EP3078691A1 - Block copolymer - Google Patents
Block copolymer Download PDFInfo
- Publication number
- EP3078691A1 EP3078691A1 EP14868190.1A EP14868190A EP3078691A1 EP 3078691 A1 EP3078691 A1 EP 3078691A1 EP 14868190 A EP14868190 A EP 14868190A EP 3078691 A1 EP3078691 A1 EP 3078691A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- atom
- block
- block copolymer
- substituent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001400 block copolymer Polymers 0.000 title claims abstract description 88
- 125000004429 atom Chemical group 0.000 claims description 65
- 125000003118 aryl group Chemical group 0.000 claims description 56
- 125000001424 substituent group Chemical group 0.000 claims description 51
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 49
- 125000005843 halogen group Chemical group 0.000 claims description 47
- 125000000217 alkyl group Chemical group 0.000 claims description 43
- 125000002947 alkylene group Chemical group 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 37
- 125000004450 alkenylene group Chemical group 0.000 claims description 33
- 125000004419 alkynylene group Chemical group 0.000 claims description 33
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 32
- 229910052717 sulfur Inorganic materials 0.000 claims description 30
- 125000004434 sulfur atom Chemical group 0.000 claims description 28
- 239000001257 hydrogen Substances 0.000 claims description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims description 27
- 229920000642 polymer Polymers 0.000 claims description 26
- 125000004432 carbon atom Chemical group C* 0.000 claims description 25
- 125000003545 alkoxy group Chemical group 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 125000003342 alkenyl group Chemical group 0.000 claims description 19
- 125000000304 alkynyl group Chemical group 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 125000000732 arylene group Chemical group 0.000 claims description 13
- 150000001721 carbon Chemical group 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 125000001188 haloalkyl group Chemical group 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 125000003368 amide group Chemical group 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 125000002560 nitrile group Chemical group 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims 2
- 150000002367 halogens Chemical class 0.000 claims 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 125000002883 imidazolyl group Chemical group 0.000 claims 1
- 125000005545 phthalimidyl group Chemical group 0.000 claims 1
- 125000000335 thiazolyl group Chemical group 0.000 claims 1
- 238000005191 phase separation Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 28
- 239000010410 layer Substances 0.000 description 26
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 13
- 125000004122 cyclic group Chemical group 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000178 monomer Substances 0.000 description 13
- 150000002738 metalloids Chemical group 0.000 description 12
- -1 methacryloyl group Chemical group 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 125000001153 fluoro group Chemical group F* 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000001338 self-assembly Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000010526 radical polymerization reaction Methods 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- SZBHRHYLUMGWPX-UHFFFAOYSA-N 5-ethenyl-2,3,5,6-tetrafluorocyclohexa-1,3-dien-1-ol Chemical compound OC=1C(C(C=C)(C=C(C=1F)F)F)F SZBHRHYLUMGWPX-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 241000446313 Lamella Species 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 229940073584 methylene chloride Drugs 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- QSVOWVXHKOQYIP-UHFFFAOYSA-N 2-dodecylsulfanylcarbothioylsulfanyl-2-methylpropanenitrile Chemical compound CCCCCCCCCCCCSC(=S)SC(C)(C)C#N QSVOWVXHKOQYIP-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- PBLNBZIONSLZBU-UHFFFAOYSA-N 1-bromododecane Chemical compound CCCCCCCCCCCCBr PBLNBZIONSLZBU-UHFFFAOYSA-N 0.000 description 1
- LVJZCPNIJXVIAT-UHFFFAOYSA-N 1-ethenyl-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(C=C)C(F)=C1F LVJZCPNIJXVIAT-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000001654 grazing-incidence X-ray scattering Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940030980 inova Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003498 tellurium compounds Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 125000005389 trialkylsiloxy group Chemical group 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/78—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
- C07C217/80—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
- C07C217/82—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
- C07C217/84—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C35/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
- C07C35/48—Halogenated derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/215—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/225—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
- C07D209/48—Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
- C08F12/16—Halogens
- C08F12/20—Fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
- C08F12/22—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
- C08F12/26—Nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/32—Monomers containing only one unsaturated aliphatic radical containing two or more rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/14—Chemical modification with acids, their salts or anhydrides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D153/00—Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/162—Coating on a rotating support, e.g. using a whirler or a spinner
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00388—Etch mask forming
- B81C1/00428—Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
- B81C1/00531—Dry etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0147—Film patterning
- B81C2201/0149—Forming nanoscale microstructures using auto-arranging or self-assembling material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/16—Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
- C08F212/16—Halogens
- C08F212/20—Fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
- C08F212/22—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
- C08F212/26—Nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/32—Monomers containing only one unsaturated aliphatic radical containing two or more rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/03—Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2353/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
Definitions
- the present application relates to a block copolymer.
- Block copolymers have molecular structures in which polymer subunits having chemically different structures from each other are linked by covalent bonds.
- Block copolymers are capable of forming periodically aligned structure such as the sphere, the cylinder or the lamella through phase separations. Sizes of domains of the structures formed by the self assemblies of block copolymers may be adjusted in a wide range, and various shapes of structures can be prepared. Therefore, they can be utilized in pattern-forming methods by lithography, various magnetic recording mediae or next generation nano devices such as metal dots, quantum dots or nano lines, high density magnetic storage mediae, and the like.
- the present application provides a block copolymer and its application.
- alkyl group as used herein may refer to, unless defined otherwise, an alkyl group having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms.
- the alkyl group may have a linear, branched or cyclic structure, and may be optionally substituted with at least one substituent.
- alkoxy group may refer to, unless defined otherwise, an alkoxy group having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms.
- the alkoxy group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- alkenyl or alkynyl group may refer to, unless defined otherwise, an alkenyl or alkynyl group having 2 to 20, 2 to 16, 2 to 12, 2 to 8, or 2 to 4 carbon atoms.
- the alkenyl or alkynyl group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- alkylene group as used herein may refer to, unless defined otherwise, an alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atoms.
- the alkylene group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- alkenylene or alkynylene group may refer to, unless defined otherwise, an alkenylene or alkynylene group having 2 to 20, 2 to 16, 2 to 12, 2 to 8 or 2 to 4 carbon atoms.
- the alkenylene or alkynylene group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- aryl or arylene group as used herein may be, unless defined otherwise, a monovalent or bivalent substituent derived from a compound including one benzene ring structure or a structure, in which at least two benzene rings are linked with sharing one or two carbon atoms or by an optional linker, or a derivative of the compound.
- the aryl or arylene group may be, unless defined otherwise, an aryl group having 6 to 30, 6 to 25, 6 to 21, 6 to 18, or 6 to 13 carbon atoms.
- aromatic structure as used herein may refer to the aryl group or the arylene group.
- alicyclic structure may refer to, unless defined otherwise, a cyclic hydrocarbon structure that is not the aromatic cyclic structure.
- the alicyclic structure may be, unless defined otherwise, a structure having 3 to 30, 3 to 25, 3 to 21, 3 to 18 or 3 to 13 carbon atoms.
- single bond may refer to a case where there is no atom in a corresponding site.
- a substituent that may optionally substitute for the alkyl group, the alkenyl group, the alkynyl group, the alkylene group, the alkenylene group, the alkynylene group, the alkoxy group, the aryl group, the arylene group, a chain, the aromatic structure, and the like may be hydroxyl group, halogen atom, carboxyl group, glycidyl group, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, thiol group, alkyl group, alkenyl group, alkynyl group, alkylene group, alkenylene group, alkynylene group, alkoxy group or aryl group, but is not limited thereto.
- a monomer as represented by Formula 1 below that have a novel structure and that is capable of forming block copolymers may be provided.
- the Y may be a monovalent substituent including a cyclic structure to which a chain having 8 or more chain-forming atoms is linked.
- the monovalent substituent Y includes a chain structure formed by at least 8 chain-forming atoms.
- chain-forming atoms refers to atoms forming a linear structure of a certain chain.
- the chain may have a linear or branched structure; however the number of the chain-forming atoms is calculated only by the number of atoms forming the longest linear chain. Therefore, other atoms such as, in a case where the chain-forming atom is the carbon atom, the hydrogen atom that is linked to the carbon atom and the like are not calculated as the number of the chain-forming atoms. Further, in case of the branched chain, the number of the chain-forming atoms is the number of atoms forming the longest chain.
- the chain is n-pentyl, all of the chain-forming atoms are carbon atoms and the number thereof is 5. If the chain is 2-methylpentyl, all of the chain-forming atoms are also carbon atoms and the number thereof is 5.
- the chain-forming atoms may be the carbon, the oxygen, the sulfur or the nitrogen, and the like and appropriate chain-forming atoms may be the carbon, the oxygen or the nitrogen; or the carbon or the oxygen.
- the number of the chain-forming atoms may be 8 or more, 9 or more, 10 or more, 11 or more; or 12 or more.
- the number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less or 16 or less.
- the block copolymer may show an excellent self-assembly properties due to the presence of the chain.
- the chain may be a linear hydrocarbon chain such as a linear alkyl group.
- the alkyl group may be an alkyl group having 8 or more, 8 to 30, 8 to 25, 8 to 20 or 8 to 16 carbon atoms. At least one carbon atom of the alkyl group may be optionally substituted with the oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted with another substituent.
- the Y may include a cyclic structure.
- the chain may be linked to the cyclic structure.
- the self assembly properties of block copolymers formed by the compound may be further improved due to the cyclic structure.
- the cyclic structure may be the aromatic structure or the alicyclic structure.
- the chain may be directly linked to the cyclic structure or may be linked to the cyclic structure via a linker.
- An appropriate linker may be the oxygen atom or the nitrogen atom.
- the chain may be linked to the aromatic structure via the oxygen atom or the nitrogen atom.
- the linker may be the oxygen atom or the -NR 1 -, where the R 1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group.
- the Y of the Formula 1 may be represented by Formula 2 below. [Formula 2] -P-Q-Z
- the P may be the arylene group
- the Q may be the single bond
- the R 3 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group
- the Z may be the chain having at least 8 chain-forming atoms.
- the P of the Formula 2 may be directly linked to the X of the Formula 1.
- an appropriate P may be an arylene group having 6 to 12 carbon atoms such as the phenylene group, but is not limited thereto.
- an appropriate Q may be the oxygen atom or -NR 1 -, where the R 1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group.
- the R is the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s)
- the P is the arylene group having 6 to 12 carbon atoms
- Q is the oxygen atom
- Z is the above-described chain having 8 or more chain-forming atoms.
- Another embodiment of the present application relates to a method for preparing a block copolymer comprising a step of forming a block by polymerizing the monomer.
- a specific method for preparing the block copolymer is not particularly limited, as long as it comprises a step forming at least one block of the block copolymer by using the above-described monomer.
- the block copolymer may be prepared by a living radical polymerization (LRP) using the monomer.
- LRP living radical polymerization
- the anionic polymerization in which block copolymers are synthesized in the presence of inorganic acid salts such as salts of alkali metal or alkali earth metal by using organic rare earth metal complexes or organic alkali metal compounds as polymerization initiators; the anionic polymerization, in which block copolymers are synthesized in the presence of organic aluminum compounds by using organic alkali metal compounds as polymerization initiators; the atom-transfer radical polymerization (ATRP) using an atom transfer radical polymerizer as a polymerization controller; the activators regenerated by electron transfer (ATGET) ATRP performing polymerization in the presence of an organic or inorganic reducing agent generating electrons using an atom transfer radical polymerizer as a polymerization controller; the initiators for continuous activator regeneration (ICAR) ATRP; the reversible addition-ring opening chain transfer (RAF
- the block copolymer may be prepared by a method including polymerizing a material comprising monomers capable of forming the block in the presence of radical initiators and living radical polymerization reagents by the living radical polymerization.
- a method for forming other block included in the block copolymer along with the block formed by the above monomer is not particularly limited, and the other block may be formed by selecting appropriate monomers considering the kind of blocks to be formed.
- the method for preparing the block copolymer may further include precipitating a polymerized product produced by the above-described process in a non-solvent.
- a kind of the radical initiators may be suitably selected in consideration of polymerization efficiency without particular limitation, and an azo compound such as azobisisobutyronitrile (AIBN) or 2,2'-azobis-(2,4-dimethylvaleronitrile), or a peroxide compound such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP) may be used.
- an azo compound such as azobisisobutyronitrile (AIBN) or 2,2'-azobis-(2,4-dimethylvaleronitrile)
- a peroxide compound such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP)
- the LRP may be performed in a solvent such as methylenechloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylformamide, dimethylsulfoxide or dimethylacetamide.
- a solvent such as methylenechloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylformamide, dimethylsulfoxide or dimethylacetamide.
- an alcohol such as methanol, ethanol, normal propanol or isopropanol
- a glycol such as ethyleneglycol
- an ether compound such as n-hexane, cyclohexane, n-heptane or petroleum ether
- Another embodiment of the present application relates to a block copolymer including a block (hereinafter, may be referred to as a first block) formed by using the monomer.
- the block may be represented by, for example, Formula 4.
- the R, X and Y may be the same as described regarding the R, X and Y of the Formula 1, respectively.
- the R may be hydrogen or an alkyl group having 1 to 4 carbon atom(s)
- the above description may be applied in the same manner.
- a block may be referred to as a 1A block, but is not limited thereto.
- This block may be represented by the Formula 5 below.
- the Q of the Formula 5 may be the oxygen atom.
- the first block may be a block represented by Formula 6. Such a first block may be referred to as a 1B block herein.
- the first block may be a block represented by at least one of the Formulas 4 to 6, in which the electronegativity of at least one chain-forming atom of the chain having 8 or more chain-forming atoms is 3 or more.
- the electronegativity of the chain-forming atom may be 3.7 or less in another embodiment.
- such a block may be referred to as a 1C block.
- the nitrogen atom or the oxygen atom may be illustrated, but is not limited thereto.
- Kinds of another block (hereinafter, may be referred to as a second block) included in the block copolymer along with the first block such as the 1A, 1B or 1 C block is not particularly limited.
- the second block may be polyvinylpyrrolidone block, polylactic acid block, polyvinylpyridine block, polystyrene block such as polystyrene block or polytrimethylsilylstyrene, polyalkyleneoxide block such as polyethyleneoxide block, or polyolefin block such as polyethylene block or polyisoprene block or polybutadiene block.
- a block used herein may be referred to as a 2A block.
- the second block included along with the first block such as the 1A, 1B or 1C block in the block copolymer may be a block including the aromatic structure comprising at least one halogen atom.
- Such a second block may be, for example, represented by the Formula 7 below and may be referred to as a 2B block.
- the B may be a monovalent substituent having an aromatic structure including at least one halogen atom.
- Such a second block may be effectively interacted with the above-described first block such that the block copolymer can have an excellent self assembling characteristic.
- the aromatic structure of Formula 7 may be, for example, an aromatic structure having 6 to 18 or 6 to 12 carbon atoms.
- halogen atom included in Formula 7 may be, but is not limited to, the fluorine atom or the chloride atom, and appropriately the fluorine atom.
- the B of Formula 7 may be a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms, which is substituted with 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms.
- the upper limit of the number of halogen atoms is not particular limited, but there may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
- the block represented by the Formula 7, which is the 2B block may be represented by the Formula 8 below.
- the W may be an aryl group, substituted with at least one halogen atom, for example, an aryl group that has 6 to 12 carbon atoms and that is substituted with 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms.
- the 2B block may be, for example, represented by the Formula 9 below.
- the R 1 to R 5 may be each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom, and the R 1 to R 5 may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s) such as fluorine atom(s).
- the number of the halogen atom(s) such as the fluorine atom(s) included in the R 1 to R 5 may be, for example, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less.
- the second block may be a block represented by Formula 10.
- a block used herein may be referred to as a 2C block.
- the T and K may be each independently the oxygen atom or the single bond, and the U may be the alkylene group.
- the U of Formula 10 may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
- the 2C block may be a block of the Formula 10, in which one of the T and K of the Formula 10 is the single bond, and the other of the T and K of the Formula 10 is the oxygen atom.
- the U may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
- the 2C block may be a block of the Formula 10, in which both of the T and K of the Formula 10 are the oxygen atoms.
- the U may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
- the second block may be a block including at least one metal atom or metalloid atom.
- a block may be referred to as a 2D block.
- This block may improve etching selectivity when an etching process is performed with respect to, for example, a film including a self-assembled block copolymer.
- the metal atom or metalloid atom in the 2D block may be a silicon atom, an iron atom or a boron atom, but is not particularly limited as long as it may exhibit suitable etching selectivity due to a difference with another atom in the block copolymer.
- the 2D block may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms, for example, fluorine atoms, along with the metal or metalloid atom.
- the 2D block may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms such as fluorine atoms.
- the 2D block may be represented by Formula 11.
- the B may be a monovalent substituent having an aromatic structure including a halogen atom and a substituent having the metal atom or the metalloid atom.
- the aromatic structure of Formula 11 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
- the 2D block of the Formula 11 may be represented by the Formula 12 below.
- the W may be an aryl group that has 6 to 12 carbon atoms and that includes at least one halogen atom and a substituent including the metal atom or the metalloid atom.
- the aryl group may include at least one or 1 to 3 substituents including the metal atom or metalloid atom, and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s).
- the 2D block of the Formula 12 may be represented by the Formula 13 below.
- 1 or more, 1 to 3 or 1 to 2 of the R 1 to R 5 may be the substituent including the metal or the metalloid atom.
- halogen atom(s) may be included in the R 1 to R 5 .
- the number of the halogen atom(s) included in the R 1 to R 5 may by 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
- the substituent including the metal or the metalloid atom described above may be carboranyl group or silsesquioxanyl group such as polyhedral oligomeric silsesquioxanyl, ferrocenyl group or trialkylsiloxy group. However, they are not particularly limited, as long as they are selected so as to obtain the etching selectivity by including at least one metal or metalloid atom.
- the second block may be a block including an atom which is an atom having the electronegativity of 3 or more and which is an atom (hereinafter, referred to as a non-halogenic atom) that is not the halogen atom.
- a non-halogenic atom an atom that is not the halogen atom.
- Such a block may be referred to as a 2E block.
- the electronegativity of the non-halogenic atom in the 2E block may be 3.7 or less.
- the non-halogenic atom in the 2E block may be, but is not limited to, a nitrogen atom or an oxygen atom.
- the 2E block may include, along with the non-halogenic atom having an electronegativity of 3 or more, 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms, for example, fluorine atoms.
- the number of the halogen atom(s) such as the fluorine atom(s) in the 2E block may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
- the 2E block may be represented by Formula 14.
- the B may be a monovalent substituent having an aromatic structure that includes a substituent including the non-halogenic atom having an electronegativity of 3 or more and that includes the halogen atom.
- the aromatic structure of Formula 14 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
- the block of the Formula 14 may be represented by the Formula 15 below.
- the W may be an aryl group that has 6 to 12 carbon atoms, that includes the substituent including the non-halogenic atom having the electronegativity of 3 or more and that includes at least one halogen atom.
- Such an aryl group may include at least one or 1 to 3 substituents including the non-halogenic atom having the electronegativity of 3 or more.
- the aryl group may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s).
- the aryl group may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
- the block of the Formula 15 may be represented by the Formula 16.
- At least one, 1 to 3, or 1 to 2 of the R 1 to R 5 may be the above-described substituents including the non-halogenic atom having the electronegativity of 3 or more.
- the R 1 to R 5 may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms.
- the R 1 to R 5 may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
- the substituent including the non-halogenic atom having the electronegativity of 3 or more described above may be, but is not limited to, the hydroxyl group, the alkoxy group, the carboxyl group, the amido group, the ethylene oxide group, the nitrile group, the pyridine group or the amino group.
- the second block may include an aromatic structure having a heterocyclic substituent.
- Such a second block may be referred to as a 2F block herein.
- the 2F block may be represented by Formula 17.
- the B may be a monovalent substituent having an aromatic structure that has 6 to 12 carbon atoms and that is substituted with a heterocyclic substituent.
- the aromatic structure of Formula 17 may include at least one halogen atom.
- the block of the Formula 17 may be represented by the Formula 18.
- the block of the Formula 18 may be represented by Formula 19.
- At least one, for example, 1 to 3 or 1 to 2 of the R 1 to R 5 may be the heterocyclic substituent, and the other(s) may be the hydrogen atom, the alkyl group or the halogen atom; or the hydrogen atom or the halogen atom; or the hydrogen atom.
- heterocyclic substituent may be, but is not limited to, a substituent derived from phthalimide, a substituent derived from thiopene, a substituent derived from thiazole, a substituent derived from carbazole or a substituent derived from imidazole.
- the block copolymer of the present application may include at least one of the above-described first blocks, and at least one of the above-described second blocks. Such a block copolymer may include 2 or 3 blocks, or 3 or more blocks. In one embodiment, the block copolymer may be a diblock copolymer including any one of the first blocks and any one of the second blocks.
- the block copolymer may have, for example, a number average molecular weight (Mn) in a range from approximately 3,000 to 300,000.
- Mn number average molecular weight
- the term "number average molecular weight” as used herein may refer to a converted value with respect to the standard polystyrene measured by the GPC (Gel Permeation Chromatography). Unless defined otherwise, the term “molecular weight” as used herein may refer to the number average molecular weight.
- the molecular weight (Mn), in another embodiment, may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more or 15000 or more.
- the molecular weight (Mn), in another embodiment, may be, for example, 250000 or less, 200000 or less, 180000 or less, 160000 or less, 140000 or less, 120000 or less, 100000 or less, 90000 or less, 80000 or less, 70000 or less, 60000 or less, 50000 or less, 40000 or less, 30000 or less, or 25000 or less.
- the block copolymer may have the polydispersity (Mw/Mn) in a range from 1.01 to 1.60. In another embodiment, the polydispersity may be about 1.1 or more, about 1.2 or more, about 1.3 or more, or about 1.4 or more.
- the block copolymer may exhibit an appropriate self assembling property.
- the number average molecular weight and the like of the block copolymer may be controlled considering the objected self assembled structure.
- a ratio of the first block for example, the block including the chain in the block copolymer may be in a range of 10 mole% to 90 mole%.
- the present application relates to a polymer layer including the block copolymer.
- the polymer layer may be used in various applications. For example, it can be used in a biosensor, a recording media such as a flash memory, a magnetic storage media or the pattern forming method or an electric device or an electronic device, and the like.
- the block copolymer in the polymer layer may be forming a periodic structure including a sphere, a cylinder, a gyroid, or a lamella by the self assembly.
- other segment may be forming the regular structure such as lamella form, cylinder form and the like.
- the present application relates also to a method for forming a polymer layer by using the block copolymer.
- the method may include forming a polymer layer including the block copolymer on a substrate in a self-assembled state.
- the method may include forming a layer of the block copolymer or a coating solution in which the block copolymer is diluted in suitable solvent on the substrate by a coating and the like, and if necessary, then aging or heat-treating the layer.
- the aging or the heat treatment may be performed based on, for example, a phase transition temperature or glass transition temperature of the block copolymer, and for example, may be performed at a temperature higher than the glass transition temperature or phase transition temperature.
- a time for the heat treatment is not particularly limited, and the heat treatment may be performed for approximately 1 minute to 72 hours, but may be changed if necessary.
- the temperature of the heat treatment of the polymer layer may be, for example, 100°C to 250°C, but may be changed in consideration of the block copolymer used herein.
- the formed layer may be aged in a non-polar solvent and/or a polar solvent at the room temperature for approximately 1 minute to 72 hours.
- the present application relates also to a pattern-forming method.
- the method may include selectively removing the first or second block of the block copolymer from a laminate comprising a substrate and a polymer layer that is formed on a surface of the substrate and that includes a self-assembled block copolymer.
- the method may be a method for forming a pattern on the above substrate.
- the method may include forming the polymer layer on the substrate, selectively removing one block or two or more blocks of the block copolymer that is in the polymer layer; and then etching the substrate.
- nano-scaled micropattern may be formed.
- the block copolymer in the polymer layer various shapes of pattern such as nano-rod or nano-hole can be formed by the above method. If necessary, in order to form a pattern, the block copolymer may be mixed with another copolymer or homopolymer.
- a kind of the substrate applied to this method may be selected without particular limitation, and, for example, silicon oxide and the like may be applied.
- a nano-scale pattern of silicon oxide having a high aspect ratio may be formed.
- various types of patterns such as a nanorod or nanohole pattern may be formed by forming the polymer layer on the silicon oxide, selectively removing any one block of the block copolymer in a state where the block copolymer in the polymer layer is formed in a predetermined structure, and etching the silicon oxide in various methods, for example, reactive ion etching.
- a nano pattern having a high aspect ratio can be formed.
- the pattern may be formed to a scale of several tens of nanometers, and such a pattern may be applied in various uses including a next-generation information electronic magnetic recording medium.
- a pattern in which nano structures, for example, nanowires, having a width of approximately 3 to 40 nm are disposed at an interval of approximately 6 to 80 nm may be formed by the above-described method.
- a structure in which nanoholes having a width, for example, a diameter of approximately 3 to 40 nm are disposed at an interval of approximately 6 to 80 nm can be implemented.
- nanowires or nanoholes may be formed to have a high aspect ratio.
- a method of selectively removing any one block of the block copolymer is not particularly limited, and for example, a method of removing a relatively soft block by irradiating a suitable electromagnetic wave, for example, ultra violet rays to a polymer layer may be used.
- a suitable electromagnetic wave for example, ultra violet rays to a polymer layer
- conditions for ultra violet radiation may be determined according to a type of the block of the block copolymer, and ultra violet rays having a wavelength of approximately 254 nm may be irradiated for 1 to 60 minutes.
- the polymer layer may be treated with an acid to further remove a segment degraded by the ultra violet rays.
- the etching of the substrate using the polymer layer from which a block is selectively removed may be performed by reactive ion etching using CF 4 /Ar ions, and followed by the above process, and removing the polymer layer from the substrate by oxygen plasma treatment may be further performed.
- Figs. 1 to 2 are SEM or AFM images of polymer layers and show results of GISAXS analysis on polymer layers.
- the present application may provide the block copolymers and their application.
- the block copolymer has an excellent self assembling property and phase separation and various required functions can be freely imparted thereto as necessary.
- the NMR analysis was performed at the room temperature by using a NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer having a triple resonance 5 mm probe.
- a sample to be analyzed was used after diluting it in solvent (CDCl 3 ) for the NMR analysis to a concentration of approximately 10 mg/ml and a chemical shift ( ⁇ ) was expressed in ppm.
- br wide signal
- s singlet
- d doublet
- dd double doublet
- t triplet
- dt double triplet
- q quadruplet
- p quintuplet
- m multiplet
- the number average molecular weight and the polydispersity were measured by the GPC (Gel Permeation Chromatograph).
- GPC Gel Permeation Chromatograph
- a block copolymer or a macroinitiator to be measured of Example or Comparative Example was diluted to a concentration of about 1 mg/mL.
- the standard sample for a calibration and a sample to be analyzed were filtered by a syringe filter (pore size: 0.45 ⁇ m) and then analyzed. ChemStation from the Agilent technologies, Co. was used as an analysis program.
- the number average molecular weight (Mn) and the weight average molecular weight (Mw) were obtained by comparing an elution time of the sample with a calibration curve and then the polydispersity (PDI) was obtained from their ratio (Mw/Mn).
- the measuring condition of the GPC was as below.
- a compound (DPM-C12) of the Formula A below was synthesized by the below method.
- hydroquinone (10.0 g, 94.2 mmole) and 1-bromododecane (23.5 g, 94.2 mmole) were added and dissolved in 100 mL acetonitrile, an excessive amount of potassium carbonate was added thereto and then the mixture was reacted at 75°C for approximately 48 hours under nitrogen. After the reaction, remaining potassium carbonate and acetonitrile used for the reaction were removed.
- the work up was performed by adding a mixed solvent of dichloromethane (DCM) and water, and separated organic layers were collected and dehydrated through MgSO 4 . Subsequently, a white solid intermediate was obtained with a yield of approximately 37 % using DCM through column chromatography.
- DCM dichloromethane
- the synthesized intermediate (9.8 g, 35.2 mmole), methacrylic acid (6.0 g, 69.7 mmole), dicyclohexylcarbodiimide (DCC; 10.8 g, 52.3 mmole) and p-dimethylaminopyridine (DMPA; 1.7 g, 13.9 mmol) were put into a flask, 120 ml of methylenechloride was added, and a reaction was performed at the room temperature for 24 hours under nitrogen. After the reaction was completed, a urea salt produced in the reaction was removed through a filter, and remaining methylenechloride was also removed.
- DCC dicyclohexylcarbodiimide
- DMPA p-dimethylaminopyridine
- the R is a linear alkyl having 12 carbon atoms.
- 3-Hydroxy-1,2,4,5-tetrafluorostyrene was synthesized according to the below method.
- Pentafluorostyrene 25 g, 129 mmole
- potassium hydroxide 37.5 g, 161 mmole
- the adduct was extracted 3 times by diethyl ether (300 mL), an aqueous layer was acidified by 10 weight% of hydrochloric acid solution until its pH became 3, and thereby target product was precipitated.
- Precipitated product was extracted 3 times by diethyl ether (300 mL) and an organic layer was collected. The organic layer was dehydrated by MgSO 4 and solvent was removed.
- Crude product was purified in a column chromatograph by using hexane and DCM (dichloromethane) as mobile phase and thereby colorless liquid 3-hydroxy-1,2,4,5-tetrafluorostyrene (11.4 g) was obtained. Its NMR analysis result is as below.
- the synthesized macroinitiator, 3-hydroxy-1,2,4,5-tetrafluorostyrene (TFS-OH) and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:200:0.5 (the macroinitiator:TFS-OH:AIBN) (Concentration: 30 weight%), and then a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70°C under nitrogen.
- the block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block derived from the 3-hydroxy-1,2,4,5-tetrafluorostyrene.
- the compound of the Formula H below was synthesized according to the below method. Phthalimide (10.0 g, 54 mmole) and chloromethylstyrene (8.2 g, 54 mmole) were added to 50 mL of DMF (dimethyl formamide) and then were reacted for 18 hours at 55°C under nitrogen. After the reaction, 100 mL of ethyl acetate and 100 mL of distilled water were added to the reacted product, and then an organic layer was collected and then washed by brine solution. Collected organic layer was treated by MgSO 4 and thereby water was removed and then solvent was finally removed and then re-crystallized by pentane so as to obtain white solid target compound (11.1g). Its NMR analysis result is as below.
- the synthesized macroinitiator, the compound (TFS-PhIM) of Formula H and AIBN azobisisobutyronitrile
- a weight ratio of 1:200:0.5 the macroinitiator:TFS-PhIM:AIBN
- a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70°C under nitrogen.
- the block copolymer includes the first block derived from the compound of Example 1 and the second block derived from the compound of Formula H.
- Self assembled polymer layer were prepared by using block copolymers of Examples 1 and 2 and the results were observed. Specifically, each block copolymer was dissolved in solvent to a concentration of 1.0 weight% and then was spin-coated on a silicone wafer for 60 seconds by a speed of 3000 rpm. Then, self assembling was performed by a solvent annealing or a thermal annealing. Then, the self assembling properties were evaluated by subjecting the polymer layer to an AFM(Atomic force microscopy) analysis.
- Figs. 1 and 2 are the results of Examples 1 and 2, respectively, and from the above, it can be confirmed that an appropriate self assemblies were realized.
- THF tetrahydrofuran
- deionized water 4:6 (weight ratio)
- Example 2 is the result of the self assembly obtained by spin coating a coating solution prepared by dissolving the block copolymer of Example 2 in dioxane to a concentration of 1.0 weight% on a silicone wafer for 60 seconds by a speed of 3000 rpm and then subjecting the coated layer to a solvent annealing by using chloroform for about 2 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Emergency Medicine (AREA)
- Graft Or Block Polymers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
- The present application relates to a block copolymer.
- Block copolymers have molecular structures in which polymer subunits having chemically different structures from each other are linked by covalent bonds. Block copolymers are capable of forming periodically aligned structure such as the sphere, the cylinder or the lamella through phase separations. Sizes of domains of the structures formed by the self assemblies of block copolymers may be adjusted in a wide range, and various shapes of structures can be prepared. Therefore, they can be utilized in pattern-forming methods by lithography, various magnetic recording mediae or next generation nano devices such as metal dots, quantum dots or nano lines, high density magnetic storage mediae, and the like.
- The present application provides a block copolymer and its application.
- The term "alkyl group" as used herein may refer to, unless defined otherwise, an alkyl group having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms. The alkyl group may have a linear, branched or cyclic structure, and may be optionally substituted with at least one substituent.
- The term "alkoxy group" as used herein may refer to, unless defined otherwise, an alkoxy group having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms. The alkoxy group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- The term "alkenyl or alkynyl group" as used herein may refer to, unless defined otherwise, an alkenyl or alkynyl group having 2 to 20, 2 to 16, 2 to 12, 2 to 8, or 2 to 4 carbon atoms. The alkenyl or alkynyl group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- The term "alkylene group" as used herein may refer to, unless defined otherwise, an alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atoms. The alkylene group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- The term "alkenylene or alkynylene group" as used herein may refer to, unless defined otherwise, an alkenylene or alkynylene group having 2 to 20, 2 to 16, 2 to 12, 2 to 8 or 2 to 4 carbon atoms. The alkenylene or alkynylene group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
- The term "aryl or arylene group" as used herein may be, unless defined otherwise, a monovalent or bivalent substituent derived from a compound including one benzene ring structure or a structure, in which at least two benzene rings are linked with sharing one or two carbon atoms or by an optional linker, or a derivative of the compound. The aryl or arylene group may be, unless defined otherwise, an aryl group having 6 to 30, 6 to 25, 6 to 21, 6 to 18, or 6 to 13 carbon atoms.
- The term "aromatic structure" as used herein may refer to the aryl group or the arylene group.
- The term "alicyclic structure" as used herein may refer to, unless defined otherwise, a cyclic hydrocarbon structure that is not the aromatic cyclic structure. The alicyclic structure may be, unless defined otherwise, a structure having 3 to 30, 3 to 25, 3 to 21, 3 to 18 or 3 to 13 carbon atoms.
- The term "single bond" as used herein may refer to a case where there is no atom in a corresponding site. For example, a case where "B" is a single bond in the structure represented by "A-B-C," means that there is no atom in the "B" position and therefore the structure represented by "A-C" is formed by the "A" directly connecting to the "C."
- A substituent that may optionally substitute for the alkyl group, the alkenyl group, the alkynyl group, the alkylene group, the alkenylene group, the alkynylene group, the alkoxy group, the aryl group, the arylene group, a chain, the aromatic structure, and the like may be hydroxyl group, halogen atom, carboxyl group, glycidyl group, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, thiol group, alkyl group, alkenyl group, alkynyl group, alkylene group, alkenylene group, alkynylene group, alkoxy group or aryl group, but is not limited thereto.
-
- In Formula 1, the R is hydrogen or an alkyl group and the X is the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-. In the above, the X1 may be the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the Y may be a monovalent substituent including a cyclic structure to which a chain having 8 or more chain-forming atoms is linked.
- In another embodiment, in the Formula 1, the X may be the single bond, the oxygen atom, the carbonyl group, -C(=O)-O- or -O-C(=O)-; or the X may be-C(=O)-O-, but is not limited thereto.
- In Formula 1, the monovalent substituent Y includes a chain structure formed by at least 8 chain-forming atoms.
- The term "chain-forming atoms" as used herein refers to atoms forming a linear structure of a certain chain. The chain may have a linear or branched structure; however the number of the chain-forming atoms is calculated only by the number of atoms forming the longest linear chain. Therefore, other atoms such as, in a case where the chain-forming atom is the carbon atom, the hydrogen atom that is linked to the carbon atom and the like are not calculated as the number of the chain-forming atoms. Further, in case of the branched chain, the number of the chain-forming atoms is the number of atoms forming the longest chain. For example, the chain is n-pentyl, all of the chain-forming atoms are carbon atoms and the number thereof is 5. If the chain is 2-methylpentyl, all of the chain-forming atoms are also carbon atoms and the number thereof is 5. The chain-forming atoms may be the carbon, the oxygen, the sulfur or the nitrogen, and the like and appropriate chain-forming atoms may be the carbon, the oxygen or the nitrogen; or the carbon or the oxygen. The number of the chain-forming atoms may be 8 or more, 9 or more, 10 or more, 11 or more; or 12 or more. The number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less or 16 or less.
- When the compound of the Formula 1 forms a block copolymer, the block copolymer may show an excellent self-assembly properties due to the presence of the chain.
- In one embodiment, the chain may be a linear hydrocarbon chain such as a linear alkyl group. In this case, the alkyl group may be an alkyl group having 8 or more, 8 to 30, 8 to 25, 8 to 20 or 8 to 16 carbon atoms. At least one carbon atom of the alkyl group may be optionally substituted with the oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted with another substituent.
- In Formula 1, the Y may include a cyclic structure. The chain may be linked to the cyclic structure. The self assembly properties of block copolymers formed by the compound may be further improved due to the cyclic structure. The cyclic structure may be the aromatic structure or the alicyclic structure.
- The chain may be directly linked to the cyclic structure or may be linked to the cyclic structure via a linker. As the linker, the oxygen atom, the sulfur atom, - NR1-, -S(=O)2-, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)- may be illustrated. In the above, the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group and the X1 may be the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group and, in the above, the R2 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group. An appropriate linker may be the oxygen atom or the nitrogen atom. For example, the chain may be linked to the aromatic structure via the oxygen atom or the nitrogen atom. In this case, the linker may be the oxygen atom or the -NR1-, where the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group.
- In one embodiment, the Y of the Formula 1 may be represented by Formula 2 below.
[Formula 2] -P-Q-Z
- In Formula 2, the P may be the arylene group, the Q may be the single bond, the oxygen atom or -NR3-, where the R3 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the Z may be the chain having at least 8 chain-forming atoms. In case where the Y of the Formula 1 is the substituent of the Formula 2, the P of the Formula 2 may be directly linked to the X of the Formula 1.
- In Formula 2, an appropriate P may be an arylene group having 6 to 12 carbon atoms such as the phenylene group, but is not limited thereto.
- In Formula 2, an appropriate Q may be the oxygen atom or -NR1-, where the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group.
- As an appropriate embodiment of the monomer of Formula 1, a monomer of Formula 1, in which the R is the hydrogen atom or the alkyl group; or the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s), the X is -C(=O)-O- and the Y is the substituent of Formula 2, in which the P is the arylene having 6 to 12 carbon atoms or phenylene group, the Q is the oxygen atom and the Z is the chain having 8 or more chain-forming atoms may be illustrated.
-
- In Formula 3, the R is the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s), the X is -C(=O)-O-, the P is the arylene group having 6 to 12 carbon atoms, Q is the oxygen atom, and Z is the above-described chain having 8 or more chain-forming atoms.
- Another embodiment of the present application relates to a method for preparing a block copolymer comprising a step of forming a block by polymerizing the monomer.
- A specific method for preparing the block copolymer is not particularly limited, as long as it comprises a step forming at least one block of the block copolymer by using the above-described monomer.
- For example, the block copolymer may be prepared by a living radical polymerization (LRP) using the monomer. For example, there are methods such as the anionic polymerization, in which block copolymers are synthesized in the presence of inorganic acid salts such as salts of alkali metal or alkali earth metal by using organic rare earth metal complexes or organic alkali metal compounds as polymerization initiators; the anionic polymerization, in which block copolymers are synthesized in the presence of organic aluminum compounds by using organic alkali metal compounds as polymerization initiators; the atom-transfer radical polymerization (ATRP) using an atom transfer radical polymerizer as a polymerization controller; the activators regenerated by electron transfer (ATGET) ATRP performing polymerization in the presence of an organic or inorganic reducing agent generating electrons using an atom transfer radical polymerizer as a polymerization controller; the initiators for continuous activator regeneration (ICAR) ATRP; the reversible addition-ring opening chain transfer (RAFT) polymerization using an inorganic reducing agent reversible addition-ring opening chain transfer agent; and the a method using an organic tellurium compound as an initiator, and an appropriate method may be selected among the above methods.
- In one embodiment, the block copolymer may be prepared by a method including polymerizing a material comprising monomers capable of forming the block in the presence of radical initiators and living radical polymerization reagents by the living radical polymerization.
- In the preparation of the block copolymer, a method for forming other block included in the block copolymer along with the block formed by the above monomer is not particularly limited, and the other block may be formed by selecting appropriate monomers considering the kind of blocks to be formed.
- The method for preparing the block copolymer may further include precipitating a polymerized product produced by the above-described process in a non-solvent.
- A kind of the radical initiators may be suitably selected in consideration of polymerization efficiency without particular limitation, and an azo compound such as azobisisobutyronitrile (AIBN) or 2,2'-azobis-(2,4-dimethylvaleronitrile), or a peroxide compound such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP) may be used.
- The LRP may be performed in a solvent such as methylenechloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylformamide, dimethylsulfoxide or dimethylacetamide.
- As the non-solvent, for example, an alcohol such as methanol, ethanol, normal propanol or isopropanol, a glycol such as ethyleneglycol, or an ether compound such as n-hexane, cyclohexane, n-heptane or petroleum ether may be used without limitation.
- Another embodiment of the present application relates to a block copolymer including a block (hereinafter, may be referred to as a first block) formed by using the monomer.
-
- In the Formula 4, the R, X and Y may be the same as described regarding the R, X and Y of the Formula 1, respectively.
- Therefore, in Formula 4, the R may be hydrogen or an alkyl group having 1 to 4 carbon atom(s), the X may be the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, wherein the X1 may be the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the Y may be a monovalent substituent including a cyclic structure to which a chain having 8 or more chain-forming atoms is linked. As for a specific type of above each substituent, the above description may be applied in the same manner.
- In one embodiment, the first block may be a block of the Formula 4, in which the R is the hydrogen or the alkyl group; or the hydrogen or the alkyl group having 1 to 4 carbon atom(s), the X is -C(=O)-O-, and the Y is the substituent represented by Formula 2. Such a block may be referred to as a 1A block, but is not limited thereto. This block may be represented by the Formula 5 below.
- In Formula 5, the R may be the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s), the X may be the single bond, the oxygen atom, -C(=O)-O- or -O-C(=O)-, the P may be the arylene group, the Q may be the oxygen atom or -NR3-, where the R3 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, the Z is the chain having 8 or more chain-forming atoms. In another embodiment, the Q of the Formula 5 may be the oxygen atom.
-
- In Formula 6, R1 and R2 may be each independently hydrogen or an alkyl group having 1 to 4 carbon atom(s), the X may be the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the X1 may be the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, the T may be the single bond or the arylene group, the Q may be the single bond or the carbonyl group and the Y may be the chain having at least 8 chain-forming atoms.
- In the 1B block of Formula 6, X may be the single bond, the oxygen atom, the carbonyl group, -C(=O)-O- or -O-C(=O)-.
- As a particular embodiment of the chain Y in the 1B block, the above description regarding Formula 1 may be applied thereto in a similar manner.
- In another embodiment, the first block may be a block represented by at least one of the Formulas 4 to 6, in which the electronegativity of at least one chain-forming atom of the chain having 8 or more chain-forming atoms is 3 or more. The electronegativity of the chain-forming atom may be 3.7 or less in another embodiment. Herein, such a block may be referred to as a 1C block. As the atom having the electronegativity of 3 or more, the nitrogen atom or the oxygen atom may be illustrated, but is not limited thereto.
- Kinds of another block (hereinafter, may be referred to as a second block) included in the block copolymer along with the first block such as the 1A, 1B or 1 C block is not particularly limited.
- For example, the second block may be polyvinylpyrrolidone block, polylactic acid block, polyvinylpyridine block, polystyrene block such as polystyrene block or polytrimethylsilylstyrene, polyalkyleneoxide block such as polyethyleneoxide block, or polyolefin block such as polyethylene block or polyisoprene block or polybutadiene block. Such a block used herein may be referred to as a 2A block.
- In one embodiment, the second block included along with the first block such as the 1A, 1B or 1C block in the block copolymer may be a block including the aromatic structure comprising at least one halogen atom.
-
- In Formula 7, the B may be a monovalent substituent having an aromatic structure including at least one halogen atom.
- Such a second block may be effectively interacted with the above-described first block such that the block copolymer can have an excellent self assembling characteristic.
- The aromatic structure of Formula 7 may be, for example, an aromatic structure having 6 to 18 or 6 to 12 carbon atoms.
- Further, the halogen atom included in Formula 7 may be, but is not limited to, the fluorine atom or the chloride atom, and appropriately the fluorine atom.
- In one embodiment, the B of Formula 7 may be a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms, which is substituted with 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms. The upper limit of the number of halogen atoms is not particular limited, but there may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
-
- In Formula 8, the X2 may be the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, - C(=O)-X1- or -X1-C(=O)-, in which the X1 is the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the W may be an aryl group substituted with at least one halogen atom. In the above, the W may be an aryl group, substituted with at least one halogen atom, for example, an aryl group that has 6 to 12 carbon atoms and that is substituted with 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms.
-
- In Formula 9, the X2 may be the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, - C(=O)-X1- or -X1-C(=O)-, in which the X1 is the single bond, the oxygen atom, the sulfur atom, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the R1 to R5 may be each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom. The number of the halogen atom included in the R1 to R5 is 1 or more.
- In Formula 9, in another embodiment, the X2 may be the single bond, the oxygen atom, the alkylene group, -C(=O)-O- or -O-C(=O)-.
- In Formula 9, the R1 to R5 may be each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom, and the R1 to R5 may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s) such as fluorine atom(s). The number of the halogen atom(s) such as the fluorine atom(s) included in the R1 to R5 may be, for example, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less.
-
- In Formula 10, the T and K may be each independently the oxygen atom or the single bond, and the U may be the alkylene group.
- In one embodiment, in the 2C block, the U of Formula 10 may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
- In another embodiment, the 2C block may be a block of the Formula 10, in which one of the T and K of the Formula 10 is the single bond, and the other of the T and K of the Formula 10 is the oxygen atom. In the above block, the U may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
- In still another embodiment, the 2C block may be a block of the Formula 10, in which both of the T and K of the Formula 10 are the oxygen atoms. In the above block, the U may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
- In still another embodiment, the second block may be a block including at least one metal atom or metalloid atom. Such a block may be referred to as a 2D block. This block may improve etching selectivity when an etching process is performed with respect to, for example, a film including a self-assembled block copolymer.
- The metal atom or metalloid atom in the 2D block may be a silicon atom, an iron atom or a boron atom, but is not particularly limited as long as it may exhibit suitable etching selectivity due to a difference with another atom in the block copolymer.
- The 2D block may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms, for example, fluorine atoms, along with the metal or metalloid atom. The 2D block may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms such as fluorine atoms.
-
- In Formula 11, the B may be a monovalent substituent having an aromatic structure including a halogen atom and a substituent having the metal atom or the metalloid atom.
- The aromatic structure of Formula 11 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
-
- In Formula 12, the X2 may be the single bond, the oxygen atom, the sulfur atom, -NR1-, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the R1 is the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 is the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the W may be an aryl group including at least one halogen atom and a substituent including the metal atom or the metalloid atom.
- In the above, the W may be an aryl group that has 6 to 12 carbon atoms and that includes at least one halogen atom and a substituent including the metal atom or the metalloid atom.
- The aryl group may include at least one or 1 to 3 substituents including the metal atom or metalloid atom, and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s).
- 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms may be included therein.
-
- In Formula 13, the X2 may be the single bond, the oxygen atom, the sulfur atom, -NR1-, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, the R1 to R5 may be each independently the hydrogen, the alkyl group, the haloalkyl group, the halogen atom or the substituent including the metal or the metalloid atom, with the provision that at least one of R1 to R5 includes a halogen atom, and at least one of R1 to R5 is the substituent including the metal or the metalloid atom.
- In the Formula 13, 1 or more, 1 to 3 or 1 to 2 of the R1 to R5 may be the substituent including the metal or the metalloid atom.
- In the Formula 13, in the R1 to R5, 1 or more, 2 or more, 3 or more, 4 or more or 5 or more halogen atom(s) may be included. The number of the halogen atom(s) included in the R1 to R5 may by 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
- The substituent including the metal or the metalloid atom described above may be carboranyl group or silsesquioxanyl group such as polyhedral oligomeric silsesquioxanyl, ferrocenyl group or trialkylsiloxy group. However, they are not particularly limited, as long as they are selected so as to obtain the etching selectivity by including at least one metal or metalloid atom.
- In yet another embodiment, the second block may be a block including an atom which is an atom having the electronegativity of 3 or more and which is an atom (hereinafter, referred to as a non-halogenic atom) that is not the halogen atom. Such a block may be referred to as a 2E block. In another embodiment, the electronegativity of the non-halogenic atom in the 2E block may be 3.7 or less.
- The non-halogenic atom in the 2E block may be, but is not limited to, a nitrogen atom or an oxygen atom.
- The 2E block may include, along with the non-halogenic atom having an electronegativity of 3 or more, 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms, for example, fluorine atoms. The number of the halogen atom(s) such as the fluorine atom(s) in the 2E block may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
-
- In Formula 14, the B may be a monovalent substituent having an aromatic structure that includes a substituent including the non-halogenic atom having an electronegativity of 3 or more and that includes the halogen atom.
- The aromatic structure of Formula 14 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
-
- In Formula 15, the X2 may be the single bond, the oxygen atom, the sulfur atom, -NR1-, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the W may be the aryl group including the substituent including the non-halogenic atom having an electronegativity of 3 or more and at least one halogen atom.
- In the above, the W may be an aryl group that has 6 to 12 carbon atoms, that includes the substituent including the non-halogenic atom having the electronegativity of 3 or more and that includes at least one halogen atom.
- Such an aryl group may include at least one or 1 to 3 substituents including the non-halogenic atom having the electronegativity of 3 or more. In addition, the aryl group may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s). In the above, the aryl group may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
-
- In Formula 16, the X2 may be the single bond, the oxygen atom, the sulfur atom, -NR1-, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the R1 may be hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the R1 to R5 may be each independently hydrogen, the alkyl group, the haloalkyl group, the halogen atom and the substituent including the non-halogenic atom having the electronegativity of 3 or more. In the above, at least one of the R1 to R5 is the halogen atom, and at least one of the R1 to R5 is the substituent including the non-halogenic atom having the electronegativity of 3 or more.
- In Formula 16, at least one, 1 to 3, or 1 to 2 of the R1 to R5 may be the above-described substituents including the non-halogenic atom having the electronegativity of 3 or more.
- In Formula 16, the R1 to R5 may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms. The R1 to R5 may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
- The substituent including the non-halogenic atom having the electronegativity of 3 or more described above may be, but is not limited to, the hydroxyl group, the alkoxy group, the carboxyl group, the amido group, the ethylene oxide group, the nitrile group, the pyridine group or the amino group.
- In another embodiment, the second block may include an aromatic structure having a heterocyclic substituent. Such a second block may be referred to as a 2F block herein.
-
- In Formula 17, the B may be a monovalent substituent having an aromatic structure that has 6 to 12 carbon atoms and that is substituted with a heterocyclic substituent.
- If necessary, the aromatic structure of Formula 17 may include at least one halogen atom.
-
- In Formula 18, the X2 may be the single bond, the oxygen atom, the sulfur atom, -NR1-, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the R1 may be hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the W may be an aryl group that has 6 to 12 carbon atoms and that has the heterocyclic substituent.
-
- In Formula 19, the X2 may be the single bond, the oxygen atom, the sulfur atom, -NR1-, -S(=O)2-, the alkylene group, the alkenylene group, the alkynylene group, -C(=O)-X1- or -X1-C(=O)-, in which the R1 may be hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, -NR2-, -S(=O)2-, the alkylene group, the alkenylene group or the alkynylene group, and the R1 to R5 may be each independently hydrogen, the alkyl group, the haloalkyl group, the halogen atom or the heterocyclic substituent. In the above, at least one of the R1 to R5 is the heterocyclic substituent.
- In Formula 19, at least one, for example, 1 to 3 or 1 to 2 of the R1 to R5 may be the heterocyclic substituent, and the other(s) may be the hydrogen atom, the alkyl group or the halogen atom; or the hydrogen atom or the halogen atom; or the hydrogen atom.
- The above-described heterocyclic substituent may be, but is not limited to, a substituent derived from phthalimide, a substituent derived from thiopene, a substituent derived from thiazole, a substituent derived from carbazole or a substituent derived from imidazole.
- The block copolymer of the present application may include at least one of the above-described first blocks, and at least one of the above-described second blocks. Such a block copolymer may include 2 or 3 blocks, or 3 or more blocks. In one embodiment, the block copolymer may be a diblock copolymer including any one of the first blocks and any one of the second blocks.
- The block copolymer may have, for example, a number average molecular weight (Mn) in a range from approximately 3,000 to 300,000. The term "number average molecular weight" as used herein may refer to a converted value with respect to the standard polystyrene measured by the GPC (Gel Permeation Chromatography). Unless defined otherwise, the term "molecular weight" as used herein may refer to the number average molecular weight. The molecular weight (Mn), in another embodiment, may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more or 15000 or more. The molecular weight (Mn), in another embodiment, may be, for example, 250000 or less, 200000 or less, 180000 or less, 160000 or less, 140000 or less, 120000 or less, 100000 or less, 90000 or less, 80000 or less, 70000 or less, 60000 or less, 50000 or less, 40000 or less, 30000 or less, or 25000 or less. The block copolymer may have the polydispersity (Mw/Mn) in a range from 1.01 to 1.60. In another embodiment, the polydispersity may be about 1.1 or more, about 1.2 or more, about 1.3 or more, or about 1.4 or more.
- In the above range, the block copolymer may exhibit an appropriate self assembling property. The number average molecular weight and the like of the block copolymer may be controlled considering the objected self assembled structure.
- If the block copolymer at least includes the first and second blocks, a ratio of the first block, for example, the block including the chain in the block copolymer may be in a range of 10 mole% to 90 mole%.
- The present application relates to a polymer layer including the block copolymer. The polymer layer may be used in various applications. For example, it can be used in a biosensor, a recording media such as a flash memory, a magnetic storage media or the pattern forming method or an electric device or an electronic device, and the like.
- In one embodiment, the block copolymer in the polymer layer may be forming a periodic structure including a sphere, a cylinder, a gyroid, or a lamella by the self assembly.
- For example, in one segment of the first block or the second block or other block linked to the above block via a covalent bond in the block copolymer, other segment may be forming the regular structure such as lamella form, cylinder form and the like.
- The present application relates also to a method for forming a polymer layer by using the block copolymer. The method may include forming a polymer layer including the block copolymer on a substrate in a self-assembled state. For example, the method may include forming a layer of the block copolymer or a coating solution in which the block copolymer is diluted in suitable solvent on the substrate by a coating and the like, and if necessary, then aging or heat-treating the layer.
- The aging or the heat treatment may be performed based on, for example, a phase transition temperature or glass transition temperature of the block copolymer, and for example, may be performed at a temperature higher than the glass transition temperature or phase transition temperature. A time for the heat treatment is not particularly limited, and the heat treatment may be performed for approximately 1 minute to 72 hours, but may be changed if necessary. In addition, the temperature of the heat treatment of the polymer layer may be, for example, 100°C to 250°C, but may be changed in consideration of the block copolymer used herein.
- The formed layer may be aged in a non-polar solvent and/or a polar solvent at the room temperature for approximately 1 minute to 72 hours.
- The present application relates also to a pattern-forming method. The method may include selectively removing the first or second block of the block copolymer from a laminate comprising a substrate and a polymer layer that is formed on a surface of the substrate and that includes a self-assembled block copolymer. The method may be a method for forming a pattern on the above substrate. For example, the method may include forming the polymer layer on the substrate, selectively removing one block or two or more blocks of the block copolymer that is in the polymer layer; and then etching the substrate. By the above method, for example, nano-scaled micropattern may be formed. Further, according to shapes of the block copolymer in the polymer layer, various shapes of pattern such as nano-rod or nano-hole can be formed by the above method. If necessary, in order to form a pattern, the block copolymer may be mixed with another copolymer or homopolymer. A kind of the substrate applied to this method may be selected without particular limitation, and, for example, silicon oxide and the like may be applied.
- For example, according to the method, a nano-scale pattern of silicon oxide having a high aspect ratio may be formed. For example, various types of patterns such as a nanorod or nanohole pattern may be formed by forming the polymer layer on the silicon oxide, selectively removing any one block of the block copolymer in a state where the block copolymer in the polymer layer is formed in a predetermined structure, and etching the silicon oxide in various methods, for example, reactive ion etching. In addition, according to the above method, a nano pattern having a high aspect ratio can be formed.
- For example, the pattern may be formed to a scale of several tens of nanometers, and such a pattern may be applied in various uses including a next-generation information electronic magnetic recording medium.
- For example, a pattern in which nano structures, for example, nanowires, having a width of approximately 3 to 40 nm are disposed at an interval of approximately 6 to 80 nm may be formed by the above-described method. In another embodiment, a structure in which nanoholes having a width, for example, a diameter of approximately 3 to 40 nm are disposed at an interval of approximately 6 to 80 nm can be implemented.
- In addition, in this structure, nanowires or nanoholes may be formed to have a high aspect ratio.
- In this method, a method of selectively removing any one block of the block copolymer is not particularly limited, and for example, a method of removing a relatively soft block by irradiating a suitable electromagnetic wave, for example, ultra violet rays to a polymer layer may be used. In this case, conditions for ultra violet radiation may be determined according to a type of the block of the block copolymer, and ultra violet rays having a wavelength of approximately 254 nm may be irradiated for 1 to 60 minutes.
- In addition, followed by the ultra violet radiation, the polymer layer may be treated with an acid to further remove a segment degraded by the ultra violet rays.
- In addition, the etching of the substrate using the polymer layer from which a block is selectively removed may be performed by reactive ion etching using CF4/Ar ions, and followed by the above process, and removing the polymer layer from the substrate by oxygen plasma treatment may be further performed.
-
Figs. 1 to 2 are SEM or AFM images of polymer layers and show results of GISAXS analysis on polymer layers. - The present application may provide the block copolymers and their application. The block copolymer has an excellent self assembling property and phase separation and various required functions can be freely imparted thereto as necessary.
- Hereinafter, the present application will be described in detail with reference to Examples and Comparative Examples, but the scope of the present application is not limited to the following examples.
- The NMR analysis was performed at the room temperature by using a NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer having a triple resonance 5 mm probe. A sample to be analyzed was used after diluting it in solvent (CDCl3) for the NMR analysis to a concentration of approximately 10 mg/ml and a chemical shift (δ) was expressed in ppm.
- br = wide signal, s = singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, q = quadruplet, p = quintuplet, m = multiplet
- The number average molecular weight and the polydispersity were measured by the GPC (Gel Permeation Chromatograph). In a 5 mL vial, a block copolymer or a macroinitiator to be measured of Example or Comparative Example and then diluted to a concentration of about 1 mg/mL. Then, the standard sample for a calibration and a sample to be analyzed were filtered by a syringe filter (pore size: 0.45 µm) and then analyzed. ChemStation from the Agilent technologies, Co. was used as an analysis program. The number average molecular weight (Mn) and the weight average molecular weight (Mw) were obtained by comparing an elution time of the sample with a calibration curve and then the polydispersity (PDI) was obtained from their ratio (Mw/Mn). The measuring condition of the GPC was as below.
-
- Device: a 1200 series from Agilent technologies, Co.
- Column: two of PLgel mixed B from Polymer laboratories, Co. were used
- Solvent: THF
- Temperature of the column: 35°C
- Concentration of Sample: 1 mg/mL, 200L injection
- Standard Sample: Polystyrene (Mp: 3900000, 723000, 316500, 52200, 31400,7200,3940,485)
- A compound (DPM-C12) of the Formula A below was synthesized by the below method. To a 250 mL flask, hydroquinone (10.0 g, 94.2 mmole) and 1-bromododecane (23.5 g, 94.2 mmole) were added and dissolved in 100 mL acetonitrile, an excessive amount of potassium carbonate was added thereto and then the mixture was reacted at 75°C for approximately 48 hours under nitrogen. After the reaction, remaining potassium carbonate and acetonitrile used for the reaction were removed. The work up was performed by adding a mixed solvent of dichloromethane (DCM) and water, and separated organic layers were collected and dehydrated through MgSO4. Subsequently, a white solid intermediate was obtained with a yield of approximately 37 % using DCM through column chromatography.
- 1H-NMR(CDCl3): δ6.77(dd, 4H); δ4.45(s, 1H); δ3.89(t, 2H); δ1.75(p, 2H); δ1.43(p, 2H); δ1.33-1.26(m, 16H); δ0.88(t, 3H)
- The synthesized intermediate (9.8 g, 35.2 mmole), methacrylic acid (6.0 g, 69.7 mmole), dicyclohexylcarbodiimide (DCC; 10.8 g, 52.3 mmole) and p-dimethylaminopyridine (DMPA; 1.7 g, 13.9 mmol) were put into a flask, 120 ml of methylenechloride was added, and a reaction was performed at the room temperature for 24 hours under nitrogen. After the reaction was completed, a urea salt produced in the reaction was removed through a filter, and remaining methylenechloride was also removed. Impurities were removed using hexane and DCM (dichloromethane) as mobile phases though column chromatography, and the obtained product was recrystallized in a mixed solvent of methanol and water (mixed in 1:1 weight ratio), thereby obtaining a white solid product (DPM-C12)(7.7 g, 22.2 mmol) with a yield of 63%.
-
- In the above, the R is a linear alkyl having 12 carbon atoms.
- 3-Hydroxy-1,2,4,5-tetrafluorostyrene was synthesized according to the below method. Pentafluorostyrene (25 g, 129 mmole) was added to a mixed solution of 400 mL of tert-butanol and potassium hydroxide (37.5 g, 161 mmole); and then was subjected to a reflux reaction for 2 hours. The product after the reaction was cooled to the room temperature, 1200 mL of water was added and the remaining butanol used for the reaction was volatilized. The adduct was extracted 3 times by diethyl ether (300 mL), an aqueous layer was acidified by 10 weight% of hydrochloric acid solution until its pH became 3, and thereby target product was precipitated. Precipitated product was extracted 3 times by diethyl ether (300 mL) and an organic layer was collected. The organic layer was dehydrated by MgSO4 and solvent was removed. Crude product was purified in a column chromatograph by using hexane and DCM (dichloromethane) as mobile phase and thereby colorless liquid 3-hydroxy-1,2,4,5-tetrafluorostyrene (11.4 g) was obtained. Its NMR analysis result is as below.
- 1H-NMR(DMSO-d): δ11.7 (s, 1H); δ6.60(dd, 1H); δ5.89(d, 1H); δ5.62(d, 1H)
- In benzene, AIBN (azobisisobutyronitrile), RAFT (reversible addition fragmentation chain transfer) reagent (2-cyano-2-propyl dodecyl trithiocarbonate) and the compound (DPM-C12) of Preparation Example 1 were dissolved in a weight ratio of 50:1:0.2 (DPM-C12:RAFT reagent:AIBN) (Concentration: 70 weight%), and then a macroinitiator (a number average molecular weight: 14000, polydispersity: 1.2) was prepared by reacting the mixture for 4 hours at 70°C under nitrogen. Then, in benzene, the synthesized macroinitiator, 3-hydroxy-1,2,4,5-tetrafluorostyrene (TFS-OH) and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:200:0.5 (the macroinitiator:TFS-OH:AIBN) (Concentration: 30 weight%), and then a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70°C under nitrogen. The block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block derived from the 3-hydroxy-1,2,4,5-tetrafluorostyrene.
- The compound of the Formula H below was synthesized according to the below method. Phthalimide (10.0 g, 54 mmole) and chloromethylstyrene (8.2 g, 54 mmole) were added to 50 mL of DMF (dimethyl formamide) and then were reacted for 18 hours at 55°C under nitrogen. After the reaction, 100 mL of ethyl acetate and 100 mL of distilled water were added to the reacted product, and then an organic layer was collected and then washed by brine solution. Collected organic layer was treated by MgSO4 and thereby water was removed and then solvent was finally removed and then re-crystallized by pentane so as to obtain white solid target compound (11.1g). Its NMR analysis result is as below.
-
- In benzene, AIBN (azobisisobutyronitrile), RAFT (reversible addition fragmentation chain transfer) reagent (2-cyano-2-propyl dodecyl trithiocarbonate) and the compound (DPM-C12) of Preparation Example 1 were dissolved in a weight ratio of 50:1:0.2 (DPM-C12:RAFT reagent:AIBN) (Concentration: 70 weight%), and then a macroinitiator (a number average molecular weight: 14000, polydispersity: 1.2) was prepared by reacting the mixture for 4 hours at 70°C under nitrogen. Then, in benzene, the synthesized macroinitiator, the compound (TFS-PhIM) of Formula H and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:200:0.5 (the macroinitiator:TFS-PhIM:AIBN) (Concentration: 30 weight%), and then a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70°C under nitrogen. The block copolymer includes the first block derived from the compound of Example 1 and the second block derived from the compound of Formula H.
- Self assembled polymer layer were prepared by using block copolymers of Examples 1 and 2 and the results were observed. Specifically, each block copolymer was dissolved in solvent to a concentration of 1.0 weight% and then was spin-coated on a silicone wafer for 60 seconds by a speed of 3000 rpm. Then, self assembling was performed by a solvent annealing or a thermal annealing. Then, the self assembling properties were evaluated by subjecting the polymer layer to an AFM(Atomic force microscopy) analysis.
Figs. 1 and 2 are the results of Examples 1 and 2, respectively, and from the above, it can be confirmed that an appropriate self assemblies were realized. - Specifically,
Fig. 1 is the result of the self assembly obtained by spin coating a coating solution prepared by dissolving the block copolymer of Example 1 in toluene to a concentration of 1.0 weight% on a silicone wafer for 60 seconds by a speed of 3000 rpm and then subjecting the coated layer to a solvent annealing by using a mixed solvent of THF (tetrahydrofuran) and deionized water (THF:deionized water = 4:6 (weight ratio)) for about 2 hours andFig. 2 is the result of the self assembly obtained by spin coating a coating solution prepared by dissolving the block copolymer of Example 2 in dioxane to a concentration of 1.0 weight% on a silicone wafer for 60 seconds by a speed of 3000 rpm and then subjecting the coated layer to a solvent annealing by using chloroform for about 2 hours.
Claims (19)
- A block copolymer comprising a first block of the Formula 5 below and a second block comprising a substituent comprising a non-halogenic atom of which the electronegativity is 3 or more:
- The block copolymer according to claim 1, wherein the linear chain comprises 8 to 20 chain-forming atoms.
- The block copolymer according to claim 1, wherein the chain-forming atom is carbon, oxygen, nitrogen or sulfur.
- The block copolymer according to claim 1, wherein the chain-forming atom is carbon or oxygen.
- The block copolymer according to claim 1, wherein the linear chain is a hydrocarbon chain.
- The block copolymer according to claim 1, wherein the non-halogenic atom of which the electronegativity is 3 or more is an oxygen atom or an nitrogen atom.
- The block copolymer according to claim 1, wherein the second block further comprises halogen.
- The block copolymer according to claim 7, the halogen is fluorine.
- The block copolymer according to claim 9, wherein the B of the Formula 11 is a monovalent substituent having an aromatic strucutre which has 6 to 12 carbon atoms and which comprises at least 3 halogen atoms and a substituent comprising the non-halogenic atom of which the electronegativity is 3 or more.
- The block copolymer according to claim 1, wherein the second block is represented by the Formula 16 below:
- The block copolymer according to claim 1, wherein the substituent comprising the non-halogenic atom of which the electronegativity is 3 or more is a hydroxyl group, an alkoxy group, a carboxyl group, an amido group, an alkyleneoxide group, a nitrile group, a pyridine group or an amino group.
- The block copolymer according to claim 1, wherein the substituent comprising the non-halogenic atom of which the electronegativity is an aromatic structure comprising a heterocyclic substituent.
- The block copolymer according to claim 1, wherein the second block is represented by the Formula 19 below:
- The block copolymer according to claim 13, wherein the heterocyclic substituent is a phthalimidyl, a thiopenyl, a thiazolyl, a carbazolyl or an imidazolyl.
- A polymer layer comprising a self assembled product of the block copolymer of claim 1.
- A method for forming a polymer layer, comprising forming the polymer layer comprising a self assembled product of the block copolymer of claim 1.
- A pattern-forming method comprising selectively removing the first or second block of the block copolymer from a laminate comprising a substrate and a polymer layer that is formed on the substrate and that comprises a self-assembled product of the block copolymer of claim 1.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130151866 | 2013-12-06 | ||
KR20130151865 | 2013-12-06 | ||
KR20130151867 | 2013-12-06 | ||
KR20130159994 | 2013-12-20 | ||
KR20140131964 | 2014-09-30 | ||
PCT/KR2014/012030 WO2015084127A1 (en) | 2013-12-06 | 2014-12-08 | Block copolymer |
KR1020140175405A KR101770882B1 (en) | 2013-12-06 | 2014-12-08 | Block copolymer |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3078691A1 true EP3078691A1 (en) | 2016-10-12 |
EP3078691A4 EP3078691A4 (en) | 2017-07-05 |
EP3078691B1 EP3078691B1 (en) | 2018-04-18 |
Family
ID=53273797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14868190.1A Active EP3078691B1 (en) | 2013-12-06 | 2014-12-08 | Block copolymer |
Country Status (5)
Country | Link |
---|---|
US (1) | US10150832B2 (en) |
EP (1) | EP3078691B1 (en) |
JP (1) | JP6334706B2 (en) |
CN (1) | CN105916904B (en) |
WO (1) | WO2015084127A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10239980B2 (en) | 2013-12-06 | 2019-03-26 | Lg Chem, Ltd. | Block copolymer |
US10240035B2 (en) | 2014-09-30 | 2019-03-26 | Lg Chem, Ltd. | Block copolymer |
US10253130B2 (en) | 2013-12-06 | 2019-04-09 | Lg Chem, Ltd. | Block copolymer |
US10281820B2 (en) | 2014-09-30 | 2019-05-07 | Lg Chem, Ltd. | Block copolymer |
US10287430B2 (en) | 2014-09-30 | 2019-05-14 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
US10287429B2 (en) | 2014-09-30 | 2019-05-14 | Lg Chem, Ltd. | Block copolymer |
US10295908B2 (en) | 2014-09-30 | 2019-05-21 | Lg Chem, Ltd. | Block copolymer |
US10310378B2 (en) | 2014-09-30 | 2019-06-04 | Lg Chem, Ltd. | Block copolymer |
US10370529B2 (en) | 2014-09-30 | 2019-08-06 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
US10377894B2 (en) | 2014-09-30 | 2019-08-13 | Lg Chem, Ltd. | Block copolymer |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10227438B2 (en) | 2013-12-06 | 2019-03-12 | Lg Chem, Ltd. | Block copolymer |
CN106459326B (en) | 2013-12-06 | 2019-08-13 | 株式会社Lg化学 | Block copolymer |
JP6361893B2 (en) | 2013-12-06 | 2018-07-25 | エルジー・ケム・リミテッド | Block copolymer |
US10081698B2 (en) | 2013-12-06 | 2018-09-25 | Lg Chem, Ltd. | Block copolymer |
EP3078685B1 (en) | 2013-12-06 | 2020-09-09 | LG Chem, Ltd. | Block copolymer |
CN105899557B (en) | 2013-12-06 | 2018-10-26 | 株式会社Lg化学 | Block copolymer |
US10150832B2 (en) | 2013-12-06 | 2018-12-11 | Lg Chem, Ltd. | Block copolymer |
JP6483693B2 (en) | 2013-12-06 | 2019-03-13 | エルジー・ケム・リミテッド | Block copolymer |
US10087276B2 (en) | 2013-12-06 | 2018-10-02 | Lg Chem, Ltd. | Block copolymer |
EP3078654B1 (en) | 2013-12-06 | 2021-07-07 | LG Chem, Ltd. | Monomer and block copolymer |
EP3078689B1 (en) | 2013-12-06 | 2020-12-02 | LG Chem, Ltd. | Block copolymer |
US10202480B2 (en) | 2013-12-06 | 2019-02-12 | Lg Chem, Ltd. | Block copolymer |
EP3202800B1 (en) | 2014-09-30 | 2021-12-29 | LG Chem, Ltd. | Block copolymer |
US10633533B2 (en) | 2014-09-30 | 2020-04-28 | Lg Chem, Ltd. | Block copolymer |
KR102071910B1 (en) * | 2016-11-25 | 2020-01-31 | 주식회사 엘지화학 | Compound |
WO2018101743A2 (en) * | 2016-11-30 | 2018-06-07 | 주식회사 엘지화학 | Laminate |
KR102096272B1 (en) * | 2016-11-30 | 2020-04-02 | 주식회사 엘지화학 | Block copolymer |
EP3665531B1 (en) * | 2017-09-13 | 2023-12-13 | LG Chem, Ltd. | Preparation method of patterned substrate |
TWI805617B (en) | 2017-09-15 | 2023-06-21 | 南韓商Lg化學股份有限公司 | Laminate |
Family Cites Families (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL237021A (en) | 1958-03-13 | |||
US3976672A (en) | 1974-12-26 | 1976-08-24 | Uniroyal Inc. | (Hydrocarbylphenylsulfonyl)alkyltrimethylstannanes |
AU603489B2 (en) | 1987-10-08 | 1990-11-15 | Idemitsu Kosan Company Limited | Styrenic polymer and process for its production |
JPH01260360A (en) | 1988-04-12 | 1989-10-17 | Nippon Oil & Fats Co Ltd | Packing agent for reverse phase chromatography |
US5115056A (en) | 1989-06-20 | 1992-05-19 | Ciba-Geigy Corporation | Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymers and contact lenses thereof |
WO1992009641A1 (en) | 1990-11-21 | 1992-06-11 | Idemitsu Kosan Co., Ltd. | Styrenic copolymer and production thereof |
US5234604A (en) * | 1991-02-26 | 1993-08-10 | Betz Laboratories, Inc. | Water soluble block copolymers and methods of use therof |
JP3121116B2 (en) | 1992-05-21 | 2000-12-25 | 出光興産株式会社 | Styrene block copolymer and method for producing the same |
JPH0665333A (en) | 1992-08-21 | 1994-03-08 | Shin Etsu Chem Co Ltd | Monodisperse copolymer and its production |
US5728431A (en) | 1996-09-20 | 1998-03-17 | Texas A&M University System | Process for forming self-assembled polymer layers on a metal surface |
JP3392687B2 (en) | 1997-02-21 | 2003-03-31 | 信越化学工業株式会社 | Block-graft copolymer and polymer solid electrolyte prepared using the same |
US5783614A (en) | 1997-02-21 | 1998-07-21 | Copytele, Inc. | Polymeric-coated dielectric particles and formulation and method for preparing same |
JP3396390B2 (en) | 1997-03-04 | 2003-04-14 | 信越化学工業株式会社 | Block-graft copolymer, self-crosslinking polymer solid electrolyte produced using the same, and method for producing the same |
JP3569612B2 (en) | 1997-07-25 | 2004-09-22 | 信越化学工業株式会社 | Block-graft copolymer, self-crosslinking polymer solid electrolyte produced using the same, and method for producing the same |
CA2265345A1 (en) | 1998-03-25 | 1999-09-25 | The Lubrizol Corporation | Vinyl aromatic-(vinyl aromatic-co-acrylic) block copolymers prepared by stabilized free radical polymerization |
JP4132265B2 (en) | 1998-08-04 | 2008-08-13 | 株式会社クラレ | Block copolymer and molded product thereof |
DE69942703D1 (en) | 1998-12-30 | 2010-10-07 | Lubrizol Advanced Mat Inc | BRANCHED BLOCK COPOLYMERS FOR THE TREATMENT OF THE SURFACE OF KERATIN |
ATE438667T1 (en) | 1998-12-31 | 2009-08-15 | Ciba Holding Inc | PIGMENT COMPOSITION CONTAINING ATRP POLYMERS |
JP4288440B2 (en) | 1999-01-29 | 2009-07-01 | 信越化学工業株式会社 | Method for producing cross-linked polymer solid electrolyte |
JP4458213B2 (en) | 1999-01-29 | 2010-04-28 | 信越化学工業株式会社 | Method for producing cross-linked polymer solid electrolyte |
JP2000300682A (en) | 1999-04-23 | 2000-10-31 | Hisamitsu Pharmaceut Co Inc | Device for iontophoresis |
US6314225B1 (en) | 1999-11-23 | 2001-11-06 | Corning Incorporated | Halogen and perhalo-organo substituted N-phenyl (or biphenyl) maleimide |
JP2001294617A (en) | 2000-04-12 | 2001-10-23 | Shin Etsu Chem Co Ltd | Proton electroconductive polymer electrolyte |
FR2809829B1 (en) | 2000-06-05 | 2002-07-26 | Rhodia Chimie Sa | NEW PHOTOSENSITIVE COMPOSITION FOR THE MANUFACTURE OF PHOTORESIST |
JP4625901B2 (en) | 2000-11-08 | 2011-02-02 | 独立行政法人産業技術総合研究所 | Syndiotactic aromatic vinyl block copolymer and process for producing the same |
KR100425243B1 (en) | 2001-11-14 | 2004-03-30 | 주식회사 엘지화학 | Linear block copolymer and method for preparing thereof |
US20030143343A1 (en) | 2001-12-19 | 2003-07-31 | Fuji Photo Film Co., Ltd. | Wall-structured body and process for manufacturing the same |
US8362151B2 (en) | 2002-05-31 | 2013-01-29 | Elsicon, Inc. | Hybrid polymer materials for liquid crystal alignment layers |
JP2004026688A (en) | 2002-06-24 | 2004-01-29 | Asahi Glass Co Ltd | Polyfluoroalkyl group-containing polymerizable compound and its polymer |
AU2003242731A1 (en) | 2002-07-01 | 2004-01-19 | Merck Patent Gmbh | Polymerizable, luminescent compounds and mixtures, luminescent polymer materials and their use |
JP2005530030A (en) | 2002-07-03 | 2005-10-06 | ザ プロクター アンド ギャンブル カンパニー | Radiation curable low stress relaxation elastomer material |
US7750059B2 (en) | 2002-12-04 | 2010-07-06 | Hewlett-Packard Development Company, L.P. | Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure |
JP4147143B2 (en) | 2003-04-28 | 2008-09-10 | 電気化学工業株式会社 | Block copolymer and resin composition |
JP4300902B2 (en) | 2003-06-23 | 2009-07-22 | コニカミノルタホールディングス株式会社 | Block copolymer, organic electroluminescence element, display device, lighting device and light source |
JP2005097442A (en) | 2003-09-25 | 2005-04-14 | Ube Ind Ltd | Patterned surface and its manufacturing method |
JP4453814B2 (en) | 2003-11-12 | 2010-04-21 | Jsr株式会社 | Polymerizable compound and mixture, and method for producing liquid crystal display device |
US8061533B2 (en) | 2004-03-19 | 2011-11-22 | University Of Tennessee Research Foundation | Materials comprising polydienes and hydrophilic polymers and related methods |
JP2007070453A (en) | 2005-09-06 | 2007-03-22 | Nippon Soda Co Ltd | Method for producing block copolymer |
JP5014605B2 (en) | 2005-09-14 | 2012-08-29 | ライオン株式会社 | Easy-cleaning film-forming composition |
JP5082101B2 (en) | 2005-11-14 | 2012-11-28 | 国立大学法人東京工業大学 | Method for producing nanoporous substrate |
US7538159B2 (en) * | 2005-12-16 | 2009-05-26 | Bridgestone Corporation | Nanoparticles with controlled architecture and method thereof |
US20070166648A1 (en) | 2006-01-17 | 2007-07-19 | International Business Machines Corporation | Integrated lithography and etch for dual damascene structures |
JP2007246600A (en) | 2006-03-14 | 2007-09-27 | Shin Etsu Chem Co Ltd | Self-organizing polymeric membrane material, self-organizing pattern, and method for forming pattern |
EP2019120B1 (en) | 2006-05-16 | 2016-04-13 | Nippon Soda Co., Ltd. | Block copolymers |
DE112006004092T5 (en) | 2006-10-23 | 2009-08-13 | Cynthia Trempel Batchelder | Apparatus and method for measuring surface energies |
KR100810682B1 (en) | 2006-11-08 | 2008-03-07 | 제일모직주식회사 | Conductive polymer, conductive polymer composition, film and opto-electronic device using thereof |
US7964107B2 (en) | 2007-02-08 | 2011-06-21 | Micron Technology, Inc. | Methods using block copolymer self-assembly for sub-lithographic patterning |
JP5546719B2 (en) | 2007-03-28 | 2014-07-09 | 日東電工株式会社 | Method for producing polymer having microphase separation structure and polymer having microphase separation structure |
US8097175B2 (en) | 2008-10-28 | 2012-01-17 | Micron Technology, Inc. | Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure |
US8168213B2 (en) | 2007-05-15 | 2012-05-01 | Boston Scientific Scimed, Inc. | Medical devices having coating with improved adhesion |
JP5332052B2 (en) | 2007-06-01 | 2013-11-06 | シャープ株式会社 | Resist removing method, semiconductor manufacturing method, and resist removing apparatus |
US8147914B2 (en) | 2007-06-12 | 2012-04-03 | Massachusetts Institute Of Technology | Orientation-controlled self-assembled nanolithography using a block copolymer |
US8714088B2 (en) | 2007-06-21 | 2014-05-06 | Fujifilm Corporation | Lithographic printing plate precursor and lithographic printing method |
EP2186837B1 (en) | 2007-07-06 | 2014-04-16 | Maruzen Petrochemical Co., Ltd. | Aba triblock copolymer and process for producing the same |
KR101291223B1 (en) | 2007-08-09 | 2013-07-31 | 한국과학기술원 | Method of forming fine pattern using block copolymer |
JP4403238B2 (en) | 2007-09-03 | 2010-01-27 | 国立大学法人東京工業大学 | Microphase separation structure membrane and manufacturing method thereof |
JP5081560B2 (en) | 2007-09-28 | 2012-11-28 | 富士フイルム株式会社 | Positive resist composition and pattern forming method using the same |
CN101215362B (en) | 2008-01-08 | 2010-08-25 | 厦门大学 | Silicon-acrylic tri-block copolymer with low surface energy and preparing method thereof |
JP2009203439A (en) * | 2008-02-29 | 2009-09-10 | Mitsubishi Electric Corp | Block copolymer, block copolymer composition and insulation sheet containing the same |
US8425982B2 (en) | 2008-03-21 | 2013-04-23 | Micron Technology, Inc. | Methods of improving long range order in self-assembly of block copolymer films with ionic liquids |
KR100935863B1 (en) | 2008-07-02 | 2010-01-07 | 연세대학교 산학협력단 | The patterning method of blockcopolymer with nanostructure using solvent annealing and dewetting |
US8211737B2 (en) | 2008-09-19 | 2012-07-03 | The University Of Massachusetts | Method of producing nanopatterned articles, and articles produced thereby |
US8518837B2 (en) | 2008-09-25 | 2013-08-27 | The University Of Massachusetts | Method of producing nanopatterned articles using surface-reconstructed block copolymer films |
US8658258B2 (en) | 2008-10-21 | 2014-02-25 | Aculon, Inc. | Plasma treatment of substrates prior to the formation a self-assembled monolayer |
JP2010115832A (en) | 2008-11-12 | 2010-05-27 | Panasonic Corp | Method for promoting self-formation of block copolymer and method for forming self-formation pattern of block copolymer using the method for promoting self-formation |
JP2010145158A (en) | 2008-12-17 | 2010-07-01 | Dainippon Printing Co Ltd | Method for confirming micro phase separation structure |
EP2199854B1 (en) | 2008-12-19 | 2015-12-16 | Obducat AB | Hybrid polymer mold for nano-imprinting and method for making the same |
KR101212672B1 (en) | 2008-12-26 | 2012-12-14 | 제일모직주식회사 | Conductive polymer, polymer composition, film and organic photoelectric device comprising same |
JP5399098B2 (en) | 2009-03-02 | 2014-01-29 | 東ソー株式会社 | Block copolymer and method for producing the same |
CN101492520A (en) | 2009-03-04 | 2009-07-29 | 中国科学院上海有机化学研究所 | Diblock copolymer containing full-fluorine cyclobutyl aryl aether block and uses thereof |
JP5170456B2 (en) | 2009-04-16 | 2013-03-27 | 信越化学工業株式会社 | Resist material and pattern forming method |
KR101101767B1 (en) | 2009-05-07 | 2012-01-05 | 한국과학기술원 | methods for the preparation of coil-comb block copolymers and their nanostructures |
JP5679253B2 (en) | 2009-05-26 | 2015-03-04 | 国立大学法人東京工業大学 | Self-supporting polymer thin film |
KR20110018678A (en) | 2009-08-18 | 2011-02-24 | 연세대학교 산학협력단 | Control of perpendicular orientations for cylinder-forming nano structure using functional terminated polystyrene |
EP2330136B1 (en) | 2009-12-07 | 2013-08-28 | Borealis AG | Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins |
WO2011105822A2 (en) | 2010-02-25 | 2011-09-01 | 이화여자대학교 산학협력단 | Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process |
KR101238827B1 (en) | 2010-03-12 | 2013-03-04 | 한국과학기술원 | Method of preparing thermally-stable core-shell block copolymer-nanocomposite and thermally-stable core-shell block copolymer-nanocomposite made by the same |
KR20110112501A (en) | 2010-04-07 | 2011-10-13 | 한국과학기술원 | Block copolymer for nanostructure with high aspect ratio and manufacturing method thereof |
JP5505371B2 (en) | 2010-06-01 | 2014-05-28 | 信越化学工業株式会社 | Polymer compound, chemically amplified positive resist material, and pattern forming method |
JP5598970B2 (en) | 2010-06-18 | 2014-10-01 | 凸版印刷株式会社 | Microstructure manufacturing method, composite |
KR101290057B1 (en) | 2010-07-19 | 2013-07-26 | 주식회사 엘지화학 | Thermally curable resin composition with good coating and recoating property |
US8541162B2 (en) | 2010-09-01 | 2013-09-24 | E I Du Pont De Nemours And Company | High resolution, solvent resistant, thin elastomeric printing plates |
JP2012093699A (en) | 2010-09-30 | 2012-05-17 | Canon Inc | Electrochromic element |
JP5254381B2 (en) | 2011-02-23 | 2013-08-07 | 株式会社東芝 | Pattern formation method |
CN102172491B (en) | 2011-03-09 | 2014-09-03 | 无锡市恒创嘉业纳米材料科技有限公司 | Fluorine-contained surfactant and preparation method thereof |
WO2012144735A2 (en) | 2011-04-22 | 2012-10-26 | Lg Chem, Ltd. | Novel diblock copolymer, preparation method thereof, and method of forming nano pattern using the same |
US20130048488A1 (en) * | 2011-08-29 | 2013-02-28 | Miasole | Impermeable PVD Target Coating for Porous Target Materials |
KR20140090595A (en) | 2011-09-06 | 2014-07-17 | 코넬 유니버시티 | Block copolymers and lithographic patterning using same |
WO2013040483A1 (en) | 2011-09-15 | 2013-03-21 | Wisconsin Alumni Research Foundation | Directed assembly of block copolymer films between a chemically patterned surface and a second surface |
US8691925B2 (en) | 2011-09-23 | 2014-04-08 | Az Electronic Materials (Luxembourg) S.A.R.L. | Compositions of neutral layer for directed self assembly block copolymers and processes thereof |
JP5795221B2 (en) | 2011-09-26 | 2015-10-14 | 株式会社東芝 | Pattern formation method |
WO2013069544A1 (en) | 2011-11-09 | 2013-05-16 | Jsr株式会社 | Self-organization composition for pattern formation and pattern formation method |
JP6019524B2 (en) | 2011-12-09 | 2016-11-02 | 国立大学法人九州大学 | Biocompatible material, medical device, and method for producing biocompatible material |
JP2015507065A (en) | 2012-02-10 | 2015-03-05 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Production, purification and use of advanced X diblock copolymers |
US8697810B2 (en) | 2012-02-10 | 2014-04-15 | Rohm And Haas Electronic Materials Llc | Block copolymer and methods relating thereto |
US20130209755A1 (en) | 2012-02-15 | 2013-08-15 | Phillip Dene Hustad | Self-assembled structures, method of manufacture thereof and articles comprising the same |
JP6118573B2 (en) | 2012-03-14 | 2017-04-19 | 東京応化工業株式会社 | Pattern forming method for layer containing base agent and block copolymer |
JP2013219334A (en) | 2012-03-16 | 2013-10-24 | Jx Nippon Oil & Energy Corp | Method for manufacturing substrate using film-like mold, and manufacturing device |
KR101891761B1 (en) | 2012-04-06 | 2018-08-24 | 주식회사 동진쎄미켐 | Photoresist composition for forming guide pattern and method for forming fine pattern using the same |
WO2013158527A1 (en) | 2012-04-16 | 2013-10-24 | Brewer Science Inc. | Silicon hardmask layer for directed self-assembly |
JP5710546B2 (en) | 2012-04-27 | 2015-04-30 | 信越化学工業株式会社 | Pattern formation method |
US9250528B2 (en) | 2012-04-27 | 2016-02-02 | Asml Netherlands B.V. | Methods and compositions for providing spaced lithography features on a substrate by self-assembly of block copolymers |
US9127113B2 (en) | 2012-05-16 | 2015-09-08 | Rohm And Haas Electronic Materials Llc | Polystyrene-polyacrylate block copolymers, methods of manufacture thereof and articles comprising the same |
JP2014012807A (en) | 2012-06-05 | 2014-01-23 | Asahi Kasei E-Materials Corp | Resin composition for forming pattern and pattern forming process |
KR101529646B1 (en) | 2012-09-10 | 2015-06-17 | 주식회사 엘지화학 | Method of forming silicon oxide nano pattern, metal nano pattern and magnetic patterned media for information storage |
JP5887244B2 (en) | 2012-09-28 | 2016-03-16 | 富士フイルム株式会社 | Self-assembled composition for pattern formation, pattern formation method by self-assembly of block copolymer using the same, self-assembled pattern, and method for producing electronic device |
US9223214B2 (en) | 2012-11-19 | 2015-12-29 | The Texas A&M University System | Self-assembled structures, method of manufacture thereof and articles comprising the same |
CN102967918B (en) | 2012-12-05 | 2014-12-31 | 河海大学常州校区 | Novel solar light-condensation disc |
CN104684949B (en) | 2012-12-13 | 2016-12-21 | 东丽先端材料研究开发(中国)有限公司 | Segmented copolymer and polymer dielectric |
NL2012143A (en) | 2013-02-14 | 2014-08-18 | Asml Netherlands Bv | Methods for providing spaced lithography features on a substrate by self-assembly of block copolymers. |
JP6027912B2 (en) | 2013-02-22 | 2016-11-16 | 東京応化工業株式会社 | Method of manufacturing structure including phase separation structure, pattern forming method, and topcoat material |
JP2015000896A (en) | 2013-06-14 | 2015-01-05 | 富士フイルム株式会社 | Composition, micro phase separation structure membrane using the same, and method for producing the micro phase separation structure membrane |
EP2883891A4 (en) | 2013-06-28 | 2016-06-01 | Lg Chemical Ltd | Ternary elastomeric copolymer comprising diene and method for preparing same |
US9109067B2 (en) | 2013-09-24 | 2015-08-18 | Xerox Corporation | Blanket materials for indirect printing method with varying surface energies via amphiphilic block copolymers |
CN105899557B (en) | 2013-12-06 | 2018-10-26 | 株式会社Lg化学 | Block copolymer |
EP3078692B1 (en) | 2013-12-06 | 2021-01-27 | LG Chem, Ltd. | Block copolymer |
EP3078689B1 (en) | 2013-12-06 | 2020-12-02 | LG Chem, Ltd. | Block copolymer |
CN106459326B (en) | 2013-12-06 | 2019-08-13 | 株式会社Lg化学 | Block copolymer |
JP6361893B2 (en) | 2013-12-06 | 2018-07-25 | エルジー・ケム・リミテッド | Block copolymer |
JP6483695B2 (en) | 2013-12-06 | 2019-03-13 | エルジー・ケム・リミテッド | Block copolymer |
US10081698B2 (en) | 2013-12-06 | 2018-09-25 | Lg Chem, Ltd. | Block copolymer |
US10202480B2 (en) | 2013-12-06 | 2019-02-12 | Lg Chem, Ltd. | Block copolymer |
US10227438B2 (en) | 2013-12-06 | 2019-03-12 | Lg Chem, Ltd. | Block copolymer |
EP3078685B1 (en) | 2013-12-06 | 2020-09-09 | LG Chem, Ltd. | Block copolymer |
JP6483693B2 (en) | 2013-12-06 | 2019-03-13 | エルジー・ケム・リミテッド | Block copolymer |
US10150832B2 (en) | 2013-12-06 | 2018-12-11 | Lg Chem, Ltd. | Block copolymer |
EP3078654B1 (en) | 2013-12-06 | 2021-07-07 | LG Chem, Ltd. | Monomer and block copolymer |
TWI596128B (en) | 2013-12-06 | 2017-08-21 | Lg化學股份有限公司 | Block copolymer |
FR3014888B1 (en) | 2013-12-13 | 2017-05-26 | Arkema France | PROCESS FOR CREATING NANOMETRIC STRUCTURES BY SELF-ASSEMBLING BLOCK COPOLYMERS |
KR20150114633A (en) | 2014-04-01 | 2015-10-13 | 에스케이하이닉스 주식회사 | Semiconductor apparatus |
WO2016053001A1 (en) | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | Block copolymer |
KR101882369B1 (en) | 2014-09-30 | 2018-07-26 | 주식회사 엘지화학 | Polymer layer |
EP3202801B1 (en) * | 2014-09-30 | 2021-08-18 | LG Chem, Ltd. | Block copolymer |
US10370529B2 (en) | 2014-09-30 | 2019-08-06 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
WO2016053010A1 (en) | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | Block copolymer |
JP6538157B2 (en) | 2014-09-30 | 2019-07-03 | エルジー・ケム・リミテッド | Block copolymer |
US10240035B2 (en) * | 2014-09-30 | 2019-03-26 | Lg Chem, Ltd. | Block copolymer |
US10633533B2 (en) * | 2014-09-30 | 2020-04-28 | Lg Chem, Ltd. | Block copolymer |
US10281820B2 (en) | 2014-09-30 | 2019-05-07 | Lg Chem, Ltd. | Block copolymer |
US10287430B2 (en) | 2014-09-30 | 2019-05-14 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
CN107075050B (en) | 2014-09-30 | 2019-08-13 | 株式会社Lg化学 | Block copolymer |
EP3202800B1 (en) | 2014-09-30 | 2021-12-29 | LG Chem, Ltd. | Block copolymer |
-
2014
- 2014-12-08 US US15/102,149 patent/US10150832B2/en active Active
- 2014-12-08 JP JP2016536805A patent/JP6334706B2/en active Active
- 2014-12-08 EP EP14868190.1A patent/EP3078691B1/en active Active
- 2014-12-08 WO PCT/KR2014/012030 patent/WO2015084127A1/en active Application Filing
- 2014-12-08 CN CN201480071920.0A patent/CN105916904B/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10239980B2 (en) | 2013-12-06 | 2019-03-26 | Lg Chem, Ltd. | Block copolymer |
US10253130B2 (en) | 2013-12-06 | 2019-04-09 | Lg Chem, Ltd. | Block copolymer |
US10240035B2 (en) | 2014-09-30 | 2019-03-26 | Lg Chem, Ltd. | Block copolymer |
US10281820B2 (en) | 2014-09-30 | 2019-05-07 | Lg Chem, Ltd. | Block copolymer |
US10287430B2 (en) | 2014-09-30 | 2019-05-14 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
US10287429B2 (en) | 2014-09-30 | 2019-05-14 | Lg Chem, Ltd. | Block copolymer |
US10295908B2 (en) | 2014-09-30 | 2019-05-21 | Lg Chem, Ltd. | Block copolymer |
US10310378B2 (en) | 2014-09-30 | 2019-06-04 | Lg Chem, Ltd. | Block copolymer |
US10370529B2 (en) | 2014-09-30 | 2019-08-06 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
US10377894B2 (en) | 2014-09-30 | 2019-08-13 | Lg Chem, Ltd. | Block copolymer |
Also Published As
Publication number | Publication date |
---|---|
EP3078691A4 (en) | 2017-07-05 |
JP2016539237A (en) | 2016-12-15 |
US20160311960A1 (en) | 2016-10-27 |
EP3078691B1 (en) | 2018-04-18 |
JP6334706B2 (en) | 2018-05-30 |
WO2015084127A1 (en) | 2015-06-11 |
CN105916904B (en) | 2018-11-09 |
CN105916904A (en) | 2016-08-31 |
US10150832B2 (en) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3078691B1 (en) | Block copolymer | |
US10227438B2 (en) | Block copolymer | |
EP3078686A1 (en) | Block copolymer | |
US10227436B2 (en) | Block copolymer | |
KR101768289B1 (en) | Block copolymer | |
US10202480B2 (en) | Block copolymer | |
US10160822B2 (en) | Monomer and block copolymer | |
US10227437B2 (en) | Block copolymer | |
US10239980B2 (en) | Block copolymer | |
US10087276B2 (en) | Block copolymer | |
KR102159495B1 (en) | Block copolymer | |
KR102097819B1 (en) | Block copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160617 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170608 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08F 216/12 20060101ALI20170601BHEP Ipc: C08F 212/14 20060101ALI20170601BHEP Ipc: C08F 297/00 20060101AFI20170601BHEP Ipc: C08F 220/10 20060101ALI20170601BHEP Ipc: C08F 220/30 20060101ALI20170601BHEP Ipc: C08J 7/04 20060101ALI20170601BHEP Ipc: C08F 299/00 20060101ALI20170601BHEP Ipc: C08L 55/00 20060101ALI20170601BHEP Ipc: C08J 5/00 20060101ALI20170601BHEP Ipc: C08F 212/12 20060101ALI20170601BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014024269 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C08F0297000000 Ipc: C08F0220300000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B82Y 40/00 20110101ALI20171030BHEP Ipc: C08J 7/12 20060101ALI20171030BHEP Ipc: C08F 216/12 20060101ALI20171030BHEP Ipc: C08F 220/30 20060101AFI20171030BHEP Ipc: C07C 217/84 20060101ALI20171030BHEP Ipc: C08J 5/18 20060101ALI20171030BHEP Ipc: G03F 7/00 20060101ALI20171030BHEP Ipc: C07F 7/18 20060101ALI20171030BHEP Ipc: G03F 7/038 20060101ALI20171030BHEP Ipc: C08J 7/04 20060101ALI20171030BHEP Ipc: C09D 153/00 20060101ALI20171030BHEP Ipc: B81C 1/00 20060101ALI20171030BHEP Ipc: C07C 35/48 20060101ALI20171030BHEP Ipc: C07C 43/215 20060101ALI20171030BHEP Ipc: C08J 7/14 20060101ALI20171030BHEP Ipc: G03F 7/039 20060101ALI20171030BHEP Ipc: G03F 7/16 20060101ALI20171030BHEP Ipc: C07D 209/48 20060101ALI20171030BHEP Ipc: C07C 43/225 20060101ALI20171030BHEP Ipc: C08J 5/00 20060101ALI20171030BHEP |
|
INTG | Intention to grant announced |
Effective date: 20171120 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180209 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 990381 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014024269 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180418 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180719 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 990381 Country of ref document: AT Kind code of ref document: T Effective date: 20180418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180820 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014024269 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
26N | No opposition filed |
Effective date: 20190121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181208 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181208 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181208 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141208 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180418 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231120 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231121 Year of fee payment: 10 |