EP3083973B1 - Procede d'enrichissement en dha de la biomasse de microalgues du genre traustochytrium - Google Patents

Procede d'enrichissement en dha de la biomasse de microalgues du genre traustochytrium Download PDF

Info

Publication number
EP3083973B1
EP3083973B1 EP14830829.9A EP14830829A EP3083973B1 EP 3083973 B1 EP3083973 B1 EP 3083973B1 EP 14830829 A EP14830829 A EP 14830829A EP 3083973 B1 EP3083973 B1 EP 3083973B1
Authority
EP
European Patent Office
Prior art keywords
biomass
fatty acids
oxygen
dha
lipids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14830829.9A
Other languages
German (de)
English (en)
Other versions
EP3083973A1 (fr
Inventor
Bernard Caulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of EP3083973A1 publication Critical patent/EP3083973A1/fr
Application granted granted Critical
Publication of EP3083973B1 publication Critical patent/EP3083973B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a novel fermentative process for the enrichment in docosahexaenoic acid (or DHA) of microalgae biomass of the genus Thraustochytrium, more particularly Schizochytrium sp or Schizochytrium mangrovei, as well as the oil extracted from this microalgae biomass.
  • DHA docosahexaenoic acid
  • Lipids are one of three major families of macronutrients with proteins and carbohydrates.
  • Triglycerides and phospholipids are composed mainly of fatty acids that are both provided by the diet and, for some of them, synthesized by the body.
  • the biochemical classification (based on the number of double bonds contained in the fatty acid molecule) distinguishes between saturated fatty acids (AGS), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFAs).
  • the essential and "conditionally" essential fatty acids are the essential fatty acids.
  • the polyunsaturated fatty acids are classified according to the position of the first double bond, from the final methyl function.
  • omega-6 fatty acids or n-6 PUFAs
  • LA linoleic acid
  • PUFAs omega-3 fatty acids
  • ALA alpha-linolenic acid
  • the majority of polyunsaturated fatty acids of biological interest belongs to the family of omega 6 (arachidonic acid or ARA) or omega 3 (eicosapentaenoic acid or EPA, docosahexaenoic acid or DHA).
  • omega 6 arachidonic acid or ARA
  • omega 3 eicosapentaenoic acid or EPA, docosahexaenoic acid or DHA.
  • the "5" and “6" thus correspond to the number of unsaturations of the carbon chain presented respectively by the EPA and the DHA.
  • DHA from the family of omega 3 fatty acids, is a fatty acid that the body knows how to synthesize from alpha-linolenic acid, or that is brought by the consumption of fatty fish (tuna, salmon, herring, etc.). .).
  • DHA plays an important role in the structure of membranes and in the development and functioning of the brain and retina.
  • Fish oils are mainly used as a source of omega 3 fatty acids, such as DHA and EPA, but they are also found in microalgae oils from which they are extracted either as a mixture or separately, as this is the case for example oils from certain selected strains, such as those of the genus Schizochytrium, which contain only traces of EPA but high levels of DHA.
  • palmitic acid also known as hexadecanoic acid or cetyl acid
  • cetyl acid is one of the most common C16: 0 saturated fatty acids found in animals and plants.
  • Palmitic acid is the first fatty acid produced during lipogenesis; from it, longer fatty acids can be produced.
  • palmitic acid is also used for the manufacture of both margarine and hard soaps.
  • the culture of microalgae of the genus Schizochytrium is conventionally carried out in fermentors (heterotrophic conditions: in the dark in the presence of a carbon source).
  • the objective of these HCD cultures was to obtain the highest possible concentration of the desired lipids in the shortest time.
  • the patent application WO 01/54510 recommends dissociating cell growth and polyunsaturated fatty acid production.
  • microalga Schizochytrium sp strain ATCC 20888 it is thus more particularly carried out a first phase of growth in the presence of a carbon source and a nitrogen source but without limitation in oxygen, so as to promote the obtaining of a high cell density then, in a second phase, stop the supply of nitrogen and gradually slow down the oxygen supply (management of the dissolved oxygen pressure or pO 2 by 10%, at 4%, then 0.5%), in order to stress the microalgae, slow down its growth and trigger the production of the fatty acids of interest.
  • the highest content of DHA is obtained at a low glucose concentration (of the order of 5 g / l), and thus at a low growth rate ( Jiang and Chen, 2000, Process Biochem., 35 (10), 1205-1209 ).
  • a person skilled in the art chooses to control the growth of microalgae by controlling the fermentation conditions (Tp, pH, etc.), or by the regulated feed. nutritional components of the fermentation medium (so-called “fed-batch” semi-continuous conditions).
  • the skilled person generally chooses to adapt the carbon source (pure glucose, acetate, ethanol ”) to the microalga ( C. cohnii, Euglena gracilis ”) depending on the metabolite produced (for example a polyunsaturated fatty acid type DHA).
  • Temperature can also be a key parameter. For example, it has been reported that the synthesis of polyunsaturated fatty acids in certain species of microalgae, such as EPA by Chlorella minutissima, is favored at a lower temperature than that required for optimal growth of said microalgae.
  • the C / N ratio is here decisive, and it is accepted that the best results are obtained by acting directly on the nitrogen content, the glucose content not being limiting.
  • a nutrient especially in a carbon or nitrogen source, is applied during the fermentative process.
  • the growth and production phases of DHA are concomitant.
  • the microalgae are of the genus Schizochytrium sp or Schizochytrium mangrovei. More specifically, the microalgae may be a strain selected from strains CNCM I-4469 and CNCM I-4702 deposited at the National Collection of Microorganism Cultures of the Pasteur Institute respectively on April 14, 2011 and November 22, 2012.
  • the method may further comprise harvesting the biomass, optionally preparing an extract or cell lysate from this biomass, then optionally extracting a crude oil rich in DHA.
  • the process according to the invention consists in satisfying the oxygen requirements corresponding to the first three points and thus providing the optimal amount of oxygen to obtain a biomass rich in DHA (whether produced by Schizochytrium sp or S. mangrovei ).
  • Strains for use in the methods of the present invention are of the genus Thraustochytrium, more particularly Schizochytrium sp or Schizochytrium mangrovei. Such strains are known to those skilled in the art. For example, mention may be made of the strain Schizochytrium sp ATCC No. 20888, described and studied in the application WO 01/54510 .
  • the applicant company has identified during its research several strains of microalgae producing DHA of great interest. In particular, the applicant company is particularly interested in two strains it has identified.
  • the first strain is a strain of Schizochytrium sp., Deposited in France on April 14, 2011 with the National Collection of Microorganism Cultures of the Pasteur Institute (CNCM) under the number I-4469 but also in China with the CHINA CENTER FOR TYPE CULTURE COLLECTION (CCTCC) from Wuhan University, Wuhan 430072, PR China under the number M 209118.
  • This strain mainly produces DHA and to a lesser extent palmitic acid and palmitoleic acid. It has been characterized by partial sequencing of the gene coding for 18S RNA (SEQ ID No. 1): which made it possible to identify it as a strain of the Schizochytrium sp. This strain will be referred to as "CNCM I-4469" later in this application.
  • the second strain is a strain of Schizochytrium mangrovei. It produces DHA and palmitic acid in a relatively equal proportion. It was filed by the company Applicant in France on November 22, 2012 with the National Collection of Microorganism Cultures of the Pasteur Institute (CNCM) under number CNCM I-4702. It has been characterized by sequencing genes coding for 18S rRNA (SEQ ID No. 2): which made it possible to identify it as a strain of the Schizochytrium mangrovei type . This strain will be designated "CNCM I-4702" later in this application.
  • This stream is named OTR (acronym for Oxygen Transfer Rate).
  • the oxygen consumption by the culture is named OUR (acronym for Oxygen Uptake Rate).
  • the OUR is then considered equal to the OTR.
  • OTR and OUR are data for the entire culture medium.
  • the OUR for a volume of culture can be related to the quantity of cells occupying this volume.
  • the cell consumption is named qO 2 and represents the amount of O 2 in grams absorbed per gram of cell per hour. This consumption is then calculated for the mass of cells as such, that is to say without the mass of fatty acids, since the lipid reserves have no active role in the absorption of oxygen.
  • the method of the invention makes it possible, by a controlled supply of oxygen to the culture medium, to act on the production of the lipids and to optimize it according to the growth conditions of the microalgae (size of the inoculum, age of the culture).
  • the overall O 2 consumption corresponds to the addition of the different uses of oxygen by the cell.
  • the Applicant company distinguishes four oxygen consumption routes, which correspond to the basic needs of the cell, needs successively met with an order of priority up to the oxygen supply.
  • qO 2 qm ⁇ 6 ⁇ 32 180 1 qlipidesdebase ⁇ there 02 lipids 2 ⁇ ⁇ there O 2 x 3 + qlipidesdemübordement ⁇ there 02 lipids 4
  • Cell maintenance is the energy the cell requires for its maintenance, regardless of any lipid production or biomass growth.
  • the oxygen supply will serve secondly the production of basic lipids.
  • the growth rate is symbolized by " ⁇ " in equation (1) which represents the biomass (excluding AG) in g formed by g of biomass (excluding AG) and per hour ie (h -1 ).
  • this growth rate ( ⁇ ) is multiplied by the oxygen requirement to form the non-AG biomass, expressed as "y O2 / X " in equation (1).
  • the growth is continuous because, according to the process of the invention, there is no nutritional limitation. However, it is observed a slowing down of the growth rate independent of the exhaustion of the medium.
  • the biomass concentration excluding A.G. varies according to the initial biomass concentration and increases according to its growth rate.
  • the O 2 conversion yields make it possible to know the O 2 consumptions as a function of the production of non-AG biomass or lipids.
  • the applicant company has found that it is through the respect of this control of the target oxygenation that a biomass rich in DHA is obtained. Oxygenation greater than the target results in producing more palmitic acid and / or palmitoleic acid and thus diluting DHA. Oxygenation below the target oxygenation level limits the amount of biomass produced.
  • this biomass rich in lipids has a high level of DHA.
  • the fermentative process according to the present invention makes it possible to obtain a biomass comprising at least 40% by weight of DHA relative to the total fatty acids.
  • an oil can be extracted from the cell lysate, for example using hexane / ethanol in several successive extractions.
  • the hexane fraction is then separated and the hexane is evaporated to isolate the crude oil.
  • the protocol comprises an Erlens preculture for fermenter seeding at 0.1 g of biomass / L for the CNCM I-4469 strain and at least 5 g of biomass / L for the CNCM I-4702 strain.
  • Glucose is sterilized with KH 2 PO 4 in Erlen for an addition just before T 0 .
  • the rest of the salts are sterilized in a fermenter with 0.05 ml / l of Clearol FBA 3107.
  • the trace elements and vitamins are sterilized by filtration.
  • the culture is conducted at a temperature of 28 ° C and lasts from 65 to 85 hours.
  • the final biomass is analyzed by Gas Chromatography (GPC).
  • GPC Gas Chromatography
  • Non-fatty acid biomass also called active biomass
  • active biomass is calculated by removing these fatty acids from the total biomass.
  • the amount of each of the fatty acids produced is then divided by the average of the biomass excluding A.G. present and by time.
  • the result obtained is a total specific production rate per unit of time and per g of biomass excluding A.G.
  • the method consists in using half of the value of the transfer observed (OUR) during the culture at 10% (Here, 50 mmol / Uh see graph 1 or 25 mmol / Uh) ( Figure 2 ).
  • Table IX the results presented are those obtained at T65 of the biomass culture of the two strains CNCM I-4469 and CNCM I-4702 under controlled O 2 feed conditions.
  • the velocities evaluated by this method serve as a basis for calculating qO 2 Target.
  • the lipid production rates of Table X here represent the constant flux of base lipids ( q lipidsdebase in Equations 1 and 2), of which DHA is the major constituent but which also comprises a little palmitic acid.
  • the metabolic overflow flow corresponds to the additional flow, between the speeds of Table VIII and that of Table X.
  • Qm is negligible in non-stressing culture conditions; a value of 0.006 g / g / h is retained.
  • the growth rate is reduced with increasing biomass concentration; the max growth rate can be maintained up to 4 g / L of non-fat biomass for CNCM I-4702 and 7 g / L for CNCM I-4469 inoculated at 5 g / L.
  • QO2 (consumption at the cellular level) can be transposed to the OTR (contribution corresponding to the level of the fermenter) by taking into account the biomass concentration.
  • the target OTR therefore remains close to that expressed above until reaching a growth rate of biomass excluding zero lipids.
  • Example 3 Fermentation line with different OTR conditions
  • the max OTR value of between 25 and 30 corresponds to the optimum OUR at the beginning of culture defined in the context of the invention for controlling the supply of oxygen and in order to respect the target qO 2 .
  • Table XI shows the fermentation parameters measured at T65 with CNCM I-4702.
  • Table XI concentrations % of qO 2 target OTR Max (mmol / L / h) at the beginning of culture Biomass (g / L)
  • Fatty acids g / 100g) of biomass Palmitic acid (g / 100 g of lipids)
  • DHA (g / 100 g of lipids) 60 15 41 41 36 48 75 20 52 41 36 46 100 25 57 47 39 45 30 60 48 43 43 150 40 74 55 49 37 200 50 81 61 57 30
  • Example 4 Comparative Example with and Without Limited Nitrogen Deficiency
  • fatty acid richness of biomass is only minimally reduced without nutritional limitation. Contrary to the technical prejudices in the field, a nitrogen source limitation is therefore not necessary to induce the production of lipids.
  • the culture protocol used is that described in Example 4 of the patent application WO 01/54510 .
  • the strain used is Schizochytrium sp ATCC 20888.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

  • La présente invention se rapporte à un nouveau procédé fermentaire d'enrichissement en acide docosahexaénoïque (ou DHA) de la biomasse de microalgues du genre Thraustochytrium, plus particulièrement Schizochytrium sp ou Schizochytrium mangrovei, ainsi que de l'huile extraite de cette biomasse de microalgue.
  • Les lipides constituent une des trois grandes familles de macronutriments avec les protéines et les glucides.
  • Parmi les lipides, on distingue notamment les triglycérides et les phospholipides :
    • Les triglycérides (également appelés triacylglycérols ou triacylglycérides ou TAG) sont des glycérides dans lesquels les trois groupements hydroxyles du glycérol sont estérifiés par des acides gras. Ils sont le constituant principal de l'huile végétale et des graisses animales.
      Les triglycérides représentent environ 95 % des lipides alimentaires ingérés par l'Homme. Dans l'organisme, ils sont présents principalement dans les tissus adipeux et constituent la forme principale de stockage de l'énergie.
    • Les phospholipides sont des lipides amphiphiles, c'est-à-dire constitués d'une « tête » polaire (hydrophile) et de deux « queues » aliphatiques (hydrophobes).
      Les phospholipides sont des lipides de structure car ils sont des constituants des membranes cellulaires dont ils assurent entre autre la fluidité.
  • Triglycérides et phospholipides sont composés majoritairement d'acides gras qui sont à la fois apportés par l'alimentation et, pour certains d'entre eux, synthétisés par l'organisme.
  • La classification biochimique (basée sur le nombre de doubles liaisons contenues dans la molécule d'acide gras) distingue les acides gras saturés (AGS), les acides gras monoinsaturés (AGMI) et les acides gras polyinsaturés (AGPI).
  • Du point de vue physiologique, on distingue :
    • les acides gras indispensables nécessaires au développement et au bon fonctionnement du corps humain, mais que notre corps ne sait pas fabriquer ;
    • les acides gras dit « conditionnellement » indispensables, essentiels pour la croissance normale et les fonctions physiologiques des cellules mais qui peuvent être fabriqués à partir de leur précurseur s'il est apporté par l'alimentation. Ils sont donc rigoureusement requis si leur précurseur indispensable est absent.
    • les acides gras non indispensables.
  • L'ensemble des acides gras indispensables et « conditionnellement » indispensables constituent les acides gras essentiels.
  • Les autres acides gras sont dits non essentiels.
  • Parmi les acides gras non indispensables, on trouve notamment :
    • l'acide eicosapentaénoïque (EPA) de la famille des acides gras oméga 3,
    • l'acide oléique, l'acide gras monoinsaturé majoritaire dans notre alimentation, et l'acide palmitoléique,
    • les acides gras saturés, tels l'acide laurique, l'acide myristique ou l'acide palmitique.
    Les acides gras polyinsaturés
  • Les acides gras polyinsaturés sont classés en fonction de la position de la première double liaison, à partir de la fonction méthyle finale.
  • Ainsi, dans la nomenclature, pour omega « x » ou « nx », « x » correspond à la position de la première insaturation.
  • On distingue deux grandes familles d'acides gras essentiels : les acides gras oméga 6 (ou AGPI n-6), dont le précurseur et le représentant majeur est l'acide linoléique (LA) et les acides gras oméga 3 (ou AGPI n-3) dont le précurseur est l'acide alpha-linolénique (ALA).
  • La majorité des acides gras polyinsaturés d'intérêt biologique appartient à la famille des omega 6 (acide arachidonique ou ARA) ou omega 3 (acide eicosapentaénoïque ou EPA, acide docosahexaénoïque ou DHA).
  • En outre, dans la nomenclature, on définit également le nombre de carbone constituant la chaîne ; ainsi l'EPA est décrit comme C20:5 et le DHA comme C22:6.
  • Le « 5 » et « 6 » correspondent ainsi au nombre d'insaturations de la chaîne carbonée présentés respectivement par l'EPA et par le DHA.
  • Le DHA, de la famille des acides gras oméga 3, est un acide gras que l'organisme sait synthétiser à partir de l'acide alpha-linolénique, ou qui est apporté par la consommation de poissons gras (thon, saumon, hareng...).
  • Le DHA joue un rôle important dans la structure des membranes et dans le développement et le fonctionnement du cerveau et de la rétine.
  • Les huiles de poisson sont utilisées principalement comme source d'acides gras de type omega 3, tels le DHA et l'EPA, mais on les trouve également dans les huiles de microalgues à partir desquelles on les extrait soit en mélange, soit séparément, comme c'est le cas par exemple des huiles issues de certaines souches sélectionnées, telles que celles du genre Schizochytrium, qui ne contiennent que des traces d'EPA mais de fortes teneurs en DHA.
  • Les acides gras saturés
  • Parmi les acides gras saturés, l'acide palmitique, également appelé acide hexadécanoïque ou acide cétylique, est l'un des acides gras saturés en C16:0 les plus courants chez les animaux et les plantes.
  • L'acide palmitique est le premier acide gras produit au cours de la lipogenèse ; à partir de lui, des acides gras plus longs peuvent être produits.
  • De plus, il est l'acide gras utilisé préférentiellement pour synthétiser de l'ATP. Le bilan énergétique de sa combustion indique 129 ATP. Il constitue ainsi un excellent aliment énergétique.
  • Industriellement on utilise également l'acide palmitique pour la fabrication aussi bien des margarines que des savons durs.
  • Dans le domaine des peintures, étant donné qu'il est saturé, l'acide palmitique ne peut pas polymériser et se rigidifier une fois en contact avec l'oxygène de l'air (à la différence de l'acide oléique, linoléique et linolénique). Il reste donc sous sa forme de solide mou et agit (avec l'acide stéarique) comme plastifiant des liants huileux polymérisés. Ainsi, avec l'acide stéarique, il assure l'élasticité nécessaire à la bonne conservation des matières picturales à l'huile, à travers le temps.
  • Les acides gras monoinsaturés
  • Comme précurseur d'acide gras monoinsaturé, l'acide palmitique conduit à l'acide palmitoléique (16 :1 n-7), naturellement présent en grande quantité dans le fruit ou la pulpe de l'argousier.
  • Il a par ailleurs été décrit qu'un apport accru d'acide palmitoléique dans l'alimentation pourrait avoir des effets hypocholestérolémiques et hypotriglycéridémiques, réduire les risques d'accident vasculaire cérébral, et améliorer également le métabolisme des cellules musculaires lisses vasculaires.
  • Production de lipides, notamment d'acides gras, par les microalgues
  • La culture des microalgues du genre Schizochytrium est réalisée classiquement dans des fermenteurs (conditions hétérotrophiques : à l'obscurité en présence d'une source carbonée).
  • Il est à noter que l'exploitation rentable de ces microalgues nécessite généralement la maîtrise des conditions de fermentation.
  • Pour parvenir à ce résultat, de premiers procédés de fermentation permettant d'obtenir de hautes densités cellulaires (acronyme anglais : HCD pour High-Cell-Density) ont été ainsi beaucoup travaillés, de manière à obtenir des rendements et productivités maximales en lipides.
  • L'objectif de ces cultures HCD était l'obtention de la concentration la plus élevée possible des lipides souhaités dans le laps de temps le plus court.
  • Cependant, il est vite apparu aux spécialistes du domaine qu'il faut par exemple soumettre les microalgues à un stress nutritionnel qui limite leur croissance lorsqu'on souhaite leur faire produire d'importantes réserves lipidiques.
  • Il est donc classiquement procédé au découplage croissance / production dans les procédés fermentaires.
  • Par exemple, pour favoriser l'accumulation d'acides gras polyinsaturés (ici l'acide docosahexaénoïque ou DHA), la demande de brevet WO 01/54510 recommande de dissocier la croissance cellulaire et la production d'acides gras polyinsaturés.
  • Il est plus particulièrement revendiqué un procédé pour la production de lipides microbiens, comprenant les étapes consistant à :
    1. (a) effectuer une fermentation d'un milieu comprenant des microorganismes, une source de carbone et une source nutritive limitante et en assurant des conditions suffisantes pour maintenir un taux d'oxygène dissous d'au moins environ 4 % de la saturation dans ledit milieu de fermentation pour augmenter la biomasse ;
    2. (b) puis fournir des conditions suffisantes pour maintenir un taux d'oxygène dissous approximativement égal ou inférieur à 1 % de la saturation dans ledit milieu de fermentation et fournir des conditions suffisantes pour permettre auxdits microorganismes de produire lesdits lipides ;
    3. (c) et recueillir lesdits lipides microbiens, dans lequel au moins environ 15 % desdits lipides microbiens sont constitués de lipides polyinsaturés ;
    et dans lequel une densité de biomasse d'au moins environ 100 g/l est obtenue au cours de la fermentation.
  • Chez la microalgue Schizochytrium sp souche ATCC 20888, il est ainsi plus particulièrement procédé à une première phase de croissance en présence d'une source carbonée et d'une source azotée mais sans limitation en oxygène, de manière à favoriser l'obtention d'une haute densité cellulaire puis, dans une deuxième phase, arrêter la fourniture d'azote et ralentir progressivement l'apport en oxygène (gestion de la pression en oxygène dissous ou pO2 de 10 %, à 4 %, puis 0,5 %), afin de stresser la microalgue, ralentir sa croissance et enclencher la production des acides gras d'intérêt.
  • Chez la microalgue Crypthecodinium cohnii, la teneur la plus élevée en DHA est obtenue à faible concentration en glucose (de l'ordre de 5 g/l), et ainsi à faible taux de croissance (Jiang and Chen, 2000, Process Biochem., 35(10), 1205-1209).
  • De ce fait, dans les cas où la formation des produits n'est pas corrélée avec une croissance cellulaire élevée, il est enseigné qu'il est judicieux de maîtriser le taux de croissance cellulaire.
  • En général, l'homme du métier choisit de contrôler la croissance des microalgues par la maîtrise des conditions de fermentation (Tp, pH...), ou par l'alimentation régulée en composants nutritionnels du milieu de fermentation (conditions semi continues dites « fed-batch »).
  • S'il choisit de contrôler la croissance des microalgues en hétérotrophie par l'apport en sources carbonées, l'homme du métier choisit généralement d'adapter la source carbonée (glucose pur, acétate, éthanol...) à la microalgue (C. cohnii, Euglena gracilis...) en fonction du métabolite produit (par exemple un acide gras polyinsaturé de type DHA).
  • La température peut également être un paramètre clef. Il a par exemple été rapporté que la synthèse d'acides gras polyinsaturés chez certaines espèces de microalgues, tel que l'EPA par Chlorella minutissima, est favorisée à une plus basse température que celle requise pour la croissance optimale de ladite microalgue.
  • Pour optimiser la production en triglycérides, l'homme du métier est également amené à optimiser le flux carboné vers la production d'huile, en agissant sur l'environnement nutritionnel du milieu de fermentation.
  • Il est ainsi connu que l'accumulation en huile se produit lors d'un apport carboné suffisant, mais dans des conditions de carence en azote.
  • Le rapport C/N est donc ici déterminant, et il est admis que les meilleurs résultats sont obtenus en agissant directement sur la teneur en azote, la teneur en glucose n'étant pas limitante.
  • Pour optimiser la production en huile, il est donc primordial pour l'homme du métier de contrôler le flux carboné en le déviant vers la production d'huile, au détriment de la production des protéines ; le flux carboné est redistribué et s'accumule en substances de réserve lipidiques quand les microalgues sont placées en milieu carencé en azote.
  • Quoi qu'il en soit, des préparations commerciales de biomasse de microalgues riches en DHA et d'acide palmitique sont disponibles grâce à la mise en oeuvre de conditions de fermentation standard.
  • Cependant, il demeure un besoin non satisfait de disposer de procédé alternatif de production de biomasses de microalgues de qualité, à haute teneur en DHA et à teneur contrôlée en acide palmitique et/ou acide palmitoléique.
  • RESUME DE L'INVENTION
  • La présente invention est relative à un procédé de production d'une biomasse de microalgues du genre Thraustochytrium enrichie en acide docosahexaénoïque (DHA) caractérisé en ce que, pendant la phase de culture en conditions hétérotrophiques, l'apport en oxygène est contrôlé de manière à satisfaire uniquement les besoins en oxygène 1) pour la production d'énergie nécessaire à la maintenance cellulaire, 2) pour la production des lipides de base, et 3) pour la croissance de la biomasse hors acides gras et en ce que l'apport en oxygène nécessaire pour satisfaire uniquement les besoins 1), 2) et 3) est calculé par l'équation 2 suivante qO 2 Cible = qm × 6 × 32 180 + qlipidesdebase × y 02 lipides + μ × y O 2 x
    Figure imgb0001
    dans laquelle
    • qO2Cible est la quantité d'oxygène en gramme par gramme de biomasse hors acides gras et heure ;
    • qm est coefficient de maintenance exprimé en g de glucose par g de biomasse hors acides gras et par heure ;
    • q lipides de base est la vitesse d'accumulation des lipides de base exprimée en g de lipides de base par g de biomasse hors acides gras et par heure ;
    • yO2/lipides est le coefficient de consommation d'oxygène par rapport à la formation de lipides exprimé en g d'oxygène par g de lipides,
    • µ est la vitesse de croissance exprimée en g de biomasse hors acides gras formée par g de biomasse hors acides gras et par heure, soit (h-1) ;
    • yO2/x est le coefficient de consommation d'oxygène par rapport à la formation de biomasse hors acides gras exprimé en g d'oxygène par g de biomasse hors acides gras.
  • Facultativement, aucune limitation d'un élément nutritif, notamment en source carbonée ou azotée, n'est appliquée pendant le procédé fermentaire.
  • Facultativement, les phases de croissance et de production de DHA sont concomitantes.
  • De préférence, les microalgues sont du genre Schizochytrium sp ou Schizochytrium mangrovei. De manière plus spécifique, les microalgues peuvent être une souche sélectionnée parmi les souches CNCM I-4469 et CNCM I-4702 déposées à la Collection Nationale de Cultures de Microorganismes de l'Institut Pasteur respectivement le 14 avril 2011 et le 22 novembre 2012.
  • Facultativement, le procédé peut comprendre en outre la récolte de la biomasse, éventuellement la préparation d'un extrait ou lysat cellulaire à partir de cette biomasse, puis facultativement l'extraction d'une huile brute riche en DHA.
  • Le procédé selon la présente invention peut être caractérisé en ce que la biomasse obtenue comprend
    • au minimum 40 % de DHA en poids d'acides gras totaux ; et/ou
    • au maximum 40 % d'acide palmitique en poids d'acides gras totaux ; et/ou
    • au minimum 25 % d'acides gras en sec poids de biomasse.
    DESCRIPTION DETAILLEE DE L'INVENTION
  • Dans le cadre de l'invention, la société Demanderesse a choisi d'explorer une voie originale d'optimisation de la production en DHA en proposant une solution alternative à celles classiquement envisagées par l'homme du métier.
  • La société Demanderesse a ainsi trouvé, ce qui va à l'encontre des préjugés techniques en la matière, qu'il est possible de produire par fermentation des biomasses de microalgues riches en lipides (plus de 45 % en poids sec de biomasse) dont les acides gras prépondérants sont l'acide docosahexaénoïque (DHA), tout en modulant ou contrôlant la quantité d'acide palmitique et d'acide palmitoléique :
    • sans qu'il ne soit nécessaire de découpler la phase de croissance de la microalgue et la phase de production des lipides - au contraire, la production de lipides est concomitante à la croissance cellulaire et est donc réalisée en une seule phase,
    • sans qu'il ne soit indispensable, comme décrit dans l'état de l'art, d'induire une limitation en azote ou en un quelconque autre élément nutritif, et
    • sans qu'il ne soit non plus indispensable de piloter la fermentation par la pO2.
  • La société Demanderesse a ainsi trouvé que l'on peut contrôler la composition en lipides de la biomasse, et notamment les proportions de DHA et d'acide palmitique et palmitoléique grâce à un contrôle de l'oxygénation du milieu de fermentation.
  • En effet, la société Demanderesse a compris que l'oxygène est utilisé par les microalgues selon les priorités suivantes :
    • production d'énergie pour la maintenance,
    • production d'une palette d'acides gras, appelés lipides de base, dont le DHA est majoritaire,
    • croissance de la biomasse hors acides gras, et
    • production d'acide palmitique avec le surplus d'oxygène.
  • En d'autres termes, le procédé conforme à l'invention consiste à satisfaire les besoins en oxygène correspondants aux trois premiers points et ainsi d'apporter la quantité d'oxygène optimale pour obtenir une biomasse riche en DHA (qu'elle soit produite par Schizochytrium sp ou S. mangrovei).
  • Ensuite, comme il sera démontré dans la partie expérimentale ci-après, un apport d'oxygène supplémentaire peut être réalisé et conduit à une surproduction rapide d'acide palmitique (bien illustré avec S. mangrovei), avec ou sans acide palmitoléique (bien illustré avec Schizochytrium sp).
  • La société Demanderesse a commencé ses travaux sur la base de la souche Schizochytrium sp ATCC 20888.
  • En suivant les enseignements de l'état de l'art, notamment ceux de la demande de brevet WO 01/54510 , la société Demanderesse a tout d'abord trouvé que, contrairement à ce qui est divulgué, une régulation constante de la pO2 à 0 % ou à plus de 10 % pendant toute la durée de la fermentation permettait de produire plus de 35 % d'AGPI dans les acides gras (plus de 25 % de DHA sur acides gras totaux), tout comme avec une conduite raisonnée avec une réduction de la pO2 en cascade (10 %, puis 4 %, puis 0,5 % de saturation).
  • En revanche, cette dernière conduite (selon la demande WO 01/54510 ) appliquée à la souche CNCM I-4702 aboutit au final à la production d'acides gras dont l'acide palmitique est très majoritaire à plus de 60%, alors que le DHA n'atteint pas 20% ; cette conduite aboutit aux mêmes résultats que ceux obtenus pour cette souche avec une conduite à pO2 à 10 % constant.
  • En outre, d'un point de vue technique, la mesure de la pO2 pose de grandes difficultés lorsqu'il s'agit de transposer le protocole du laboratoire à l'échelle industrielle (en d'autres termes, passer de l'échelle des fermenteurs de 2 à 20 l à l'échelle de réacteurs de 1 à 200 m3).
  • En effet, la pO2 est définie comme la concentration relative en oxygène dissous dans le moût de fermentation à saturation. Par exemple, si de l'eau est mise en aération sous air, à température ambiante et sous pression atmosphérique, suffisamment longtemps, on considère que la pO2 est égale à 100 % (ce qui correspond à l'état de l'oxygénation du fermenteur à t = 0). Or, lors du calibrage d'une sonde pO2 dans un fermenteur, la teneur en oxygène dissous est influencée par la concentration en sels résiduels et par la température de fermentation.
  • Par ailleurs, il est classiquement admis que, pour un fermenteur de laboratoire, la pO2 est peu influencée par la pression générée par la hauteur du moût de fermentation et par les effets de mélange. Cependant, lors des industrialisations sur des fermenteurs de moyenne (de l'ordre du m3) à grande capacité (de l'ordre de centaines de m3), la hauteur du moût de fermentation va au contraire :
    • avoir une influence sur la pression en oxygène dissous ; et
    • provoquer des phénomènes complexes dans le fermenteur « non parfaitement agité ».
  • En ce sens, la valeur de pO2 établie à l'échelle du laboratoire n'est donc pas extrapolable à l'échelle industrielle.
  • De plus, les préconisations du brevet WO 01/54510 décrit pour Schizochytrium sp ne semblent pas généralisables à toutes les souches du genre Thraustochytrium. En d'autres termes, dans la présente invention, il n'est pas procédé ici à une diminution de l'apport en oxygène de manière à « stresser » la microalgue afin de lui faire produire ses lipides de réserves (en l'occurrence le DHA), mais à contrôler l'apport en oxygène à hauteur des besoins exprimés par ladite microalgue pour moduler l'orientation de sa production de lipides et, ce sans se référer à la pO2.
  • Par ailleurs, le choix de la conduite de fermentation en contrôlant l'apport d'oxygène a conduit la société Demanderesse à obtenir, sans qu'il ne soit utile de limiter l'apport en certaines substances nutritives ni de découpler phase de croissance et de production, de remarquables résultats :
    • une augmentation de la teneur globale en lipides d'intérêt, et notamment du DHA, et
    • une réduction des odeurs (la réduction de l'odeur particulièrement intense des biomasses récoltées de la CNCM I-4469 est remarquable.
    Choix des microorganismes
  • Les souches à utiliser dans les méthodes de la présente invention sont du genre Thraustochytrium, plus particulièrement Schizochytrium sp ou Schizochytrium mangrovei. De telles souches sont connues de l'homme du métier. Par exemple, on peut citer la souche Schizochytrium sp ATCC No 20888, décrite et étudiée dans la demande WO 01/54510 .
  • La société Demanderesse a identifié au cours de ses recherches plusieurs souches de microalgues productrices de DHA de grand intérêt. Notamment, la société Demanderesse est tout particulièrement intéressée par deux souches qu'elle a identifiées.
  • La première souche est une souche de Schizochytrium sp., déposée en France le 14 avril 2011 auprès de la Collection Nationale de Cultures de Microorganismes de l'Institut Pasteur (CNCM) sous le numéro I-4469 mais également en Chine auprès du CHINA CENTER FOR TYPE CULTURE COLLECTION (CCTCC) de l'université de Wuhan, Wuhan 430072, P.R. China sous le numéro M 209118. Cette souche produit principalement du DHA et en moindre mesure de l'acide palmitique et de l'acide palmitoléïque. Elle a été caractérisée par séquençage partiel du gène codant pour l'ARN 18S (SEQ ID No 1):
    Figure imgb0002
    ce qui a permis de l'identifier comme étant une souche du type Schizochytrium sp. Cette souche sera désignée « CNCM I-4469» ultérieurement dans la présente demande.
  • Par ailleurs, la deuxième souche est une souche de Schizochytrium mangrovei. Elle produit du DHA et d'acide palmitique en proportion relativement égale. Elle a été déposée par la société Demanderesse en France le 22 novembre 2012 auprès de la Collection Nationale de Cultures de Microorganismes de l'Institut Pasteur (CNCM) sous le numéro CNCM I-4702. Elle a été caractérisée par séquençage des gènes codant pour l'ARNr 18 S (SEQ ID No 2):
    Figure imgb0003
    ce qui a permis de l'identifier comme étant une souche du type Schizochytrium mangrovei. Cette souche sera désignée « CNCM I-4702» ultérieurement dans la présente demande.
  • Détermination et utilisation de la quantité d'oxygène nécessaire, en particulier qO2
  • Le flux d'oxygène global introduit dans le milieu de culture est modulable et dépend essentiellement :
    • du débit de l'air introduit,
    • de la vitesse d'agitation qui favorise la dissolution de l'oxygène dans le milieu.
  • Ce flux est nommé OTR (acronyme anglais pour Oxygen Transfer Rate ou Taux de transfert d'oxygène).
  • La consommation d'oxygène par la culture est nommée OUR (acronyme anglais pour Oxygen Uptake Rate ou Taux de consommation d'oxygène).
  • Lorsque la biomasse croît dans le fermenteur, sa consommation globale en oxygène augmente jusqu'à absorber tout l'oxygène transféré, l'OUR est alors considérée comme égale à l'OTR.
  • L'OTR et l'OUR sont des données pour l'ensemble du milieu de culture. Ainsi, l'OUR pour un volume de culture peut être rapporté à la quantité de cellules qui occupent ce volume.
  • Ainsi, la consommation cellulaire est nommée qO2 et représente la quantité d'O2 en gramme absorbée par gramme de cellule et par heure. Cette consommation est alors calculée pour la masse de cellules en tant que telle, c'est-à-dire sans la masse des acides gras, puisque les réserves lipidiques n'ont pas de rôle actif dans l'absorption de l'oxygène.
  • Le procédé de l'invention permet, par un apport contrôlé en oxygène au milieu de culture, d'agir sur la production des lipides et de l'optimiser en fonction des conditions de croissance des microalgues (taille de l'inoculum, âge de la culture...).
  • La consommation d'O2 globale correspond à l'addition des différentes utilisations de l'oxygène par la cellule. La société Demanderesse distingue quatre voies de consommation de l'oxygène, qui correspondent aux besoins élémentaires de la cellule, besoins satisfaits successivement avec un ordre de priorité à hauteur de l'apport en oxygène.
  • Ces besoins sont les suivants, par ordre de priorité :
    1. 1. La maintenance cellulaire.
    2. 2. La production de lipides de base.
    3. 3. La formation de la biomasse hors acide gras.
    4. 4. Une accumulation de lipides liés à un débordement métabolique.
  • La société Demanderesse a trouvé que le qO2 se détermine alors par la formule suivante : qO 2 = qm × 6 × 32 180 1 qlipidesdebase × y 02 lipides 2 μ × y O 2 x 3 + qlipidesdedébordement × y 02 lipides 4
    Figure imgb0004
  • Les termes « qm », « qlipides de base», « y O 2/lipides », « µ », « y O 2/x » et « qlipides de débordement » de l'équation doivent être compris comme suit.
  • La maintenance cellulaire. Terme (1) de l'Equation
  • La maintenance cellulaire correspond à l'énergie dont a besoin la cellule pour son entretien, indépendamment de toute production de lipides ou de croissance de biomasse.
  • Le « qm » est la quantité de substrat carboné (le glucose généralement) utilisée pour produire cette énergie ; il est exprimé en g de glucose par g de biomasse hors acides gras et par heure. Ce terme est classiquement désigné dans le domaine comme l'énergie de maintien ou coefficient de maintenance.
  • Le besoin en oxygène associé est proportionnel. Il faut en effet 6 molécules d'O2 (Masse Molaire : 32 g) pour transformer une molécule de glucose (Masse Molaire : 180 g). D'où le terme « qm × 6 × 32 180 »
    Figure imgb0005
    dans l'équation (1).
  • La production de lipides de base. Terme (2) de l'Equation
  • La société Demanderesse a constaté que l'accumulation de lipides est concomitante à la croissance et n'est pas uniquement un phénomène apparaissant à l'arrêt de cette dernière. Une accumulation de lipides est précurseur de la croissance, ne serait-ce que pour la formation des membranes cellulaires.
  • La composition de ces lipides de base est différente en fonction de la souche et comprend entre autres de l'acide palmitique ou de l'acide palmitoléïque comme précurseurs de la biosynthèse du DHA, mais le DHA est toujours le constituant majoritaire, dont la quantification est illustrée par l'exemple 2.
  • La vitesse d'accumulation de ces lipides correspond à un flux nommé « qlipides de base » dans l'équation (1).
  • Pour les souches CNCM I-4469 Schizochytrium sp et CNCM I-4702 Schizochytrium mangrovei, cette vitesse est exemplifiée ci-après.
  • Pour obtenir le besoin en oxygène associé, on multiplie ce flux ou vitesse par le besoin en oxygène pour former des lipides (également appelé coefficient de consommation d'oxygène par rapport à la formation de lipides), exprimé par le terme « y O 2/Lipides » dans l'équation (1).
  • Ainsi, l'apport en oxygène servira en second lieu la production de lipides de base.
  • La formation de la biomasse hors acide gras. Terme (3) de l'Equation
  • La biomasse totale comprend les réserves lipidiques.
  • Ces dernières (constitués par les acides gras) sont déterminées par dosage et sont soustraites de la biomasse totale.
  • La formation de la biomasse hors acides gras (hors « A.G. ») correspond à la croissance de la biomasse riche en protéines, et donc réellement active.
  • La vitesse de croissance est symbolisée par « µ » dans l'équation (1) qui représente la biomasse (hors A.G.) en g formée par g de biomasse (hors A.G.) et par heure soit (h-1).
  • Pour obtenir le besoin en oxygène associé, on multiplie cette vitesse de croissance (µ) par le besoin en oxygène pour former la biomasse hors A.G., exprimé par le terme : « y O2/X » dans l'équation (1).
  • Ainsi, l'apport en oxygène servira en troisième lieu la production de biomasse hors acides gras.
  • Calcul de la concentration en biomasse hors acide gras
  • La croissance est continue car, conformément au procédé de l'invention, il n'y a aucune limitation nutritionnelle. Cependant, il est observé un ralentissement de la vitesse de croissance indépendant de l'épuisement du milieu.
  • La concentration en biomasse hors A.G. varie selon la concentration en biomasse initiale et augmente selon son taux de croissance.
  • Pour prédire par le calcul la concentration en biomasse à chaque instant et estimer la valeur du taux de croissance, la société Demanderesse recommande d'utiliser l'équation (3) suivante. μ = μ max 1 - X X max
    Figure imgb0006
  • Cette équation illustre la réduction observée et inexpliquée du taux de croissance.
  • « µ » représente le taux de croissance (exprimé en h-1) et X la concentration cellulaire hors A.G. (exprimée en g/L).
  • Les paramètres sont différents pour les deux souches préférées et repris dans le tableau I. Tableau I
    Souche µ max X max (hors A.G.)
    CNCM I-4469 0,08 h-1 45 g/L
    CNCM I-4702 0,17 h-1 40 g/L
  • Ce phénomène réduit aussi le qO2, car le taux de croissance (µ) contribue à la consommation d'oxygène (Equation 1).
  • La concentration en biomasse est calculée à partir de la quantité de biomasse introduite et connue (Inoculum) et de son taux de croissance qui évolue.
  • L'accumulation de lipides liés à un débordement métabolique. Terme (4) de l'Equation
  • Il a été déterminé par la société Demanderesse que ce dernier flux n'existe qu'à partir du moment où les besoins précédemment cités ont été satisfaits et que l'on apporte l'oxygène nécessaire.
  • Cet apport d'oxygène, exprimé dans l'équation (1) par le terme « qlipides de débordement » x « y O 2/lipides » provoque une augmentation de la vitesse de consommation du glucose qui sera transformé en un flux d'acide gras. Cet apport d'oxygène supplémentaire pourra être modulé de manière à contrôler la production des lipides de débordement.
  • Cet accélération de la production d'acide gras, telle qu'illustrée dans l'exemple 1, provoque un débordement métabolique et aboutit à une accumulation d'acide palmitique pour Thraustochytrium et d'acides palmitique et palmitoléique pour Schizochytrium sp. Sans être liée par cette théorie, la société Demanderesse considère que ce débordement est lié au fait que les enzymes en aval de la voie de métabolisation continuent à agir au même rythme alors que les enzymes du début de la voie accélèrent leur activité.
  • Calcul du Besoin en O2 pour former les A.G. et la biomasse hors A.G.
  • Les rendements de conversion sur O2 permettent de connaitre les consommations d'O2 en fonction des productions de biomasse hors A.G ou de lipides.
  • Les rendements de conversion sont des paramètres bien connus de l'homme du métier qui peut donc les déterminer par des expériences de routine.
  • Ces valeurs sont indiquées tableau II et elles sont propres aux deux souches préférées. Tableau II
    Besoin en O2 pour la production de biomasse hors A.G. (g/g) 0,80 Y O2/x
    Besoin en O2 pour la production des lipides (g/g) 0,17 Y O2/lipides
  • Obtention d'une biomasse riche en DHA - Calcul du qO2 cible
  • Pour augmenter la teneur en DHA, la société Demanderesse a établi qu'il était approprié de contrôler l'apport en oxygène pour ne satisfaire que les 3 premières utilisations de l'oxygène (maintenance, production de lipide de base, et croissance de la biomasse hors A.G.). Cet apport peut être défini par la détermination du qO2 cible, qui correspond à la quantité d'O2 nécessaire en gramme par gramme de cellule et par heure.
  • Le qO2 cible est alors défini par l'équation (2), qui ne comprend que les trois premières composantes de l'équation (1) qO 2 Cible = qm × 6 × 32 180 1 + glipidesdebase × y 02 lipides 2 + μ × y O 2 x 3
    Figure imgb0007
  • Ensuite, cette vitesse de consommation d'O2 cellulaire est transposée pour le fermenteur en la multipliant par la concentration en biomasse hors A.G., qui peut soit être mesurée soit prédite par calcul pour chaque instant. Cette vitesse correspond à l'OUR.
  • Etant donné que l'on se place dans des conditions où l'OTR correspond à l'OUR, ce sera donc cet OTR qui sera appliqué pour chaque instant pendant le procédé fermentaire.
  • La société Demanderesse a trouvé que c'est par le respect de ce contrôle de l'oxygénation cible que l'on obtient une biomasse riche en DHA. Une oxygénation supérieure à la cible aboutit à produire plus d'acide palmitique et/ou d'acide palmitoléique et ainsi à diluer le DHA. Une oxygénation inférieure au niveau d'oxygénation cible limite la quantité de biomasse produite.
  • Le qO2 cible variant avec l'évolution de la culture, il est fait référence dans les exemples suivants à l'OUR maximal constaté. Les exemples 1 et 2 illustrent l'effet du contrôle de l'oxygénation sur les souches CNCM I-4469 Schizochytrium sp et CNCM I-4702 Schizochytrium mangrovei et la méthode pour obtenir les vitesses de production spécifiques. L'exemple 3 illustre, pour la souche CNCM I-4702 Schizochytrium mangrovei, l'effet d'une conduite dans laquelle la variation de l'oxygénation permet de modifier les proportions d'acide palmitique et de DHA de la biomasse.
  • Dans un mode de réalisation alternatif, l'apport en oxygène nécessaire pour satisfaire les trois premiers besoins, à savoir les besoins (1), (2) et (3), peut également être déterminé de manière empirique. Comme l'illustre l'exemple 3, l'homme du métier peut réaliser différents procédés de fermentation dans lesquelles une gamme d'OTR est mise en oeuvre et les quantités de lipides et de biomasse sont mesurées. Sur la base de ces résultats, l'homme du métier peut définir l'OTR cible qui permet de satisfaire les trois premiers besoins.
  • Le procédé fermentaire selon la présente invention permet d'obtenir une biomasse riche en acides gras. Notamment, la biomasse comprend au minimum 25 % d'acides gras en sec poids de biomasse, de préférence au minimum 30 %. Le taux d'acides gras peut dépendre de la souche mise en oeuvre et peut atteindre un minimum de 40 % en poids sec de biomasse pour la souche I-4702.
  • Par ailleurs, et de manière tout à fait intéressant, cette biomasse riche en lipides présente un taux élevé de DHA. Notamment, le procédé fermentaire selon la présente invention permet d'obtenir une biomasse comprenant au minimum 40 % en poids de DHA par rapport aux acides gras totaux.
  • Enfin, le procédé fermentaire selon la présente invention permet d'obtenir une biomasse présentant une teneur réduite en acide palmitique. Ainsi, la biomasse comprenant au maximum 40 % en poids de DHA par rapport aux acides gras totaux. Le taux d'acide palmitique peut dépendre de la souche mise en oeuvre et peut atteindre un maximum de 10 % en poids par rapport aux acides gras totaux pour la souche I-4469.
  • Par ailleurs, la présente invention considère également des procédés fermentaires dans lesquels l'apport en oxygène est supérieur à celui nécessaire pour satisfaire les trois premiers besoins, à savoir les besoins (1), (2) et (3). Notamment, cet apport sera contrôlé de manière à obtenir les proportions relatives en DHA et acides palmitique et/ou palmitoléïque souhaitées, tout en optimisant la quantité de biomasse produite.
  • Par ailleurs, les procédés fermentaires selon la présente invention sont mis en oeuvre dans des conditions de culture hétérotrophiques. Ces conditions adaptées aux microalgues considérées ainsi que les milieux de culture sont bien connus de l'homme du métier. La source carbonée nécessaire à la croissance de la microalgue est préférentiellement du glucose. La source d'azote peut être des extraits de levure, de l'urée, du glutamate de sodium, du sulfate d'ammonium, de l'ammoniaque en régulation de pH, pris seuls ou en combinaison. Généralement, l'étape de culture comprend une étape de préculture, pour revivifier la souche, puis une étape de culture ou de fermentation proprement dite. Cette dernière étape correspond à l'étape de production des lipides d'intérêt, en particulier de DHA.
  • Outre la biomasse, la présente invention concerne également un extrait ou lysat cellulaire préparé à partir de cette biomasse. En particulier, cet extrait ou lysat est préparé à partir de la biomasse récupérée après fermentation. Cet extrait ou lysat riche en DHA, et facultativement en acides palmitique et/ou palmitoléïque. La rupture des cellules pour l'extraction du contenu lipidique peut être effectuée par différentes voies parmi lesquelles les voies mécanique, chimique, enzymatique.
  • Par la suite, une huile peut être extraite du lysat cellulaire, par exemple à l'aide hexane/éthanol en plusieurs extractions successives. La fraction hexanique est ensuite séparée puis l'hexane est évaporé pour isoler l'huile brute.
  • Ainsi, la méthode de production de lipides d'intérêt, de préférence DHA, et facultativement d'acides palmitique et/ou palmitoléïque, comprend le procédé fermentaire selon la présente invention, la récolte de la biomasse, la préparation d'un extrait ou lysat cellulaire et extraction d'une huile brute comprenant les lipides d'intérêt, de préférence DHA, et facultativement d'acides palmitique et/ou palmitoléïque.
  • EXEMPLES Exemple 1 : Conditions de cultures des souches CNCM I-4469 et CNCM I-4702 et détermination des vitesses spécifiques de production en excès d'oxygénation Conditions de cultures
  • Le protocole comprend une préculture en Erlens pour un ensemencement du fermenteur à 0,1 g de biomasse/L pour la souche CNCM I-4469 et au minimum 5g de biomasse/L pour la souche CNCM I-4702.
  • Préculture
  • La préculture (100 ml de milieu) en Erlens de 500 ml à chicanes dure 24 h à une température de 28°C.
  • L'ensemble des composants du milieu est stérilisé par filtration et introduit dans un Erlen préalablement stérilisé à l'autoclave après ajout d'une goutte d'anti-mousse Clearol FBA 3107. Tableau III
    Milieu de pré culture % (g/g)
    Glucose anhydre 3
    Extrait de levure 0,4
    Glutamate de sodium mono-sodique 6,42
    NaCl 1,25
    MgSO4 7(H2O) 0,4
    KCl 0,05
    CaCl22 (H2O) 0,01
    NaHCO3 0,05
    KH2PO4 0,4
    Vitamines solution mère B1, B6, B12 0,1
    Oligo-éléments solution mère 0,8
  • Culture
  • Le milieu est stérilisé en 3 parties.
  • Le glucose est stérilisé avec le KH2PO4 en Erlen pour un ajout juste avant T0.
  • Le reste des sels est stérilisé en fermenteur avec 0,05 ml /L de Clearol FBA 3107. Les Oligo-éléments et vitamines sont stérilisés par filtration.
  • Le volume à T0 représente 75 % du volume final. Le pH est ajusté à T0 par de l'ammoniaque puis il est régulé à 6 toujours à l'ammoniaque. Tableau IV
    Milieu de culture % (P/P)
    KH2PO4 0,80
    (NH4)2SO4 0,33
    Na2SO4 0,67
    NaCl 0,27
    Ca Cl2 2 (H2O) 0,03
    Mg SO4 7(H2O) 1,00
    Glucose anhydre 6,00
    Vitamines solution mère B1, B6, B12 0,20
    Oligo-éléments solution mère 0,27
  • Un Fed batch de glucose (concentration : 500 g/L de Fed) est apporté en continu à partir de T0 à un rythme constant (à adapter d'après calculs) pour ne pas être à une concentration inférieure à 20 g/L et 5g/L au final.
  • La culture est conduite à la température de 28 °C et dure de 65 à 85 heures.
  • L'utilisation de liqueur d'eau de trempe du maïs (acronyme « CSL ») ou d'extraits de levures (acronyme « EL ») comme source d'azote est possible, permettant d'obtenir des résultats légèrement supérieurs en DHA.
  • Solutions Mères
  • Tableau V
    Oligo-éléments g/L
    MnCl2 2H2O 8,60
    CoCl2 6H2O 0,2
    NiSO4 6H2O 7,50
    Na2MoO4 2H2O 0,15
    ZnSO4 7H2O 5,70
    Cu So4 5h2O 6,50
    FeSO4 7 H2O 32,00
    Acétate de Zinc 0,01
    EDTA Mis à pH < 3
    Tableau VI
    Vitamines g/L
    B1 45
    B6 45
    B12 0,25
  • Détermination des vitesses de production spécifiques
  • Pour évaluer les vitesses de production spécifiques, une première culture a été réalisée à pO2 10%, ce qui signifie que l'on s'assure qu'il reste toujours de l'oxygène dissous dans le milieu. Cette culture a été menée sans limitation en sources nutritives.
  • Cette méthode permet de mettre en évidence les caractéristiques des souches à tester, en excès d'oxygène (Figure 1).
  • Dans le tableau VII, les résultats présentés sont ceux obtenus à T65 de la culture des biomasses des deux souches CNCM I-4469 et CNCM I-4702. Tableau VII : Biomasses et compositions en acides gras
    CNCM I-4469 CNCM I-4702
    Biomasse (g/L) 51,2 79
    Teneur en A-G / Biomasse totale (g/g) 0,38 0,57
    DHA / A.G. (g/g) 0,34 0,19
    acide palmitique/ A.G (g/g) 0,28 0,67
    Autres acides gras /A.G. (g/g) 0,38 0,14
    A.G. signifiant Acide Gras
  • Les différents acides gras autres que DHA et acides palmitiques (notamment acide palmitoléique) sont regroupés sous l'appellation « autres acides gras » pour mettre en évidence l'effet sur le DHA et l'acide palmitique, mais rejoignent les lipides de base avec le DHA dans le calcul du qO2 cible.
  • Le calcul des vitesses moyennes est réalisé globalement.
  • La biomasse finale est analysée par Chromatographie en Phase Gaz (CPG). On connaît alors la concentration en biomasse totale, la teneur de chacun des acides gras et la teneur globale des acides gras.
  • La biomasse hors acide gras, appelée également biomasse active, est calculée par retranchement de ces acides gras à la biomasse totale.
  • La quantité de chacun des acides gras produits est ensuite divisée par la moyenne de la biomasse hors A.G. présente et par le temps. Le résultat obtenu est une vitesse spécifique globale de production par unité de temps et par g de biomasse hors A.G.
  • Ces vitesses sont présentées dans le tableau VII suivant. Tableau VIII : Calcul des vitesses
    CNCM I-4469 CNCM I-4702
    µ biomasse active (h-1) 0,05 0,055
    q Lipides (g/g/h) 0,034 0,074
    q(DHA) (g/g/h) 0,011 0,014
    q(palm) (g/g/h) 0,009 0,050
    q(autres A.G.) (g/g /h) 0,013 0,010
  • Exemple 2 : Cultures des souches CNCM I-4469 et CNCM I-4702 avec un apport d'oxygène contrôlé
  • Les mêmes conditions de cultures ont été mise en oeuvre mais l'apport en oxygène a été contrôlé.
  • La méthode consiste à utiliser la moitié de la valeur du transfert observé (OUR) lors de la culture à 10 % (Ici ; 50 mmoles /Uh cf. graphique 1 soit 25 mmoles /Uh) (Figure 2).
  • Par ailleurs, pour un fermenteur de 20 l, pour respecter le bon fonctionnement du fermenteur, quels que soient les besoins en oxygénation, on fixe à t0 une agitation minimum, de l'ordre de 150 rpm, pendant les 10 à 15 premières heures de culture.
  • Dans le tableau IX, les résultats présentés sont ceux obtenus à T65 de la culture des biomasses des deux souches CNCM I-4469 et CNCM I-4702 dans des conditions d'apport en O2 contrôlée. Tableau IX : Biomasses et compositions en acides gras
    CNCM I-4469 CNCM I-4702
    Biomasse (g/L) 34 59
    Teneur en A-G / Biomasse totale (g/g) 0,29 0,45
    DHA / A.G. (g/g) 0,52 0,44
    acide palmitique/ A.G (g/g) 0,04 0,39
    Autres acides gras /A.G. (g/g) 0,44 0,17
  • Le calcul des vitesses moyennes est réalisé globalement comme indiqué dans l'exemple 1. Les résultats sont donnés dans le Tableau X. Tableau X : Calcul des vitesses
    CNCM I-4469 CNCM I-4702
    µ biomasse active (h-1) 0,05 0,055
    q Lipides (g/g/h) 0,021 0,045
    q(DHA) (g/g/h) 0,011 0,02
    q(palm) (g/g/h) 0,001 0,018
    q(autres A.G.) (g/g /h) 0,009 0,007
  • En comparant les vitesses spécifiques globales de production en conditions d'excès en oxygène (valeurs du tableau VIII) et en conditions contrôlées en oxygène, on constate que :
    • l'apport d'oxygène a permis de diminuer la vitesse de production d'acide palmitique,
    • la vitesse de production d'acide palmitique est diminuée d'un facteur 9 pour la souche CNCM I-4469 et par 3 pour la souche CNCM I-4702.
  • Ce résultat est obtenu alors que les vitesses de production de biomasse ou de DHA restent inchangées.
  • Ainsi, on prévient la production de lipides dans le contexte d'un débordement métabolique.
  • Les vitesses évaluées par cette méthode servent de base au calcul du qO2 Cible.
  • Calcul du qO 2 avec les équations 1 et 2
  • Les vitesses de production des lipides du tableau X représentent ici le flux constant des lipides de base (qlipidesdebase dans les équations 1 et 2), dont le DHA est le constituant majoritaire mais qui comprend aussi un peu d'acide palmitique.
  • Le flux de débordement métabolique correspond au flux supplémentaire, entre les vitesses du tableau VIII et celle du Tableau X.
  • Le qm est négligeable dans les conditions de culture non stressantes ; on retient une valeur de 0,006 g/g/h.
  • Le taux de croissance se réduit avec l'augmentation de la concentration en biomasse ; le taux de croissance max peut être maintenu jusque 4 g/L de biomasse hors lipides pour CNCM I-4702 et 7 g/L pour CNCM I-4469 ensemencé à 5 g/L.
  • On peut transposer le qO2 (consommation au niveau cellulaire) à l'OTR (apport correspondant au niveau du fermenteur) par la prise en compte de la concentration en biomasse.
  • Pour la souche CNCM I-4469 en se plaçant à µmax qO 2 Ciblex = 0.006 * 1,07 + 0,011 + 0,001 + 0,009 * 0,17 + 0,08 * 0,8 = 0,106 g / g / h
    Figure imgb0008
    ce qui correspond à : OTR Cible = 0,106 * 7 = 0,74 d O 2 par L de culture et par heure
    Figure imgb0009
    ou OTR Cible = 0,106 * 7 * 1000 / 32 = 23 m m o l e s d O 2 / L de culture et par / h
    Figure imgb0010
  • Pour la souche CNCM I-4702 en se plaçant à µmax qO 2 Cible = 0,006 * 1,07 + 0,02 + 0,018 + 0,07 * 0,17 + 0,17 * 0,8 = 0,218 g / g / h
    Figure imgb0011
    ce qui correspond à : OTR Cible = 0.218 * 4 = 0,87 g de O 2 par L de culture et par heure
    Figure imgb0012
    OTR Cible = 0.218 * 4 * 1000 / 32 = 27 , 4 mmoles d O 2 / L de culture et par / h
    Figure imgb0013
  • L'utilisation de ces équations renseignées par les données du tableau X permet de simuler la culture, et déterminer OTRcible à appliquer.
  • Ce dernier se réduit avec la baisse du taux de croissance, mais ceci est partiellement compensé par l'augmentation de la concentration en biomasse.
  • L'OTRcible reste donc voisin de celui exprimé ci-dessus jusqu'à atteindre un taux de croissance de la biomasse hors lipides nul.
  • Exemple 3 : Conduite de fermentation avec différentes conditions d'OTR
  • Les essais réalisés dans les exemples 1 et 2, sans limitation en sources nutritives, permettent d'établir un modèle par lequel il est possible de contrôler la production de lipides en respectant un qO2 cible défini par l'équation 2 (qui vaut 27,4 mmoles d'O2/L de culture et par /h - cf. exemple 2).
  • A partir ce qO2 cible initial, des variations ont été testées.
  • Les niveaux de variation, de part et d'autre de ce qO2 cible, sont illustrés ici par l'OTR max en début de culture..
  • La valeur d'OTR max comprise entre 25 et 30 correspond à l'OUR optimale au début de culture définie dans le cadre de l'invention pour contrôler l'apport d'oxygène et afin de respecter le qO2 cible.
  • Le tableau XI présente les paramètres de fermentation mesurés à T65 avec CNCM I-4702. Tableau XI
    Concentrations
    % du qO2 cible OTR Max (mmole/L/h) au début de culture Biomasse (g/L) Acides Gras (g/100g) de biomasse Acide palmitique (g/100 g de lipides) DHA (g/100 g de lipides)
    60 15 41 41 36 48
    75 20 52 41 36 46
    100 25 57 47 39 45
    30 60 48 43 43
    150 40 74 55 49 37
    200 50 81 61 57 30
  • Ainsi, sur la base de ces résultats, on peut constater que, lorsque l'oxygène est apporté en excès par rapport à la valeur définie par l'équation 2, on observe une dilution du DHA dans les lipides de débordement, notamment l'acide palmitique.
  • A contrario, lorsque l'apport d'oxygène est suboptimal par rapport à la valeur définie par l'équation 2, la quantité de DHA produite est moindre.
  • Exemple 4 : exemple comparatif avec et sans limitation carence en azote.
  • Les essais ont été réalisés avec :
    • en Témoin : la souche CNCM I-4702, cultivée dans les conditions définies dans l'état de l'art constitué par la demande de brevet WO 01/54510 , c'est-à-dire découplage de la phase de croissance et de production, elle-même induite lors de l'étape de limitation de l'apport en source azotée. Cette limitation a ici été induite par l'interruption de la régulation de pH avec l'ammoniaque à la fin du premier tiers de la culture.
      Afin de ne rendre compte que du comportement de la souche CNCM I-4702 quant à sa production de lipides dans des conditions de carence en azote, l'aération n'a pas été régulée en cascade, mais maintenue à une pO2 supérieure à 10 %.
    • une fermentation dans laquelle, pendant toute la durée de la culture, aucune limitation nutritionnelle n'a été imposée à la souche, et la pO2 a été également régulée à 10 %.
  • Les résultats sont les suivants : Tableau XII
    Pas de limitation nutritive Limitation en azote
    Biomasse (g/L) 76 86
    Acides Gras sur biomasse (g/g) 0,57 0,65
    Palmitique / AG (g/g) 0,67 0,62
    DHA / AG (g/g) 0,21 0,24
  • La richesse en acide gras de la biomasse n'est que très peu réduite sans limitation nutritive. Contrairement aux préjugés techniques en la matière, une limitation en source azotée n'est donc pas nécessaire pour induire la production de lipides.
  • Exemple 5 : exemple comparatif avec la souche ATCC 20888.
  • Le protocole de culture utilisé est celui décrit dans l'exemple 4 de la demande de brevet WO 01/54510 . La souche utilisée est Schizochytrium sp ATCC 20888.
  • Il est suivi l'enseignement de ladite demande, en comparaison des deux modes de conduite suivants :
    1. 1. Une régulation permanente supérieure à 10 %
    2. 2. Une pO2 de 0% constante.
  • Les résultats obtenus sont présentés dans le tableau XIII suivant. Tableau XIII
    pO2 0% constant pO2 selon le protocole WO 01/54510 (8 - 4 - 0,5 à 0 %) pO2 10 % constant
    Temps (h) 74 74 74
    AGPI / total acides gras (%) 44,0 43,8 36,1
    DHA / total acides gras (%) 33,6 32,8 27,1
    total acides gras (%) Biomasse 45,9 44,6 44,8
    Biomasse totale (g/L) 166 147 187
    DHA g/L/h 0,35 0,29 0,31
    DHA % Biomasse 15 15 12
    Inoculum (indicatif) g/L 23 10,5 11
  • En suivant les enseignements de l'état de l'art, notamment ceux de la demande de brevet WO 01/54510 , il est ainsi trouvé que, contrairement à ce qui est divulgué, une régulation constante de la pO2 à 0 % ou à plus de 10 % pendant toute la durée de la fermentation permettait de produire plus de 35 % d'AGPI dans les acides gras, tout comme avec une conduite raisonnée avec une réduction de la pO2 en cascade (10 %, puis 4 %, puis 0,5 % de saturation).
  • SEQUENCE LISTING
    • <110> ROQUETTE FRERES
    • <120> PROCEDE D'ENRICHISSEMENT EN DHA DE LA BIOMASSE DE MICROALGUES DU GENRE TRAUSTOCHYTRIUM
    • <130> B1734PC
    • <160> 2
    • <170> PatentIn version 3.3
    • <210> 1
      <211> 479
      <212> DNA
      <213> Schizochytrium sp
    • <400> 1
      Figure imgb0014
    • <210> 2
      <211> 454
      <212> DNA
      <213> Schizochytrium mangrovei
    • <400> 2
      Figure imgb0015

Claims (9)

  1. Procédé de production d'une biomasse de microalgues du genre Thraustochytrium enrichie en acide docosahexaénoïque (DHA) caractérisé en ce que, pendant la phase de culture en conditions hétérotrophiques, l'apport en oxygène est contrôlé de manière à satisfaire uniquement les besoins en oxygène 1) pour la production d'énergie nécessaire à la maintenance cellulaire, 2) pour la production des lipides de base, et 3) pour la croissance de la biomasse hors acides gras et en ce que l'apport en oxygène nécessaire pour satisfaire uniquement les besoins 1), 2) et 3) est calculé par l'équation 2 suivante qO 2 Cible = qm × 6 × 32 180 + qlipidesdebase × y 02 lipides + μ × y O 2 x
    Figure imgb0016
    dans laquelle
    qO2Cible est la quantité d'oxygène en gramme par gramme de biomasse hors acides gras et heure ;
    qm est coefficient de maintenance exprimé en g de glucose par g de biomasse hors acides gras et par heure ;
    q lipides de base est la vitesse d'accumulation des lipides de base exprimée en g de lipides de base par g de biomasse hors acides gras et par heure ;
    yO2/lipides est le coefficient de consommation d'oxygène par rapport à la formation de lipides exprimé en g d'oxygène par g de lipides,
    µ est la vitesse de croissance exprimée en g de biomasse hors acides gras formée par g de biomasse hors acides gras et par heure, soit (h-1) ;
    yO2/x est le coefficient de consommation d'oxygène par rapport à la formation de biomasse hors acides gras exprimé en g d'oxygène par g de biomasse hors acides gras.
  2. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'aucune limitation d'un élément nutritif, notamment en source carbonée ou azotée, n'est appliquée pendant le procédé fermentaire.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les phases de croissance et de production de DHA sont concomitantes.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les microalgues sont du genre Schizochytrium sp ou Schizochytrium mangrovei.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les microalgues sont une souche sélectionnée parmi les souches CNCM I-4469 et CNCM I-4702 déposées à la Collection Nationale de Cultures de Microorganismes de l'Institut Pasteur respectivement le 14 avril 2011 et le 22 novembre 2012.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre la récolte de la biomasse, éventuellement la préparation d'un extrait ou lysat cellulaire à partir de cette biomasse, puis facultativement l'extraction d'une huile brute riche en DHA.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la biomasse obtenue comprend au minimum 40 % de DHA en poids d'acides gras totaux.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la biomasse obtenue comprend au maximum 40 % d'acide palmitique en poids d'acides gras totaux.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la biomasse obtenue comprend au minimum 25 % d'acides gras en sec poids de biomasse.
EP14830829.9A 2013-12-19 2014-12-18 Procede d'enrichissement en dha de la biomasse de microalgues du genre traustochytrium Active EP3083973B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362962A FR3015516B1 (fr) 2013-12-19 2013-12-19 Procede d'enrichissement en dha de la biomasse de microalgues du genre thraustochytrium
PCT/FR2014/053430 WO2015092301A1 (fr) 2013-12-19 2014-12-18 Procede d'enrichissement en dha de la biomasse de microalgues du genre traustochytrium

Publications (2)

Publication Number Publication Date
EP3083973A1 EP3083973A1 (fr) 2016-10-26
EP3083973B1 true EP3083973B1 (fr) 2019-05-08

Family

ID=50624694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14830829.9A Active EP3083973B1 (fr) 2013-12-19 2014-12-18 Procede d'enrichissement en dha de la biomasse de microalgues du genre traustochytrium

Country Status (12)

Country Link
US (1) US10392636B2 (fr)
EP (1) EP3083973B1 (fr)
JP (1) JP6584409B2 (fr)
KR (1) KR102247276B1 (fr)
CN (1) CN105829540B (fr)
AU (1) AU2014369524B2 (fr)
CA (1) CA2931233C (fr)
ES (1) ES2738672T3 (fr)
FR (1) FR3015516B1 (fr)
LT (1) LT3083973T (fr)
NZ (1) NZ720322A (fr)
WO (1) WO2015092301A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341127B1 (fr) 2000-01-28 2015-05-27 DSM IP Assets B.V. Production amelioree de lipides contenant des acides gras polyenes au moyen de cultures a grande densite de microbes eucaryotes dans des fermenteurs
NL2018539B1 (en) * 2017-03-17 2018-09-24 Duplaco Holding B V Method for the production of microalgae
KR102100650B1 (ko) 2018-06-29 2020-04-16 씨제이제일제당 주식회사 신규한 트라우즈토카이트리움 속 균주, 및 이를 이용한 다중불포화지방산 생산방법
CN109161576B (zh) * 2018-09-26 2020-08-07 武汉中科光谷绿色生物技术有限公司 促进枯草芽孢杆菌发酵生产n-乙酰神经氨酸的方法
KR102286636B1 (ko) * 2019-01-31 2021-08-05 한국생명공학연구원 로리오라이드 생산성이 높은 신규 미세조류
KR102614551B1 (ko) * 2020-12-07 2023-12-15 씨제이제일제당 주식회사 단일 미세조류로부터 단백질 및 오메가-3 지방산을 포함하는 바이오매스를 제조하는 방법 및 이에 의해 제조된 바이오매스
EP4180513A1 (fr) 2021-11-15 2023-05-17 Indian Oil Corporation Limited Procédé amélioré de production de biomasse algale enrichie
EP4198136A3 (fr) 2021-12-16 2023-08-30 Indian Oil Corporation Limited Procédés et formulations pour améliorer des lipides de grande valeur
KR20230148659A (ko) * 2022-04-18 2023-10-25 씨제이제일제당 (주) 펩신 소화율이 우수한 고단백 미세조류 바이오매스, 배양 방법 및 이의 용도

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341127B1 (fr) * 2000-01-28 2015-05-27 DSM IP Assets B.V. Production amelioree de lipides contenant des acides gras polyenes au moyen de cultures a grande densite de microbes eucaryotes dans des fermenteurs
EP1660639A1 (fr) * 2003-09-01 2006-05-31 Novozymes A/S Procede d'augmentation du rendement de biomasse et/ou de constituants de biomasse a partir de micro-organismes marins
US7989195B2 (en) * 2008-02-20 2011-08-02 Washington State University Research Foundation Heterotrophic algal high cell density production method and system
WO2010097809A2 (fr) * 2009-02-25 2010-09-02 V.B. Medicare Pvt. Ltd. Procédés perfectionnés de production par fermentation de l'acide docosahexaénoïque.
CN102485898A (zh) * 2010-12-02 2012-06-06 丰益(上海)生物技术研发中心有限公司 微生物发酵生产脂质的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105829540A (zh) 2016-08-03
US10392636B2 (en) 2019-08-27
AU2014369524B2 (en) 2018-04-12
CA2931233A1 (fr) 2015-06-25
NZ720322A (en) 2022-05-27
AU2014369524A1 (en) 2016-06-09
CN105829540B (zh) 2019-11-22
ES2738672T3 (es) 2020-01-24
FR3015516B1 (fr) 2016-01-22
WO2015092301A1 (fr) 2015-06-25
LT3083973T (lt) 2019-09-25
JP6584409B2 (ja) 2019-10-02
KR20160098233A (ko) 2016-08-18
CA2931233C (fr) 2022-11-08
JP2017500044A (ja) 2017-01-05
EP3083973A1 (fr) 2016-10-26
US20160298149A1 (en) 2016-10-13
KR102247276B1 (ko) 2021-05-03
FR3015516A1 (fr) 2015-06-26

Similar Documents

Publication Publication Date Title
EP3083973B1 (fr) Procede d&#39;enrichissement en dha de la biomasse de microalgues du genre traustochytrium
EP3074522B1 (fr) Procédé d&#39;enrichissement en carotenoïdes et en protéines de la biomasse de microalgues
EP3250699B1 (fr) Procédé d&#39;enrichissement de la biomasse de microalgues du genre traustochytrium en dha et en acides aminés arg et glu
EP2978837B1 (fr) Procédé d&#39;enrichissement en protéines de la biomasse de microalgues
EP3097201B1 (fr) Procédé d&#39;enrichissement en protéines de la biomasse de microalgues
WO2014122158A1 (fr) Biomasse de la microalgue schizochytrium mangrovei et son procédé de préparation
EP3414335B1 (fr) Procédé d&#39;enrichissement en protéines de la biomasse de microalgues
US20220372430A1 (en) Protists enriched with lipids rich in polyunsaturated fatty acids
EP2723876A1 (fr) Nouvelles souches de microalgues du genre isochrysis pour la production d&#39;epa et de dha en mode mixotrophe
FR3003874A1 (fr) Procede d&#39;enrichissement en proteines de la biomasse de microalgues
Wah et al. Changes in lipid profiles of a tropical benthic diatom in different cultivation temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014046543

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1130187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190508

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2738672

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014046543

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20221123

Year of fee payment: 9

Ref country code: GB

Payment date: 20221219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230105

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231226

Year of fee payment: 10

Ref country code: FR

Payment date: 20231227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 10