magnetic structure).
  • the two magnets 102 and 103 are alternately coupled to the magnetic structure so that they successively undergo magnetic coupling with one of the magnetized annular sectors 128.
  • the overall magnetic potential energy in l The magnetic escapement 118 is given by the contour lines 134 at the Figure 14 .
  • the magnetic escapement is arranged so as to present, during normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.
  • the magnetic escapement defines upward angular ramps 136 for accumulating magnetic potential energy which the magnets 102 and 103 undergo alternately during the continuous rotation of the magnetic structure during successive energy accumulation phases during which they successively and partially climb these ascending angular ramps.
  • the magnetic interaction force between the magnets 102, 103 and the magnetic structure is oriented perpendicular to the level lines 134, these magnets then experience a magnetic force which is essentially perpendicular to the radius it forms with the axis of rotation 28
  • the magnetic structure 126 (and therefore the exhaust mobile) undergoes, during each energy accumulation phase, a couple of magnetic force, relative to its axis of rotation, having a direction opposite to that of 'a driving torque, applied by the barrel via the tourbillon cage to the escapement mobile.
  • the arrangement of the magnets 102, 103 and the magnetized annular sectors 128 is provided so that, in normal operating mode, the intensity of the magnetic force torque is lower than that of the driving torque, so that the cellphone exhaust can continue to rotate and rotate through a certain angle, thus allowing a build-up of potential energy in the magnetic escapement.
  • the magnetic escapement also defines descending radial ramps 138 of magnetic potential energy which the two magnets 102 and 103 descend alternately after having respectively climbed the ascending angular ramps 136.
  • descending a descending radial ramp is oriented perpendicular to the level lines 134, it then undergoes, during energy transfer phases, mainly a radial magnetic force, relative to the axis of rotation 28, during each alternation of the oscillation movement of the mechanical resonator and in the direction of this oscillation movement during this alternation, so that the magnetic escapement then converts into mechanical energy the magnetic potential energy accumulated in the preceding energy accumulation phase to be able to maintain the oscillation of the mechanical resonator.
  • the decrease in magnetic potential energy in the magnetic escapement therefore results mainly from a work of the radial magnetic force exerted alternately on each of the two magnetic elements, this work of the radial magnetic force being transmitted directly to the mechanical resonator, so that this mechanical resonator receives a pulse of mechanical energy in each alternation of its oscillation movement.
  • the descending radial ramps 138 extend over a certain angular distance so that the continuous movement of the escape wheel has no impact on the particular characteristics sought within the framework of the present invention.
  • the important thing is that the main radial force which is exerted alternately on each of the two magnets fixed to the balance hardly depends on any rotation of the escapement mobile. Indeed, we observe at the Figure 14 that the arrangement of the magnetic structure makes it possible to generate the energy pulses for the balance without rotation of the escapement mobile. If the latter stopped at the end of the energy accumulation phase, then the balance would nevertheless receive in the form of a pulse the same quantity of energy as that which it receives by undergoing during the energy transfer phases a some rotational movement.
  • a rocket (similar to the rocket 12 shown in the context of the first embodiment) incorporated into the watch movement makes it possible to equalize the torque supplied by the barrel to the tourbillon cage, so that the escapement mobile is subjected to a constant torque during normal operation of the watch movement.
  • a rocket makes it possible to obtain a stationary operating phase over the entire useful operating range of the watch movement, with the amplitude of oscillation of the balance which remains constant and sustain pulses. which provide the balance with the same amount of mechanical energy. All the benefit provided by a rocket for equalizing the torque of force in a conventional mechanical watch movement is brought to the timepiece according to this third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)
  • Micromachines (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Electric Clocks (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne les pièces d'horlogerie comprenant un mouvement horloger équipé d'un tourbillon portant dans une cage un résonateur mécanique, formé d'un balancier et d'un spiral, et un dispositif d'échappement. Par tourbillon, on comprend aussi ce que l'homme du métier appelle parfois un carrousel. En outre, un tel mouvement horloger comprend un barillet agencé pour accumuler de l'énergie mécanique et un rouage reliant cinématiquement la cage du tourbillon au barillet.The present invention relates to timepieces comprising a watch movement equipped with a tourbillon carrying in a cage a mechanical resonator, formed of a balance and a hairspring, and an escapement device. By vortex, we also understand what a person skilled in the art sometimes calls a carousel. In addition, such a watch movement comprises a barrel arranged to accumulate mechanical energy and a gear train kinematically connecting the tourbillon cage to the barrel.

Arrière-plan technologiqueTechnological background

Les mouvements horlogers équipés d'un tourbillon sont connus de longue date. On nomme généralement 'un tourbillon' un tel mouvement horloger et même une montre équipée d'un tel mouvement horloger. Une réalisation particulière d'un tourbillon muni d'une cage portant un balancier-spiral et une ancre, laquelle est agencée pour coopérer avec une roue d'échappement fixe et coaxiale à la cage, est divulguée dans la demande de brevet WO 2011/006617 .Watch movements equipped with a tourbillon have been known for a long time. Such a watch movement and even a watch equipped with such a watch movement is generally called a 'tourbillon'. A particular embodiment of a tourbillon provided with a cage carrying a sprung balance and an anchor, which is arranged to cooperate with a fixed escape wheel coaxial with the cage, is disclosed in the patent application WO 2011/006617 .

Dans un tourbillon classique, la cage fonctionne généralement comme un mobile de seconde. Elle comprend un pignon de seconde et elle est entraînée via ce pignon de seconde par une roue moyenne. La cage porte un échappement classique formé d'un mobile d'échappement et d'une ancre, en particulier d'une ancre suisse. La force est transmise au mobile d'échappement via son pignon qui engrène, à la manière d'un satellite, avec une roue de seconde fixe et solidaire de la platine.In a classic tourbillon, the cage generally functions as a second mobile. It has a second gear and is driven via this second gear by a middle wheel. The cage carries a classic escapement formed by an escapement mobile and an anchor, in particular a Swiss anchor. The force is transmitted to the escapement mobile via its pinion which meshes, like a satellite, with a fixed seconds wheel integral with the plate.

Le fonctionnement d'un échappement classique à ancre suisse est bien connu de l'homme du métier. La roue d'échappement présente une pluralité de dents qui coopèrent avec deux palettes portées par l'ancre. Chaque palette présente à son extrémité libre un plan incliné. Pour engendrer une impulsion d'entretien du balancier-spiral, une des dents de la roue d'échappement vient appuyer tangentiellement contre le plan incliné d'une des deux palettes, de manière à exercer un couple de force sur l'ancre qui est ainsi entraînée en rotation par la roue d'échappement, cette dernière étant entraînée en rotation par la rotation de la cage via la roue de seconde fixe. L'impulsion d'entretien se termine lorsque le bec d'impulsion, que comporte chaque dent de la roue d'échappement, se trouve au bas du plan incliné. Ainsi, pour engendrer une impulsion d'entretien, la roue d'échappement doit pouvoir subir une rotation sur une distance angulaire correspondant à la distance angulaire, relativement à l'axe de rotation du mobile d'échappement, du plan incliné de la palette avec laquelle elle interagit. Or, comme indiqué, la rotation de la roue d'échappement est intimement liée à celle de la cage du tourbillon, une liaison cinématique étant prévue entre la roue d'échappement et la cage du tourbillon. Par conséquent, pour entraîner en rotation la roue d'échappement il faut mettre en mouvement de rotation le tourbillon qui a une relativement grande inertie. L'impulsion d'entretien transmise au balancier est donc limitée en intensité par l'inertie du tourbillon et également du rouage reliant cinématiquement la cage du tourbillon au barillet. L'inertie de la cage du tourbillon est rapportée à la roue d'échappement, ce qui augmente l'inertie de cette dernière.The operation of a conventional Swiss lever escapement is well known to those skilled in the art. The escape wheel has a plurality of teeth which cooperate with two vanes carried by the anchor. Each pallet has at its free end an inclined plane. To generate a maintenance pulse for the sprung balance, one of the teeth of the escape wheel comes to rest tangentially against the inclined plane of one of the two pallets, so as to exert a torque on the anchor which is thus driven in rotation by the escape wheel, the latter being driven in rotation by the rotation of the cage via the fixed seconds wheel. The maintenance pulse ends when the pulse nozzle, in each tooth of the escape wheel, is at the bottom of the inclined plane. Thus, to generate a maintenance pulse, the escape wheel must be able to undergo a rotation over an angular distance corresponding to the angular distance, relative to the axis of rotation of the escape wheel set, of the inclined plane of the pallet with which it interacts with. However, as indicated, the rotation of the escape wheel is intimately linked to that of the tourbillon cage, a kinematic connection being provided between the escape wheel and the tourbillon cage. Consequently, in order to drive the escape wheel in rotation, the tourbillon, which has a relatively high inertia, must be set in rotation. The maintenance pulse transmitted to the balance is therefore limited in intensity by the inertia of the tourbillon and also of the gear train kinematically connecting the tourbillon cage to the barrel. The inertia of the tourbillon cage is related to the escape wheel, which increases the inertia of the latter.

Le mécanisme à tourbillon est connu pour moyenner les positions verticales et donc améliorer la marche d'un mouvement horloger dans une montre-bracelet lorsqu'elle est portée. Toutefois, dans un mouvement classique, le tourbillon augmente l'inertie du dispositif d'échappement car la cage du tourbillon est solidaire en rotation de la roue d'échappement. Ceci limite l'accélération que peut subir la roue d'échappement L'impulsion donnée au balancier étant dépendante de la rotation de la roue d'échappement, il n'est pas possible d'augmenter la fréquence au-dessus de 5 Hz de manière fiable au niveau chronométrique. Il en résulte que la fréquence d'oscillation possible pour le balancier-spiral d'un tel mécanisme à tourbillon est limitée. Ainsi, la fréquence d'oscillation d'un balancier-spiral classique dans un tourbillon est généralement inférieure à cinq Hertz (5 Hz) et peut dans certains cas spécifiques atteindre 5 Hz. Elle vaut usuellement par exemple trois Hertz. On comprend que ceci limite la précision de marche que l'on peut obtenir avec un mouvement horloger équipé d'un tourbillon classique.The tourbillon mechanism is known to average vertical positions and therefore improve the rate of a horological movement in a wristwatch when it is worn. However, in a conventional movement, the tourbillon increases the inertia of the escapement device because the tourbillon cage is integral in rotation with the escape wheel. This limits the acceleration that the escape wheel can undergo The impulse given to the balance being dependent on the rotation of the escape wheel, it is not possible to increase the frequency above 5 Hz in such a way. reliable in terms of time. It follows that the possible oscillation frequency for the sprung balance of such a mechanism whirlpool is limited. Thus, the frequency of oscillation of a conventional sprung balance in a tourbillon is generally less than five Hertz (5 Hz) and can in certain specific cases reach 5 Hz. It is usually for example three Hertz. It will be understood that this limits the running precision that can be obtained with a watch movement equipped with a conventional tourbillon.

Ainsi, l'avantage remarquable du tourbillon pour la précision de la marche au porté d'une montre qui l'incorpore est péjoré, à cause du fonctionnement de l'échappement classique, par la grande inertie que présente généralement sa cage.Thus, the remarkable advantage of the tourbillon for the precision of the rate when worn by a watch which incorporates it is diminished, because of the operation of the classic escapement, by the great inertia which its cage generally presents.

La personne du métier connaît diverses réalisations horlogères dans lesquelles un échappement du type magnétique est proposé. On peut citer les documents de brevet CH 711 402 et EP 3 208 667 , ainsi que les documents US 3 183 426 , FR 2 075 383 et GB 671 360 cités dans ce document européen. Les échappements magnétiques sont connus pour leurs interactions magnétiques sans contact qui, par nature, diminuent les frottements mécaniques et sont ainsi censés augmenter le rendement de tels échappements.The person skilled in the art is aware of various horological embodiments in which an escapement of the magnetic type is proposed. We can cite patent documents CH 711 402 and EP 3,208,667 , as well as the documents US 3,183,426 , FR 2,075,383 and GB 671 360 cited in this European document. Magnetic exhausts are known for their contactless magnetic interactions which by nature decrease mechanical friction and are thus believed to increase the efficiency of such exhausts.

Résumé de l'inventionSummary of the invention

Le but de la présente invention est de fournir une solution au problème du tourbillon classique mentionné précédemment, de manière à permettre d'augmenter encore plus le bénéfice chronométrique d'un tourbillon, en particulier d'augmenter la précision de marche du mouvement horloger équipé d'un tourbillon selon l'invention par l'agencement d'un résonateur mécanique dans la cage du tourbillon, ayant une fréquence d'oscillation Fo supérieure aux fréquences conventionnelles, de préférence supérieure à cinq Hertz (Fo > 5Hz).The aim of the present invention is to provide a solution to the problem of the conventional tourbillon mentioned above, so as to make it possible to further increase the chronometric benefit of a tourbillon, in particular to increase the running precision of the watch movement equipped with 'a tourbillon according to the invention by the arrangement of a mechanical resonator in the tourbillon cage, having an oscillation frequency Fo greater than the conventional frequencies, preferably greater than five Hertz (Fo> 5Hz).

A cet effet, l'invention concerne une pièce d'horlogerie comprenant un mouvement horloger équipé d'un tourbillon, qui comprend une cage agencée tournante autour d'un axe principal, d'un barillet, agencé pour accumuler de l'énergie mécanique, et d'un rouage reliant cinématiquement la cage du tourbillon au barillet. Le tourbillon porte un résonateur mécanique, formé d'un balancier et d'un spiral, et un dispositif d'échappement. Selon l'invention, la fréquence d'oscillation du résonateur mécanique est sensiblement égale ou supérieure à six Hertz (Fo >= 6 Hz) et le dispositif d'échappement est un échappement magnétique qui comprend un mobile d'échappement formé d'un pignon d'échappement et d'une structure magnétique ou de structures magnétiques ayant une forme générale annulaire et centrée sur un axe de rotation du mobile d'échappement. L'échappement magnétique comprenant en outre un élément magnétique qui, ou une pluralité d'éléments magnétiques dont chacun est agencé de manière à avoir un mouvement oscillant qui est synchrone avec l'oscillation du résonateur mécanique et qui présente une composante radiale non nulle relativement audit axe de rotation. L'élément magnétique ou chacun des éléments magnétiques de la pluralité d'éléments magnétiques est couplé, au moins momentanément de manière périodique, avec la structure magnétique ou les structures magnétiques de manière que le mobile d'échappement effectue une rotation d'une période angulaire prédéterminée à chaque période d'oscillation du balancier. Ensuite, selon l'invention, l'échappement magnétique présente, en fonctionnement normal du mouvement horloger, alternativement des phases d'accumulation d'énergie, provenant d'une conversion d'énergie mécanique fournie par le barillet en énergie potentielle magnétique dans l'échappement magnétique, et des phases de transfert d'énergie accumulée dans l'échappement magnétique au résonateur magnétique.To this end, the invention relates to a timepiece comprising a watch movement equipped with a tourbillon, which comprises a cage arranged rotating around a main axis, a barrel, arranged to accumulate mechanical energy, and a cog kinematically connecting the tourbillon cage to the barrel. The tourbillon carries a mechanical resonator, made up of a balance and a hairspring, and an escapement device. According to the invention, the frequency of oscillation of the mechanical resonator is substantially equal to or greater than six Hertz (Fo> = 6 Hz) and the exhaust device is a magnetic exhaust which comprises an exhaust mobile formed by a pinion. exhaust and a magnetic structure or magnetic structures having a general annular shape and centered on an axis of rotation of the exhaust mobile. The magnetic escapement further comprising a magnetic element which, or a plurality of magnetic elements each of which is arranged to have an oscillating movement which is synchronous with the oscillation of the mechanical resonator and which has a non-zero radial component relative to said rotation axis. The magnetic element or each of the magnetic elements of the plurality of magnetic elements is coupled, at least momentarily periodically, with the magnetic structure or the magnetic structures so that the escape mobile performs a rotation by an angular period predetermined at each period of oscillation of the balance. Then, according to the invention, the magnetic escapement presents, in normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.

Finalement, l'échappement magnétique est agencé de manière que :

  • au cours de chaque phase d'accumulation d'énergie, l'élément magnétique ou l'ensemble des éléments magnétiques, qui parmi la pluralité d'éléments magnétiques sont alors couplés à la structure magnétique ou aux structures magnétiques, subit un couple de force magnétique, relativement audit axe de rotation, ayant un sens opposé à celui d'un couple d'entraînement, appliqué par le barillet via la cage du tourbillon au mobile d'échappement, et une intensité inférieure à celle de ce couple de force d'entraînement, de sorte que le mobile d'échappement est apte à tourner d'un certain angle pour permettre l'accumulation d'une certaine énergie potentielle magnétique dans l'échappement magnétique ;
  • au cours de chaque phase de transfert d'énergie, l'élément magnétique ou chaque élément de l'ensemble des éléments magnétiques, qui parmi la pluralité d'éléments magnétiques est couplé à la structure magnétique ou aux structures magnétiques lors d'une phase d'accumulation d'énergie précédente, subit une force magnétique radiale (laquelle est de préférence principale), relativement audit axe de rotation, au cours d'une alternance de son mouvement oscillant et dans le sens de la composante radiale de ce mouvement oscillant durant cette alternance, de sorte que l'échappement magnétique convertit en énergie mécanique de l'énergie potentielle magnétique accumulée (de préférence la majeure partie) dans la phase d'accumulation d'énergie précédente pour pouvoir entretenir l'oscillation du résonateur mécanique.
Finally, the magnetic escapement is arranged so that:
  • during each energy accumulation phase, the magnetic element or the set of magnetic elements, which among the plurality of magnetic elements are then coupled to the magnetic structure or to the magnetic structures, undergoes a torque of magnetic force , relative to said axis of rotation, having a direction opposite to that of a torque drive, applied by the barrel via the tourbillon cage to the escape wheel set, and an intensity less than that of this driving force couple, so that the escape wheel body is able to rotate by a certain angle to allow the accumulation of a certain magnetic potential energy in the magnetic escapement;
  • during each energy transfer phase, the magnetic element or each element of the set of magnetic elements, which among the plurality of magnetic elements is coupled to the magnetic structure or to the magnetic structures during a phase of previous energy accumulation, undergoes a radial magnetic force (which is preferably principal), relative to said axis of rotation, during a alternation of its oscillating movement and in the direction of the radial component of this oscillating movement during this alternation, so that the magnetic escapement converts into mechanical energy the magnetic potential energy accumulated (preferably the major part) in the phase d previous accumulation of energy to be able to maintain the oscillation of the mechanical resonator.

Grâce aux caractéristiques de la pièce d'horlogerie selon l'invention, en particulier au type d'échappement magnétique sélectionné pour équiper le tourbillon, les impulsions d'énergie transmises au résonateur mécanique pour l'entretenir ne sont plus limitées en intensité par l'inertie de la cage de tourbillon. De fait, même l'inertie du rouage n'influence plus la génération de ces impulsions d'énergie. En effet, seule l'inertie de l'ancre (dans le cas où un arrêtoir est prévu) influence la dynamique des impulsions d'entretien fournies par l'échappement magnétique au résonateur mécanique. On notera que l'ancre forme ici un convertisseur magnéto-mécanique. Ainsi, ces impulsions d'entretien peuvent être plus brèves, c'est-à-dire intervenir dans des intervalles de temps très limités qui ne dépendent plus de l'inertie du tourbillon. Ces caractéristiques remarquables permettent d'améliorer la précision de la marche du mouvement horloger et en particulier d'améliorer l'isochronisme des résonateurs mécaniques formés par un balancier-spiral. De plus, elles permettent d'agencer dans le tourbillon des résonateurs mécaniques ayant un haut facteur de qualité, en particulier un balancier-spiral ayant une fréquence naturelle d'oscillation bien plus élevée que celle d'un balancier-spiral usuel pour un tourbillon classique, en particulier une fréquence naturelle supérieure à 5 Hz.Thanks to the characteristics of the timepiece according to the invention, in particular to the type of magnetic escapement selected to equip the tourbillon, the energy pulses transmitted to the mechanical resonator to maintain it are no longer limited in intensity by the inertia of the tourbillon cage. In fact, even the inertia of the cog no longer influences the generation of these energy impulses. Indeed, only the inertia of the anchor (in the case where a stopper is provided) influences the dynamics of the sustain pulses supplied by the magnetic escapement to the mechanical resonator. It will be noted that the anchor here forms a magneto-mechanical converter. Thus, these sustaining pulses can be shorter, that is to say intervene in very limited time intervals which no longer depend on the inertia of the vortex. These remarkable characteristics make it possible to improve the precision of the rate of the watch movement and in particular to improve the isochronism of the mechanical resonators formed by a sprung balance. In addition, they make it possible to arrange in the tourbillon mechanical resonators having a high quality factor, in particular a sprung balance having a natural frequency of oscillation much higher than that of a conventional sprung balance for a conventional tourbillon. , in particular a natural frequency above 5 Hz.

L'échappement magnétique selon la présente invention permet donc de dissocier temporellement la transmission périodique d'une certaine quantité d'énergie du barillet à l'échappement magnétique, qui est agencé pour l'accumuler momentanément, et la transmission de cette énergie accumulée de l'échappement magnétique au résonateur mécanique.The magnetic escapement according to the present invention therefore makes it possible to temporally dissociate the periodic transmission of a certain quantity of energy from the barrel to the magnetic escapement, which is arranged to accumulate it momentarily, and the transmission of this accumulated energy from the barrel. magnetic escapement with mechanical resonator.

Ainsi, grâce à l'échappement magnétique tel que sélectionné dans le cadre de l'invention pour équiper un tourbillon, les impulsions d'entretien fournies par l'échappement magnétique au résonateur mécanique peuvent être engendrées principalement sans rotation de la roue d'échappement et substantiellement de manière indépendante d'une telle rotation. Ainsi, l'inertie du rouage et l'inertie de la cage de tourbillon n'entravent plus la génération des impulsions d'entretien. Ce qui est important, c'est le caractère radial de la force qui intervient principalement pour générer chaque impulsion d'entretien après une phase d'accumulation d'énergie potentielle magnétique dans l'échappement magnétique, de sorte que le fait que la cage tourne ou pas ou seulement d'un petit angle est sensiblement sans conséquence sur la génération des impulsions d'entretien. De ce fait, le mécanisme à tourbillon équipé d'un échappement magnétique selon l'invention peut délivrer des impulsions d'entretien de courte durée et de relativement grande intensité.Thus, thanks to the magnetic escapement as selected in the context of the invention to equip a tourbillon, the sustaining pulses supplied by the magnetic escapement to the mechanical resonator can be generated mainly without rotation of the escape wheel and substantially independent of such rotation. Thus, the inertia of the gear train and the inertia of the tourbillon cage no longer hinder the generation of the maintenance pulses. What is important is the radial nature of the force which intervenes mainly to generate each sustaining pulse after a phase of accumulation of magnetic potential energy in the magnetic escapement, so that the fact that the cage rotates either not or only at a small angle is substantially inconsequential on the generation of sustain pulses. As a result, the tourbillon mechanism equipped with a magnetic escapement according to the invention can deliver sustain pulses of short duration and of relatively high intensity.

Dans un mode de réalisation avantageux, le résonateur mécanique comprend un balancier qui est pivoté magnétiquement dans la cage du tourbillon, laquelle comprend à cet effet deux paliers magnétiques. Cette variante particulière permet, en plus des divers avantages procurés par l'échappement magnétique sélectionné, de fortement limiter les différences de marche du résonateur mécanique entre les positions horizontales et les positions verticales (ces dernières étant moyennées grâce au tourbillon). On comprend donc qu'il devient ainsi possible d'obtenir une montre à tourbillon ayant une très grande précision de marche.In an advantageous embodiment, the mechanical resonator comprises a balance which is pivoted magnetically in the tourbillon cage, which for this purpose comprises two magnetic bearings. This particular variant makes it possible, in addition to the various advantages provided by the selected magnetic escapement, to greatly limit the operating differences of the mechanical resonator between the horizontal positions and the vertical positions (the latter being averaged by means of the tourbillon). It will therefore be understood that it thus becomes possible to obtain a tourbillon watch having very high operating precision.

Brève description des figuresBrief description of the figures

L'invention sera décrite ci-après de manière plus détaillée à l'aide des dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

  • La Figure 1 est une vue partielle en perspective d'un premier mode de réalisation d'une pièce d'horlogerie selon l'invention, laquelle est formée par un mouvement équipé d'un tourbillon;
  • La Figure 2 est une vue partielle de dessus du mouvement horloger de la Figure 1 avec quelques éléments enlevés pour faciliter la vue d'éléments importants pour l'invention;
  • La Figure 3 est une vue en coupe du mouvement horloger de la Figure 1, selon le trait de coupe III-III indiqué à la Figure 2;
  • La Figure 4 est une vue en coupe du mouvement horloger de la Figure 1, selon le trait de coupe IV-IV indiqué à la Figure 2;
  • La Figure 5 donne les deux courbes de l'énergie potentielle magnétique dans l'échappement magnétique de la Figure 2, en fonction de la position angulaire du mobile d'échappement, pour l'arrêtoir positionné respectivement dans l'une et l'autre de ses deux positions de repos;
  • Les Figures 6 à 9 représentent partiellement le résonateur mécanique et l'échappement magnétique, incorporés dans le tourbillon du premier mode de réalisation, dans quatre positions différentes lors d'une alternance du résonateur mécanique;
  • La Figure 10 est une coupe partielle, similaire à celle de la Figure 3, d'un deuxième mode de réalisation de l'invention;
  • La Figure 11 est une représentation schématique partielle d'une première variante du premier ou deuxième mode de réalisation, dans laquelle seuls le balancier et l'échappement magnétique incorporés dans le tourbillon ont été représentés;
  • La Figure 12 montre une deuxième variante de réalisation du premier ou deuxième mode de réalisation de l'invention;
  • La Figure 13 montre le résonateur mécanique et l'échappement magnétique, porté par la cage d'un tourbillon, d'un troisième mode de réalisation de l'invention; et
  • La Figure 14 représente, pour l'échappement magnétique de la Figure 13, des courbes d'énergie potentielle magnétique définie par la structure magnétique et alternativement deux éléments magnétiques fixés au balancier et interagissant avec la structure magnétique.
The invention will be described below in more detail with the aid of the appended drawings, given by way of non-limiting examples, in which:
  • The Figure 1 is a partial perspective view of a first embodiment of a timepiece according to the invention, which is formed by a movement equipped with a tourbillon;
  • The Figure 2 is a partial top view of the watch movement of the Figure 1 with some elements removed to facilitate the view of elements important to the invention;
  • The Figure 3 is a sectional view of the watch movement of the Figure 1 , according to the cut line III-III indicated in Figure 2 ;
  • The Figure 4 is a sectional view of the watch movement of the Figure 1 , according to the cutting line IV-IV indicated in Figure 2 ;
  • The Figure 5 gives the two curves of the magnetic potential energy in the magnetic escapement of the Figure 2 , depending on the angular position of the exhaust mobile, for the stopper positioned respectively in one and the other of its two rest positions;
  • The Figures 6 to 9 partially show the mechanical resonator and the magnetic escapement, incorporated in the tourbillon of the first embodiment, in four different positions during an alternation of the mechanical resonator;
  • The Figure 10 is a partial cut, similar to that of the Figure 3 , of a second embodiment of the invention;
  • The Figure 11 is a partial schematic representation of a first variant of the first or second embodiment, in which only the balance and the magnetic escapement incorporated in the tourbillon have been shown;
  • The Figure 12 shows a second variant embodiment of the first or second embodiment of the invention;
  • The Figure 13 shows the mechanical resonator and the magnetic escapement, carried by the cage of a tourbillon, of a third embodiment of the invention; and
  • The Figure 14 represents, for the magnetic escapement of the Figure 13 , curves of magnetic potential energy defined by the magnetic structure and alternately two magnetic elements attached to the balance and interacting with the magnetic structure.

Description détaillée de l'inventionDetailed description of the invention

A l'aide des Figures 1 à 11, on décrira par la suite un premier mode de réalisation de l'invention et en particulier le fonctionnement spécifique de l'échappement magnétique incorporé dans le tourbillon de l'invention.Using the Figures 1 to 11 , a first embodiment of the invention and in particular the specific operation of the magnetic escapement incorporated in the tourbillon of the invention will be described below.

La pièce d'horlogerie comprend un mouvement horloger 2 équipé d'un tourbillon 4 comprenant une cage 6 agencée tournante autour d'un axe principal 8, d'un barillet 10 agencé pour accumuler de l'énergie mécanique et d'un rouage 11 reliant cinématiquement la cage du tourbillon au barillet. Le tourbillon porte un résonateur mécanique14, formé d'un balancier 16 et d'un spiral 15, et un dispositif d'échappement 18. Le tourbillon est pivoté entre une platine 3 et un pont 9. Le dispositif d'échappement est constitué par un échappement magnétique qui comprend un mobile d'échappement 20 formé d'un pignon d'échappement 24 et d'une première roue d'échappement 22, cette dernière comprenant une première structure magnétique 26 ayant une forme générale annulaire et centrée sur un axe de rotation 28 du mobile d'échappement.The timepiece comprises a horological movement 2 equipped with a tourbillon 4 comprising a cage 6 arranged to rotate around a main axis 8, a barrel 10 arranged to accumulate mechanical energy and a gear 11 connecting kinematically the tourbillon cage to the barrel. The tourbillon carries a mechanical resonator 14, formed of a balance 16 and a hairspring 15, and an escapement device 18. The tourbillon is pivoted between a plate 3 and a bridge 9. The escape device consists of a magnetic escapement which comprises an escapement mobile 20 formed of an escapement pinion 24 and a first escape wheel 22, the latter comprising a first magnetic structure 26 having a generally annular shape and centered on an axis of rotation 28 of the escape unit.

L'échappement magnétique comprend un arrêtoir 30 qui couple momentanément, dans chaque alternance de l'oscillation du résonateur mécanique 14, ce résonateur mécanique au mobile d'échappement 20. Cet arrêtoir et le mobile d'échappement sont pivotés entre une partie de la cage 6 et un pont d'échappement 19 porté par cette cage. L'arrêtoir subit, lorsque le résonateur mécanique oscille, un mouvement de va-et-vient entrecoupé de phases de repos où l'arrêtoir est à l'arrêt alternativement dans deux positions de repos où il est respectivement en butée contre deux goupilles 36 et 37.The magnetic escapement comprises a stopper 30 which momentarily couples, in each alternation of the oscillation of the mechanical resonator 14, this mechanical resonator to the exhaust mobile 20. This stopper and the exhaust mobile are pivoted between a part of the cage. 6 and an exhaust bridge 19 carried by this cage. The stopper undergoes, when the mechanical resonator oscillates, a back and forth movement interspersed with rest phases where the stopper is stopped alternately in two rest positions where it is respectively in abutment against two pins 36 and 37.

Dans la variante représentée, l'arrêtoir est formé par une ancre qui porte deux éléments magnétiques 32 et 33 chacun agencés de manière à présenter un mouvement oscillant qui est synchrone avec l'oscillation du résonateur mécanique et qui est orienté principalement selon une direction radiale relativement à l'axe de rotation 28 de l'ancre. Les deux éléments magnétiques sont similaires et situés d'un même côté de la roue d'échappement 22. Ils sont tous deux couplés simultanément de manière semblable à la première structure magnétique, laquelle est agencée de manière que ces deux éléments magnétiques sont couplés avec elle de manière continue (ou quasi continue) et de manière que leurs couplages magnétiques respectifs s'additionnent. On décrira par la suite plus en détails le fonctionnement de cet échappement magnétique.In the variant shown, the stopper is formed by an anchor which carries two magnetic elements 32 and 33 each arranged so as to present an oscillating movement which is synchronous with the oscillation of the mechanical resonator and which is oriented mainly in a radial direction relative to the axis of rotation 28 of the anchor. The two magnetic elements are similar and located on the same side of the escape wheel 22. They are both coupled simultaneously in a similar manner to the first magnetic structure, which is arranged so that these two magnetic elements are coupled with it. continuously (or almost continuously) and so that their respective magnetic couplings add up. The operation of this magnetic escapement will be described in more detail below.

Dans la variante représentée, le mobile d'échappement 20 comprend une deuxième roue 38 comprenant une deuxième structure magnétique 40 qui présente une symétrie planaire avec la première structure magnétique 26 et qui est située à distance de cette dernière de manière à permettre aux deux éléments magnétiques 32 et 33 d'être situés, lorsqu'ils oscillent, au moins momentanément entre les première et deuxième structures magnétiques. Les deux éléments magnétiques 32 et 33 interagissent, de manière similaire, simultanément avec les première et deuxième structures magnétiques, de sorte que les effets s'additionnent. Les deux éléments magnétiques sont couplés avec les première et deuxième structures magnétiques de sorte que le mobile d'échappement effectue une rotation d'une période angulaire prédéterminée à chaque période d'oscillation du balancier 16. Les première et deuxième structures magnétiques et sont formées respectivement d'un premier aimant permanent et d'un deuxième aimant permanent qui présentent chacun une aimantation axiale et une même polarité. Les deux éléments magnétiques de l'ancre sont formés chacun par un aimant permanent présentant une aimantation axiale et une polarité inversée relativement aux premier et deuxième aimants, de sorte à subir une force de répulsion magnétique avec chacune des deux structures magnétiques.In the variant shown, the escapement mobile 20 comprises a second wheel 38 comprising a second magnetic structure 40 which has planar symmetry with the first magnetic structure 26 and which is located at a distance from the latter so as to allow the two magnetic elements 32 and 33 to be located, when they oscillate, at least momentarily between the first and second magnetic structures. The two magnetic elements 32 and 33 interact, in a similar manner, simultaneously with the first and second magnetic structures, so that the effects add up. The two magnetic elements are coupled with the first and second magnetic structures so that the escapement mobile performs a rotation of a predetermined angular period at each period of oscillation of the balance 16. The first and second magnetic structures and are formed respectively. a first permanent magnet and a second permanent magnet which each have an axial magnetization and the same polarity. The two magnetic elements of the anchor are each formed by a permanent magnet having axial magnetization and reverse polarity relative to the first and second magnets, so as to undergo a magnetic repulsion force with each of the two magnetic structures.

De préférence, les première et deuxième roues 22 et 38 portent respectivement une première structure ferromagnétique 44 et une deuxième structure ferromagnétique 46 qui recouvrent respectivement les première et deuxième structures magnétiques des deux côtés externes de l'ensemble constitué de ces première et deuxième structures magnétiques, de manière à former en association avec quelques goupilles de fixation (voir Figure 3) s'élevant de chacune des deux structures ferromagnétiques, un certain blindage des première et deuxième structures magnétiques et de chaque élément magnétique situé entre celles-ci et ainsi couplé magnétiquement avec elles. Les deux structures ferromagnétiques forment respectivement deux supports pour les deux structures magnétiques. Dans la variante représentée, puisque les deux éléments magnétiques sont continument couplés avec les première et deuxième structures magnétiques et restent donc situés entre les deux structures ferromagnétiques, l'échappement magnétique est partiellement blindé. De plus, les champs magnétiques des structures magnétiques et des éléments magnétiques sont confinés par les première et deuxième structures ferromagnétiques.Preferably, the first and second wheels 22 and 38 respectively carry a first ferromagnetic structure 44 and a second ferromagnetic structure 46 which respectively cover the first and second magnetic structures on the two outer sides of the assembly consisting of these first and second magnetic structures, so as to form in combination with a few fixing pins (see Figure 3 ) rising from each of the two ferromagnetic structures, some shielding of the first and second magnetic structures and of each magnetic element located between them and thus magnetically coupled with them. The two ferromagnetic structures respectively form two supports for the two magnetic structures. In the variant shown, since the two magnetic elements are continuously coupled with the first and second magnetic structures and therefore remain located between the two ferromagnetic structures, the magnetic escapement is partially shielded. In addition, the magnetic fields of magnetic structures and magnetic elements are confined by the first and second ferromagnetic structures.

De manière générale, l'échappement magnétique est agencé de manière à présenter, en fonctionnement normal du mouvement horloger, alternativement des phases d'accumulation d'énergie, provenant d'une conversion d'énergie mécanique fournie par le barillet en énergie potentielle magnétique dans l'échappement magnétique, et des phases de transfert d'énergie accumulée dans l'échappement magnétique au résonateur magnétique. Chaque phase d'accumulation d'énergie et la phase de transfert d'énergie qui lui succède interviennent au cours d'un intervalle de temps égal à la moitié d'une période d'oscillation du résonateur mécanique.In general, the magnetic escapement is arranged so as to present, in normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator. Each energy accumulation phase and the energy transfer phase which follows it occur during a time interval equal to half of a period of oscillation of the mechanical resonator.

Dans le cadre du premier mode de réalisation, l'agencement de l'échappement magnétique mentionné au paragraphe précédent et le fonctionnement de cet échappement magnétique seront décrits ci-après à l'aide des Figures 5 à 9. La Figure 5 montre deux courbes d'énergie potentielle magnétique 66 et 68, respectivement pour les deux positions de repos de l'ancre 30 où cette dernière est respectivement en appui contre les butées 36 et 37, qui correspondent chacune à l'énergie potentielle magnétique EPM dans l'échappement magnétique en fonction de l'angle θ donnant la position angulaire du mobile d'échappement 20 et donc des structures magnétiques 26 et 40 (on notera que cet angle θ est mesuré selon le sens de rotation du mobile d'échappement, à savoir le sens horaire dans l'exemple représenté aux Figures 6 à 9). Un échappement magnétique du type sélectionné pour le premier mode de réalisation de l'invention est divulgué dans la demande de brevet EP 3 208 667 A1 . On décrira ci-après son fonctionnement et les caractéristiques particulières à ce fonctionnement qui sont exploitées dans le cadre de la présente invention. Les Figures 6 à 9 montrent quatre instants successifs d'une alternance du balancier 16 et d'une alternance de l'ancre 30 qui est couplée momentanément à ce balancier.In the context of the first embodiment, the arrangement of the magnetic escapement mentioned in the previous paragraph and the operation of this magnetic escapement will be described below with the aid of the Figures 5 to 9 . The Figure 5 shows two energy curves magnetic potential 66 and 68, respectively for the two rest positions of the anchor 30 where the latter is respectively resting against the stops 36 and 37, which each correspond to the magnetic potential energy E PM in the magnetic escapement in function of the angle θ giving the angular position of the exhaust mobile 20 and therefore of the magnetic structures 26 and 40 (it will be noted that this angle θ is measured according to the direction of rotation of the exhaust mobile, namely the clockwise direction in the example shown in Figures 6 to 9 ). A magnetic escapement of the type selected for the first embodiment of the invention is disclosed in the patent application EP 3 208 667 A1 . Its operation and the characteristics specific to this operation which are used in the context of the present invention will be described below. The Figures 6 to 9 show four successive instants of an alternation of the balance 16 and an alternation of the anchor 30 which is momentarily coupled to this balance.

Premièrement, les deux structures magnétiques 26 et 40 définissent ensemble, dans chacune des deux positions de repos de l'ancre 30, des portions croissantes d'énergie potentielle magnétique PC1, respectivement PC2 pour les éléments magnétiques 32 et 33 de l'ancre 30 qui sont tous deux couplés, ici continument, aux deux structures magnétiques. Dans la variante décrite, ces portions croissantes sont définies substantiellement par une piste magnétique 58 que comprend chacune des deux structures magnétiques 26 et 40, cette piste magnétique présentant un tracé particulier, alternativement rentrant et sortant relativement à un cercle géométrique médian. Lors d'un fonctionnement normal du mouvement horloger, ce tracé particulier est adapté à une accumulation d'énergie potentielle magnétique lors d'une rotation du mobile d'échappement sur une certaine distance angulaire, alors que l'ancre est alternativement dans ses deux positions de repos. Chaque piste magnétique 58 est formée par l'aimant permanent qui constitue la structure magnétique correspondante, cet aimant permanent étant agencé en répulsion magnétique avec les aimants permanents qui constituent les deux éléments magnétiques 32 et 33, comme déjà décrit.First, the two magnetic structures 26 and 40 together define, in each of the two rest positions of the anchor 30, increasing portions of magnetic potential energy PC1, respectively PC2 for the magnetic elements 32 and 33 of the anchor 30 which are both coupled, here continuously, to the two magnetic structures. In the variant described, these increasing portions are defined substantially by a magnetic track 58 which each of the two magnetic structures 26 and 40 comprises, this magnetic track having a particular line, alternately entering and exiting relative to a median geometric circle. During normal operation of the watch movement, this particular line is adapted to an accumulation of potential magnetic energy during a rotation of the escapement mobile over a certain angular distance, while the anchor is alternately in its two positions. rest. Each magnetic track 58 is formed by the permanent magnet which constitutes the corresponding magnetic structure, this permanent magnet being arranged in magnetic repulsion with the permanent magnets which constitute the two magnetic elements 32 and 33, as already described.

Les portions croissantes PC1 et PC2 définissent ainsi des rampes angulaires d'accumulation d'énergie potentielle magnétique dans l'échappement magnétique. Au cours de chaque phase d'accumulation d'énergie, les deux structures magnétiques 26, 40 et donc le mobile d'échappement subissent un couple de force magnétique (schématisé aux Figures 8 et 9 par deux flèches tangentielles FT) ayant un sens opposé au sens de rotation du mobile d'échappement (donné sur ces figures par une flèche circulaire), c'est-à-dire opposé à un couple d'entrainement appliqué par le barillet via la cage du tourbillon au mobile d'échappement, et une intensité inférieure à celle de ce couple d'entraînement, de sorte que le mobile d'échappement tourne d'un certain angle pour permettre l'accumulation d'une certaine énergie potentielle magnétique dans l'échappement magnétique. On remarquera que les deux éléments magnétiques 32 et 33 subissent, en réaction, chacun une force magnétique FM1, respectivement FM2 ayant, d'une part, une composante tangentielle non nulle relativement à l'axe de rotation du mobile d'échappement (c'est-à-dire une composante tangente en tous points à un cercle géométrique centré sur l'axe de rotation 28). D'autre part, ces forces magnétiques FM1 et FM2 sont orientées de manière que l'ancre subit aussi un couple de force de magnétique, lequel maintient en appui la fourchette 52 contre la goupille d'arrêt 36, respectivement 37 selon que l'ancre est dans l'une au l'autre de ses deux positions de repos dans la phase d'accumulation d'énergie considérée. A la Figure 8, laquelle montre une situation de l'échappement magnétique sensiblement au début d'une phase d'accumulation d'énergie, les forces magnétiques FM1 et FM2 sont orientées de sorte que le couple de force magnétique appliqué à l'ancre est plus important que le couple de force magnétique appliqué à cette ancre en fin d'une phase d'accumulation d'énergie (situation correspondant à celle de la Figure 6, mais déjà visible à la Figure 9 montrant une situation intermédiaire de l'échappement magnétique lors d'une phase d'accumulation d'énergie).The increasing portions PC1 and PC2 thus define angular ramps for the accumulation of magnetic potential energy in the magnetic escapement. During each energy accumulation phase, the two magnetic structures 26, 40 and therefore the exhaust mobile undergo a torque of magnetic force (shown diagrammatically in Figures 8 and 9 by two tangential arrows FT) having a direction opposite to the direction of rotation of the escapement mobile (given in these figures by a circular arrow), that is to say opposite to a driving torque applied by the barrel via the tourbillon cage to the exhaust mobile, and an intensity less than that of this driving torque, so that the exhaust mobile rotates through a certain angle to allow the accumulation of a certain magnetic potential energy in the magnetic exhaust. It will be noted that the two magnetic elements 32 and 33 undergo, in reaction, each a magnetic force FM1, respectively FM2 having, on the one hand, a non-zero tangential component relative to the axis of rotation of the exhaust mobile (c ' ie a component tangent at all points to a geometric circle centered on the axis of rotation 28). On the other hand, these magnetic forces FM1 and FM2 are oriented so that the anchor also undergoes a torque of magnetic force, which maintains the fork 52 in support against the stop pin 36, respectively 37 depending on whether the anchor is in one to the other of its two rest positions in the phase of energy accumulation considered. To the Figure 8 , which shows a situation of the magnetic escapement substantially at the start of an energy accumulation phase, the magnetic forces FM1 and FM2 are oriented so that the torque of magnetic force applied to the anchor is greater than the torque of magnetic force applied to this anchor at the end of an energy accumulation phase (situation corresponding to that of the Figure 6 , but already visible at the Figure 9 showing an intermediate situation of the magnetic escapement during an energy accumulation phase).

Lors de chaque phase d'accumulation d'énergie, on peut dire que les deux éléments magnétiques 32 et 33 de l'ancre, qui sont couplés aux deux structures magnétiques 26 et 40, gravissent ensemble une des rampes angulaires d'accumulation d'énergie potentielle magnétique PC1 ou PC2, par une certaine rotation du mobile d'échappement, alors que l'ancre 30 est dans une phase de repos. Cependant, on notera qu'il s'agit d'une énergie d'interaction magnétique de sorte que c'est l'ensemble 'structures magnétiques et éléments magnétiques' qui gravit les rampes angulaires d'accumulation d'énergie potentielle magnétique. Dans le cas d'un repère de coordonnées lié au mouvement horloger, c'est de fait plutôt le mobile d'échappement qui gravit les portions croissantes PC1 et PC2 des courbes d'énergie potentielles 66 et 68, puisqu'il tourne alors que les éléments magnétiques sont immobiles. Néanmoins, si on considère un repère de coordonnées associé au mobile d'échappement et fixe relativement à celui-ci, alors c'est bien les deux éléments magnétiques qui gravissent les portions croissantes. On comprend donc que ceci est équivalent.During each energy accumulation phase, it can be said that the two magnetic elements 32 and 33 of the anchor, which are coupled to the two magnetic structures 26 and 40, together climb one of the angular energy accumulation ramps. magnetic potential PC1 or PC2, by a certain rotation of the escape mobile, while the anchor 30 is in a rest phase. However, it will be noted that this is an energy of magnetic interaction so that it is the whole 'magnetic structures and magnetic elements' which climbs the angular ramps of accumulation of magnetic potential energy. In the case of a coordinate system linked to the watch movement, it is in fact rather the escapement mobile which climbs the increasing portions PC1 and PC2 of the potential energy curves 66 and 68, since it rotates while the magnetic elements are stationary. However, if we consider a coordinate system associated with the escape mobile and fixed relatively to the latter, then it is indeed the two magnetic elements which climb the increasing portions. We therefore understand that this is equivalent.

A la Figure 5, on voit que l'échappement magnétique est agencé de manière que les portions croissantes PC1 de la première courbe d'énergie potentielle magnétique 66 sont respectivement décalées d'une demi-période angulaire P/2 relativement aux portions croissantes PC2 de la deuxième courbe d'énergie potentielle magnétique 68. Ensuite, les deux structures magnétiques définissent pour les deux éléments magnétiques 32 et 33, dans chacune des deux positions de repos de l'ancre, des barrières magnétiques BM1, respectivement BM2 qui succèdent aux portions croissantes PC1, respectivement PC2. Les barrières magnétiques BM1 et BM2 d'une courbe d'énergie potentielle magnétique 66, 68 sont formées respectivement par des plages aimantées 60 et 62 qui sont situées alternativement de part et d'autre de la piste aimantée 58. Chaque barrière magnétique BM1 est ainsi située angulairement entre deux barrières magnétiques successives BM2 (et donc inversement).To the Figure 5 , it can be seen that the magnetic escapement is arranged so that the increasing portions PC1 of the first magnetic potential energy curve 66 are respectively offset by an angular half-period P / 2 relative to the increasing portions PC2 of the second curve d 'magnetic potential energy 68. Then, the two magnetic structures define for the two magnetic elements 32 and 33, in each of the two rest positions of the anchor, magnetic barriers BM1, respectively BM2 which succeed the increasing portions PC1, respectively PC2 . The magnetic barriers BM1 and BM2 of a magnetic potential energy curve 66, 68 are formed respectively by magnetized areas 60 and 62 which are located alternately on either side of the magnetic track 58. Each barrier magnetic BM1 is thus located angularly between two successive magnetic barriers BM2 (and therefore vice versa).

Plus précisément, dans la variante décrite, deux barrières magnétiques successives BM1 ou BM2 sont décalées angulairement d'une période angulaire P. Les deux éléments magnétiques de l'ancre sont décalés angulairement, relativement à l'axe de rotation 28, sensiblement d'un angle égal à 3P/2 (généralement d'un nombre impair de demi-période P/2). Dans chacune des deux positions de repos de l'ancre, lorsqu'un des deux éléments magnétiques est couplé avec une partie sortante de la piste 58, l'autre est couplé avec une partie rentrante de cette piste. Ensuite, lorsque le premier élément magnétique se présente devant une plage aimantée externe 60, le second se présente devant une plage aimantée interne 62, et inversement.More precisely, in the variant described, two successive magnetic barriers BM1 or BM2 are angularly offset by an angular period P. The two magnetic elements of the anchor are angularly offset, relative to the axis of rotation 28, substantially by one. angle equal to 3P / 2 (generally an odd number of half-periods P / 2). In each of the two anchor rest positions, when one of the two magnetic elements is coupled with an exiting part of the track 58, the other is coupled with a reentrant part of this track. Then, when the first magnetic element presents itself in front of an external magnetized pad 60, the second presents itself in front of an internal magnetized pad 62, and vice versa.

Lors d'un fonctionnement normal du mouvement horloger, les barrières magnétiques sont agencées de manière à engendrer, sur les deux éléments magnétiques ayant gravis une rampe angulaire précédente, un couple de force magnétique relativement important qui est opposé au couple d'entraînement appliqué par le barillet au mobile d'échappement, pour pouvoir ainsi stopper l'avance angulaire du mobile d'échappement. Pour un couple de force mécanique donné, le mobile d'échappement s'arrête finalement à une position angulaire sensiblement déterminée (situation correspondant à la Figure 6), correspondant sur la Figure 5 aux points stables E1, E3, E2N+1, avec N > 0, alternativement sur les courbes 66 et 68. On notera que de faibles rebonds peuvent avoir lieu de sorte que le mobile d'échappement subit une certaine oscillation autour de ces points stables, laquelle s'amortit assez rapidement sous l'action des frottements usuels aux mobiles horlogers. Dans une variante préférée, le mouvement horloger 2 comprend une fusée 12 d'égalisation du couple de force fourni par le barillet 10 à la cage de tourbillon 6, de sorte que le mobile d'échappement est soumis à un couple sensiblement constant dans la plage de fonctionnement utile de la pièce d'horlogerie. Ainsi, dans toute cette plage de fonctionnement, les points stables susmentionnés correspondent à une énergie magnétique potentielle de même valeur.During normal operation of the watch movement, the magnetic barriers are arranged so as to generate, on the two magnetic elements having climbed a preceding angular ramp, a relatively large torque of magnetic force which is opposed to the driving torque applied by the barrel to the escape wheel set, so as to be able to stop the angular advance of the escape wheel set. For a given torque of mechanical force, the exhaust mobile finally stops at a substantially determined angular position (situation corresponding to the Figure 6 ), corresponding on the Figure 5 at the stable points E 1 , E 3 , E 2N + 1 , with N> 0, alternately on curves 66 and 68. It will be noted that weak rebounds can take place so that the exhaust mobile undergoes a certain oscillation around these stable points, which amortizes fairly quickly under the action of the usual friction with mobile watchmakers. In a preferred variant, the watch movement 2 comprises a rocket 12 for equalizing the torque supplied by the barrel 10 to the tourbillon cage 6, so that the escapement mobile is subjected to a substantially constant torque in the cylinder. useful operating range of the timepiece. Thus, throughout this operating range, the above-mentioned stable points correspond to a potential magnetic energy of the same value.

Ensuite, au cours de chaque phase de transfert d'énergie, les deux éléments magnétiques 32 et 33 subissent chacun une force magnétique radiale FR1 et FR2 (situation correspondant à la Figure 7), relativement à l'axe de rotation 28 du mobile d'échappement, au cours d'une alternance de son mouvement oscillant et dans le sens de ce mouvement oscillant durant cette alternance. On notera que cette force magnétique radiale est généralement une composante radiale de la force magnétique totale s'exerçant sur chacun des éléments magnétiques. On remarquera que le mouvement oscillant de chacun des éléments magnétiques est, dans la variante préférée qui est représentée, sensiblement radial relativement à l'axe de rotation 28 du mobile d'échappement et donc des structures magnétiques 26 et 40 qui sont globalement centrées sur cet axe de rotation. L'axe de rotation de l'ancre est positionné à cet effet dans le mouvement horloger. Les forces magnétiques, agissant respectivement sur les éléments magnétiques de l'ancre, qui fournissent une énergie mécanique à cette ancre, sous forme d'un travail d'un couple de force magnétique, sont donc ici substantiellement les composantes radiales FR1, FR2, nommées aussi forces magnétiques radiales, des forces magnétiques totales respectives.Then, during each energy transfer phase, the two magnetic elements 32 and 33 each undergo a radial magnetic force FR1 and FR2 (situation corresponding to the Figure 7 ), relative to the axis of rotation 28 of the exhaust mobile, during an alternation of its oscillating movement and in the direction of this oscillating movement during this alternation. It will be noted that this radial magnetic force is generally a radial component of the total magnetic force exerted on each of the magnetic elements. It will be noted that the oscillating movement of each of the magnetic elements is, in the preferred variant which is shown, substantially radial relative to the axis of rotation 28 of the exhaust mobile and therefore of the magnetic structures 26 and 40 which are generally centered on this rotation axis. The axis of rotation of the anchor is positioned for this purpose in the watch movement. The magnetic forces, acting respectively on the magnetic elements of the anchor, which provide mechanical energy to this anchor, in the form of a work of a couple of magnetic force, are therefore here substantially the radial components FR1, FR2, called also radial magnetic forces, respective total magnetic forces.

Comme dans un échappement mécanique classique à ancre suisse, chaque alternance de l'ancre 30 est débutée par un entraînement initial de cette ancre par le balancier via une cheville 50 (goupille ayant un profil de disque tronqué) qui vient se placer entre les deux cornes de la fourchette 52 de l'ancre. Cette phase initiale permet aux éléments magnétiques 32 et 33 de subir chacun un déplacement radial initial avant qu'ils ne subissent, dans une phase suivante de l'alternance considérée de leur mouvement oscillant, une chute d'énergie potentielle magnétique de sorte que l'échappement magnétique subit globalement une diminution d'énergie potentielle magnétique, référencée D1 et D2 à la Figure 5, au cours de chaque alternance de l'oscillation du balancier 16 et par conséquent de chaque alternance du mouvement oscillant de l'ancre 30. Lors d'une telle alternance, l'ancre passe d'une position de repos à l'autre de sorte que l'énergie potentielle magnétique dans l'échappement magnétique varie en passant d'une situation décrite par la courbe 66 à une situation décrite par la courbe 68 ou inversement, selon que l'ancre est initialement dans l'une ou l'autre de ses deux positions de repos au commencement de l'alternance considérée.As in a classic mechanical escapement with Swiss lever, each alternation of the anchor 30 is started by an initial drive of this anchor by the balance via a pin 50 (pin having a truncated disc profile) which is placed between the two horns. of the fork 52 of the anchor. This initial phase allows the magnetic elements 32 and 33 to each undergo an initial radial displacement before they undergo, in a following phase of the considered alternation of their oscillating movement, a drop in magnetic potential energy so that the magnetic escapement undergoes an overall decrease in potential energy magnetic, referenced D1 and D2 at the Figure 5 , during each alternation of the oscillation of the balance 16 and consequently of each alternation of the oscillating movement of the anchor 30. During such an alternation, the anchor passes from one rest position to the other of so that the magnetic potential energy in the magnetic escapement varies from a situation described by curve 66 to a situation described by curve 68 or vice versa, depending on whether the anchor is initially in one or the other of its two rest positions at the beginning of the considered alternation.

L'agencement de l'échappement magnétique décrit précédemment, duquel découle le profil de chacune des deux courbes 66 et 68, permet donc à cet échappement magnétique de convertir en énergie mécanique de l'énergie potentielle magnétique accumulée dans la phase d'accumulation d'énergie précédente pour la fournir à l'ancre sous forme d'un couple de force qui travaille alors que l'ancre tourne. Ainsi, l'ancre devient entraîneuse et fournit une impulsion d'énergie au balancier via sa fourchette 50, comme dans un échappement mécanique classique, pour entretenir l'oscillation du balancier-spiral. Ce qui est remarquable dans l'échappement magnétique sélectionné dans le cadre de l'invention, c'est que le transfert d'énergie peut intervenir sans aucune rotation du mobile d'échappement, comme représenté à la Figure 5 pour la variante particulière où le mobile d'échappement demeure à une même position angulaire lors de chaque alternance de l'ancre, l'énergie potentielle magnétique en fin d'alternance correspondant aux points E2, E4, E2N avec N > 0, alternativement sur les courbes 68 et 66. On remarquera que selon le couple d'entraînement du barillet, l'inertie de la cage du tourbillon et l'agencement spécifique des structures magnétiques, le mobile d'échappement peut subir une petite rotation lors des alternances de l'ancre, notamment dans leur phase terminale. Une telle variante est également représentée à la Figure 5 où l'échappement magnétique se trouve en fin d'alternance aux points E2*, E4*, E2N* avec N > 0. L'important pour le type d'échappement magnétique sélectionné, ce n'est pas que la roue d'échappement tourne ou ne tourne pas durant la transmission d'une impulsion d'énergie au résonateur mécanique, mais c'est qu'un certain déplacement angulaire de celle-ci ne soit pas nécessaire pour déclencher cette impulsion d'énergie, une fois que le balancier est couplé mécaniquement à l'ancre via sa fourchette, et pour la générer entièrement, de sorte que son intensité ne dépend pas de l'inertie des éléments entre le barillet et le mobile d'échappement, en particulier pas de l'inertie de la cage du tourbillon.The arrangement of the magnetic escapement described above, from which derives the profile of each of the two curves 66 and 68, therefore allows this magnetic escapement to convert into mechanical energy the magnetic potential energy accumulated in the accumulation phase of previous energy to deliver it to the anchor in the form of a torque force that works as the anchor rotates. Thus, the anchor becomes driving and provides an energy pulse to the balance via its fork 50, as in a conventional mechanical escapement, to maintain the oscillation of the balance spring. What is remarkable in the magnetic escapement selected in the context of the invention is that the energy transfer can take place without any rotation of the escapement mobile, as shown in Figure 5 for the particular variant where the escape mobile remains at the same angular position during each alternation of the anchor, the magnetic potential energy at the end of the alternation corresponding to the points E 2 , E 4 , E 2N with N> 0 , alternately on curves 68 and 66. It will be noted that depending on the driving torque of the barrel, the inertia of the tourbillon cage and the specific arrangement of the magnetic structures, the escape wheel may undergo a small rotation during alternations of the anchor, especially in their terminal phase. Such a variant is also shown on Figure 5 where the magnetic escapement is at the end of alternation at points E 2 *, E 4 *, E 2N * with N> 0. The important thing for the type of magnetic escapement selected, it is not that the escape wheel turns or does not turn during the transmission of an energy impulse to the mechanical resonator, but it is that a certain angular displacement of this one is not necessary to trigger this energy pulse, once the balance is mechanically coupled to the anchor via its fork, and to generate it entirely, so that its intensity does not depend on the inertia of the elements between the barrel and the mobile exhaust, in particular not of the inertia of the tourbillon cage.

On remarquera que l'échappement magnétique sélectionné dans le cadre du premier mode de réalisation est sensiblement à force constante ; c'est-à-dire que les diminutions d'énergie potentielle magnétique dans les phases de transmission d'énergie au balancier demeurent sensiblement constantes dans la plage de fonctionnement utile de la pièce d'horlogerie. C'est une propriété du système magnétique de l'échappement magnétique sélectionné (voir Figure 5). En effet, même en l'absence d'un dispositif d'égalisation du couple de force appliqué au mobile d'échappement par le barillet, les impulsions d'entretien fournies au résonateur mécanique dans ladite plage de fonctionnement utile (couples de force appliqués par le barillet au mobile d'échappement variant dans une plage de valeurs donnée) correspondent respectivement à des quantités d'énergie ayant des valeurs proches. La fusée 12 d'égalisation du couple de force fourni par le barillet à la cage de tourbillon / au mobile d'échappement sert donc ici à améliorer le rendement de l'entier du système (mouvement horloger).It will be noted that the magnetic escapement selected in the context of the first embodiment is substantially at constant force; that is to say that the decreases in magnetic potential energy in the phases of energy transmission to the balance remain substantially constant in the useful operating range of the timepiece. It is a property of the magnetic system of the selected magnetic escapement (see Figure 5 ). Indeed, even in the absence of a device for equalizing the force torque applied to the exhaust mobile by the barrel, the sustain pulses supplied to the mechanical resonator in said useful operating range (torque forces applied by the barrel to the escapement mobile varying within a given range of values) correspond respectively to quantities of energy having similar values. The spindle 12 for equalizing the torque supplied by the barrel to the tourbillon cage / to the escape wheel set therefore serves here to improve the efficiency of the entire system (watch movement).

De manière générale, dans le cadre du premier mode de réalisation, l'échappement magnétique sélectionné comprend un arrêtoir qui couple momentanément, dans chaque alternance de l'oscillation du résonateur mécanique, ce résonateur mécanique au mobile d'échappement, l'arrêtoir portant un élément magnétique ou une pluralité d'éléments magnétiques et subissant, lorsque le résonateur mécanique oscille, un mouvement de va-et-vient entrecoupé de phases de repos où l'arrêtoir est à l'arrêt alternativement dans deux positions de repos. Une structure magnétique ou plusieurs structures magnétiques définissent dans les deux positions de repos de l'arrêtoir respectivement une première courbe d'énergie potentielle magnétique et une deuxième courbe d'énergie potentielle magnétique, toutes deux en fonction de l'angle du mobile d'échappement et présentant chacune:

  • des portions croissantes pour l'interaction magnétique entre la structure magnétique ou les structures magnétiques et ledit élément magnétique ou l'ensemble des éléments magnétiques qui, parmi la pluralité des éléments magnétiques, sont couplés à la structure magnétique, respectivement aux structures magnétiques dans la position de repos correspondante de l'arrêtoir, ces portions croissantes étant configurées de manière à pouvoir être gravies cycliquement et périodiquement, lors d'un fonctionnement normal du mouvement horloger, par cet élément magnétique ou par cet ensemble d'éléments magnétiques, et
  • des barrières magnétiques qui suivent respectivement les portions croissantes dans la position de repos correspondante de l'arrêtoir, ces barrières magnétiques étant agencées de manière à pouvoir stopper une avance angulaire du mobile d'échappement alors que l'arrêtoir est dans cette position de repos correspondante.
In general, in the context of the first embodiment, the selected magnetic escapement comprises a stopper which momentarily couples, in each alternation of the oscillation of the mechanical resonator, this mechanical resonator to the exhaust mobile, the stopper carrying a magnetic element or a plurality of magnetic elements and undergoing, when the mechanical resonator oscillates, a back-and-forth movement interspersed with rest phases where the stopper is stopped alternately in two rest positions. A magnetic structure or several magnetic structures define in the two rest positions of the retainer respectively a first magnetic potential energy curve and a second magnetic potential energy curve, both as a function of the angle of the exhaust mobile and each presenting:
  • increasing portions for the magnetic interaction between the magnetic structure or magnetic structures and said magnetic element or the set of magnetic elements which, among the plurality of magnetic elements, are coupled to the magnetic structure, respectively to the magnetic structures in the position corresponding rest of the stopper, these increasing portions being configured so as to be able to be climbed cyclically and periodically, during normal operation of the watch movement, by this magnetic element or by this set of magnetic elements, and
  • magnetic barriers which respectively follow the increasing portions in the corresponding rest position of the stopper, these magnetic barriers being arranged so as to be able to stop an angular advance of the escape wheel set while the stopper is in this corresponding rest position .

Ensuite, les portions croissantes de la première courbe d'énergie potentielle magnétique sont respectivement décalées angulairement relativement aux portions croissantes de la deuxième courbe d'énergie potentielle magnétique, chaque barrière magnétique d'une des première et deuxième courbes d'énergie potentielle magnétique étant située angulairement entre deux barrières magnétiques successives de l'autre de ces première et deuxième courbes d'énergie potentielle magnétique.Then, the increasing portions of the first magnetic potential energy curve are respectively angularly offset relative to the increasing portions of the second magnetic potential energy curve, each magnetic barrier of one of the first and second magnetic potential energy curves being located angularly between two successive magnetic barriers on the other of these first and second magnetic potential energy curves.

De plus, l'échappement magnétique est agencé de manière que :

  • les phases d'accumulation d'énergie interviennent principalement et respectivement dans les phases de repos successives de l'arrêtoir,
  • lors de chaque phase d'accumulation d'énergie, ledit élément magnétique ou l'ensemble des éléments magnétiques, qui parmi la pluralité d'éléments magnétiques est alors couplé à la structure magnétique ou aux structures magnétiques, est susceptible de gravir au moins partiellement une des portions croissantes lors d'une certaine rotation du mobile d'échappement,
  • les portions croissantes des première et deuxième courbes d'énergie potentielle magnétique peuvent, lors d'un fonctionnement normal du mouvement horloger, être respectivement et alternativement gravies au moins partiellement lors de phases d'accumulation d'énergie successives.
In addition, the magnetic escapement is arranged so that:
  • the energy accumulation phases occur mainly and respectively in the successive resting phases of the retainer,
  • during each energy accumulation phase, said magnetic element or all of the magnetic elements, which among the plurality of magnetic elements is then coupled to the magnetic structure or to the magnetic structures, is capable of at least partially climbing one increasing portions during a certain rotation of the exhaust mobile,
  • the increasing portions of the first and second magnetic potential energy curves may, during normal operation of the watch movement, be respectively and alternately at least partially climbed during successive energy accumulation phases.

Finalement, l'échappement magnétique est en outre agencé de manière que :

  • les phases de transfert d'énergie interviennent respectivement dans les alternances successives du mouvement de va-et-vient de l'arrêtoir,
  • cet échappement magnétique subit, lors du fonctionnement normal du mouvement horloger, globalement une diminution d'énergie potentielle magnétique lors de chacune des alternances successives du mouvement de va-et-vient de l'arrêtoir, et
  • la diminution d'énergie potentielle magnétique dans l'échappement magnétique résulte principalement d'un travail de la force magnétique radiale exercée sur ledit élément magnétique ou sur chaque élément magnétique de l'ensemble des éléments magnétiques qui, parmi la pluralité d'éléments magnétiques, étaient couplés à la structure magnétique ou aux structures magnétiques lors d'une phase de repos précédente, ce travail de la force magnétique radiale étant ainsi fourni à l'arrêtoir qui est agencé pour le transmettre en majeure partie au résonateur mécanique, de sorte que ce résonateur mécanique peut recevoir une impulsion d'énergie mécanique dans chaque alternance du mouvement de va-et-vient de cet arrêtoir.
Finally, the magnetic escapement is further arranged so that:
  • the energy transfer phases occur respectively in the successive alternations of the back and forth movement of the stopper,
  • this magnetic escapement undergoes, during normal operation of the watch movement, an overall decrease in magnetic potential energy during each of the successive alternations of the back-and-forth movement of the stopper, and
  • the decrease in magnetic potential energy in the magnetic escapement results mainly from a work of the radial magnetic force exerted on said magnetic element or on each magnetic element of the set of magnetic elements which, among the plurality of magnetic elements, were coupled to the magnetic structure or to the magnetic structures during a previous resting phase, this work of the radial magnetic force being thus supplied to the stopper which is arranged to transmit it for the most part to the mechanical resonator, so that this mechanical resonator can receive a pulse of mechanical energy in each alternation of the back and forth movement of this stopper.

La variante du premier mode de réalisation représentée comprend six plages aimantées externes 60 formant autant de butées magnétiques pour arrêter momentanément la roue d'échappement et également six plages aimantées internes 62 formant aussi autant de butées magnétiques. On notera que le nombre de plages aimantées externes / internes peut être différents et de préférence supérieure. Ainsi dans une autre variante, le nombre de plages aimantées externes / internes est égale à dix ou douze. On notera encore que, dans une autre variante, il est prévu de n'avoir que des plages aimantées internes ou, de préférence, que des plages aimantées externes.The variant of the first embodiment shown comprises six external magnetized pads 60 forming as many magnetic stops to temporarily stop the escape wheel and also six internal magnetized pads 62 also forming as many magnetic stops. It will be noted that the number of external / internal magnetized pads may be different and preferably greater. Thus in another variant, the number of external / internal magnetized pads is equal to ten or twelve. It will also be noted that, in another variant, provision is made to have only internal magnetized pads or, preferably, only external magnetized pads.

Dans une variante avantageuse, représentée aux Figures 2 et 6 à 9, il est prévu une sécurité mécanique en cas de chocs ou autres fortes accélérations que peut subir l'échappement magnétique. Elle est obtenue par les dents 70 solidaires du mobile d'échappement agencés au niveau des bras 54 et 55 de l'ancre qui portent respectivement les deux aimants 32 et 33, ces dents étant susceptibles de coopérer avec deux doigts situés respectivement aux extrémités des deux bras. Dans chaque position de repos de l'ancre, si la barrière magnétique décrite précédemment n'exerce pas un couple d'arrêt suffisant pour empêcher au mobile d'échappement de ne pas la traverser, un des deux doigts vient alors en butée contre une des dents 70.In an advantageous variant, shown in Figures 2 and 6 to 9 , mechanical safety is provided in the event of shocks or other strong accelerations that the magnetic escapement may undergo. It is obtained by the teeth 70 integral with the escapement mobile arranged at the level of the arms 54 and 55 of the anchor which respectively carry the two magnets 32 and 33, these teeth being capable of cooperating with two fingers located respectively at the ends of the two. arm. In each rest position of the anchor, if the magnetic barrier described above does not exert a sufficient stopping torque to prevent the exhaust mobile from not crossing it, one of the two fingers then comes into abutment against one of the teeth 70.

Comme l'invention permet d'augmenter la fréquence d'oscillation du balancier-spiral, même de beaucoup, il est prévu à cet effet, notamment pour maintenir la vitesse angulaire de la cage de tourbillon à un tour par minute, que le tourbillon porte un mobile intermédiaire 74 dont la roue intermédiaire 76 engrène avec le pignon d'échappement 24 et dont le pignon intermédiaire 78 engrène avec la roue de seconde fixe 80 que comprend le mouvement horloger. Le mobile intermédiaire est un mobile réducteur de la fréquence de rotation du mobile d'échappement et est ici agencé de sorte que la cage du tourbillon effectue un tour sur elle-même par minute. Dans une variante avantageuse, la fréquence d'oscillation Fo du résonateur mécanique est supérieure à cinq Hertz (Fo > 5 Hz). Dans une variante de l'invention cette fréquence est sensiblement égale ou supérieure à 6 Hz (Fo >= 6Hz) et, dans une variante spécifique la fréquence d'oscillation du résonateur mécanique a une valeur située entre, y compris, huit Hertz et douze Hertz (8 Hz =< Fo =< 12 Hz). On notera qu'un mobile intermédiaire est déjà utile pour de plus petites fréquences d'oscillation du balancier-spiral, par exemple pour trois Hertz (Fo = 3 Hz), car le mobile d'échappement effectue dans l'exemple représenté un tour pour six périodes d'oscillation du balancier-spiral, ce qui correspond à une fréquence de rotation bien supérieure à celle d'une roue d'échappement dentée classique.As the invention makes it possible to increase the frequency of oscillation of the sprung balance, even greatly, it is provided for this purpose, in particular to maintain the angular speed of the tourbillon cage at one revolution per minute, which the tourbillon carries an intermediate mobile 74, the intermediate wheel 76 of which meshes with the escape pinion 24 and of which the intermediate pinion 78 meshes with the fixed seconds wheel 80 which the watch movement comprises. The intermediate wheel is a wheel that reduces the frequency of rotation of the escape wheel and is here arranged so that the tourbillon cage performs one revolution on itself per minute. In an advantageous variant, the oscillation frequency Fo of the mechanical resonator is greater than five Hertz (Fo> 5 Hz). In variant of the invention this frequency is substantially equal to or greater than 6 Hz (Fo> = 6Hz) and, in a specific variant, the oscillation frequency of the mechanical resonator has a value situated between, including, eight Hertz and twelve Hertz ( 8 Hz = <Fo = <12 Hz). It will be noted that an intermediate mobile is already useful for smaller oscillation frequencies of the sprung balance, for example for three Hertz (Fo = 3 Hz), because the escape mobile performs in the example shown one revolution for six periods of oscillation of the sprung balance, which corresponds to a frequency of rotation much higher than that of a conventional toothed escape wheel.

La fréquence de rotation FRot de la roue d'échappement est déterminée par la fréquence du résonateur mécanique Fo et par le nombre de plages aimantées externes 60, respectivement du nombre de plages aimantées internes 62. Dans une variante générale, la fréquence de rotation FRot (nombre de tours par seconde) du mobile d'échappement est comprise entre, y compris, un quart et un seizième de la fréquence d'oscillation Fo du résonateur mécanique (Fo/16 =< FRot =< Fo/4). Ceci revient à dire que le nombre NPA de plages aimantées / de butées magnétiques externes 60 ou internes 62 est compris entre quatre et seize (4 <= NPA <= 16), car FRot = Fo/NPA. Dans un premier exemple avec un résonateur mécanique oscillant à trois Hertz (Fo = 3 Hz) et la denture de la roue fixe (80) comprenant 108 dents, le pignon intermédiaire comprend 14 dents et la roue intermédiaire comprend 70 dents, alors que le pignon d'échappement (24) comprend 18 dents. Dans un deuxième exemple avec un résonateur mécanique oscillant à six Hertz (Fo = 6 Hz) et la denture de la roue fixe comprenant 120 dents, le pignon intermédiaire comprend 12 dents et la roue intermédiaire comprend 72 dents, alors que le pignon d'échappement comprend 12 dents.The frequency of rotation F Rot of the escape wheel is determined by the frequency of the mechanical resonator Fo and by the number of external magnetized areas 60, respectively by the number of internal magnetized areas 62. In a general variant, the rotation frequency F Rot (number of revolutions per second) of the exhaust mobile is between, including, a quarter and a sixteenth of the oscillation frequency Fo of the mechanical resonator (Fo / 16 = <F Rot = <Fo / 4). This amounts to saying that the number N PA of magnetized pads / of external 60 or internal 62 magnetic stops is between four and sixteen (4 <= N PA <= 16), because F Rot = Fo / N PA . In a first example with a mechanical resonator oscillating at three Hertz (Fo = 3 Hz) and the teeth of the fixed wheel (80) comprising 108 teeth, the intermediate pinion comprises 14 teeth and the intermediate wheel comprises 70 teeth, while the pinion exhaust (24) has 18 teeth. In a second example with a mechanical resonator oscillating at six Hertz (Fo = 6 Hz) and the teeth of the fixed wheel comprising 120 teeth, the intermediate pinion comprises 12 teeth and the intermediate wheel comprises 72 teeth, while the exhaust pinion includes 12 teeth.

A la Figure 10 est représenté, en coupe transversale similaire à celle de la Figure 3, un deuxième mode de réalisation de l'invention. On ne décrira ci-après que les éléments distinctifs de ce deuxième mode de réalisation. On notera que l'échappement magnétique est identique à celui du premier mode de réalisation et que toutes les variantes qui ont été décrites pour ce premier mode de réalisation s'appliquent également pour le deuxième mode de réalisation, lequel se distingue par l'agencement du résonateur mécanique 14A qui comprend un balancier 16A pivoté magnétiquement dans la cage 6A du tourbillon 4A. La cage comprend à cet effet deux paliers magnétiques 84 et 86 qui sont formés respectivement par deux aimants 88 et 90, l'arbre 92 du balancier 16A étant prévu en matériau ferromagnétique pour assurer son alignement entre les deux aimants. Pour le fonctionnement d'un tel pivotement magnétique et diverses variantes possibles, on peut se référer aux documents EP 2 450 758 , EP 3 109 712 et EP 3 106 933 . Ce qui est remarquable avec un tel système magnétique pour le pivotement du balancier dans un tourbillon, c'est le fait qu'il permet de réduire fortement les différences de marche entre les positions horizontales et les positions verticales du mouvement, alors que le tourbillon permet de moyenner les différences de marche entre les diverses positions verticales.To the Figure 10 is shown, in cross section similar to that of the Figure 3 , a second embodiment of the invention. Onne will describe below that the distinctive elements of this second embodiment. It will be noted that the magnetic escapement is identical to that of the first embodiment and that all the variants which have been described for this first embodiment also apply for the second embodiment, which is distinguished by the arrangement of the mechanical resonator 14A which comprises a balance 16A magnetically pivoted in the cage 6A of the tourbillon 4A. The cage comprises for this purpose two magnetic bearings 84 and 86 which are formed respectively by two magnets 88 and 90, the shaft 92 of the balance 16A being provided in ferromagnetic material to ensure its alignment between the two magnets. For the operation of such a magnetic pivoting and various possible variants, reference may be made to the documents EP 2 450 758 , EP 3,109,712 and EP 3,106,933 . What is remarkable with such a magnetic system for the pivoting of the balance in a tourbillon is the fact that it makes it possible to greatly reduce the rate differences between the horizontal positions and the vertical positions of the movement, while the tourbillon allows to average the differences in rate between the various vertical positions.

On décrira ci-après deux variantes des premier et deuxième modes de réalisation. La première variante est représentée à la Figure 11, de manière simplifiée. Le dispositif d'échappement 18B comprend une ancre 30B et un mobile d'échappement 20B, formé d'une seule roue 22 semblable à celle des variantes décrites précédemment et portant donc une structure magnétique 26 qui ne sera pas décrite ici à nouveau. Sur cette Figure 11, on a représenté le cercle géométrique médian 96 autour duquel intervient substantiellement chaque impulsion d'énergie fournie à l'ancre 30B qui la transmet au résonateur mécanique 14B (dont seul le balancier 16A a été représenté schématiquement). Ce cercle géométrique médian 96 sépare les portions rentrantes des portions entrantes de la piste magnétique 58 et également les plages d'arrêt extérieures 60 des plages d'arrêt intérieures 62, lesquelles forment les barrières magnétiques décrites précédemment. Plus globalement, ce cercle 96 sépare deux pistes magnétiques annulaires et contiguës 98 et 100 en regard desquelles se trouvent le seul élément magnétique 32B de l'ancre respectivement dans les deux positions de repos de cette ancre et donc alternativement durant les phases d'accumulation d'énergie potentielle magnétique successives dans l'échappement magnétique. Le fonctionnement de cet échappement magnétique est similaire à celui déjà décrit. La distinction majeure de cette variante réside dans l'ancre 30B qui est munie d'un seul aimant 32B, agencé en répulsion de la structure magnétique aimantée 26, et dans le mobile d'échappement qui ne comprend qu'une seule structure magnétique agencée à un niveau inférieur / supérieur à celui dans lequel oscille l'aimant lorsque le mouvement horloger est en fonction.Two variants of the first and second embodiments will be described below. The first variant is shown on Figure 11 , in a simplified way. The escapement device 18B comprises an anchor 30B and an escapement mobile 20B, formed of a single wheel 22 similar to that of the variants described above and therefore carrying a magnetic structure 26 which will not be described here again. On this Figure 11 , there is shown the median geometric circle 96 around which substantially intervenes each energy pulse supplied to the anchor 30B which transmits it to the mechanical resonator 14B (of which only the balance 16A has been shown schematically). This median geometric circle 96 separates the re-entrant portions of the entering portions of the magnetic track 58 and also the outer stopping areas 60 from the inner stopping areas 62, which form the magnetic barriers described above. More generally, this circle 96 separates two annular and contiguous magnetic tracks 98 and 100 opposite which are located the only magnetic element 32B of the anchor respectively in the two rest positions of this anchor and therefore alternately during the accumulation phases of successive magnetic potential energy in the magnetic escapement. The operation of this magnetic escapement is similar to that already described. The major distinction of this variant lies in the anchor 30B which is provided with a single magnet 32B, arranged in repulsion of the magnetized magnetic structure 26, and in the escape mobile which comprises only a single magnetic structure arranged at a level lower / higher than that in which the magnet oscillates when the watch movement is in operation.

La variante de la Figure 12 se distingue par l'agencement matériel de diverses parties formant l'échappement magnétique 18C. Par contre, le fonctionnement est semblable à celui déjà décrit, la structure magnétique 26C présentant en plan sensiblement un même design que la structure 26. Le mobile d'échappement 20C et sa roue 22C, portant la structure magnétique 26C, diffèrent respectivement du mobile 20B et de sa roue 22 de la figure précédente par le fait la structure 26C s'étend latéralement à un noyau 23, à sa périphérie, alors que la structure 26 est agencée sur un disque support (à haute perméabilité magnétique ou non selon la variante). L'ancre 30C est, selon la variante, similaire à l'ancre 30 ou 30B, à l'exception de l'agencement des éléments magnétiques. Plus précisément, l'ancre 30C comprend au moins une paire d'éléments magnétiques similaires 32C et 33C (deux aimants identiques dans l'exemple représenté) qui sont situés respectivement dessus et dessous la structure magnétique 26C et qui sont tous deux couplés de manière semblable à cette structure magnétique et de manière que leurs couplages magnétiques respectifs s'additionnent. De préférence, chaque paire d'aimants est portée par un support 31 en matériau à haute perméabilité magnétique (notamment ferromagnétique) ayant une forme générale en 'C'.The variant of Figure 12 is distinguished by the material arrangement of various parts forming the 18C magnetic escapement. On the other hand, the operation is similar to that already described, the magnetic structure 26C having in plan substantially the same design as the structure 26. The escape mobile 20C and its wheel 22C, carrying the magnetic structure 26C, differ respectively from the mobile 20B. and its wheel 22 of the previous figure by the fact the structure 26C extends laterally to a core 23, at its periphery, while the structure 26 is arranged on a support disc (with high magnetic permeability or not depending on the variant) . The anchor 30C is, depending on the variant, similar to the anchor 30 or 30B, except for the arrangement of the magnetic elements. More specifically, the anchor 30C comprises at least one pair of similar magnetic elements 32C and 33C (two identical magnets in the example shown) which are located respectively above and below the magnetic structure 26C and which are both coupled in a similar manner. to this magnetic structure and so that their respective magnetic couplings add up. Preferably, each pair of magnets is carried by a support 31 made of a material with high magnetic permeability (in particular ferromagnetic) having a general 'C' shape.

En référence aux Figures 13 et 14, on décrira ci-après un troisième mode de réalisation de l'invention qui est caractérisé par un échappement magnétique 118 sans arrêtoir, le mobile d'échappement 120 étant directement couplé magnétiquement au résonateur mécanique 114 (représenté schématiquement) dont le balancier 116 porte les éléments magnétiques 102 et 103. Le balancier est associé à un ressort-spiral 115. La cage 106 du tourbillon est schématisée par un bloc auquel est fixé une extrémité du ressort-spiral et qui porte le balancier 116 et le mobile 120, lesquels sont agencés pivotant dans la cage 106, respectivement autour de deux axes de rotation 8 et 28 comme dans les deux modes de réalisation précédents. Le mobile d'échappement 120 tourne de manière continue et synchrone avec l'oscillation du résonateur mécanique (c'est-à-dire que la roue d'échappement tourne d'une période angulaire prédéterminée durant chaque période d'oscillation du balancier 116). On notera que la vitesse angulaire du mobile d'échappement peut présenter une certaine variation au cours de chaque période d'oscillation, notamment selon que l'on se trouve dans une phase d'accumulation d'énergie ou une phase de transfert d'énergie.With reference to Figures 13 and 14 , a third embodiment of the invention will be described below which is characterized by a magnetic escapement 118 without a stopper, the escape mobile 120 being directly magnetically coupled to the mechanical resonator 114 (shown schematically) whose balance 116 carries the magnetic elements 102 and 103. The balance is associated with a hairspring 115. The tourbillon cage 106 is shown schematically by a block to which is fixed one end of the hairspring and which carries the balance 116 and the mobile 120, which are arranged pivoting in the cage 106, respectively around two axes of rotation 8 and 28 as in the two previous embodiments. The escapement mobile 120 rotates continuously and synchronously with the oscillation of the mechanical resonator (that is to say, the escape wheel rotates by a predetermined angular period during each period of oscillation of the balance 116) . It will be noted that the angular speed of the escapement mobile may exhibit a certain variation during each period of oscillation, in particular depending on whether one is in an energy accumulation phase or an energy transfer phase. .

La structure magnétique 126 est annulaire et formée alternativement de secteurs annulaires 128, dans lesquels sont agencés des aimants en répulsion magnétique avec les aimants 102 et 103 lorsqu'ils se présentent alternativement en regard de ces secteurs annulaires, et de secteurs annulaires 130 formés d'un matériau amagnétique, comme le laiton ou l'aluminium. Chaque paire de secteurs annulaires adjacents définit une période angulaire de la structure magnétique. De préférence, les aimants de la structure magnétique 126 présentent angulairement une épaisseur croissante dans le sens contraire au sens de rotation prévu pour le mobile d'échappement, de manière à avoir un entrefer qui diminue entre chacun d'eux et l'aimant 102, 103 qui passe au-dessus (lorsque le mobile d'échappement tourne) et également un flux magnétique qui s'intensifie. Pour une telle variante avantageuse, la Figure 14 représente des courbes de niveau 134 pour l'énergie potentielle magnétique dans l'échappement magnétique (constitué ici de la structure magnétique 126 et des deux aimants 102 et 103 solidaires du balancier) en fonction de la position angulaire relative d'un ou de l'autre des deux aimants 102 et 103. Lorsque le résonateur mécanique 114 oscille, ces deux aimants oscillent avec un déphasage de 180°, chacun selon un tracé représenté par la courbe 140 dans un repère de coordonnées polaires lié au mobile d'échappement. Chaque secteur annulaire 128 définit un ensemble 128A de courbes de niveau, deux ensembles 128A successifs étant séparés par un secteur 126A d'énergie potentielle magnétique nulle défini par un secteur annulaire 126. Les courbes de niveau 134 sont croissantes vers l'intérieur de celles-ci, c'est-à-dire que la courbe extérieure présente une moindre énergie potentielle que la courbe suivante située à l'intérieur de cette dernière, et ainsi de suite. Pour d'autres variantes de réalisation, on se référera au document EP 2 891 930 qui décrit des échappements magnétiques du type sélectionné dans le cadre du troisième mode de réalisation.The magnetic structure 126 is annular and formed alternately of annular sectors 128, in which are arranged magnets in magnetic repulsion with the magnets 102 and 103 when they appear alternately opposite these annular sectors, and of annular sectors 130 formed of a non-magnetic material, such as brass or aluminum. Each pair of adjacent annular sectors defines an angular period of the magnetic structure. Preferably, the magnets of the magnetic structure 126 angularly have an increasing thickness in the direction opposite to the direction of rotation provided for the escape wheel set, so as to have an air gap which decreases between each of them and the magnet 102, 103 which passes above (when the exhaust mobile rotates) and also a magnetic flux which intensifies. For such an advantageous variant, the Figure 14 represents curves level 134 for the magnetic potential energy in the magnetic escapement (here made up of the magnetic structure 126 and the two magnets 102 and 103 integral with the balance) as a function of the relative angular position of one or the other of the two magnets 102 and 103. When the mechanical resonator 114 oscillates, these two magnets oscillate with a phase shift of 180 °, each according to a path represented by the curve 140 in a reference frame of polar coordinates linked to the exhaust mobile. Each annular sector 128 defines a set 128A of level curves, two successive sets 128A being separated by a sector 126A of zero magnetic potential energy defined by an annular sector 126. The level curves 134 are increasing inwardly thereof. ci, i.e. the outer curve has less potential energy than the next curve inside the latter, and so on. For other variant embodiments, reference will be made to the document EP 2,891,930 which describes magnetic escapements of the type selected in the context of the third embodiment.

Lorsque le résonateur mécanique est dans sa position neutre (position d'énergie mécanique minimale représentée à la Figure 13), les deux aimants 102, 103 sont situés sur un cercle 132 de position zéro. Lorsque le résonateur mécanique oscille, ces deux aimants pénètrent alternativement au-dessus de la structure magnétique de sorte que le balancier est constamment couplé magnétiquement à cette structure magnétique. Pour que ces deux aimants expérimentent alternativement un même couplage avec la structure magnétique, ils présentent un décalage angulaire d'un nombre impair de demi-périodes angulaires de la structure magnétique. Ainsi, le mobile d'échappement effectue une rotation d'une période angulaire déterminée à chaque période d'oscillation du balancier. De plus, de manière similaire aux modes de réalisation précédents, les deux aimants 102 et 103 subissent principalement un mouvement radial, relativement à l'axe de rotation 28 du mobile d'échappement, lorsque le balancier oscille. De préférence, leur mouvement est orienté radialement lorsqu'ils croisent le cercle de position zéro 132 (correspondant au cercle extérieur de la structure magnétique). Comme mentionné, dans la variante proposée ici, les deux aimants 102 et 103 sont alternativement couplés à la structure magnétique de sorte qu'ils subissent successivement un couplage magnétique avec un des secteurs annulaires magnétisés 128. Ainsi, l'énergie potentielle magnétique globale dans l'échappement magnétique 118 est donnée par les courbes de niveau 134 à la Figure 14.When the mechanical resonator is in its neutral position (position of minimum mechanical energy shown in Figure 13 ), the two magnets 102, 103 are located on a circle 132 of zero position. When the mechanical resonator oscillates, these two magnets alternately penetrate above the magnetic structure so that the balance is constantly magnetically coupled to this magnetic structure. So that these two magnets alternately experience the same coupling with the magnetic structure, they exhibit an angular shift of an odd number of angular half-periods of the magnetic structure. Thus, the escapement mobile performs a rotation of a determined angular period for each period of oscillation of the balance. In addition, similarly to the previous embodiments, the two magnets 102 and 103 mainly undergo a radial movement, relative to the axis of rotation 28 of the escape wheel set, when the balance oscillates. Preferably, their movement is oriented radially when they cross the zero position circle 132 (corresponding to the outer circle of the magnetic structure). As mentioned, in the variant proposed here, the two magnets 102 and 103 are alternately coupled to the magnetic structure so that they successively undergo magnetic coupling with one of the magnetized annular sectors 128. Thus, the overall magnetic potential energy in l The magnetic escapement 118 is given by the contour lines 134 at the Figure 14 .

On observe à la Figure 14 que l'échappement magnétique est agencé de manière à présenter, lors d'un fonctionnement normal du mouvement horloger, alternativement des phases d'accumulation d'énergie, provenant d'une conversion d'énergie mécanique fournie par le barillet en énergie potentielle magnétique dans l'échappement magnétique, et des phases de transfert d'énergie accumulée dans l'échappement magnétique au résonateur magnétique. L'échappement magnétique définit des rampes angulaires montantes 136 d'accumulation d'énergie potentielle magnétique que subissent, lors de la rotation continue de la structure magnétique, alternativement les aimants 102 et 103 lors de phases d'accumulation d'énergie successives au cours desquelles ils gravissent successivement et partiellement ces rampes angulaires montantes. Comme la force d'interaction magnétique entre les aimants 102, 103 et la structure magnétique est orientée perpendiculairement aux lignes de niveau 134, ces aimants subissent alors une force magnétique qui est essentiellement perpendiculaire au rayon qu'il forme avec l'axe de rotation 28. Ainsi, la structure magnétique 126 (et donc le mobile d'échappement) subit, au cours de chaque phase d'accumulation d'énergie, un couple de force magnétique, relativement à son axe de rotation, ayant un sens opposé à celui d'un couple d'entraînement, appliqué par le barillet via la cage du tourbillon au mobile d'échappement. On remarquera que l'agencement des aimants 102, 103 et des secteurs annulaires aimantés 128 est prévu de manière que, en mode de fonctionnement normal, l'intensité du couple de force magnétique est inférieure à celle du couple d'entraînement, de sorte que le mobile d'échappement peut continuer sa rotation et tourner d'un certain angle, permettant ainsi une accumulation d'énergie potentielle dans l'échappement magnétique.We observe at the Figure 14 that the magnetic escapement is arranged so as to present, during normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator. The magnetic escapement defines upward angular ramps 136 for accumulating magnetic potential energy which the magnets 102 and 103 undergo alternately during the continuous rotation of the magnetic structure during successive energy accumulation phases during which they successively and partially climb these ascending angular ramps. As the magnetic interaction force between the magnets 102, 103 and the magnetic structure is oriented perpendicular to the level lines 134, these magnets then experience a magnetic force which is essentially perpendicular to the radius it forms with the axis of rotation 28 Thus, the magnetic structure 126 (and therefore the exhaust mobile) undergoes, during each energy accumulation phase, a couple of magnetic force, relative to its axis of rotation, having a direction opposite to that of 'a driving torque, applied by the barrel via the tourbillon cage to the escapement mobile. It will be noted that the arrangement of the magnets 102, 103 and the magnetized annular sectors 128 is provided so that, in normal operating mode, the intensity of the magnetic force torque is lower than that of the driving torque, so that the cellphone exhaust can continue to rotate and rotate through a certain angle, thus allowing a build-up of potential energy in the magnetic escapement.

L'échappement magnétique définit également des rampes radiales descendantes 138 d'énergie potentielle magnétique que descendent alternativement les deux aimants 102 et 103 après avoir gravi respectivement les rampes angulaires montantes 136. Comme la force magnétique qui s'exerce sur chaque aimant 102, 103, descendant une rampe radiale descendante, est orientée perpendiculairement aux lignes de niveau 134, il subit alors, au cours de phases de transfert d'énergie, principalement une force magnétique radiale, relativement à l'axe de rotation 28, au cours de chaque alternance du mouvement d'oscillation du résonateur mécanique et dans le sens de ce mouvement d'oscillation durant cette alternance, de sorte que l'échappement magnétique convertit alors en énergie mécanique de l'énergie potentielle magnétique accumulée dans la phase d'accumulation d'énergie précédente pour pouvoir entretenir l'oscillation du résonateur mécanique. La diminution d'énergie potentielle magnétique dans l'échappement magnétique résulte donc principalement d'un travail de la force magnétique radiale exercée alternativement sur chacun des deux éléments magnétiques, ce travail de la force magnétique radiale étant transmis directement au résonateur mécanique, de sorte que ce résonateur mécanique reçoit une impulsion d'énergie mécanique dans chaque alternance de son mouvement d'oscillation.The magnetic escapement also defines descending radial ramps 138 of magnetic potential energy which the two magnets 102 and 103 descend alternately after having respectively climbed the ascending angular ramps 136. Like the magnetic force exerted on each magnet 102, 103, descending a descending radial ramp, is oriented perpendicular to the level lines 134, it then undergoes, during energy transfer phases, mainly a radial magnetic force, relative to the axis of rotation 28, during each alternation of the oscillation movement of the mechanical resonator and in the direction of this oscillation movement during this alternation, so that the magnetic escapement then converts into mechanical energy the magnetic potential energy accumulated in the preceding energy accumulation phase to be able to maintain the oscillation of the mechanical resonator. The decrease in magnetic potential energy in the magnetic escapement therefore results mainly from a work of the radial magnetic force exerted alternately on each of the two magnetic elements, this work of the radial magnetic force being transmitted directly to the mechanical resonator, so that this mechanical resonator receives a pulse of mechanical energy in each alternation of its oscillation movement.

Les rampes radiales descendantes 138 s'étendent sur une certaine distance angulaire de sorte que le mouvement continu de la roue d'échappement n'a pas de répercussion quant aux caractéristiques particulières recherchées dans le cadre de la présente invention. En effet, l'important, c'est que la force radiale principale qui s'exerce alternativement sur chacun des deux aimants fixés au balancier ne dépend quasi pas d'une quelconque rotation du mobile d'échappement. En effet, on observe à la Figure 14 que l'agencement de la structure magnétique permet de générer les impulsions d'énergie pour le balancier sans rotation du mobile d'échappement. Si ce dernier s'arrêtait en fin de phase d'accumulation d'énergie, alors le balancier recevrait néanmoins sous forme d'impulsion une même quantité d'énergie que celle qu'il reçoit en subissant durant les phases de transfert d'énergie un certain mouvement de rotation. De plus, on observe que cette quantité d'énergie reste quasi constante, que la vitesse angulaire du balancier soit petite ou relativement grande, pour autant que l'échappement magnétique soit agencé de manière que, en fonctionnement normal, il n'atteigne pas le sommet des rampes angulaires montantes 136 en fin de phases d'accumulation d'énergie. Cette condition est prévue dans l'échappement magnétique selon ce troisième mode de réalisation.The descending radial ramps 138 extend over a certain angular distance so that the continuous movement of the escape wheel has no impact on the particular characteristics sought within the framework of the present invention. In fact, the important thing is that the main radial force which is exerted alternately on each of the two magnets fixed to the balance hardly depends on any rotation of the escapement mobile. Indeed, we observe at the Figure 14 that the arrangement of the magnetic structure makes it possible to generate the energy pulses for the balance without rotation of the escapement mobile. If the latter stopped at the end of the energy accumulation phase, then the balance would nevertheless receive in the form of a pulse the same quantity of energy as that which it receives by undergoing during the energy transfer phases a some rotational movement. In addition, it is observed that this quantity of energy remains almost constant, whether the angular speed of the balance is small or relatively large, as long as the magnetic escapement is arranged so that, in normal operation, it does not reach the top of the rising angular ramps 136 at the end of the energy accumulation phases. This condition is provided for in the magnetic escapement according to this third embodiment.

Finalement, on remarquera qu'une fusée (similaire à la fusée 12 représentée dans le cadre du premier mode de réalisation) incorporée dans le mouvement horloger permet d'égaliser le couple de force fourni par le barillet à la cage de tourbillon, de sorte que le mobile d'échappement est soumis à un couple constant lors du fonctionnement normal du mouvement horloger. Dans le cadre du troisième mode de réalisation, une telle fusée permet d'obtenir une phase de fonctionnement stationnaire sur toute la plage de fonctionnement utile du mouvement horloger, avec l'amplitude d'oscillation du balancier qui demeure constante et des impulsions d'entretien qui fournissent au balancier une même quantité d'énergie mécanique. Tout le bénéfice procuré par une fusée d'égalisation du couple de force dans un mouvement horloger mécanique classique est apporté à la pièce d'horlogerie selon ce troisième mode de réalisation.Finally, it will be noted that a rocket (similar to the rocket 12 shown in the context of the first embodiment) incorporated into the watch movement makes it possible to equalize the torque supplied by the barrel to the tourbillon cage, so that the escapement mobile is subjected to a constant torque during normal operation of the watch movement. In the context of the third embodiment, such a rocket makes it possible to obtain a stationary operating phase over the entire useful operating range of the watch movement, with the amplitude of oscillation of the balance which remains constant and sustain pulses. which provide the balance with the same amount of mechanical energy. All the benefit provided by a rocket for equalizing the torque of force in a conventional mechanical watch movement is brought to the timepiece according to this third embodiment.

Claims (11)

  1. Timepiece comprising a timepiece movement (2) fitted with a tourbillon (4) comprising a carriage (6,6A,106) arranged rotating about a main axis, a barrel arranged to accumulate mechanical energy and a geartrain kinematically linking the tourbillon carriage to the barrel, the tourbillon bearing a mechanical resonator (14,14B,114), formed of a balance (16,16A,116) and a balance-spring, and an escapement device; the oscillation frequency (Fo) of the mechanical resonator being substantially equal to or greater than six Hertz (Fo >= 6 Hz) and the escapement device being a magnetic escapement (18) that comprises an escape wheel set (20,20B,20C, 120) formed of an escape pinion and at least one magnetic structure (26,40,26C, 126), which has a general annular shape centred on an axis of rotation (28) of the escape wheel set, this magnetic escapement further comprising a magnetic element or a plurality of magnetic elements (32,33, 32B, 32C,33C, 102,103), this magnetic element or each magnetic element being arranged so as to have an oscillating movement that is synchronous with the oscillation of the mechanical resonator and that has a radial component different to zero relative to said axis of rotation, said magnetic element being coupled with said at least one magnetic structure or each magnetic element of said plurality of magnetic elements being coupled, at least momentarily periodically, with said at least one magnetic structure such that the escape wheel set rotates by a predetermined angular period at each oscillation period of the balance; the magnetic escapement being arranged so as to have, in normal timepiece movement operation, alternately energy accumulation phases, from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and transfer phases of energy accumulated in the magnetic escapement to the magnetic resonator; the magnetic escapement being arranged such that:
    - during each energy accumulation phase, said at least one magnetic structure is subjected to a magnetic force torque, relative to said axis of rotation, having an opposite direction to that of a drive torque, applied by the barrel via the tourbillon carriage to the escape wheel set, and an intensity less than that of this drive torque, such that the escape wheel set rotates by a certain angle to enable the accumulation of a certain magnetic potential energy in the magnetic escapement;
    - during each transfer phase of energy, said magnetic element or each magnetic element of a set of magnetic elements, that of the plurality of magnetic elements was coupled with said at least one magnetic structure during a preceding energy accumulation phase, is subjected to a radial magnetic force, relative to said axis of rotation, during an alternation of the oscillating movement thereof and in the direction of the radial component of this oscillating movement during this alternation, such that the magnetic escapement then converts into mechanical energy magnetic potential energy accumulated in the preceding energy accumulation phase to be able to maintain the oscillation of the mechanical resonator.
  2. Timepiece according to claim 1, characterised in that said magnetic escapement comprises a stopper (30,30B,30C) coupling momentarily, in each oscillation alternation of the mechanical resonator, this mechanical resonator with the escape wheel set (20,20B,20C), the stopper bearing said magnetic element or said plurality of magnetic elements and being subjected, when the mechanical resonator (14,14B) oscillates, to a to-and-fro movement interspersed with rest phases wherein the stopper is alternately stopped in two rest positions; in that said at least one magnetic structure defines in the two rest positions of the stopper respectively a first magnetic potential energy curve (66) and a second magnetic potential energy curve (68), both as a function of the angle of the escape wheel set and each having:
    - increasing portions (PC1,PC2) for the magnetic interaction between said at least one magnetic structure and said magnetic element or a set of magnetic elements that, of the plurality of magnetic elements, are coupled with said at least one magnetic structure in a corresponding rest position of the stopper, these increasing portions being configured so as to be suitable for being climbed, during normal timepiece movement operation, by this magnetic element or by this set of magnetic elements, and
    - magnetic barriers (BM1,BM2) following respectively the increasing portions, these magnetic barriers being arranged so as to be suitable for stopping angular progress of the escape wheel set while the stopper is in the corresponding rest position;
    said increasing portions of the first magnetic potential energy curve being respectively offset angularly relative to the increasing portions of the second magnetic potential energy curve, each magnetic barrier of one of the first and second magnetic potential energy curves being situated angularly between two successive magnetic barriers of the other of these first and second magnetic potential energy curves; the magnetic escapement being arranged such that:
    - the energy accumulation phases occur essentially and respectively in the successive rest phases of the stopper,
    - during each energy accumulation phase, said magnetic element or a set of magnetic elements, which of said plurality of magnetic elements are at that time coupled with said at least one magnetic structure, is suitable for climbing at least partially one of the increasing portions during a certain rotation of the escape wheel set,
    - the increasing portions of the first and second magnetic potential energy curves may, during said normal timepiece movement operation, be respectively and alternately climbed at least partially during successive energy accumulation phases;
    and in that the magnetic escapement is further arranged such that:
    - the transfer phases of energy occur respectively in successive alternations of the to-and-fro movement of the stopper,
    - this magnetic escapement is subjected, during said normal timepiece movement operation, overall to a decrease in magnetic potential energy (D1,D2) during each of the successive alternations of the to-and-fro movement of the stopper, and
    - the decrease in magnetic potential energy in the magnetic escapement results essentially from work of said radial magnetic force (FR1,FR2) applied on said magnetic element or on each magnetic element of a set of magnetic elements that, of the plurality of magnetic elements, were coupled with said at least one magnetic structure during a preceding rest phase, this work of the radial magnetic force thus being supplied to the stopper that is arranged to transmit same mostly to the mechanical resonator, such that this mechanical resonator can receive a mechanical energy impulse in each alternation of the to-and-fro movement of this stopper.
  3. Timepiece according to claim 1 or 2, characterised in that the tourbillon further bears an intermediate wheel set (74) of which an intermediate wheel (76) meshes with the escape pinion (24) and an intermediate pinion (78) meshes with a fixed second wheel (80) comprised by the timepiece movement, the intermediate wheel set being a reducer wheel set of the rotational frequency of the escape wheel set and being arranged such that said tourbillon carriage performs one revolution on itself per minute.
  4. Timepiece according to claim 3, characterised in that the oscillation frequency (Fo) of the mechanical resonator has a value situated between, inclusive, eight Hertz and twelve Hertz (8 Hz =< Fo =< 12 Hz).
  5. Timepiece according to claim 3 or 4, characterised in that the rotational frequency (FRot) of the escape wheel set has a value between, inclusive, one quarter and one sixteenth of the oscillation frequency (Fo) of the mechanical resonator (Fo/4 <= FRot <= Fo/16).
  6. Timepiece according to any of the preceding claims, characterised in that the magnetic escapement comprises at least two similar magnetic elements (32,33) that are situated on the same side of said magnetic structure (26) and that are both coupled simultaneously with this magnetic structure such that the respective magnetic couplings thereof are added together.
  7. Timepiece according to any of the preceding claims, characterised in that the magnetic escapement comprises at least one pair of similar magnetic elements (32C,33C) that are situated respectively above and below said magnetic structure (26C) and that are both coupled simultaneously with this magnetic structure such that the respective magnetic couplings thereof are added together.
  8. Timepiece according to any of claims 1 to 6, wherein said magnetic structure is a first magnetic structure (26); characterised in that the escape wheel set comprises a second magnetic structure (40) that has a planar symmetry with the first magnetic structure and that is situated at a distance therefrom so as to enable said magnetic element or each magnetic element of said plurality of magnetic elements (32,33) to be situated, during said oscillating movement, at least momentarily between the first and second magnetic structures.
  9. Timepiece according to claim 8, characterised in that the first magnetic structure and the second magnetic structure are formed respectively of a first permanent magnet and a second permanent magnet that each have an axial magnetisation and the same polarity; and in that said magnetic element or each magnetic element of said plurality of magnetic elements (32,33) is formed of a permanent magnet having an axial magnetisation and an inverted polarity relative to the first and second magnets, so as to be subjected to a magnetic repulsion force with each of the two magnetic structures.
  10. Timepiece according to claim 9, characterised in that said escape wheel set (20) bears a first ferromagnetic structure (44) and a second ferromagnetic structure (46) covering respectively the first and second magnetic structures (26,40) of both external sides of the set of these first and second magnetic structures, so as to form thus a shield of the first and second magnetic structures and of each magnetic element when the latter is situated therebetween and is thus coupled magnetically therewith.
  11. Timepiece according to any of the preceding claims, characterised in that the balance (16A) is pivoted magnetically in the carriage (6A) of the tourbillon that comprises for this purpose two magnetic bearings (84, 86).
EP19173161.1A 2018-06-07 2019-05-07 Timepiece comprising a tourbillon Active EP3579058B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18176488 2018-06-07

Publications (2)

Publication Number Publication Date
EP3579058A1 EP3579058A1 (en) 2019-12-11
EP3579058B1 true EP3579058B1 (en) 2021-09-15

Family

ID=62563079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19173161.1A Active EP3579058B1 (en) 2018-06-07 2019-05-07 Timepiece comprising a tourbillon

Country Status (4)

Country Link
US (1) US11640141B2 (en)
EP (1) EP3579058B1 (en)
JP (1) JP6871973B2 (en)
CN (1) CN110579954B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663868B1 (en) 2018-12-07 2021-09-08 Montres Breguet S.A. Clock movement including a tourbillon with a fixed magnetic wheel
EP3882711B1 (en) * 2020-03-18 2024-08-07 The Swatch Group Research and Development Ltd Timepiece movement comprising an escapement provided with a magnetic system
EP4047425A1 (en) * 2021-02-19 2022-08-24 Montres Breguet S.A. Device for performing momentary stopping of operation of a mechanical watch
EP4099100A1 (en) * 2021-06-02 2022-12-07 The Swatch Group Research and Development Ltd Timepiece movement provided with an oscillator comprising a piezoelectric hairspring
EP4105734A3 (en) * 2021-06-15 2023-03-15 Montres Breguet S.A. Micromechanical mechanism provided with a system for actuating by impact, in particular for timepieces
USD1030511S1 (en) * 2021-10-19 2024-06-11 Omega Sa (Omega Ag) (Omega Ltd.) Watch

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1574569A4 (en) * 1969-10-22 1971-03-31
CH688298B5 (en) 1995-02-16 1998-01-30 Nat Electronics Consolidated L Piece of electrical horology, including wristwatch.
DE69839116T2 (en) * 1998-07-16 2009-02-05 Eta Sa Manufacture Horlogère Suisse Clock with tourbillon
ATE481662T1 (en) * 2004-10-26 2010-10-15 Lvmh Swiss Mft Sa WRISTWATCH REGULATOR AND MECHANICAL MOVEMENT HAVING SUCH A REGULATOR
EP1698949A1 (en) * 2005-03-03 2006-09-06 Audemars Piguet (Renaud et Papi) SA Automatic winding up device to power the energy source of a portable instrument
CH697932B9 (en) * 2005-07-25 2009-05-15 Progress Watch Corp Clock with multiple tourbillons for direct display of the time.
CH705118B1 (en) * 2007-12-27 2012-12-31 Chopard Technologies Sa watch movement comprising a regulating organ to high oscillation frequency.
CH701490A1 (en) * 2009-07-17 2011-01-31 Franck Mueller Watchland S A A whirlwind of fixed wheel exhaust.
EP2410387B1 (en) * 2010-07-19 2016-07-06 Nivarox-FAR S.A. balance wheel with inertia adjustment without insert
EP2450758B1 (en) * 2010-11-09 2017-01-04 Montres Breguet SA Magnetic pivot and electrostatic pivot
EP2790067A1 (en) * 2013-04-12 2014-10-15 Montres Breguet SA Escapement system for a balance-hairspring resonator
CH707990B1 (en) 2013-04-24 2017-11-15 Lvmh Swiss Mft Sa Mechanical watch movement comprising a tourbillon and a magnetic regulating member.
JP6143185B2 (en) * 2013-09-04 2017-06-07 セイコーインスツル株式会社 Operation stabilization mechanism, movement and mechanical watch
EP2998801A1 (en) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Magnetic clock escapement and device for controlling the operation of a clock movement
US9465366B2 (en) * 2013-12-23 2016-10-11 The Swatch Group Research And Development Ltd Angular speed regulating device for a wheel set in a timepiece movement including a magnetic escapement mechanism
EP2887157B1 (en) * 2013-12-23 2018-02-07 The Swatch Group Research and Development Ltd. Optimised escapement
CH710487B1 (en) 2014-12-03 2018-08-31 Nivarox Sa Tourbillon mechanism for watch movement.
GB2533960A (en) * 2015-01-09 2016-07-13 Robert Haylett Kevin An escapement comprising a magnetically braked escape wheel and a tuned mechanical resonator for time keeping in clocks, watches, chronometers and other
EP3106934A1 (en) 2015-06-16 2016-12-21 Montres Breguet S.A. Magnetic device for pivoting an arbour in a clock movement
EP3106933B1 (en) 2015-06-16 2018-08-22 Montres Breguet S.A. Magnetic pivoting device for an arbour in a clock movement
CH711402A2 (en) * 2015-08-04 2017-02-15 Eta Sa Mft Horlogere Suisse Magnetically synchronized rotary arm clock regulator mechanism.
EP3136187B1 (en) * 2015-08-31 2018-02-28 Glashütter Uhrenbetrieb GmbH Mechanical clock comprising a tourbillon
JP6653181B2 (en) * 2016-01-21 2020-02-26 セイコーインスツル株式会社 Tourbillon, movement and watches
EP3208667A1 (en) 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Magnetic escapement mobile for timepiece
CH712973B1 (en) 2016-09-23 2023-12-29 Bucherer Ag Tourbillon and watch with tourbillon.

Also Published As

Publication number Publication date
JP2019211479A (en) 2019-12-12
JP6871973B2 (en) 2021-05-19
US20190377302A1 (en) 2019-12-12
EP3579058A1 (en) 2019-12-11
CN110579954A (en) 2019-12-17
US11640141B2 (en) 2023-05-02
CN110579954B (en) 2021-06-18

Similar Documents

Publication Publication Date Title
EP3579058B1 (en) Timepiece comprising a tourbillon
CH715049B1 (en) Timepiece comprising a tourbillon.
EP3130966B1 (en) Mechanical clockwork provided with a motion feedback system
EP2115536B1 (en) Watch movement
EP2790068B1 (en) Escapement system for a balance-hairspring resonator
EP2891930A2 (en) Device for regulating the angular speed of a mobile in a clock movement comprising a magnetic escapement
WO2015097066A2 (en) Mechanical timepiece movement with magnetic escapement
EP3365734B1 (en) Oscilator for mechanical clockwork
EP3602206B1 (en) Mechanical timepiece comprising a movement of which the operation is improved by a correction device
EP3087435A2 (en) Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement
EP3070537A1 (en) Time base comprising an escapement with direct pulse and constant force
EP3620867A1 (en) Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator
EP3502798B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3842876A1 (en) Timepiece fitted with a mechanical movement and a device for correcting the time displayed
EP3602207A1 (en) Timepiece comprising a mechanical movement improved by a correction device
CH710863B1 (en) Frequency stabilization mechanism, movement and mechanical timepiece.
EP3663868B1 (en) Clock movement including a tourbillon with a fixed magnetic wheel
EP3882713B1 (en) Timepiece movement comprising an escapement provided with a magnetic system
EP3882712B1 (en) Mechanical timepiece movement provided with an escapement including an elastically deformable anchor
CH713636A2 (en) Mechanical timepiece comprising a movement whose progress is improved by a correction device.
EP3882711B1 (en) Timepiece movement comprising an escapement provided with a magnetic system
EP3944027B1 (en) Portable object, in particular a wristwatch, comprising a power supply device provided with an electromechanical converter
EP2189855B1 (en) Tourbillon mechanism
CH709755B1 (en) Clock mechanism with a tuning fork resonator.
EP4391347A1 (en) Piezoelectric resonator with flexible guide, in particular for rotary motors in horology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019007648

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1430959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1430959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019007648

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

26N No opposition filed

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220507

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240418

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915