EP3084781B1 - Elektrospule und verwendung einer elektrospule - Google Patents

Elektrospule und verwendung einer elektrospule Download PDF

Info

Publication number
EP3084781B1
EP3084781B1 EP14806274.8A EP14806274A EP3084781B1 EP 3084781 B1 EP3084781 B1 EP 3084781B1 EP 14806274 A EP14806274 A EP 14806274A EP 3084781 B1 EP3084781 B1 EP 3084781B1
Authority
EP
European Patent Office
Prior art keywords
aluminum
electric solenoid
graphene
wire
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14806274.8A
Other languages
English (en)
French (fr)
Other versions
EP3084781A1 (de
Inventor
Bernd Stuke
Martin Koehne
Robert Giezendanner-Thoben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3084781A1 publication Critical patent/EP3084781A1/de
Application granted granted Critical
Publication of EP3084781B1 publication Critical patent/EP3084781B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips

Definitions

  • the invention relates to an electric coil according to the preamble of claim 1. Furthermore, the invention relates to the use of an electric coil according to the invention.
  • An electric coil according to the preamble of claim 1 is already known as part of a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine from practice.
  • the electric coil serves to actuate an injection member, for example in the form of a nozzle needle, indirectly or directly in order to close or release injection openings formed in the fuel injector.
  • the coil wire usually consists of a wire core made of copper, which is surrounded by an insulator layer, for example, baked enamel.
  • an insulator layer for example, baked enamel.
  • a coil having a coil core and a coil wire is known, wherein the core wire is made of aluminum.
  • a wire is known in which the graphene is applied to the surface of the wire core.
  • the CN 103 021 502 A discloses a wire having a wire core of copper clad aluminum with graphene deposited on the copper.
  • a composite material of aluminum and graphene is known.
  • the invention has the object, an electric coil according to the preamble of claim 1 such that the strong temperature-dependent in the prior art resistance characteristic of the electric coil is reduced.
  • the highest possible power density, ie the highest possible magnetic actuation force can be achieved with a certain size of a bobbin.
  • This object is achieved in an electric coil with the features of claim 1, characterized in that the wire core of the coil wire made of aluminum and arranged with the aluminum in electrically conductive contact graphene.
  • Such a material mix has the advantage that it has a combination of the known relatively low change in resistance over the temperature profile and an overall relatively low resistivity, similar to the use of copper.
  • the graphene is at least substantially homogeneous in cross section of the wire core in the Distributed aluminum and arranged oriented in the power line direction.
  • graphene is usually formed in the form of platelets, ie a very thin cross-section having elements, so that it is essential that the orientation of the graph in the power line direction takes place.
  • the individual graphene elements may be spatially separated from one another in the direction of the current line, or, particularly advantageously, to be overlapping one another so that a continuous conductive graphene layer is achieved in the current line direction.
  • the graphene in an alternative embodiment of the invention, it is also possible for the graphene to be formed as a layer which is separate from the aluminum and electrically conductively connected to the aluminum, preferably in the direction of flow, preferably on a surface of the wire core.
  • the two components serving the power line, the aluminum and the graphene may optionally be formed in separate manufacturing processes or manufacturing steps, which are subsequently connected to one another in an electrically conductive manner.
  • the aluminum serves as a carrier material for arranging or training of graphene.
  • the commonly used insulating layers of plastic with the use of copper wires to a thickness of about 50 .mu.m. Since the insulating layer does not serve the power line, a decreasing packing density or performance of the electric coil results with an increasing thickness of the insulating layer. For this reason, it is particularly preferred according to the invention for the insulating layer to comprise an aluminum oxide layer having a thickness of between 1 ⁇ m and 10 ⁇ m, preferably between 2 ⁇ m and 5 ⁇ m.
  • An oxide layer has the advantage over the use of plastic in particular that it has a high thermal conductivity and thus also allows a relatively effective dissipation of the heat of the coil wire.
  • the performance of the electric coil is increased by an increased filling factor by the particularly thin design of the insulating layer compared to an insulating layer made of plastic.
  • the coating or training with alumina is carried out in particular by anodic oxidation (Eloxal method).
  • Anodic oxidation is an electrolytic process that produces an oxide layer on a surface that is approximately 100 times stronger than a naturally formed (oxide) layer so that, in practice, a 4 ⁇ m thick insulating layer will suffice if the voltage breakdown strength is adequate.
  • a particular embodiment of the insulating layer provides that the insulating layer only partially covers the graphene. This is particularly provided when aluminum strips are used in which the graphene is applied to one side as a coating. Since the graphene is used for the power line and has a very low electrical resistance, it is essential here that, when the coil wire is wound over one insulating layer in each case, it covers the underlying, partially exposed graphene layer.
  • a geometrical configuration of the coil wire in which the latter has at least essentially a rectangular cross section, is very particularly preferred.
  • Such a design increases the fill factor and thus the power density of the electric coil to a particularly high degree and therefore allows for a certain performance particularly small or compact electrical coils.
  • the coil wire has a width has, which corresponds to the width of the bobbin in the longitudinal direction thereof.
  • the same effect can alternatively be achieved by having the coil wire having a width equal to 1 / n times the width of the bobbin in its longitudinal direction, and two coil wires connected to each other in the longitudinal direction of the bobbin being electrically conductively connected to each other.
  • Such an electric coil according to the invention is therefore used, in particular, as a component of a motor vehicle injection component, in particular a fuel injector, in which the fuel injector or its electric coil is exposed to relatively low temperatures, for example during a cold start, and, on the other hand, during operation to the high temperatures of up to can reach over 200 ° C.
  • the electric coil according to the invention can be used in all applications in which a particularly high performance and / or a small installation space for the electric coil is desired.
  • an electric coil 10 according to the invention is shown, as used for example as part of a motor vehicle injection component in the form of a fuel injector.
  • the electric coil 10 serves for the at least indirect actuation of an injection valve member (nozzle needle) into the fuel injector.
  • the electric coil 10 comprises a coil made of plastic, injection-molded coil body 11 in the form of a sleeve with two laterally arranged, the bobbin 11 longitudinally delimiting, radially circumferential flanges 12, 13 and a concentric with the longitudinal axis 14 of the bobbin 11 arranged in this recess 15th Between the two flanges 12, 13, the bobbin 11 forms an in particular circular peripheral surface 16 for the arrangement of at least one coil wire unit 20.
  • two coil wire units 20 are provided on the bobbin 11, which are electrically connected to each other (not shown) by a wire end of a coil wire unit 20 is connected to a wire end of the other coil wire unit 20.
  • the width b of the two identically designed coil wire units 20 is approximately half the width B of the bobbin 11 between the two flanges 12, 13, so that the space between the two flanges 12, 13 is at least almost completely filled.
  • Fig. 3 consists of the coil wire 25, 25 a of the coil wire unit 20, which is wound in the form of a plurality of turns on the bobbin 11, made of two different materials, of aluminum 21 and graphene 22.
  • the coil wire 25 with a wire core 23, consisting of aluminum 21.
  • 21 platelets of graphene 22 are arranged in the aluminum, the platelets perpendicular to the plane of the drawing Fig. 3 either all of them are electrically connected directly to one another in the form of a strip, or else they are arranged at intervals with respect to one another.
  • the distribution of the graphene 22 within the wire core 23 or the aluminum 21 is at least substantially homogeneous.
  • the coil wire 25 having a rectangular cross-section of the width b is surrounded by an insulation layer 26, which in particular has a uniform wall thickness a, over the entire cross-section of the coil wire 25.
  • the insulating layer 26 is formed as an aluminum oxide layer 27 and produced, for example, in the anodizing process.
  • the wall thickness a of the insulating layer 26 is between 1 ⁇ m and 10 ⁇ m, preferably between 2 ⁇ m and 5 ⁇ m, very particularly preferably 4 ⁇ m.
  • Such a manufactured coil wire 25 can be according to the illustration of Fig. 2 store in the form of a wound-up belt 28 or process it by machine.
  • the wire core 23 of the coil wire 25a is made of aluminum 21 without graphene 22.
  • the graphene 22 is applied as a band-shaped layer on the surface or on the upper side 29 of the wire core 23 and electrically conductively connected thereto.
  • the insulating layer 26 also consists of an aluminum oxide layer 27, which completely surrounds the wire core 23 in the area outside of the graphene 22. In the region of the graphene 22, the insulation layer 26 extends laterally as far as the graphene 22, but the graphene 22 is not surrounded or covered by the insulation layer 26 on the upper side facing away from the wire core 23.
  • FIG. 5 is shown over the temperature T (x-axis) the resistivity R S (Y-axis) of different materials.
  • the reference numeral 31 shows the course of the resistivity R S of aluminum, while the reference numeral 32 illustrates the course of the resistivity R S of copper.
  • Reference numeral 33 represents the specific resistance R S of the material combination according to the invention, consisting of aluminum 21 and graphene 22. It can be seen that, with increasing temperature, such a combination of materials has a virtually constant or merely slightly increasing specific resistance R S , which, with regard to its absolute value, is of the order of magnitude of copper at relatively low temperatures.
  • the electric coil 10 according to the invention can be modified or modified in many ways, without departing from the spirit of the invention. It is conceivable, for example, instead of a substantially rectangular cross-section for the coil wire 25, 25a to form this cross-section square or, in the case of the graphite 22 arranged in the aluminum 21, roundly. It should also be noted that the use of the invention should not be limited to electric coils 10, which serve as part of a fuel injection component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electromagnets (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Elektrospule nach dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung die Verwendung einer erfindungsgemäßen Elektrospule.
  • Eine Elektrospule nach dem Oberbegriff des Anspruchs 1 ist als Bestandteil eines Kraftstoffinjektors zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine aus der Praxis bereits bekannt. Insbesondere dient die Elektrospule dazu, mittel- oder unmittelbar ein Einspritzglied, beispielsweise in Form einer Düsennadel, zu betätigen, um im Kraftstoffinjektor ausgebildete Einspritzöffnungen zu verschließen bzw. freizugeben.
  • Übliche Elektrospulen weisen einen aus Kunststoff bestehenden Spulenkörper auf, auf den eine große Anzahl von Windungen eines Spulendrahts aufgewickelt ist. Der Spulendraht besteht üblicherweise aus einem Drahtkern aus Kupfer, der von einer Isolatorschicht, zum Beispiel Backlack, umgeben ist. Die Verwendung von Kupfer als Drahtkern hat zwar den Vorteil eines relativ niedrigen spezifischen Widerstandes, jedoch ist dieser Widerstand temperaturabhängig, derart, dass bei steigender Temperatur sich auch der Widerstand des Kupferdrahts erhöht. Dies hat zur Folge, dass bei einem Betrieb beispielsweise eines Kraftstoffinjektors, der in einem Zylinderkopf einer Brennkraftmaschine eingesetzt ist, sich die Temperatur des Kraftstoffinjektors und somit auch die Temperatur der Elektrospule erhöht, was zu einem erhöhten elektrischen Widerstand des Spulendrahts führt. Dies hat eine mit zunehmender Temperatur geringer werdende Magnetkraft zur Folge, so dass die einwandfreie Funktion beispielsweise eines Einspritzglieds bei hohen Temperaturen kritisch sein kann. Aus diesem Grund ist es üblich, die Packungs- bzw. Leistungsdichte derartiger Elektrospulen zu erhöhen. Dies erfolgt beispielsweise durch einen Profildraht, mit dem es ermöglicht wird, den Füllgrad der Drahtwicklungen auf einen Spulenkörper zu erhöhen.
  • Aus der DE 10 2008 034 408 A1 ist eine Spule mit einem Spulenkern und einem Spulendraht bekannt, wobei der Drahtkern aus Aluminium besteht. Aus US 2013/020877 A1 ist ein Draht bekannt, bei dem das Graphen auf die Oberfläche des Drahtkerns aufgebracht ist. Die CN 103 021 502 A offenbart einen Draht mit einem Drahtkern aus mit Kupfer umhülltem Aluminium, wobei Graphen auf das Kupfer aufgebracht ist. Aus S. Bartolucci et al.: "Graphene-aluminum nanocomposites", Materials Science and Engineering A 528 (2011) 7933-7937, ist darüber hinaus ein Kompositmaterial aus Aluminium und Graphen bekannt.
  • Da die Tendenz bei zukünftigen Einspritzsystemen mehr und mehr zu hohen Systemdrücken und damit auch zu höheren erforderlichen Betätigungskräften für ein Einspritzglied geht, sind zukünftige Anforderungen ohne eine Erhöhung der Baugröße einer Elektrospule immer schwieriger mit konventionellen Elektrospulen gemäß dem Stand der Technik zu erfüllen.
  • Offenbarung der Erfindung
  • Ausgehend von dem dargestellten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Elektrospule nach dem Oberbegriff des Anspruchs 1 derart weiterzubilden, dass die beim Stand der Technik stark temperaturabhängige Widerstandcharakteristik der Elektrospule verringert wird. Darüber hinaus soll eine möglichst hohe Leistungsdichte, d.h. bei einer bestimmten Baugröße eines Spulenkörpers eine möglichst hohe magnetische Betätigungskraft erzielt werden können. Diese Aufgabe wird erfindungsgemäß bei einer Elektrospule mit den Merkmalen des Anspruchs 1 dadurch gelöst, dass der Drahtkern des Spulendrahts aus Aluminium sowie mit dem Aluminium in elektrisch leitendem Kontakt angeordneten Graphen besteht. Ein derartiger Materialmix hat den Vorteil, dass es eine Kombination aus der von Aluminium bekannten relativ geringen Widerstandsänderung über dem Temperaturverlauf und einem insgesamt gesehen relativ geringen spezifischen Widerstand, ähnlich der Verwendung von Kupfer, aufweist.
  • Vorteilhafte Weiterbildungen der erfindungsgemäßen Elektrospule sind in den Unteransprüchen aufgeführt. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in den Ansprüchen, der Beschreibung und/oder den Figuren offenbarten Merkmalen.
  • Um die angesprochene, erfindungsgemäße Materialkombination zu realisieren, ist es in einer ersten Ausgestaltung der Erfindung vorgesehen, dass das Graphen zumindest im Wesentlichen homogen im Querschnitt des Drahtkerns im Aluminium verteilt und in Stromleitungsrichtung orientiert angeordnet ist. Hierzu sei angemerkt, dass Graphen üblicherweise in Form von Plättchen, d.h. einen sehr dünnen Querschnitt aufweisenden Elementen ausgebildet ist, so dass es wesentlich ist, dass die Orientierung des Graphen in Stromleitungsrichtung erfolgt. Dabei kann es möglich sein, dass in Stromleitungsrichtung betrachtet die einzelnen Graphenelemente örtlich voneinander getrennt sind, oder aber, besonders vorteilhaft, einander überlappend angeordnet sind, so dass in Stromleitungsrichtung eine durchgehend leitende Graphenschicht erzielt wird. Für den Fall, dass die einzelnen Graphenelemente in Stromleitungsrichtung voneinander getrennt sind, findet eine elektrische Leitung zwischen den Graphenelementen durch das in elektrisch leitendem Kontakt mit dem Graphen angeordneten Aluminiums statt. Daher ist es auch von Bedeutung bzw. wesentlich, dass innerhalb des Querschnitts zumindest im Wesentlichen keine, die Stromleitung reduzierende Effekte, wie beispielsweise Lufteinschlüsse oder ähnliches, vorhanden sind.
  • In alternativer Ausgestaltung der Erfindung ist es auch möglich, dass das Graphen als eine von dem Aluminium separate und mit dem Aluminium elektrisch leitend verbundene, in Stromrichtung vorzugsweise durchgehende Schicht, vorzugsweise an einer Oberfläche des Drahtkerns, ausgebildet ist. Bei einer derartigen Ausführungsform wird als vorteilhaft angesehen, dass die beiden der Stromleitung dienenden Bestandteile, das Aluminium und das Graphen, ggf. in separaten Herstellungsverfahren bzw. Herstellungsschritten ausgebildet werden können, die anschließend elektrisch leitend miteinander verbunden werden. Alternativ ist es auch möglich, auf eine bereits vorhandene Aluminiumschicht bzw. einem Aluminiumträger das Graphen anzuordnen bzw. abzuscheiden. Somit dient das Aluminium als Trägermaterial zur Anordnung bzw. Ausbildung des Graphens.
  • Beim Stand der Technik weisen die üblicherweise verwendeten Isolierschichten aus Kunststoff (z.B. Backlack) bei der Verwendung von Kupferdrähten eine Dicke von ca. 50µm auf. Da die Isolationsschicht nicht der Stromleitung dient, ergibt sich mit einer zunehmenden Dicke der Isolationsschicht eine abnehmende Packungsdichte bzw. Leistungsfähigkeit der Elektrospule. Aus diesem Grund ist es erfindungsgemäß besonders bevorzugt vorgesehen, dass die Isolierschicht eine Aluminium-Oxidschicht mit einer Dicke zwischen 1µm und 10µm, vorzugsweise zwischen 2µm und 5µm ist. Eine Oxidschicht hat gegenüber der Verwendung von Kunststoff insbesondere den Vorteil, dass diese eine hohe Wärmeleitfähigkeit aufweist und somit auch eine relativ effektive Abfuhr der Wärme des Spulendrahts ermöglicht. Darüber hinaus wird durch die besonders dünne Ausbildung der Isolierschicht im Vergleich zu einer aus Kunststoff bestehenden Isolierschicht die Leistungsfähigkeit der Elektrospule durch einen erhöhten Füllfaktor vergrößert. Die Beschichtung bzw. Ausbildung mit Aluminiumoxid erfolgt insbesondere durch anodische Oxidation (EloxalVerfahren). Die anodische Oxidation ist ein elektrolytisches Verfahren, durch das eine Oxidschicht auf einer Oberfläche erzeugt wird, welche gegenüber einer natürlich gebildeten (Oxid-)Schicht um etwa das Hundertfache verstärkt ist, so dass bei ausreichender Spannungsdurchschlagsfestigkeit in der Praxis eine 4µm dicke Isolierschicht ausreicht.
  • Eine besonders Ausgestaltung der Isolierschicht sieht vor, dass die Isolierschicht das Graphen lediglich teilweise überdeckt. Dies ist insbesondere dann vorgesehen, wenn Aluminiumbänder verwendet werden, bei denen das Graphen auf eine Seite als Beschichtung aufgebracht ist. Da das Graphen der Stromleitung dient und einen sehr geringen elektrischen Widerstand aufweist, ist es dabei wesentlich, das beim Übereinanderwickeln des Spulendrahts jeweils eine Isolierschicht die darunter liegende, teilweise freiliegende Graphenschicht überdeckt.
  • Ganz besonders bevorzugt ist darüber hinaus eine geometrische Ausgestaltung des Spulendrahts, bei der dieser zumindest im Wesentlichen einen rechteckigen Querschnitt aufweist. Eine derartige Ausbildung erhöht den Füllfaktor und somit die Leistungsdichte der Elektrospule in besonders hohem Maße und ermöglicht daher bei einer bestimmten Leistung besonders klein bzw. kompakt bauende Elektrospulen.
  • Um einen Spulenkörper über dessen gesamte axiale Länge mit einem derartigen, einen rechteckigen Querschnitt aufweisenden Spulendraht bewickeln zu können, um eine möglichst hohe Leistungsdichte bzw. einen möglichst hohen Füllfaktor zu ermöglichen, ist es darüber hinaus in einer bevorzugten Ausgestaltung vorgesehen, dass der Spulendraht eine Breite aufweist, die der Breite des Spulenkörpers in dessen Längsrichtung entspricht.
  • Der gleiche Effekt kann alternativ jedoch auch dadurch erzielt werden, wenn der Spulendraht eine Breite aufweist, die einem 1/n-fachen der Breite des Spulenkörpers in dessen Längsrichtung entspricht, und wenn zwei in Längsrichtung des Spulenkörpers einander anschließende Spulendrähte elektrisch leitend miteinander verbunden sind.
  • Die angesprochenen vorteilhaften Effekte der erfindungsgemäßen Elektrospule kommen immer dann besonders gut zur Geltung, wenn die Elektrospule zumindest zeitweise unterschiedlichen Temperaturen ausgesetzt sind, wobei bei Temperaturen von mehr als 150°C, insbesondere mehr als 200°C, die Vorteile gegenüber herkömmlichen Elektrospulen besonders groß sind.
  • Eine derartige erfindungsgemäße Elektrospule findet daher insbesondere als Bestandteil einer Kraftfahrtzeugspritzkomponente, insbesondere eines Kraftstoffinjektors Verwendung, bei der der Kraftstoffinjektor bzw. dessen Elektrospule einerseits, beispielsweise bei einem Kaltstart, relativ tiefen Temperaturen ausgesetzt ist, und andererseits während des Betriebs die angesprochenen hohen Temperaturen von bis zu über 200°C erreichen können. Grundsätzlich kann die erfindungsgemäße Elektrospule bei allen Anwendungen eingesetzt werden, bei denen eine besonders hohe Leistungsfähigkeit und/oder ein kleiner Bauraum für die Elektrospule erwünscht ist.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung.
  • Diese zeigt in:
  • Fig. 1
    einen Längsschnitt durch eine Elektrospule, bei der in Längsrichtung betrachtet zwei Spulendrahteinheiten nebeneinander angeordnet sind,
    Fig. 2
    eine perspektivische Darstellung eines in Form einer Rolle ausgebildeten Spulendrahtelements,
    Fig. 3
    einen Querschnitt durch ein erstes erfindungsgemäßes Spulendrahtelement
    Fig. 4
    einen Querschnitt durch ein gegenüber Fig. 3 modifiziertes Spulendrahtelement und
    Fig. 5
    eine Darstellung des Widerstandsverlaufs unterschiedlicher Materialien über der Temperatur.
  • Gleiche Elemente bzw. Elemente mit gleicher Funktion sind in den Figuren mit den gleichen Bezugsziffern versehen.
  • In der Fig. 1 ist eine erfindungsgemäße Elektrospule 10 dargestellt, wie Sie beispielsweise als Bestandteil einer Kraftfahrzeugeinspritzkomponente in Form eines Kraftstoffinjektors dient. Insbesondere dient die Elektrospule 10 dabei der zumindest mittelbaren Betätigung eines Einspritzventilglieds (Düsennadel) in den Kraftstoffinjektor.
  • Die Elektrospule 10 umfasst einen aus Kunststoff bestehenden, im Spritzgussverfahren hergestellten Spulenkörper 11 in Form einer Hülse mit zwei seitlich angeordneten, den Spulenkörper 11 in Längsrichtung begrenzenden, radial umlaufenden Flanschen 12, 13 und einer konzentrisch zur Längsachse 14 des Spulenkörpers 11 in diesem angeordneten Ausnehmung 15. Zwischen den beiden Flanschen 12, 13 bildet der Spulenkörper 11 eine insbesondere kreisförmig ausgebildete Umfangsfläche 16 zur Anordnung wenigstens einer Spulendrahteinheit 20 aus. Im dargestellten Ausführungsbeispiel sind in Axialrichtung der Längsachse 14 betrachtet zwei Spulendrahteinheiten 20 auf dem Spulenkörper 11 vorgesehen, die elektrisch leitend miteinander verbunden sind (nicht dargestellt), indem ein Drahtende der einen Spulendrahteinheit 20 mit einem Drahtende der anderen Spulendrahteinheit 20 verbunden ist. Insbesondere beträgt die Breite b der beiden identisch ausgebildeten Spulendrahteinheiten 20 in etwa die Hälfte der Breite B des Spulenkörpers 11 zwischen den beiden Flanschen 12, 13, so dass der Bauraum zwischen den beiden Flanschen 12, 13 zumindest nahezu vollständig ausgefüllt ist.
  • Wie anhand einer Zusammenschau der Fig. 2 bis 4 erkennbar ist, besteht der Spulendraht 25, 25a der Spulendrahteinheit 20, der in Form einer Vielzahl von Windungen auf dem Spulenkörper 11 aufgewickelt ist, aus zwei unterschiedlichen Materialen, aus Aluminium 21 sowie aus Graphen 22. Bei der Ausführungsform gemäß der Fig. 3 besteht der Spulendraht 25 mit einem Drahtkern 23, bestehend aus Aluminium 21. In Stromleitungsrichtung, d.h. senkrecht zur Zeichenebene der Fig. 3, sind in dem Aluminium 21 Plättchen aus Graphen 22 angeordnet, wobei die Plättchen senkrecht zur Zeichenebene der Fig. 3 entweder alle miteinander unmittelbar in Form eines Bandes elektrisch leitend verbunden sind, oder aber mit Abständen zueinander angeordnet sind. Insbesondere ist die Verteilung des Graphens 22 innerhalb des Drahtkerns 23 bzw. des Aluminiums 21 zumindest im Wesentlichen homogen.
  • Der einen rechteckigen Querschnitt der Breite b aufweisende Spulendraht 25 ist von einer insbesondere eine gleichmäßige Wanddicke a aufweisenden Isolationsschicht 26 über den gesamten Querschnitt des Spulendrahts 25 umgeben. Die Isolationsschicht 26 ist als Aluminium-Oxidschicht 27 ausgebildet und beispielsweise im Eloxalverfahren erzeugt. Insbesondere beträgt die Wanddicke a der Isolationsschicht 26 zwischen 1µm und 10µm, vorzugsweise zwischen 2µm und 5µm, ganz besonders bevorzugt 4µm. Ein derartig hergestellter Spulendraht 25 lässt sich entsprechend der Darstellung der Fig. 2 in Form eines aufgespulten Bandes 28 bevorraten bzw. maschinell verarbeiten.
  • In der Fig. 4 ist ein gegenüber Fig. 3 modifizierter Spulendraht 25a dargestellt. Der Drahtkern 23 des Spulendrahts 25a besteht aus Aluminium 21 ohne Graphen 22. Das Graphen 22 ist als bandförmige Schicht auf der Oberfläche bzw. auf der Oberseite 29 des Drahtkerns 23 aufgebracht und mit diesem elektrisch leitend verbunden. Die Isolationsschicht 26 besteht ebenfalls aus einer Aluminium-Oxidschicht 27, die den Drahtkern 23 im Bereich außerhalb des Graphens 22 vollständig umgibt. Im Bereich des Graphens 22 reicht die Isolationsschicht 26 seitlich bis an das Graphen 22 heran, das Graphen 22 ist jedoch auf der dem Drahtkern 23 abgewandten Oberseite nicht von der Isolationsschicht 26 umgeben bzw. abgedeckt.
  • Beim Bewickeln des Spulenkörpers 11 mittels des Spulendrahts 25a ist es wesentlich, dass mehrere Lagen des Spulendrahts 25a derart übereinander angeordnet bzw. aufgewickelt werden, dass auf das Graphen 22 einer radial unteren Schicht jeweils eine Isolationsschicht 26 einer oberhalb angeordneten Windung gewickelt wird.
  • In der Fig. 5 ist über der Temperatur T (x-Achse) der spezifische Widerstand RS (Y-Achse) verschiedener Materialien dargestellt. Mit der Bezugsziffer 31 ist der Verlauf des spezifischen Widerstands RS von Aluminium dargestellt, während die Bezugsziffer 32 den Verlauf des spezifischen Widerstand RS von Kupfer verdeutlicht. Mit der Bezugsziffer 33 ist der spezifische Widerstand RS der erfindungsgemäßen Materialkombination, bestehend aus Aluminium 21 und Graphen 22 dargestellt. Man erkennt, dass eine derartige Materialkombination bei steigender Temperatur einen nahezu konstanten bzw. lediglich leicht steigenden spezifischen Widerstand RS aufweist, der hinsichtlich seines Absolutbetrages in der Größenordnung von Kupfer bei relativ kleinen Temperaturen liegt.
  • Die erfindungsgemäße Elektrospule 10 kann in vielfältiger Art und Weise abgewandelt bzw. modifiziert werden, ohne vom Erfindungsgedanken abzuweichen. Es ist beispielsweise denkbar, anstelle eines im Wesentlichen rechteckförmigen Querschnitts für den Spulendraht 25, 25a diesen Querschnitt auch quadratisch oder im Falle des im Aluminium 21 angeordneten Graphens 22 rund auszubilden. Auch sei nochmals darauf hingewiesen, dass der Einsatz der Erfindung nicht auf Elektrospulen 10 begrenzt sein soll, die als Bestandteil einer Kraftstoffeinspritzkomponente dienen.

Claims (10)

  1. Elektrospule (10), umfassend zumindest einen Spulenkörper (11) und einem den Spulenkörper (11) an einer Umfangsfläche (16) des Spulenkörpers (11) in Form wenigstens einer Windung umgebenen Spulendraht (25; 25a), wobei der Spulendraht (25; 25a) aus einem elektrisch leitenden Drahtkern (23) und einer den Drahtkern (23) zumindest bereichsweise umgebenden Isolationsschicht (26) besteht, wobei der Drahtkern (23) Aluminium (21) beinhaltet, dadurch gekennzeichnet, dass der Drahtkern (23) mit dem Aluminium (21) in elektrisch leitendem Kontakt angeordnetes Graphen (22) aufweist.
  2. Elektrospule nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Graphen (22) zumindest im Wesentlichen homogen im Querschnitt des Drahtkerns (23) im Aluminium (21) verteilt und in Stromleitungsrichtung orientiert angeordnet ist.
  3. Elektrospule nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Graphen (22) als eine von dem Aluminium (21) separate und mit dem Aluminium (21) elektrisch leitend verbundene, in Stromrichtung vorzugsweise durchgehende Schicht, vorzugsweise an einer Oberseite (29) des Drahtkerns (23), ausgebildet ist.
  4. Elektrospule nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Isolationsschicht (26) eine Aluminium-Oxyidschicht (27) mit einer Dicke (a) zwischen 1µm und 10µm, vorzugsweise zwischen 2µm und 5µm ist.
  5. Elektrospule nach Anspruch 3 oder 4,
    dadurch gekennzeichnet,
    dass die Isolationsschicht (26) das Graphen (22) lediglich teilweise überdeckt.
  6. Elektrospule nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Spulendraht (25; 25a) einen zumindest im Wesentlichen rechteckförmigen Querschnitt aufweist.
  7. Elektrospule nach Anspruch 6,
    dadurch gekennzeichnet,
    dass das Spulendraht (25; 25a) eine Breite (b) ausweist, die zumindest im Wesentlichen der axialen Breite (B) des Spulenkörpers (11) in dessen Längsrichtung entspricht.
  8. Elektrospule nach Anspruch 6,
    dadurch gekennzeichnet,
    dass das Spulendraht (25; 25a) eine Breite (b) ausweist, die zumindest im Wesentlichen einem 1/n-fachen der Breite (B) des Spulenkörpers (11) in dessen Längsrichtung entspricht, und dass zwei in Längsrichtung des Spulenkörpers (11) einander anschließende Spulendrähte (25; 25a) elektrisch leitend miteinander verbunden sind.
  9. Verwendung einer Elektrospule (10) nach einem der Ansprüche 1 bis 9, bei der die Elektrospule (10) einer Temperatur von mehr als 150°C, insbesondere mehr als 200°C ausgesetzt ist.
  10. Verwendung einer Elektrospule (10) nach Anspruch 9 als Bestandteil einer Kraftfahrzeugeinspritzkomponente, insbesondere eines Kraftstoffinjektors.
EP14806274.8A 2013-12-19 2014-12-03 Elektrospule und verwendung einer elektrospule Active EP3084781B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226572.7A DE102013226572A1 (de) 2013-12-19 2013-12-19 Elektrospule und Verwendung einer Elektrospule
PCT/EP2014/076381 WO2015090964A1 (de) 2013-12-19 2014-12-03 Elektrospule und verwendung einer elektrospule

Publications (2)

Publication Number Publication Date
EP3084781A1 EP3084781A1 (de) 2016-10-26
EP3084781B1 true EP3084781B1 (de) 2017-09-20

Family

ID=52003781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14806274.8A Active EP3084781B1 (de) 2013-12-19 2014-12-03 Elektrospule und verwendung einer elektrospule

Country Status (6)

Country Link
US (1) US20160336103A1 (de)
EP (1) EP3084781B1 (de)
CN (1) CN106104716B (de)
DE (1) DE102013226572A1 (de)
RU (1) RU2659563C1 (de)
WO (1) WO2015090964A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202071A1 (de) * 2016-02-11 2017-08-17 Siemens Aktiengesellschaft Elektrischer Leiter für eine elektrische Maschine mit erhöhtem Leistungsgewicht und elektrische Komponente für die elektrische Maschine
DE102017205296A1 (de) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Elektrischer Leiter
DE102017210441A1 (de) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Elektromagnetisch erregbare Spule
CN107726600B (zh) * 2017-09-27 2020-10-02 青岛海尔智能技术研发有限公司 一种磁能热水器
CN110491619A (zh) * 2019-09-04 2019-11-22 同济大学 一种磁浮列车用箔绕电磁铁
US20240047096A1 (en) * 2022-08-03 2024-02-08 Infineon Technologies Austria Ag Graphene in electromagnetic systems

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU636691A1 (ru) * 1977-04-26 1978-12-05 Предприятие П/Я А-1216 Катушка индуктивности
EP0762445B1 (de) * 1995-08-25 2000-07-26 Denso Corporation Elektromagnet mit geneigter Wicklung un diese Wicklung verwendende Zündspule für eine Brennkraftmaschine
CN1196140C (zh) * 2002-06-29 2005-04-06 太原理工大学 一种铝基混合碳纤维复合材料线芯传输电缆制备方法
DE102008034408A1 (de) * 2008-07-23 2010-01-28 Kendrion Binder Magnete Gmbh Elektromagnetische Vorrichtung mit einem Bandwickel
JP4631951B2 (ja) * 2008-09-19 2011-02-16 パナソニック株式会社 巻線コイルと銅線との洗濯機用電気接続手段
ATE537352T1 (de) * 2009-06-15 2011-12-15 Delphi Tech Holding Sarl Kraftstoffeinspritzdüse
US8263843B2 (en) * 2009-11-06 2012-09-11 The Boeing Company Graphene nanoplatelet metal matrix
US8665049B2 (en) * 2011-07-21 2014-03-04 Ut-Battelle, Llc Graphene-coated coupling coil for AC resistance reduction
CN202307250U (zh) * 2011-11-04 2012-07-04 江苏中超电缆股份有限公司 含石墨烯的橡胶绝缘电缆
US20130140058A1 (en) * 2011-12-05 2013-06-06 Ki II Kim Graphene electrical wire and a method for manufacturing thereof
CN103021502A (zh) * 2012-12-25 2013-04-03 山东鑫汇铜材有限公司 一种铜包铝导线
CN103123830A (zh) * 2013-03-14 2013-05-29 南京科孚纳米技术有限公司 一种制备石墨烯电线电缆的方法
NL2011129C2 (nl) * 2013-07-09 2015-01-12 Eco Logical Entpr B V Compacte elektrische inrichting en daarop gebaseerde elektrodynamische luidspreker, elektromotor, roerinrichting en instelbare koppeling.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013226572A1 (de) 2015-06-25
CN106104716A (zh) 2016-11-09
WO2015090964A1 (de) 2015-06-25
EP3084781A1 (de) 2016-10-26
RU2659563C1 (ru) 2018-07-03
US20160336103A1 (en) 2016-11-17
RU2016129242A (ru) 2018-01-23
CN106104716B (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
EP3084781B1 (de) Elektrospule und verwendung einer elektrospule
DE102008022170A1 (de) Spule für eine elektrische Maschine und Herstellungsverfahren für eine Spule
EP3375261A1 (de) Multilayer-platine mit gedruckter spule und verfahren zu deren herstellung
EP2068426B1 (de) Elektrischer Wickelleiter mit rechteckigem Querschnitt
EP1958217B1 (de) Elektrische wicklung und herstellungsverfahren
DE102018101231A1 (de) Stator für eine elektrische Maschine und Verfahren zu dessen Herstellung
DE102011120720A1 (de) Stützstift für einen elektrisch beheizbaren Wabenkörper
DE102009008405A1 (de) Stellantrieb
EP2732452B1 (de) Elektrische vorrichtung
DE102006032973B3 (de) Supraleitende Strombegrenzereinrichtung von resistiven Typ mit Halteelement
EP3494294B1 (de) Elektrisch beheizbarer wabenkörper zur abgasbehandlung mit einer mehrzahl von heizelementen
EP3847679B1 (de) Verfahren zur elektrischen kontaktierung eines supraleitenden bandleiters
EP1722996B1 (de) Magnetpol für magnetschwebefahrzeuge
WO2005087534A1 (de) Magnetpol für magnetschwebefahrzeug
WO2013163994A1 (de) Flüssigkeitsgekühlter widerstand
DE102017207663A1 (de) Verfahren zur Herstellung einer Spulenanordnung
EP3607569B1 (de) Elektroisoliertes elektrisches leitungsband, insbesondere für elektromotoren und transformatoren
WO2017041957A1 (de) Hohlleiter für eine elektrische maschine, elektrische maschine sowie herstellungsverfahren
DE4204092C2 (de) Aus mindestens einer Wicklungskammer bestehender Spulenkörper für elektrisches Wickelgut, insbesondere für einen Hochspannungstransformator, sowie Hochspannungstransformator
DE102006032972B3 (de) Supraleitende Strombegrenzereinrichtung vom resistiven Typ mit mehrteiligem Halteelement
EP2401747B1 (de) Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils
DE102004011940A1 (de) Magnetpol für Magnetschwebefahrzeug
DE102019202191B4 (de) Verwendung einer Spule in einem Elektromotor
EP2361434A1 (de) Verfahren und trägerzylinder zur herstellung einer elektrischen wicklung
DE202015105768U1 (de) Induktives Bauelement für Hochstromanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170531

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOEHNE, MARTIN

Inventor name: STUKE, BERND

Inventor name: GIEZENDANNER-THOBEN, ROBERT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 930759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005543

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005543

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180621

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171203

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141203

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 930759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 10