WO2011105822A2 - Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process - Google Patents

Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process Download PDF

Info

Publication number
WO2011105822A2
WO2011105822A2 PCT/KR2011/001283 KR2011001283W WO2011105822A2 WO 2011105822 A2 WO2011105822 A2 WO 2011105822A2 KR 2011001283 W KR2011001283 W KR 2011001283W WO 2011105822 A2 WO2011105822 A2 WO 2011105822A2
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
self
nanoring
nanoring structure
precursor
Prior art date
Application number
PCT/KR2011/001283
Other languages
French (fr)
Korean (ko)
Other versions
WO2011105822A3 (en
Inventor
김동하
장윤희
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2011105822A2 publication Critical patent/WO2011105822A2/en
Publication of WO2011105822A3 publication Critical patent/WO2011105822A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/001Devices without movable or flexible elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/90Other morphology not specified above

Definitions

  • the present application provides a method for manufacturing a hybrid zinc oxide nanoring structure in a hybrid form in which two-dimensional aligned ultra-high density zinc oxide nanoring structures and gold nanoparticles are introduced by using a self-assembled diblock copolymer and a sol-gel process, and
  • the present invention relates to a zinc oxide nanoring structure and a hybrid zinc oxide nanoring structure in which gold nanoparticles are introduced.
  • nano-sized devices such as medical, electronic / information, optics, and sensors.
  • two-dimensional or three-dimensional assemblies of monodisperse nanoparticles are widely used in functional coatings, dye-free paints, catalysts, luminescent materials, etc., templates for the growth of arranged micro or nanoporous materials, light splitting , Optical filters, photonic crystals, etc. have been utilized in optical materials and device applications.
  • the diblock copolymer tends to phase-separate each block into its respective domain due to the restriction of the covalent linkage point between the two blocks in the form of two or more polymer chains covalently linked through one end.
  • a biblock copolymer can form a periodic nanostructure having a size of about 10 nm to 100 nm by spontaneous phase separation, the shape and size of the nanostructure is the molecular weight of the biblock copolymer, It is determined by the volume ratio, the Flory-Huggins interaction coefficient between blocks, and further, by dissolving in a solvent selective to one block, spherical and cylindrical micelles of spontaneous size can be spontaneously formed.
  • the size of the particles in the nanostructure of the diblock copolymer can be limited to nanometer size without any treatment, and the arrangement of the particles is also the size of the nanostructure Limited by the and spacing, the size and arrangement of the particles can be controlled.
  • Zinc oxide has a wide bandgap of 3.3 eV at room temperature, and has a large exciton binding energy of 60 meV, which is greater than the thermal energy of 24 meV, thereby facilitating light emission in the ultraviolet region. Because of its excellent optical properties, zinc oxide has attracted much attention as an optical device such as an ultraviolet light emitting diode (Ultraviolet LED) or a laser diode (LD). Especially, zinc oxide nanostructures are used in optoelectronic devices, ultraviolet laser devices, chemical sensors, and solar cells. Increasingly, interest is amplified by the potential applications in photocatalysts.
  • an optical device such as an ultraviolet light emitting diode (Ultraviolet LED) or a laser diode (LD).
  • LD laser diode
  • zinc oxide nanostructures are used in optoelectronic devices, ultraviolet laser devices, chemical sensors, and solar cells. Increasingly, interest is amplified by the potential applications in photocatalysts.
  • the zinc oxide of the nanostructure may be prepared by ion implantation, sputtering, sol-gel process, photoreduction reaction, etc., but it is not advantageous in terms of economics because most of them require expensive equipment or adopt a complicated multi-step process.
  • the multi-component particles have a disadvantage in that the uniformity of the components in the particles, and difficult to control in the form of the particles.
  • the sol-gel process which is a liquid phase method, is capable of mixing and preparing raw materials at the molecular level, thereby increasing uniformity of the prepared particles, preparing particles having a large surface area, and lowering the sintering temperature. Therefore, it has been widely used in the preparation of multicomponent composites.
  • the sol-gel process using a high-purity alkoxide hydrolysis has a wide range of applications, there is an advantage that the final product can be produced in various forms such as powder, monolith, fiber form.
  • the present inventors have completed the present application by studying a novel manufacturing method that can produce a zinc oxide nanoring structure using a self-assembly diblock copolymer and a sol-gel process.
  • the effects of specific components of the sol-gel precursors on the self-assembly of self-assembled diblock copolymers and the formation of nanoring structures were studied.
  • the molecular weight or relative volume fraction of the diblock copolymer and zinc oxide sol It was found that the shape and arrangement of the nanoring structure can be controlled by varying the concentration of the gel precursor, and further, the production of the hybrid type gold-zinc oxide nanoring structure by introducing gold nanoparticles into the zinc oxide nanostructure. The method was found to complete the present application.
  • the present application a method for manufacturing a hybrid zinc oxide nanoring structure in which a two-dimensional aligned ultra-high density zinc oxide nanoring structure and gold nanoparticles are introduced using a biblock copolymer having a self-assembly and a sol-gel process.
  • the present application is to provide a zinc oxide nanoring structure of the hybrid form in which the zinc oxide nanoring structure and gold nanoparticles are prepared by the above method.
  • the present disclosure is to provide a zinc oxide nanoring structure array in which the zinc oxide nanoring structure or a hybrid form of zinc oxide nanoring structure in which gold nanoparticles are introduced on a substrate.
  • one aspect of the present invention (a) dissolving a self-assembling diblock copolymer in a solvent to prepare a reverse micelle solution; (b) adding a solvent containing an alcohol and a zinc oxide precursor to prepare a zinc oxide sol-gel precursor solution; And (c) mixing the reverse micelle solution and the zinc oxide sol-gel precursor solution to prepare a reverse micelle solution containing a zinc oxide sol-gel precursor.
  • the manufacturing method comprises the steps of: (d) coating a reverse micelle solution containing the zinc oxide sol-gel precursor on a substrate to produce a zinc oxide-self-assembled copolymer thin film; And (e) post-treating the thin film to remove the self-assembled copolymer: but may not be limited thereto.
  • the solvent containing the alcohol may further include a stabilizer, but is not limited thereto.
  • the produced zinc oxide-self-assembled air may further include, but is not limited to, immersing the coalescence thin film in an acidic aqueous solution containing a gold precursor.
  • Another aspect of the present application provides a gold-zinc oxide nanoring structure in a hybrid form by introducing gold nanoparticles into the zinc oxide nanoring structure or the zinc oxide nanoring structure prepared according to the method according to the above.
  • Another aspect of the present invention by introducing gold nanoparticles to the zinc oxide nanoring structure or the zinc oxide nanoring structure prepared according to the above method, the gold-zinc oxide nanoring structure in a hybrid form is arranged on a substrate, A zinc oxide nanoring structure array is provided.
  • the zinc oxide nanoring structure can be easily produced without a complicated multi-step manufacturing process for synthesizing conventional nanoring structures.
  • the shape and arrangement of the zinc oxide nanoring structure can be controlled by varying the molecular weight of the self-assembled diblock copolymer or the relative volume fraction between the two blocks of the diblock copolymer and the concentration of the zinc oxide sol-gel precursor.
  • the gold-zinc oxide nanoring structure in a hybrid form by introducing gold nanoparticles into the zinc oxide nanoring structure manufactured by the novel manufacturing method as described herein may be usefully used in various industrial fields requiring nanostructures.
  • by introducing gold nanoparticles into the zinc oxide nanoring structure it can be usefully used in various fields such as environmentally friendly devices, optical sensors and optical devices.
  • FIG. 1 is a schematic diagram illustrating a process of manufacturing an ultra-high density zinc oxide nanoring structure array and a hybrid form of gold-zinc oxide nanoring structure array according to an embodiment of the present disclosure, wherein the chemical scheme is prepared by a zinc oxide sol-gel precursor. The reaction when
  • AFM atomic force microscope
  • TEM 3 is a transmission electron microscope (TEM) image in the process of manufacturing a zinc oxide nanoring structure according to an embodiment of the present application [(a) An enlarged image of step 4, (b) (a) of Example 1 , (c) step 5 of example 1, (d) an enlarged image of (c)].
  • TEM transmission electron microscope
  • Example 4 is an atomic force microscope (AFM) image of a process of separately introducing each component of a zinc oxide sol-gel precursor into a reverse micelle solution in which a self-assembled biblock copolymer according to an embodiment of the present invention is dissolved in a solvent
  • AFM atomic force microscope
  • AFM atomic force microscope
  • Figure 6 is an atomic force microscope (AFM) image of the zinc oxide nano ring structure array prepared by changing the relative concentration of the zinc oxide sol-gel precursor according to an embodiment of the present application [(a) Step 5 of Example 5, (b) step 5 of example 6, (c) step 5 of example 7, and (d) step 5 of example 8].
  • AFM atomic force microscope
  • FIG. 7 is a graph showing an atomic force microscope (AFM) image and a pattern of an X-ray diffractometer (XRD) of a zinc oxide nanoring structure array prepared by heat treatment at a high temperature under an inert gas according to one embodiment of the present application [( a) an atomic force microscope (AFM) image of step 5 of example 2, (b) an X-ray diffractometer (XRD) pattern of step 5 of example 2].
  • AFM atomic force microscope
  • XRD X-ray diffractometer
  • FESEM field emission scanning electron microscope
  • EDS X-ray spectroscopy
  • One aspect of the present invention (a) dissolving the self-assembly diblock copolymer in a solvent to prepare a reverse micelle solution; (b) adding a solvent containing an alcohol and a zinc oxide precursor to prepare a zinc oxide sol-gel precursor solution; And (c) mixing the reverse micelle solution and the zinc oxide sol-gel precursor solution to prepare a reverse micelle solution containing a sol-gel precursor.
  • the method for producing a zinc oxide nanoring structure (d) coating a reverse micelle solution containing a zinc oxide sol-gel precursor on a substrate to produce a zinc oxide-self-assembled copolymer thin film Doing; And (e) post-treating the thin film to remove the self-assembled copolymer: but may not be limited thereto.
  • the solvent containing the alcohol may further include a stabilizer, but is not limited thereto.
  • the stabilizer may be one selected from the group consisting of diethanolamine (DEA), monoethanolamine (MEA), and combinations thereof, but is not limited thereto.
  • the produced zinc oxide-self-assembled air may further include, but is not limited to, immersing the coalescence thin film in an acidic aqueous solution containing a gold precursor.
  • step (a) is a step of preparing a reverse micelle solution by dissolving the self-assembling diblock copolymer in a solvent.
  • Amphiphilic diblock copolymer may be used as the self-assembled diblock copolymer, but is not limited thereto.
  • the amphiphilic diblock copolymer is meant to include a hydrophilic block and a hydrophobic block. Dissolving only one block of the amphiphilic diblock copolymer in a selective solvent can form reverse micelles in solution. That is, the solvent may dissolve only a hydrophilic block or a hydrophobic block in the self-assembled double block copolymer in which the reverse micelle is formed.
  • the solvent may be selected from the group consisting of toluene, chloroform, tetrahydrofuran (THF), benzene, heptane, xylene, and combinations thereof, but is not limited thereto.
  • the solvent may dissolve only hydrophobic blocks such as styrene blocks in the self-assembled double block copolymer in which the reverse micelles are formed.
  • polystyrene-block-polyvinylpyridine may be used, and specifically, polystyrene-block-poly (4-vinylpyridine), polystyrene-block-poly (2-vinylpyridine), polystyrene -Block-polyethylene oxide (PS-b-PEO), polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polyisoprene-block-poly (2-vinylpyridine) (PI-b-P2VP) , Poly (2-vinylpyridine) -block-polydimethylsiloxane (P2VP-b-PDMS) and the like may be used, and in particular, polystyrene-block-poly (4-vinylpyridine) may be used, but is not limited thereto. It doesn't happen.
  • the shape and arrangement interval of the zinc oxide nanoring can be adjusted by controlling the molecular weight of the hydrophilic block and the hydrophobic block or the relative volume fraction of the two blocks of the amphiphilic copolymer, but is not limited thereto.
  • the molecular weight ratio of the hydrophilic block and the hydrophobic block may be adjusted to about 0.5: 1 to 7: 1 to adjust the shape and spacing of the zinc oxide nanorings.
  • the reverse micelle solution of step (a) may contain 0.1 to 1.0 wt% of the self-assembled biblock copolymer, but is not limited thereto. If the self-assembled copolymer is less than 0.1% by weight, there may be a problem in that a uniform monomolecular film without defects may not be generated, and when the self-assembled copolymer is more than 1.0% by weight, a monomolecular film may not be produced. That is, in order to generate the reverse micelle monolayer, the conditions must be variably controlled by interlocking the solution concentration and the rotational speed during spin coating.
  • step (b) is to prepare a zinc oxide sol-gel precursor solution containing an alcohol component.
  • the zinc oxide sol-gel solution of step (b) may be prepared by dissolving a zinc oxide precursor in a solvent containing an alcohol, or a mixed solution containing a solvent and a stabilizer containing alcohol, followed by stirring and aging. have.
  • a solvent containing an alcohol selected from the group consisting of 2-propanol, ethanol, methanol, 2-methoxyethanol and combinations thereof may be used, but is not limited thereto. no.
  • zinc oxide precursor zinc acetate dihydrate, zinc acetylacetonate monohydrate, zinc nitrate hexahydrate, and combinations thereof may be used, but is not limited thereto. no.
  • the stabilizer may increase the solubility of the zinc oxide precursor in the solvent containing the alcohol and induce chain rearrangement of the self-assembling diblock copolymer.
  • Such stabilizers may include, but are not limited to, diethanolamine (DEA), monoethanolamine (MEA), and combinations thereof.
  • Step (b) is, for example, oxidized by adding a zinc oxide precursor to a solvent containing an alcohol at 50 to 80 °C, or 60 to 70 °C, or a mixed solution containing a solvent and a stabilizer containing alcohol Zinc sol-gel precursor solutions can be prepared.
  • the mixing ratio of the zinc oxide precursor and the stabilizer may be maintained at 1: 0.1 to 2, for example, and the concentration of the zinc oxide sol-gel precursor may be, for example, 0.3 M to 2.0 M. However, it is not limited thereto.
  • step (c) is a step of mixing and stirring the reverse micelle solution prepared in step (a) and the sol-gel precursor solution prepared in step (b).
  • the alcohol component of the sol-gel precursor prepared in step (b) rearranges hydrophilic block chains, such as, for example, P4VP blocks, in the copolymer of step (a) to open reverse micelles, and simultaneously zinc acetate Zinc oxide precursors such as dihydrate can be bound to hydrophilic moieties such as the open P4VP block (see Experimental Example 1).
  • hydrophilic block chains such as, for example, P4VP blocks
  • step (d) is to prepare a zinc oxide-self-assembled copolymer thin film by spin coating a reverse micelle solution containing the zinc oxide sol-gel precursor mixed in step (c) on a substrate. .
  • the substrate herein may be a silicon wafer, quartz, glass, mica substrate, or a combination thereof, but is not limited thereto.
  • step (e) is to prepare a zinc oxide nanoring structure by post-treating the thin film prepared in step (d) to remove the self-assembly copolymer.
  • the post-treatment process may remove the copolymer and oxidize the zinc oxide precursor.
  • the post-treatment may be performed through a process including oxygen plasma exposure, heat treatment, or ultraviolet irradiation, and more specifically, oxygen plasma exposure or heat treatment.
  • the post-treatment may be performed by exposure to 100 W of oxygen plasma for 30 seconds or by heat treatment at 400 to 800 ° C., more specifically at a high temperature of 400 to 600 ° C., under an inert gas atmosphere for 1 hour. It may include, but is not limited to, removing the coarse copolymer.
  • the present application provides a zinc oxide nanoring structure manufactured by the method, and in one embodiment, the zinc oxide nanoring structure has an average center-to-center distance between the nanorings between 50 nm and 100 nm and hexagonal butt. It may have a wurtzite crystal structure, but is not limited thereto.
  • the gold-zinc oxide nanoring in a hybrid form may be prepared by introducing gold nanoparticles into the zinc oxide nanoring structure prepared according to the present application (see Experimental Example 5).
  • the zinc oxide-self-assembled copolymer thin film prepared in step (d) is immersed in an acidic aqueous solution containing a precursor of gold nanoparticles to introduce gold nanoparticles into the zinc oxide nanoring structure.
  • the gold nanoparticle precursor may include, for example, HAuCl 4 , KAuCl 4 , NaAuCl 4 , NH 4 AuCl 4 , LiAuCl 4 , KAuBr 4 , NaAuBr 4 , HAuBr 4 , or a combination thereof.
  • the acidic aqueous solution may include, for example, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, or a combination thereof.
  • the zinc oxide nanoring structure into which the gold nanoparticles prepared according to the present application are introduced is subjected to plasma treatment to remove the diblock copolymer template, and to oxidize and reduce the zinc oxide precursor and the gold nanoparticle precursor, respectively.
  • Hybrid zinc oxide nanorings into which gold nanoparticles are introduced can be prepared (see FIG. 8 for the manufactured zinc oxide nanorings).
  • the present application provides a zinc oxide nanoring structure prepared by the above method and a zinc oxide nanoring structure in a hybrid form in which gold nanoparticles are introduced.
  • the present application provides a zinc oxide nanoring structure array in which the zinc oxide nanoring structure or a hybrid type zinc oxide nanoring structure in which gold nanoparticles are introduced on a substrate is arranged.
  • the zinc oxide nanoring structure arrangement prepared according to the present invention can easily control the shape and arrangement of the zinc oxide nanoring by changing the molecular weight of the diblock copolymer or the relative volume fraction between the two blocks.
  • the zinc oxide nanoring structure prepared according to the present invention is removed by the plasma treatment of the diblock copolymer template and the zinc oxide precursor is oxidized, and the interval between the zinc oxide nanorings according to the molecular weight of the diblock copolymer is clear. The difference is shown (see FIG. 5).
  • the zinc oxide nanoring structure prepared according to the present application can easily control the shape of the zinc oxide nanoring by changing the concentration of the zinc oxide sol-gel precursor.
  • the form of the zinc oxide nanoring depends on the concentration of the zinc oxide sol-gel precursor. A distinct difference appears (see FIG. 6).
  • the zinc oxide nanoring structure of the present application can control the shape and arrangement interval of the zinc oxide nanoring by using a biblock copolymer having different molecular weights, and also change the concentration of the zinc oxide sol-gel precursor. You can control the shape of the nanoring.
  • Step 1 preparing reverse micelle solution containing self-assembled copolymer
  • a zinc oxide sol-gel precursor solution was prepared by adding zinc acetate dihydrate, a zinc oxide precursor, to a mixed solution of 2-propanol, a solvent, and diethanolamine, or DEA, as a stabilizer. It was. The molar ratio of zinc acetate dihydrate and diethanolamine was 1: 1, and the concentration of the zinc acetate solution was 0.5 M. The zinc oxide sol-gel precursor solution was stirred at 65 ° C. for 1 hour to prepare a sol-gel precursor solution.
  • Step 3 Preparation of reverse micelle solution containing zinc oxide sol-gel precursor
  • the diblock copolymer reverse micelle containing the zinc oxide sol-gel precursor was added to the reverse micelle solution of step 1 by adding 1 vol% of the sol-gel precursor solution of step 2, followed by stirring at room temperature for 1 day. Prepared.
  • a zinc oxide-self-assembled copolymer thin film was prepared by spin coating the reverse micelle solution containing the zinc oxide sol-gel precursor prepared in step 3 at 2000 rpm for 60 seconds.
  • Step 5 Removal of Self-Assembly Copolymers by Post Treatment
  • a zinc oxide nanoring structure was prepared by exposing 100 W of oxygen plasma to the zinc oxide-self-assembled copolymer thin film of step 4 for 30 seconds to remove the diblock copolymer and oxidizing the zinc oxide precursor.
  • Example 1 Except that the step 1 of Example 1 was removed by heat treatment for 1 hour at a temperature of 400 °C or 600 °C under an inert gas atmosphere was prepared in the same manner as in Example 1.
  • Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution of 0.3 M in step 2 of.
  • Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution in step 2 of 0.7 M.
  • Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution was prepared in 1.0 M in step 2.
  • Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution in step 2 of 2.0 M.
  • the zinc oxide-self-assembled copolymer thin film of Step 4 of Example 1 was immersed in an acidic aqueous solution containing gold nanoparticle precursors for 3 hours to introduce gold nanoparticle precursors, and 100 W of oxygen plasma for 30 seconds.
  • the diblock copolymer was removed by exposure and the zinc oxide precursor was oxidized to prepare a hybrid gold-zinc oxide nanoring structure.
  • Example 1 the surface of the thin film was observed with an atomic force microscope (AFM) and a transmission electron microscope (TEM), and is shown in FIGS. 2 and 3, respectively.
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • Example 1 the surface was observed before and after the addition of the zinc oxide precursor and after the oxygen plasma was observed by atomic force microscopy (AFM) and transmission electron microscope (TEM), respectively. More specifically, the surface of the thin film obtained by spin coating the solution of Step 1 of Example 1 was observed with an atomic force microscope (AFM), and is shown in FIG. 2 (a), and the step 4 of Example 1 The surface was observed with an atomic force microscope (AFM) and a transmission electron microscope (TEM), and is shown in FIGS. 2B and 3A and 3B, respectively, and the surface of step 5 of Example 1 was shown. Observed by an atomic force microscope (AFM) and transmission electron microscope (TEM) and shown in Figure 2 (c) and 3 (c) and (d), respectively. 3B and 3D are enlarged images.
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • FIG. 2 (a) polystyrene-block-poly (4-vinylpyridine) reverse micelles in a regularly ordered arrangement could be observed.
  • FIGS. 2 (b) and 3 (a) and 3 (b) nanopores well aligned in zinc oxide-self-assembled copolymer thin films containing zinc oxide sol-gel precursors It could be observed.
  • the alcohol component contained in the zinc oxide sol-gel precursor and the diethanolamine component used in Example 1 are induced by reconstructing the 4-vinylbiridine block to open reverse micelles, thereby forming nanopores.
  • the zinc oxide nanoring structure can be obtained by treating the zinc oxide-self-assembled copolymer thin film with oxygen plasma. It was confirmed that the plasma treatment removed the polymer template and oxidized the zinc oxide precursor.
  • the surface of the thin film represented by separate introduction of each component of the zinc oxide sol-gel precursor was observed by atomic force microscope (AFM). 4 is shown. More specifically, the surface of the thin film obtained by spin coating the solution of Step 1 of Example 1 was observed in an atomic force microscope (AFM) and is shown in FIG. 4 (a), and the solution of Step 1 of Example 1 The surface of the thin film obtained by spin coating the mixed solution after 2-propanol, diethanolamine, and zinc acetate dihydrate was added thereto was observed by atomic force microscope (AFM), and FIGS. It is shown to (d), respectively.
  • AFM atomic force microscope
  • each thin film was observed with an atomic force microscope (AFM), and is shown in FIG. 5. More specifically, the surface of step 5 of Examples 1, 3, and 4 was observed with an atomic force microscope (AFM), and shown in FIGS. 5A, 5B, and 5C, respectively. In addition, the surface of each thin film was magnified and observed with an atomic force microscope (AFM) to be inserted in FIG. 5, and a cross-section profile was obtained from the enlarged image and inserted into the bottom of FIG. 5.
  • AFM atomic force microscope
  • FIG. 5 (a) which is an atomic force microscope (AFM) image of the zinc oxide nanoring prepared in Example 1, the uniform distribution and packing density of the quasi-hexagonal array are shown. Eggplants were able to obtain a zinc oxide nanoring structure, and the average center-center distance between the nanorings was about 73 nm.
  • AFM atomic force microscope
  • Example 3 is an atomic microscope image of the zinc oxide nanoring prepared in Example 3, the distance between the centers of the zinc oxide nanorings due to the relatively high molecular weight of the zinc oxide nanorings was found in Example 1 The increase was further observed when compared with the distance between the centers of the zinc oxide nanorings prepared in.
  • the zinc oxide nanoring prepared in Examples 1 and 3 has a packing density of the zinc oxide nanoring. It was observed that the packing density was larger than, and the distance between the centers was reduced to about 57 nm. It was also observed that the shape of the zinc oxide nanostructures is closer to the shape of a disk with a groove in the center than the ring.
  • Example 2 The nanoring structures of Example 2 were analyzed by atomic force microscope (AFM) and X-ray diffractometer (XRD), and are shown in FIG. 7. More specifically, the surface of step 5 of Example 2 was observed in an atomic force microscope (AFM), and is shown in FIG. 7 (a). It is shown in Figure 7 (b).
  • AFM atomic force microscope
  • XRD X-ray diffractometer
  • Example 9 the surface of the hybrid thin film was observed by field emission scanning electron microscopy (FESEM), and is shown in FIG. 8 (a).
  • FESEM field emission scanning electron microscopy
  • EDS X-ray spectroscopy

Abstract

The present invention relates to a method for producing a zinc oxide nanoring structure in hybrid form, in which a two-dimensionally arranged ultra-dense zinc oxide nanoring structure and gold nanoparticles are introduced, the method using a self-assembled diblock copolymer and a sol-gel process, to a hybrid zinc oxide nanoring structure in which a zinc oxide nanoring structure produced by the above method and gold nanoparticles are introduced, and to a zinc oxide nanoring structure array in which a hybrid zinc oxide nanoring structure is arranged, the nanoring structure having the zinc oxide nanoring structure or gold nanoparticles introduced onto a substrate.

Description

자기 조립 이중블록 공중합체와 졸-겔 공정을 이용한 산화아연 나노링 구조체의 제조방법Method for producing zinc oxide nanoring structure using self-assembled biblock copolymer and sol-gel process
본원은 자기 조립 이중블록 공중합체와 졸-겔 공정을 이용한 2차원 정렬된 초고집적 산화아연 나노링 구조체 및 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체의 제조방법, 및 상기 방법에 의하여 제조되는 산화아연 나노링 구조체 및 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체에 관한 것이다.The present application provides a method for manufacturing a hybrid zinc oxide nanoring structure in a hybrid form in which two-dimensional aligned ultra-high density zinc oxide nanoring structures and gold nanoparticles are introduced by using a self-assembled diblock copolymer and a sol-gel process, and The present invention relates to a zinc oxide nanoring structure and a hybrid zinc oxide nanoring structure in which gold nanoparticles are introduced.
최근 자기 조립 기술은 의료용, 전자/정보, 광학, 센서 등 나노 크기의 디바이스 제작을 위한 도구로서 각광을 받고 있다. 예를 들어, 단분산 나노입자의 2 차원 또는 3차원적 조립체는 기능성 코팅제, 무 염료 도료, 촉매, 발광 소재 등에 광범위하게 활용되며, 배열된 마이크로 또는 나노 기공성 물질들의 성장을 위한 템플레이트, 광 분할, 광학필터, 광 결정 등 의광학 소재 및 소자 응용에 활용되어 왔다.Recently, self-assembly technology is in the spotlight as a tool for manufacturing nano-sized devices such as medical, electronic / information, optics, and sensors. For example, two-dimensional or three-dimensional assemblies of monodisperse nanoparticles are widely used in functional coatings, dye-free paints, catalysts, luminescent materials, etc., templates for the growth of arranged micro or nanoporous materials, light splitting , Optical filters, photonic crystals, etc. have been utilized in optical materials and device applications.
이중블록 공중합체는 두 개 또는 그 이상의 고분자 사슬이 한쪽 끝을 매개로 공유결합으로 연결된 형태로 두 블록 간의 공유결합 연결점의 제약으로 인해 각 블록을 각각의 도메인으로 상분리시키는 경향을 띠게 된다. 상기와 같은 이중블록 공중합체는 자발적인 상분리에 의하여 10 ㎚에서 100 ㎚정도의 크기를 갖는 주기적인 나노구조를 형성할 수 있고, 이러한 나노구조의 형태와 크기는 이중블록 공중합체의 분자량, 각 블록의 부피비, 각 블록간의 Flory-Huggins 상호작용계수 등에 의하여 결정되며, 나아가 한 블록에만 선택적인 용매에 용해시키면 자발적으로 나노미터의 크기를 갖는 구형, 원통형 등의 마이셀을 형성할 수 있다.The diblock copolymer tends to phase-separate each block into its respective domain due to the restriction of the covalent linkage point between the two blocks in the form of two or more polymer chains covalently linked through one end. Such a biblock copolymer can form a periodic nanostructure having a size of about 10 nm to 100 nm by spontaneous phase separation, the shape and size of the nanostructure is the molecular weight of the biblock copolymer, It is determined by the volume ratio, the Flory-Huggins interaction coefficient between blocks, and further, by dissolving in a solvent selective to one block, spherical and cylindrical micelles of spontaneous size can be spontaneously formed.
상기와 같은 이중블록 공중합체의 자기 조립 특성을 이용하면 이중블록 공중합체의 나노구조 내에서 입자의 크기는 별도의 처리가 없어도 나노미터 크기로 제한될 수 있으며, 그 입자의 배열 또한 나노구조의 크기와 간격에 의하여 제한되어 입자의 크기와 배열을 조절가능하다.Using the self-assembly of the biblock copolymer as described above, the size of the particles in the nanostructure of the diblock copolymer can be limited to nanometer size without any treatment, and the arrangement of the particles is also the size of the nanostructure Limited by the and spacing, the size and arrangement of the particles can be controlled.
산화아연은 상온에서 3.3 eV의 넓은 밴드갭을 가지며, 열에너지 24 meV 보다 더 큰 60 meV의 큰 여기자(exciton) 결합에너지를 가지고 있어서, 여기자에 의한 자외선 영역의 발광이 용이하다. 이러한 우수한 광학적 성질 때문에 산화아연은 자외선 발광 다이오드(Ultraviolet LED)나 레이저 다이오드(LD)같은 광학소자로써 많은 주목을 받고 있으며, 특히 산화아연 나노구조체는 광전자공학 장치, 자외선 레이저 장치, 화학 센서, 태양 전지, 광촉매에서의 잠재적인 응용으로 인해 관심이 증폭되고 있다. Zinc oxide has a wide bandgap of 3.3 eV at room temperature, and has a large exciton binding energy of 60 meV, which is greater than the thermal energy of 24 meV, thereby facilitating light emission in the ultraviolet region. Because of its excellent optical properties, zinc oxide has attracted much attention as an optical device such as an ultraviolet light emitting diode (Ultraviolet LED) or a laser diode (LD). Especially, zinc oxide nanostructures are used in optoelectronic devices, ultraviolet laser devices, chemical sensors, and solar cells. Increasingly, interest is amplified by the potential applications in photocatalysts.
상기 나노구조의 산화아연은 이온 주입법, 스퍼터링, 졸-겔 공정, 광환원반응법 등에 의해 제조될 수 있으나, 대부분 고가의 장비가 필요하거나 복잡한 다단계 공정을 채택하고 있으므로 경제성 측면에서 유리하지 못하다. 또한 다성분계 입자를 제조할 경우 입자 내에서 성분의 균일도가 떨어지며, 입자의 형태에 있어서 조절이 어렵다는 단점이 있다.The zinc oxide of the nanostructure may be prepared by ion implantation, sputtering, sol-gel process, photoreduction reaction, etc., but it is not advantageous in terms of economics because most of them require expensive equipment or adopt a complicated multi-step process. In addition, when manufacturing the multi-component particles have a disadvantage in that the uniformity of the components in the particles, and difficult to control in the form of the particles.
한편, 액상법인 졸-겔 공정은 분자수준에서 원료의 혼합 및 제조가 가능하여, 제조된 입자의 균일성을 증가시킬 수 있으며, 넓은 표면적의 입자를 제조할 수 있고, 소결 온도를 낮출 수 있다는 장점 때문에 다성분계 복합물의 제조에 많이 이용되어 왔다. 특히, 고순도 알콕사이드의 가수분해를 이용한 졸-겔 공정은 넓은 응용 범위를 가지며, 최종생산물의 형태를 분말, 모노리스, 섬유형태 등의 다양한 형태로 제조가능하다는 장점이 있다.On the other hand, the sol-gel process, which is a liquid phase method, is capable of mixing and preparing raw materials at the molecular level, thereby increasing uniformity of the prepared particles, preparing particles having a large surface area, and lowering the sintering temperature. Therefore, it has been widely used in the preparation of multicomponent composites. In particular, the sol-gel process using a high-purity alkoxide hydrolysis has a wide range of applications, there is an advantage that the final product can be produced in various forms such as powder, monolith, fiber form.
이에 본 발명자들은 자기 조립 이중블록 공중합체와 졸-겔 공정을 이용하여 산화아연 나노링 구조체를 제조할 수 있는 신규 제조 방법에 대하여 연구하여 본원을 완성하였다. 특히, 졸-겔 전구체의 특정 성분이 자기 조립 이중블록 공중합체의 자기조립에 미치는 영향과 나노링 구조체의 형성방법에 대하여 연구하였으며, 또한, 이중블록 공중합체의 분자량 또는 상대적 부피 분율 및 산화아연 졸-겔 전구체의 농도를 달리하여 상기 나노링 구조체의 형태와 배열을 조절할 수 있는 것을 발견하고, 더 나아가 상기 산화아연 나노 구조체에 금 나노입자를 도입함으로써 하이브리드 형태의 금-산화아연 나노링 구조체의 제조방법을 발견하여 본원을 완성하였다. The present inventors have completed the present application by studying a novel manufacturing method that can produce a zinc oxide nanoring structure using a self-assembly diblock copolymer and a sol-gel process. In particular, the effects of specific components of the sol-gel precursors on the self-assembly of self-assembled diblock copolymers and the formation of nanoring structures were studied. In addition, the molecular weight or relative volume fraction of the diblock copolymer and zinc oxide sol It was found that the shape and arrangement of the nanoring structure can be controlled by varying the concentration of the gel precursor, and further, the production of the hybrid type gold-zinc oxide nanoring structure by introducing gold nanoparticles into the zinc oxide nanostructure. The method was found to complete the present application.
이에, 본원은, 자기 조립 특성을 갖는 이중블록 공중합체와 졸-겔 공정을 이용한 2차원 정렬된 초고집적 산화아연 나노링 구조체와 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체의 제조방법을 제공하고자 한다.Thus, the present application, a method for manufacturing a hybrid zinc oxide nanoring structure in which a two-dimensional aligned ultra-high density zinc oxide nanoring structure and gold nanoparticles are introduced using a biblock copolymer having a self-assembly and a sol-gel process. To provide.
또한, 본원은 상기의 방법으로 제조된 산화아연 나노링 구조체 및 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체를 제공하고자 한다.In addition, the present application is to provide a zinc oxide nanoring structure of the hybrid form in which the zinc oxide nanoring structure and gold nanoparticles are prepared by the above method.
또한, 본원은 기판 상에 상기 산화아연 나노링 구조체 또는 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체가 배열된 산화아연 나노링 구조체 어레이를 제공하고자 한다.In addition, the present disclosure is to provide a zinc oxide nanoring structure array in which the zinc oxide nanoring structure or a hybrid form of zinc oxide nanoring structure in which gold nanoparticles are introduced on a substrate.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여, 본원의 일 측면은, (a) 자기 조립 이중블록 공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계; (b) 알코올을 함유하는 용매와 산화아연 전구체를 첨가하여 산화아연 졸-겔 전구체 용액을 제조하는 단계; 및, (c) 상기 역마이셀 용액과 상기 산화아연 졸-겔 전구체 용액을 혼합하여 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 제조하는 단계:를 포함하는, 산화아연 나노링 구조체의 제조방법을 제공한다. In order to achieve the above object, one aspect of the present invention, (a) dissolving a self-assembling diblock copolymer in a solvent to prepare a reverse micelle solution; (b) adding a solvent containing an alcohol and a zinc oxide precursor to prepare a zinc oxide sol-gel precursor solution; And (c) mixing the reverse micelle solution and the zinc oxide sol-gel precursor solution to prepare a reverse micelle solution containing a zinc oxide sol-gel precursor. To provide.
일 구현예에 있어서, 상기 제조 방법은, (d) 상기 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 기판 상에 코팅하여 산화아연-자기조립 공중합체 박막을 제조하는 단계; 및, (e) 상기 박막을 후처리 하여 상기 자기 조립 공중합체를 제거하는 단계: 를 추가로 포함할 수 있으나, 이에 제한되는 것은 아니다. In one embodiment, the manufacturing method comprises the steps of: (d) coating a reverse micelle solution containing the zinc oxide sol-gel precursor on a substrate to produce a zinc oxide-self-assembled copolymer thin film; And (e) post-treating the thin film to remove the self-assembled copolymer: but may not be limited thereto.
일 구현예에 있어서, 상기 단계 (b)에서, 상기 알코올을 함유하는 용매가 안정화제를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. In one embodiment, in step (b), the solvent containing the alcohol may further include a stabilizer, but is not limited thereto.
일 구현예에 있어서, 상기 산화아연 나노링 구조체에 금 나노입자를 도입하여 하이브리드 형태의 금-산화아연 나노링 구조체를 형성하기 위하여, 상기 단계 (d) 에서, 상기 제조된 산화아연-자기조립 공중합체 박막을 금 전구체를 함유하는 산성 수용액에 침지시키는 단계를 추가로 포함할 수 있으나, 이에 제한되는 것은 아니다. In one embodiment, in order to form a gold-zinc oxide nanoring structure of the hybrid form by introducing gold nanoparticles to the zinc oxide nanoring structure, in the step (d), the produced zinc oxide-self-assembled air It may further include, but is not limited to, immersing the coalescence thin film in an acidic aqueous solution containing a gold precursor.
본원의 다른 측면은, 상기의 본원에 따른 방법에 따라 제조된 산화아연 나노링 구조체 또는 상기 산화아연 나노링 구조체에 금 나노입자를 도입하여 하이브리드 형태의 금-산화아연 나노링 구조체를 제공한다. Another aspect of the present application provides a gold-zinc oxide nanoring structure in a hybrid form by introducing gold nanoparticles into the zinc oxide nanoring structure or the zinc oxide nanoring structure prepared according to the method according to the above.
본원의 또 다른 측면은, 상기의 방법에 따라 제조된 산화아연 나노링 구조체 또는 상기 산화아연 나노링 구조체에 금 나노입자를 도입하여 하이브리드 형태의 금-산화아연 나노링 구조체가 기판 상에 배열된, 산화아연 나노링 구조체 어레이를 제공한다.Another aspect of the present invention, by introducing gold nanoparticles to the zinc oxide nanoring structure or the zinc oxide nanoring structure prepared according to the above method, the gold-zinc oxide nanoring structure in a hybrid form is arranged on a substrate, A zinc oxide nanoring structure array is provided.
본원에 따르면, 알코올 성분을 포함하는 용매 또는 안정화제 및 알코올 성분을 포함하는 용매를 사용하는 것에 의해서, 종래 나노링 구조체를 합성하기 위한 복잡한 다단계 제조 공정 없이, 용이하게 산화아연 나노링 구조체를 제조할 수 있고, 자기 조립 이중블록 공중합체의 분자량 또는 상기 이중블록 공중합체 중 두 블록간의 상대적 부피분율 및 산화아연 졸-겔 전구체의 농도를 달리함으로써 산화아연 나노링 구조체의 형태와 배열을 조절할 수 있다. 이와 같은 본원에 신규 제조 방법에 의하여 제조되는 산화아연 나노링 구조체에 금 나노입자를 도입하여 하이브리드 형태의 금-산화아연 나노링 구조체는 나노 구조체를 필요로 하는 다양한 산업분야에 유용하게 사용될 수 있다. 또한, 금 나노입자를 산화아연 나노링 구조체에 도입함으로써 친환경소자, 광센서 및 광학소자 등 다양한 분야에 유용하게 사용될 수 있다.According to the present invention, by using a solvent containing a solvent or a stabilizer and an alcohol component and an alcohol component, the zinc oxide nanoring structure can be easily produced without a complicated multi-step manufacturing process for synthesizing conventional nanoring structures. The shape and arrangement of the zinc oxide nanoring structure can be controlled by varying the molecular weight of the self-assembled diblock copolymer or the relative volume fraction between the two blocks of the diblock copolymer and the concentration of the zinc oxide sol-gel precursor. The gold-zinc oxide nanoring structure in a hybrid form by introducing gold nanoparticles into the zinc oxide nanoring structure manufactured by the novel manufacturing method as described herein may be usefully used in various industrial fields requiring nanostructures. In addition, by introducing gold nanoparticles into the zinc oxide nanoring structure, it can be usefully used in various fields such as environmentally friendly devices, optical sensors and optical devices.
도 1은 본원의 일 구현예에 따른 초고집적 산화아연 나노링 구조체 배열 및 하이브리드 형태의 금-산화아연 나노링 구조체 배열을 제조하는 과정을 나타낸 개략도로서, 화학 반응식은 산화아연 졸-겔 전구체가 제조될 때의 반응을 나타낸다.1 is a schematic diagram illustrating a process of manufacturing an ultra-high density zinc oxide nanoring structure array and a hybrid form of gold-zinc oxide nanoring structure array according to an embodiment of the present disclosure, wherein the chemical scheme is prepared by a zinc oxide sol-gel precursor. The reaction when
도 2는 본원의 일 실시예에 따른 산화아연 나노링 구조체를 제조하는 과정에서의 원자힘현미경(AFM) 이미지이다 [(a) 실시예 1의 단계 1, (b) 실시예 1의 단계 4, (c) 실시예 1의 단계 5].2 is an atomic force microscope (AFM) image in the process of manufacturing a zinc oxide nanoring structure according to an embodiment of the present application [(a) Step 1 of Example 1, (b) Step 4 of Example 1, (c) step 5 of example 1].
도 3은 본원의 일 실시예에 따른 산화아연 나노링 구조체를 제조하는 과정에서의 투과 전자 현미경(TEM) 이미지이다 [(a) 실시예 1의 단계 4, (b) (a)의 확대된 이미지, (c) 실시예 1의 단계 5, (d) (c)의 확대된 이미지].3 is a transmission electron microscope (TEM) image in the process of manufacturing a zinc oxide nanoring structure according to an embodiment of the present application [(a) An enlarged image of step 4, (b) (a) of Example 1 , (c) step 5 of example 1, (d) an enlarged image of (c)].
도 4는 본원의 일 실시예에 따른 자기 조립 이중블록 공중합체를 용매에 용해시킨 역마이셀 용액에 산화아연 졸-겔 전구체의 각 성분을 분리 도입하는 과정에서의 원자힘현미경(AFM) 이미지이다 [실시예 1의 (a) 단계 1, (b) 2-프로판올 첨가, (c) 다이에탄올아민 첨가, (d) 아세트산 아연 이수화물 첨가, (e) 아세트산 아연 이수화물 및 2-프로판올 첨가, (f) 아세트산 아연 이수화물 및 다이에탄올아민 첨가, (g) 아세트산 아연 이수화물, 2-프로판올 및 다이에탄올아민 첨가, (h) 아세트산 아연 이수화물, 다이에탄올아민 및 2-프로판올 첨가]. 4 is an atomic force microscope (AFM) image of a process of separately introducing each component of a zinc oxide sol-gel precursor into a reverse micelle solution in which a self-assembled biblock copolymer according to an embodiment of the present invention is dissolved in a solvent [ Example 1 (a) step 1, (b) 2-propanol addition, (c) diethanolamine addition, (d) zinc acetate dihydrate addition, (e) zinc acetate dihydrate and 2-propanol addition, (f ) Zinc acetate dihydrate and diethanolamine addition, (g) zinc acetate dihydrate, 2-propanol and diethanolamine addition, (h) zinc acetate dihydrate, diethanolamine and 2-propanol addition].
도 5는 본원의 일 실시예에 따른 서로 다른 분자량을 가지는 자기 조립 이중블록 공중합체를 이용하여 제조한 산화아연 나노링 구조체 배열의 원자힘현미경(AFM) 이미지이다 [(a) 실시예 1의 단계 5, (b) 실시예 3의 단계 5, (c) 실시예 4의 단계 5].5 is an atomic force microscope (AFM) image of a zinc oxide nanoring structure array prepared using self-assembled biblock copolymers having different molecular weights according to one embodiment of the present application [(a) Step of Example 1 5, (b) Step 5 of Example 3, (c) Step 5 of Example 4].
도 6은 본원의 일 실시예에 따른 산화아연 졸-겔 전구체의 상대적인 농도를 변화시켜 제조한 산화아연 나노링 구조체 배열의 원자힘현미경(AFM) 이미지이다 [(a) 실시예 5의 단계 5, (b) 실시예 6의 단계 5, (c) 실시예 7의 단계 5, (d) 실시예 8의 단계 5].Figure 6 is an atomic force microscope (AFM) image of the zinc oxide nano ring structure array prepared by changing the relative concentration of the zinc oxide sol-gel precursor according to an embodiment of the present application [(a) Step 5 of Example 5, (b) step 5 of example 6, (c) step 5 of example 7, and (d) step 5 of example 8].
도 7는 본원의 일 실시예에 따른 불활성 기체 하의 고온에서 열처리하여 제조된 산화아연 나노링 구조체 배열의 원자힘현미경(AFM) 이미지 및 X-선 회절장치(XRD)의 패턴을 나타낸 그래프이다 [(a) 실시예 2의 단계 5의 원자힘현미경(AFM) 이미지, (b) 실시예 2의 단계 5의 X-선 회절장치(XRD) 패턴].FIG. 7 is a graph showing an atomic force microscope (AFM) image and a pattern of an X-ray diffractometer (XRD) of a zinc oxide nanoring structure array prepared by heat treatment at a high temperature under an inert gas according to one embodiment of the present application [( a) an atomic force microscope (AFM) image of step 5 of example 2, (b) an X-ray diffractometer (XRD) pattern of step 5 of example 2].
도 8은 본원의 일 실시예에 따른 금 나노입자가 도입된 하이브리드 형태의 금-산화아연 나노링 구조체 배열의 전계방출 주사 전자현미경(FESEM) 이미지 및 X-선 분광분석 (EDS) 분석 결과이다 [(a) 실시예 9의 전계방출 주사 전자현미경(FESEM) 이미지, (b) 실시예 9의 X-선 분광분석(EDS) 결과].8 is a field emission scanning electron microscope (FESEM) image and X-ray spectroscopy (EDS) analysis results of a hybrid gold-zinc oxide nanoring structure array in which gold nanoparticles are introduced according to an embodiment of the present disclosure [ (a) Field emission scanning electron microscope (FESEM) image of Example 9, (b) X-ray spectroscopy (EDS) results of Example 9].
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.Hereinafter, embodiments and examples of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~하는 단계" 또는 "~의 단계" 는 "~를 위한 단계" 를 의미하지 않는다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are provided to aid the understanding herein. In order to prevent the unfair use of unscrupulous infringers. In addition, throughout this specification, "step to" or "step of" does not mean "step for."
본원의 일 측면은, (a) 자기 조립 이중블록 공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계; (b) 알코올을 함유하는 용매와 산화아연 전구체를 첨가하여 산화아연 졸-겔 전구체 용액을 제조하는 단계; 및, (c) 상기 역마이셀 용액과 상기 산화아연 졸-겔 전구체 용액을 혼합하여 졸-겔 전구체를 함유하는 역마이셀 용액을 제조하는 단계: 를 포함하는, 산화아연 나노링 구조체의 제조방법을 제공한다.One aspect of the present invention, (a) dissolving the self-assembly diblock copolymer in a solvent to prepare a reverse micelle solution; (b) adding a solvent containing an alcohol and a zinc oxide precursor to prepare a zinc oxide sol-gel precursor solution; And (c) mixing the reverse micelle solution and the zinc oxide sol-gel precursor solution to prepare a reverse micelle solution containing a sol-gel precursor. Provided is a method for manufacturing a zinc oxide nanoring structure. do.
본원의 일 구현예에 있어서, 상기 산화아연 나노링 구조체의 제조방법은, (d) 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 기판 상에 코팅하여 산화아연-자기조립 공중합체 박막을 제조하는 단계; 및 (e) 상기 박막을 후처리하여 상기 자기 조립 공중합체를 제거하는 단계: 를 추가로 포함할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the method for producing a zinc oxide nanoring structure, (d) coating a reverse micelle solution containing a zinc oxide sol-gel precursor on a substrate to produce a zinc oxide-self-assembled copolymer thin film Doing; And (e) post-treating the thin film to remove the self-assembled copolymer: but may not be limited thereto.
일 구현예에 있어서, 상기 단계 (b)에서, 상기 알코올을 함유하는 용매가 안정화제를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 안정화제가 다이에탄올아민(diethanolamine, DEA), 모노에탄올아민(monoethanolamine, MEA) 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. In one embodiment, in step (b), the solvent containing the alcohol may further include a stabilizer, but is not limited thereto. For example, the stabilizer may be one selected from the group consisting of diethanolamine (DEA), monoethanolamine (MEA), and combinations thereof, but is not limited thereto.
일 구현예에 있어서, 상기 산화아연 나노링 구조체에 금 나노입자를 도입하여 하이브리드 형태의 금-산화아연 나노링 구조체를 형성하기 위하여, 상기 단계 (d) 에서, 상기 제조된 산화아연-자기조립 공중합체 박막을 금 전구체를 함유하는 산성 수용액에 침지시키는 단계를 추가로 포함할 수 있으나, 이에 제한되는 것은 아니다. In one embodiment, in order to form a gold-zinc oxide nanoring structure of the hybrid form by introducing gold nanoparticles to the zinc oxide nanoring structure, in the step (d), the produced zinc oxide-self-assembled air It may further include, but is not limited to, immersing the coalescence thin film in an acidic aqueous solution containing a gold precursor.
이하, 본원의 일 구현예에 따른 산화아연 나노링 구조체의 제조방법을 도면을 참조하여 단계별로 구체적으로 설명하나, 본원이 이에 제한되는 것은 아니다.Hereinafter, a method of manufacturing a zinc oxide nanoring structure according to an embodiment of the present application will be described in detail with reference to the drawings, but the present application is not limited thereto.
먼저, 본원에 따른 상기 단계 (a)는 자기 조립 이중블록 공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계이다.First, step (a) according to the present invention is a step of preparing a reverse micelle solution by dissolving the self-assembling diblock copolymer in a solvent.
상기 자기 조립 이중블록 공중합체로서 양친성 이중블록 공중합체를 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 양친성 이중블록 공중합체는 친수성 블록 및 소수성 블록을 포함하여 형성된 것을 의미한다. 상기 양친성 이중블록 공중합체 중 한쪽 블록만 선택적인 용매에 용해시키면 용액 내에서 역마이셀을 형성할 수 있다. 즉, 상기 용매는, 상기 역마이셀을 형성한 상기 자기 조립 이중 블록 공중합체 중 친수성 블록 또는 소수성 블록만을 용해시키는 것일 수 있다. 예를 들어, 상기 용매는, 톨루엔, 클로로포름, 테트라하이드로푸란(THF), 벤젠, 헵테인, 자일렌 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다. 이러한 용매는 상기 역마이셀을 형성한 상기 자기 조립 이중 블록 공중합체 중 스티렌 블록과 같은 소수성 블록만을 용해시키는 것일 수 있다.Amphiphilic diblock copolymer may be used as the self-assembled diblock copolymer, but is not limited thereto. The amphiphilic diblock copolymer is meant to include a hydrophilic block and a hydrophobic block. Dissolving only one block of the amphiphilic diblock copolymer in a selective solvent can form reverse micelles in solution. That is, the solvent may dissolve only a hydrophilic block or a hydrophobic block in the self-assembled double block copolymer in which the reverse micelle is formed. For example, the solvent may be selected from the group consisting of toluene, chloroform, tetrahydrofuran (THF), benzene, heptane, xylene, and combinations thereof, but is not limited thereto. The solvent may dissolve only hydrophobic blocks such as styrene blocks in the self-assembled double block copolymer in which the reverse micelles are formed.
상기 이중블록 공중합체로서, 예를 들어, 폴리스티렌-블록-폴리비닐피리딘을 사용할 수 있고, 구체적으로 폴리스티렌-블록-폴리(4-비닐피리딘)과 폴리스티렌-블록-폴리(2-비닐피리딘), 폴리스티렌-블록-폴리에틸렌옥사이드(PS-b-PEO), 폴리스티렌-블록-폴리메틸메타크릴레이트(PS-b-PMMA), 폴리아이소피렌-블록-폴리(2-비닐피리딘)(PI-b-P2VP), 폴리(2-비닐피리딘)-블록-폴리다이메틸실록세인(P2VP-b-PDMS) 등을 사용할 수 있으며, 특히 구체적으로 폴리스티렌-블록-폴리(4-비닐피리딘)을 사용할 수 있으나, 이에 제한되는 것은 아니다.As the diblock copolymer, for example, polystyrene-block-polyvinylpyridine may be used, and specifically, polystyrene-block-poly (4-vinylpyridine), polystyrene-block-poly (2-vinylpyridine), polystyrene -Block-polyethylene oxide (PS-b-PEO), polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polyisoprene-block-poly (2-vinylpyridine) (PI-b-P2VP) , Poly (2-vinylpyridine) -block-polydimethylsiloxane (P2VP-b-PDMS) and the like may be used, and in particular, polystyrene-block-poly (4-vinylpyridine) may be used, but is not limited thereto. It doesn't happen.
일 구현예에 있어서, 상기 양친성 공중합체의 친수성 블록 및 소수성 블록의 분자량 또는 두 블록 간의 상대적 부피분율을 제어하여 산화아연 나노링의 형태와 배열 간격을 조정할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 친수성 블록 및 소수성 블록의 분자량비를 약 0.5:1 내지 7:1로 조정하여 산화아연 나노링의 형태와 배열 간격을 조정할 수 있다.In one embodiment, the shape and arrangement interval of the zinc oxide nanoring can be adjusted by controlling the molecular weight of the hydrophilic block and the hydrophobic block or the relative volume fraction of the two blocks of the amphiphilic copolymer, but is not limited thereto. For example, the molecular weight ratio of the hydrophilic block and the hydrophobic block may be adjusted to about 0.5: 1 to 7: 1 to adjust the shape and spacing of the zinc oxide nanorings.
나아가, 상기 단계 (a)의 역마이셀 용액은 상기 자기 조립 이중블록 공중합체를 0.1 내지 1.0 중량%로 함유할 수 있으나, 이에 제한되는 것은 아니다. 상기 자기 조립 공중합체가 0.1 중량% 미만이면 결점이 없는 균일한 단분자막이 생성되지 않는 문제가 있고, 1.0 중량%를 초과하면 단분자막이 생성되지 않는 문제가 있을 수 있다. 즉, 역마이셀 단분자막을 생성하기 위해서는 용액의 농도와 스핀 코팅시의 회전 속도를 상호 연동하여 조건을 가변적으로 조절하여야 한다.Further, the reverse micelle solution of step (a) may contain 0.1 to 1.0 wt% of the self-assembled biblock copolymer, but is not limited thereto. If the self-assembled copolymer is less than 0.1% by weight, there may be a problem in that a uniform monomolecular film without defects may not be generated, and when the self-assembled copolymer is more than 1.0% by weight, a monomolecular film may not be produced. That is, in order to generate the reverse micelle monolayer, the conditions must be variably controlled by interlocking the solution concentration and the rotational speed during spin coating.
다음으로, 상기 단계 (b)는 알코올 성분을 함유하는 산화아연 졸-겔 전구체 용액을 제조하는 단계이다.Next, step (b) is to prepare a zinc oxide sol-gel precursor solution containing an alcohol component.
상기 단계 (b)의 산화아연 졸-겔 용액은, 알코올을 함유하는 용매, 또는 알코올을 함유하는 용매와 안정화제를 포함하는 혼합용액에 산화아연 전구체를 용해시킨 후, 교반 및 숙성하여 제조할 수 있다. The zinc oxide sol-gel solution of step (b) may be prepared by dissolving a zinc oxide precursor in a solvent containing an alcohol, or a mixed solution containing a solvent and a stabilizer containing alcohol, followed by stirring and aging. have.
상기 알코올을 함유하는 용매로서, 2-프로판올(2-propanol), 에탄올, 메탄올, 2-메톡시에탄올 및 이들의 조합으로 이루어진 군에서 선택되는 알코올을 포함하는 용매를 사용할 수 있으나, 이에 제한되는 것은 아니다.As the solvent containing the alcohol, a solvent containing an alcohol selected from the group consisting of 2-propanol, ethanol, methanol, 2-methoxyethanol and combinations thereof may be used, but is not limited thereto. no.
상기 산화아연 전구체로는 아세트산 아연 이수화물(zinc acetate dihydrate), 아연 아세틸아세토네이트 일수화물(zinc acetylacetonate monohydrate), 질산아연 육수화물(zinc nitrate hexahydrate) 및 이들의 조합이 사용될 수 있으나, 이에 제한되는 것은 아니다.As the zinc oxide precursor, zinc acetate dihydrate, zinc acetylacetonate monohydrate, zinc nitrate hexahydrate, and combinations thereof may be used, but is not limited thereto. no.
상기 안정화제는, 상기 알코올을 함유하는 용매 중 산화아연 전구체의 용해도를 증가시키고 상기 자기 조립 이중블록 공중합체의 사슬 재배열을 유도할 수 있다. 이러한 안정화제로는 다이에탄올아민(diethanolamine, DEA), 모노에탄올아민(monoethanolamine, MEA), 및 이들의 조합을 사용할 수 있으나, 이에 제한되는 것은 아니다.The stabilizer may increase the solubility of the zinc oxide precursor in the solvent containing the alcohol and induce chain rearrangement of the self-assembling diblock copolymer. Such stabilizers may include, but are not limited to, diethanolamine (DEA), monoethanolamine (MEA), and combinations thereof.
상기 단계 (b)는, 예를 들어, 50 내지 80℃, 또는 60 내지 70℃에서 알코올을 함유하는 용매, 또는 알코올을 함유하는 용매와 안정화제를 포함하는 혼합용액에 산화아연 전구체를 첨가하여 산화아연 졸-겔 전구체 용액을 제조할 수 있다.Step (b) is, for example, oxidized by adding a zinc oxide precursor to a solvent containing an alcohol at 50 to 80 ℃, or 60 to 70 ℃, or a mixed solution containing a solvent and a stabilizer containing alcohol Zinc sol-gel precursor solutions can be prepared.
상기 산화아연 전구체와 상기 안정화제의 혼합 비율은, 예를 들어, 1 : 0.1 내지 2를 유지할 수 있으며, 상기 산화아연 졸-겔 전구체의 농도는, 예를 들어, 0.3 M 내지 2.0 M로 할 수 있으나, 이에 제한되는 것은 아니다. The mixing ratio of the zinc oxide precursor and the stabilizer may be maintained at 1: 0.1 to 2, for example, and the concentration of the zinc oxide sol-gel precursor may be, for example, 0.3 M to 2.0 M. However, it is not limited thereto.
다음으로, 상기 단계 (c)는, 상기 단계 (a)에서 제조된 역마이셀 용액과 상기 단계 (b)에서 제조된 졸-겔 전구체 용액을 혼합 및 교반하는 단계이다.Next, step (c) is a step of mixing and stirring the reverse micelle solution prepared in step (a) and the sol-gel precursor solution prepared in step (b).
상기 단계 (b)에서 제조된 졸-겔 전구체의 알코올 성분은 상기 단계 (a)의 공중합체 중, 예를 들어, P4VP 블록과 같은 친수성 블록 사슬들을 재배열시켜 역마이셀을 개방시키고, 동시에 아세트산 아연 이수화물과 같은 산화아연 전구체가 상기 개방된 P4VP 블록과 같은 친수성 부분에 결합될 수 있도록 한다 (실험예 1 참조).The alcohol component of the sol-gel precursor prepared in step (b) rearranges hydrophilic block chains, such as, for example, P4VP blocks, in the copolymer of step (a) to open reverse micelles, and simultaneously zinc acetate Zinc oxide precursors such as dihydrate can be bound to hydrophilic moieties such as the open P4VP block (see Experimental Example 1).
다음으로, 상기 단계 (d)는, 상기 단계 (c)에서 혼합된 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 기판 상에 스핀코팅하여 산화아연-자기 조립 공중합체 박막을 제조하는 단계이다.Next, step (d) is to prepare a zinc oxide-self-assembled copolymer thin film by spin coating a reverse micelle solution containing the zinc oxide sol-gel precursor mixed in step (c) on a substrate. .
본원에서 상기 기판은 실리콘 웨이퍼, 쿼츠, 유리, 마이카 기판 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.The substrate herein may be a silicon wafer, quartz, glass, mica substrate, or a combination thereof, but is not limited thereto.
다음으로, 상기 단계 (e)는, 상기 단계 (d)에서 제조된 박막을 후처리 하여 자기 조립 공중합체를 제거하여 산화아연 나노링 구조체를 제조하는 단계이다. 상기 후처리 과정을 통해 공중합체를 제거함과 동시에 산화아연 전구체를 산화시킬 수 있다. Next, step (e) is to prepare a zinc oxide nanoring structure by post-treating the thin film prepared in step (d) to remove the self-assembly copolymer. The post-treatment process may remove the copolymer and oxidize the zinc oxide precursor.
상기 후처리는 산소 플라즈마 노출, 열처리, 또는, 자외선 조사 등을 포함하는 공정을 통해 수행될 수 있으며, 보다 구체적으로 산소 플라즈마 노출 또는 열처리를 통할 수 있다. 예를 들어, 상기 후처리는, 100 W의 산소 플라즈마에 30초 동안 노출하거나, 또는 불활성 기체 분위기 하에서 400 내지 800 ℃의 열처리, 보다 구체적으로는 400 내지 600 ℃의 고온에서 1시간 동안 열처리하여 자기 조립 공중합체를 제거하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.The post-treatment may be performed through a process including oxygen plasma exposure, heat treatment, or ultraviolet irradiation, and more specifically, oxygen plasma exposure or heat treatment. For example, the post-treatment may be performed by exposure to 100 W of oxygen plasma for 30 seconds or by heat treatment at 400 to 800 ° C., more specifically at a high temperature of 400 to 600 ° C., under an inert gas atmosphere for 1 hour. It may include, but is not limited to, removing the coarse copolymer.
본원은 상기 제조방법에 의하여 제조되는 산화아연 나노링 구조체를 제공하며, 일 구현예에 있어서, 상기 산화아연 나노링 구조체는 상기 나노링 간의 평균 중심간 거리가 50 ㎚ 내지 100 ㎚이고 육방정계 부르트차이트(Wurtzite) 결정구조를 갖는 것일 수 있으나, 이에 제한되는 것은 아니다.The present application provides a zinc oxide nanoring structure manufactured by the method, and in one embodiment, the zinc oxide nanoring structure has an average center-to-center distance between the nanorings between 50 nm and 100 nm and hexagonal butt. It may have a wurtzite crystal structure, but is not limited thereto.
일 구현예에 있어서, 본원에 따라 제조된 상기 산화아연 나노링 구조체에 금 나노입자를 도입함으로써 하이브리드 형태의 금-산화아연 나노링을 제조할 수 있다 (실험예 5 참조).In one embodiment, the gold-zinc oxide nanoring in a hybrid form may be prepared by introducing gold nanoparticles into the zinc oxide nanoring structure prepared according to the present application (see Experimental Example 5).
구체적으로, 상기 단계 (d) 에서 제조된 산화아연-자기조립 공중합체 박막을 금 나노입자의 전구체를 함유하는 산성 수용액에 침지시켜 산화아연 나노링 구조체에 금 나노입자를 도입한다. 상기 금 나노입자 전구체는, 예를 들어, HAuCl4, KAuCl4, NaAuCl4, NH4AuCl4, LiAuCl4, KAuBr4, NaAuBr4, HAuBr4, 또는 이들의 조합을 포함할 수 있다. 상기 산성 수용액으로는, 예를 들어, 염산, 질산, 황산, 아세트산, 포름산 또는 이들의 조합을 포함하는 것일 수 있다.Specifically, the zinc oxide-self-assembled copolymer thin film prepared in step (d) is immersed in an acidic aqueous solution containing a precursor of gold nanoparticles to introduce gold nanoparticles into the zinc oxide nanoring structure. The gold nanoparticle precursor may include, for example, HAuCl 4 , KAuCl 4 , NaAuCl 4 , NH 4 AuCl 4 , LiAuCl 4 , KAuBr 4 , NaAuBr 4 , HAuBr 4 , or a combination thereof. The acidic aqueous solution may include, for example, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, or a combination thereof.
이어서, 상기 본원에 따라 제조된 금 나노입자가 도입된 산화아연 나노링 구조체를 플라즈마 처리하여 이중블록 공중합체 주형을 제거하고, 산화아연 전구체 및 금 나노입자 전구체를 각각 산화 및 환원시키며, 이에 따라, 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링을 제조할 수 있다 (제조된 산화아연 나노링은 도 8 참조).Subsequently, the zinc oxide nanoring structure into which the gold nanoparticles prepared according to the present application are introduced is subjected to plasma treatment to remove the diblock copolymer template, and to oxidize and reduce the zinc oxide precursor and the gold nanoparticle precursor, respectively. Hybrid zinc oxide nanorings into which gold nanoparticles are introduced can be prepared (see FIG. 8 for the manufactured zinc oxide nanorings).
또한, 본원은 상기의 방법으로 제조된 산화아연 나노링 구조체 및 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체를 제공한다.In addition, the present application provides a zinc oxide nanoring structure prepared by the above method and a zinc oxide nanoring structure in a hybrid form in which gold nanoparticles are introduced.
또한, 본원은, 기판 상에 상기 산화아연 나노링 구조체 또는 금 나노입자가 도입된 하이브리드 형태의 산화아연 나노링 구조체가 배열된 산화아연 나노링 구조체 어레이를 제공한다.In addition, the present application provides a zinc oxide nanoring structure array in which the zinc oxide nanoring structure or a hybrid type zinc oxide nanoring structure in which gold nanoparticles are introduced on a substrate is arranged.
본원에 따라 제조된 산화아연 나노링 구조체 배열은 상기 이중블록 공중합체의 분자량 또는 두 블록간 상대적 부피 분율을 변화시킴으로써 산화아연 나노링의 형태와 배열을 용이하게 조절할 수 있다.The zinc oxide nanoring structure arrangement prepared according to the present invention can easily control the shape and arrangement of the zinc oxide nanoring by changing the molecular weight of the diblock copolymer or the relative volume fraction between the two blocks.
본원에 따라 제조된 산화아연 나노링 구조체를 대상으로 이중블록 공중합체의 분자량 또는 상대적 부피 분율을 달리하여 상기 나노구조체의 구조변화를 관찰한 결과를 살펴보면 변화된 조건에 따라 산화아연 나노링의 형태와 배열을 제어할 수 있음을 알 수 있다 (실험예 2 참조).Looking at the results of observing the structural change of the nanostructures by varying the molecular weight or relative volume fraction of the diblock copolymer with respect to the zinc oxide nanoring structure prepared according to the present application, the shape and arrangement of the zinc oxide nanorings according to the changed conditions It can be seen that can control (see Experimental Example 2).
구체적으로, 본원에 따라 제조된 산화아연 나노링 구조체에 플라즈마 처리에 의해 이중블록 공중합체 주형이 제거되고 산화아연 전구체가 산화되고, 이중블록 공중합체의 분자량에 따라 산화아연 나노링 사이의 간격이 뚜렷한 차이를 나타낸다(도 5 참조).Specifically, the zinc oxide nanoring structure prepared according to the present invention is removed by the plasma treatment of the diblock copolymer template and the zinc oxide precursor is oxidized, and the interval between the zinc oxide nanorings according to the molecular weight of the diblock copolymer is clear. The difference is shown (see FIG. 5).
또한, 본원에 따라 제조된 산화아연 나노링 구조체는 상기 산화아연 졸-겔 전구체의 농도를 변화시킴으로써 산화아연 나노링의 형태를 용이하게 조절할 수 있다.In addition, the zinc oxide nanoring structure prepared according to the present application can easily control the shape of the zinc oxide nanoring by changing the concentration of the zinc oxide sol-gel precursor.
본원에 따라 제조된 산화아연 나노링 구초체를 대상으로 산화아연 졸-겔 전구체의 농도를 달리하여 상기 나노구조체의 구조변화를 관찰한 결과를 살펴보면 변화된 조건에 따라 산화아연 나노링 구조체의 형태를 제어할 수 있음을 알 수 있다 (실험예 3 참조).According to the results of observing the structural change of the nanostructures by varying the concentration of the zinc oxide sol-gel precursor in the zinc oxide nanoring spherical body prepared according to the present application, the shape of the zinc oxide nanoring structure was controlled according to the changed conditions. It can be seen that (see Experimental Example 3).
구체적으로, 본원에 따라 제조된 산화아연 나노링 구조체를 플라즈마 처리하여 이중블록 공중합체 주형을 제거하고, 산화아연 전구체를 산화시키면, 산화아연 졸-겔 전구체의 농도에 따라 산화아연 나노링의 형태가 뚜렷한 차이가 나타난다 (도 6 참조).Specifically, when the zinc oxide nanoring structure prepared according to the present application is plasma treated to remove the diblock copolymer template, and the zinc oxide precursor is oxidized, the form of the zinc oxide nanoring depends on the concentration of the zinc oxide sol-gel precursor. A distinct difference appears (see FIG. 6).
따라서, 본원의 산화아연 나노링 구조체는 서로 다른 분자량을 갖는 이중블록 공중합체를 이용함으로써 산화아연 나노링의 형태와 배열 간격을 조절할 수 있으며, 또한 산화아연 졸-겔 전구체의 농도를 변화시킴으로써 산화아연 나노링의 형태를 조절할 수 있다.Therefore, the zinc oxide nanoring structure of the present application can control the shape and arrangement interval of the zinc oxide nanoring by using a biblock copolymer having different molecular weights, and also change the concentration of the zinc oxide sol-gel precursor. You can control the shape of the nanoring.
이하, 본원을 실시예를 통하여 상세히 설명한다. 단, 하기의 실시예는 본원을 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are merely to illustrate the present application, the content of the present application is not limited by the following examples.
[실시예]EXAMPLE
<실시예 1> 산화아연 나노링 구조체의 제조 1Example 1 Preparation of Zinc Oxide Nanoring Structures 1
단계 1: 자기 조립 공중합체를 함유하는 역마이셀 용액 제조Step 1: preparing reverse micelle solution containing self-assembled copolymer
폴리스티렌-블록-폴리(4-비닐피리딘)(polystyrene-block-poly(4-vinyl pyridine), PS-b-P4VP, Mn ps=41.5 kg/mol, Mn p4vp=17.5 kg/mol, Mw/Mn=1.07)을 톨루엔에 0.5 중량%의 농도로 용해시켜 역마이셀 용액을 제조하였다. Polystyrene-block-poly (4-vinyl pyridine), PS-b-P4VP, M n ps = 41.5 kg / mol, M n p4vp = 17.5 kg / mol, M w / M n = 1.07) was dissolved in toluene at a concentration of 0.5% by weight to prepare a reverse micelle solution.
단계 2: 졸-겔 전구체 용액의 제조Step 2: Preparation of Sol-Gel Precursor Solution
산화아연 전구체인 아세트산 아연 이수화물(zinc acetate dihydrate)을 용매인 2-프로판올(2-propanol)과 안정화제인 다이에탄올아민(diethanolamine, DEA)의 혼합용액에 첨가하여 산화아연 졸-겔 전구체 용액을 제조하였다. 아세트산 아연 이수화물과 다이에탄올아민의 몰비는 1대 2 이었으며, 아세트산 아연 용액의 농도는 0.5 M이었다. 상기 산화아연 졸-겔 전구체 용액을 65℃에서 1시간 동안 교반하여 졸-겔 전구체 용액을 제조하였다. A zinc oxide sol-gel precursor solution was prepared by adding zinc acetate dihydrate, a zinc oxide precursor, to a mixed solution of 2-propanol, a solvent, and diethanolamine, or DEA, as a stabilizer. It was. The molar ratio of zinc acetate dihydrate and diethanolamine was 1: 1, and the concentration of the zinc acetate solution was 0.5 M. The zinc oxide sol-gel precursor solution was stirred at 65 ° C. for 1 hour to prepare a sol-gel precursor solution.
단계 3: 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액의 제조Step 3: Preparation of reverse micelle solution containing zinc oxide sol-gel precursor
상기 단계 1의 역마이셀 용액에 대하여 상기 단계 2의 졸-겔 전구체 용액을 1 부피%로 첨가한 후, 상온에서 1일 동안 교반하여 산화아연 졸-겔 전구체를 함유하는 이중블록 공중합체 역마이셀을 제조하였다. The diblock copolymer reverse micelle containing the zinc oxide sol-gel precursor was added to the reverse micelle solution of step 1 by adding 1 vol% of the sol-gel precursor solution of step 2, followed by stirring at room temperature for 1 day. Prepared.
단계 4: 산화아연-자기 조립 공중합체 박막 제조Step 4: Zinc Oxide-Self Assembly Copolymer Thin Film Preparation
상기 단계 3에서 제조된 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 60초 동안 2000 rpm으로 스핀코팅하여 산화아연-자기 조립 공중합체 박막을 제조하였다.A zinc oxide-self-assembled copolymer thin film was prepared by spin coating the reverse micelle solution containing the zinc oxide sol-gel precursor prepared in step 3 at 2000 rpm for 60 seconds.
단계 5: 후처리를 통한 자기 조립 공중합체의 제거Step 5: Removal of Self-Assembly Copolymers by Post Treatment
상기 단계 4의 산화아연-자기 조립 공중합체 박막에 100 W의 산소 플라즈마를 30초 동안 노출하여 이중블록 공중합체를 제거하고, 산화아연 전구체를 산화하여 산화아연 나노링 구조체를 제조하였다.A zinc oxide nanoring structure was prepared by exposing 100 W of oxygen plasma to the zinc oxide-self-assembled copolymer thin film of step 4 for 30 seconds to remove the diblock copolymer and oxidizing the zinc oxide precursor.
<실시예 2> 산화아연 나노링 구조체의 제조 2 Example 2 Preparation of Zinc Oxide Nanoring Structure 2
상기 실시예 1의 상기 단계 5에서 불활성 기체 분위기 하의 400℃ 또는 600℃의 온도에서 1시간 동안 열처리하여 이중블록 공중합체를 제거한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Except that the step 1 of Example 1 was removed by heat treatment for 1 hour at a temperature of 400 ℃ or 600 ℃ under an inert gas atmosphere was prepared in the same manner as in Example 1.
<실시예 3> 산화아연 나노링 구조체의 제조 3Example 3 Preparation of Zinc Oxide Nanoring Structures 3
상기 실시예 1의 상기 단계 1에서 폴리스티렌-블록-폴리(4-비닐피리딘)(polystyrene-block-poly(4-vinyl pyridine), PS-b-P4VP, Mn ps=122 kg/mol, Mn p4vp=22 kg/mol, Mw/Mn=1.15)을 톨루엔에 0.5 중량%의 농도로 용해시켜 역마이셀 용액을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Polystyrene-block-poly (4-vinyl pyridine), PS-b-P4VP, M n ps = 122 kg / mol, M n in step 1 of Example 1 p4vp = 22 kg / mol, M w / M n = 1.15) was prepared in the same manner as in Example 1 except that the reverse micelle solution was prepared by dissolving towluene at a concentration of 0.5% by weight.
<실시예 4> 산화아연 나노링 구조체의 제조 4Example 4 Fabrication of Zinc Oxide Nanoring Structures 4
상기 실시예 1의 상기 단계 1에서 폴리스티렌-블록-폴리(4-비닐피리딘)(polystyrene-block-poly(4-vinyl pyridine), PS-b-P4VP, Mn ps=22 kg/mol, Mn p4vp=22 kg/mol, Mw/Mn=1.09)을 톨루엔에 0.5 중량%의 농도로 용해시켜 역마이셀 용액을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Polystyrene-block-poly (4-vinyl pyridine), PS-b-P4VP, M n ps = 22 kg / mol, M n in step 1 of Example 1 p4vp = 22 kg / mol, M w / M n = 1.09) was prepared in the same manner as in Example 1 except that the reverse micelle solution was prepared by dissolving towene in a concentration of 0.5% by weight.
<실시예 5> 산화아연 나노링 구조체의 제조 5Example 5 Fabrication of Zinc Oxide Nanoring Structures 5
상기 실시예 1의 상기 단계 2에서 아세트산 아연 용액의 농도를 0.3 M로 제조한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution of 0.3 M in step 2 of.
<실시예 6> 산화아연 나노링 구조체의 제조 6Example 6 Fabrication of Zinc Oxide Nanoring Structures 6
상기 실시예 1의 상기 단계 2에서 아세트산 아연 용액의 농도를 0.7 M로 제조한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution in step 2 of 0.7 M.
<실시예 7> 산화아연 나노링 구조체의 제조 7Example 7 Fabrication of Zinc Oxide Nanoring Structures 7
상기 실시예 1의 상기 단계 2에서 아세트산 아연 용액의 농도를 1.0 M로 제조한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution was prepared in 1.0 M in step 2.
<실시예 8> 산화아연 나노링 구조체의 제조 8Example 8 Fabrication of Zinc Oxide Nanoring Structures 8
상기 실시예 1의 상기 단계 2에서 아세트산 아연 용액의 농도를 2.0 M로 제조한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Example 1 was prepared in the same manner as in Example 1, except that the concentration of the zinc acetate solution in step 2 of 2.0 M.
<실시예 9> 하이브리드 금-산화아연 나노링 구조체의 제조Example 9 Fabrication of Hybrid Gold-Zinc Oxide Nanoring Structures
상기 실시예 1의 상기 단계 4 의 산화아연-자기 조립 공중합체 박막을 금 나노입자 전구체를 포함하는 산성 수용액에 3시간 동안 침지하여 금 나노입자 전구체를 도입하고, 100 W의 산소 플라즈마를 30초 동안 노출하여 이중블록 공중합체를 제거하고, 산화아연 전구체를 산화하여 하이브리드 금-산화아연 나노링 구조체를 제조하였다.The zinc oxide-self-assembled copolymer thin film of Step 4 of Example 1 was immersed in an acidic aqueous solution containing gold nanoparticle precursors for 3 hours to introduce gold nanoparticle precursors, and 100 W of oxygen plasma for 30 seconds. The diblock copolymer was removed by exposure and the zinc oxide precursor was oxidized to prepare a hybrid gold-zinc oxide nanoring structure.
<실험예 1> 알코올 성분에 의한 나노링 구조체의 형성Experimental Example 1 Formation of Nano Ring Structure by Alcohol Component
알코올 성분에 의해서 이중블록 공중합체의 역마이셀이 재구성 됨을 밝히기 위하여 하기의 실험을 수행하였다.The following experiment was carried out to reveal that the reverse micelle of the diblock copolymer is reconstituted by the alcohol component.
상기 실시예 1에 대하여 박막의 표면을 원자힘현미경(AFM) 및 투과 전자 현미경(TEM)으로 관찰하여 도 2 및 도 3에 각각 나타내었다.In Example 1, the surface of the thin film was observed with an atomic force microscope (AFM) and a transmission electron microscope (TEM), and is shown in FIGS. 2 and 3, respectively.
상기 실시예 1에 대하여 산화아연 전구체의 첨가 전과 후 및 산소플라즈마 후에 표면을 원자힘현미경(AFM) 및 투과 전자 현미경(TEM)으로 관찰하여 도 2 및 도 3 에 각각 나타내었다. 보다 상세하게는, 상기 실시예 1의 단계 1의 용액을 스핀코팅하여 얻은 박막의 표면을 원자힘현미경(AFM)으로 관찰하여 도 2의 (a)에 나타내었고, 상기 실시예 1의 단계 4의 표면을 원자힘현미경(AFM) 및 투과 전자 현미경(TEM)으로 관찰하여 도 2의 (b) 및 도 3의 (a)와 (b)에 각각 나타내었으며, 상기 실시예 1의 단계 5의 표면을 원자힘현미경(AFM) 및 투과 전자 현미경(TEM)으로 관찰하여 도 2의 (c) 및 도 3의 (c)와 (d)에 각각 나타내었다. 도 3의 (b)와 (d)는 확대된 이미지이다.For Example 1, the surface was observed before and after the addition of the zinc oxide precursor and after the oxygen plasma was observed by atomic force microscopy (AFM) and transmission electron microscope (TEM), respectively. More specifically, the surface of the thin film obtained by spin coating the solution of Step 1 of Example 1 was observed with an atomic force microscope (AFM), and is shown in FIG. 2 (a), and the step 4 of Example 1 The surface was observed with an atomic force microscope (AFM) and a transmission electron microscope (TEM), and is shown in FIGS. 2B and 3A and 3B, respectively, and the surface of step 5 of Example 1 was shown. Observed by an atomic force microscope (AFM) and transmission electron microscope (TEM) and shown in Figure 2 (c) and 3 (c) and (d), respectively. 3B and 3D are enlarged images.
도 2의 (a)에서 알 수 있는 바와 같이, 규칙적으로 정렬된 배열의 폴리스티렌-블록-폴리(4-비닐피리딘) 역마이셀을 관찰할 수 있었다. 또한, 도 2의 (b) 및 도 3의 (a)와 (b)에서 알 수 있는 바와 같이, 산화아연 졸-겔 전구체를 함유하는 산화아연-자기 조립 공중합체 박막에서 잘 정렬된 나노기공을 관찰할 수 있었다. 산화아연 졸-겔 전구체에 함유되어있는 알코올 성분, 상기 실시예 1에서 사용된 다이에탄올아민 성분이 4-비닐비리딘 블록을 재구성시켜 역마이셀을 개방시킴으로써 유도되는 현상으로써, 이를 통해 나노기공이 형성됨을 확인할 수 있었다. 나아가, 도 2의 (c) 및 도 3의 (c)와 (d) 에서 알 수 있는 바와 같이, 본원의 산화아연-자기 조립 공중합체 박막을 산소 플라즈마로써 처리하면 산화아연 나노링 구조체를 얻을 수 있었고, 상기 플라즈마 처리가 중합체 주형을 제거하고 산화아연 전구체를 산화시켰음을 확인할 수 있었다.As can be seen in FIG. 2 (a), polystyrene-block-poly (4-vinylpyridine) reverse micelles in a regularly ordered arrangement could be observed. Also, as can be seen in FIGS. 2 (b) and 3 (a) and 3 (b), nanopores well aligned in zinc oxide-self-assembled copolymer thin films containing zinc oxide sol-gel precursors It could be observed. The alcohol component contained in the zinc oxide sol-gel precursor and the diethanolamine component used in Example 1 are induced by reconstructing the 4-vinylbiridine block to open reverse micelles, thereby forming nanopores. Could confirm. Furthermore, as can be seen in FIGS. 2 (c) and 3 (c) and (d), the zinc oxide nanoring structure can be obtained by treating the zinc oxide-self-assembled copolymer thin film with oxygen plasma. It was confirmed that the plasma treatment removed the polymer template and oxidized the zinc oxide precursor.
특히, 상기 실시예 1에 대하여 역마이셀의 재구성이 다이에탄올아민에 의한 영향임을 확인하기 위하여 산화아연 졸-겔 전구체의 각 성분을 분리 도입함으로써 나타내는 박막의 표면을 원자힘현미경(AFM)으로 관찰하여 도 4에 나타내었다. 보다 상세하게는 상기 실시예 1의 단계 1의 용액을 스핀코팅하여 얻은 박막의 표면을 원자힘현미경(AFM)으로 관찰하여 도 4의 (a)에 나타내었고, 상기 실시예 1의 단계 1의 용액에 2-프로판올, 다이에탄올아민, 아세트산 아연 이수화물 각각을 첨가한 후의 혼합용액을 스핀 코팅하여 얻은 박막의 표면을 원자힘현기경(AFM)으로 관찰하여 도 4의 (b), (c), 및 (d)에 각각 나타내었다. 또한, 상기 실시예 1의 단계 1의 용액에 아세트산 아연 이수화물이 첨가된 혼합용액에 2-프로판올과 다이에탄올아민의 혼합 순서에 의한 구조변화를 관찰하기 위하여 하기의 실험을 수행하였으며, 혼합 순서에 따른 박막의 표면을 원자힘현미경(AFM)으로 관찰하여 도 4의 (e), (f), (g), 및 (h)에 나타내었다.Particularly, in order to confirm that the reconstitution of reverse micelles was influenced by diethanolamine, the surface of the thin film represented by separate introduction of each component of the zinc oxide sol-gel precursor was observed by atomic force microscope (AFM). 4 is shown. More specifically, the surface of the thin film obtained by spin coating the solution of Step 1 of Example 1 was observed in an atomic force microscope (AFM) and is shown in FIG. 4 (a), and the solution of Step 1 of Example 1 The surface of the thin film obtained by spin coating the mixed solution after 2-propanol, diethanolamine, and zinc acetate dihydrate was added thereto was observed by atomic force microscope (AFM), and FIGS. It is shown to (d), respectively. In addition, the following experiment was performed to observe the structural change caused by the mixing procedure of 2-propanol and diethanolamine in the mixed solution of zinc acetate dihydrate added to the solution of Step 1 of Example 1, The surface of the thin film was observed with an atomic force microscope (AFM) and is shown in FIGS. 4E, 4F, 7G and 4H.
도 4에서 알 수 있는 바와 같이, 산화아연 전구체 성분 중 다이에탄올아민이 첨가될 때에 혼합 순서에 관계없이 폴리스티렌-블록-폴리(4-비닐피리딘) 역마이셀의 개방이 유도됨을 확인할 수 있었다. As can be seen in Figure 4, when the diethanolamine of the zinc oxide precursor component is added, it was confirmed that the opening of the polystyrene-block-poly (4-vinylpyridine) reverse micelles was induced regardless of the mixing order.
<실험예 2> 이중블록 공중합체의 분자량 또는 상대적 부피 분율의 변화에 따른 산화아연 나노링 구조체의 구조변화Experimental Example 2 Structural Changes of Zinc Oxide Nanoring Structures According to Molecular Weight or Relative Volume Fraction
이중블록 공중합체의 분자량 또는 상대적 부피 분율의 변화에 따른 산화아연 나노링 구조체의 구조변화를 알아보기 위하여 하기의 실험을 수행하였다.The following experiment was conducted to investigate the structural change of the zinc oxide nanoring structure according to the change in molecular weight or relative volume fraction of the diblock copolymer.
상기 실시예 1, 3 및 4에 대하여 각 박막의 표면을 원자힘현미경(AFM)으로 관찰하여 도 5 에 나타내었다. 보다 상세하게는 상기 실시예 1, 3 및 4의 단계 5의 표면을 원자힘현미경(AFM)으로 관찰하여 각각 도 5의 (a), (b) 및 (c)에 나타내었다. 또한 각 박막의 표면을 확대하여 원자힘현미경(AFM)으로 관찰하여 도 5에 삽입된 형태로 나타내었고, 확대된 이미지로부터 절단면 프로파일(cross-section profile)을 얻어 도 5의 아래쪽에 각각 삽입하였다.For Examples 1, 3, and 4, the surface of each thin film was observed with an atomic force microscope (AFM), and is shown in FIG. 5. More specifically, the surface of step 5 of Examples 1, 3, and 4 was observed with an atomic force microscope (AFM), and shown in FIGS. 5A, 5B, and 5C, respectively. In addition, the surface of each thin film was magnified and observed with an atomic force microscope (AFM) to be inserted in FIG. 5, and a cross-section profile was obtained from the enlarged image and inserted into the bottom of FIG. 5.
상기 실시예 1에서 제조한 산화아연 나노링에 대한 원자힘현미경(AFM) 이미지인 도 5의 (a)에서 알 수 있는 바와 같이, 균일한 분포도와 준-육각형 배열의 충전밀도(packing density)를 가지는 산화아연 나노링 구조체를 얻을 수 있었고, 나노링 간의 평균 중심간 거리(center-center distance)가 약 73 ㎚ 임을 확인 하였다.As can be seen in FIG. 5 (a), which is an atomic force microscope (AFM) image of the zinc oxide nanoring prepared in Example 1, the uniform distribution and packing density of the quasi-hexagonal array are shown. Eggplants were able to obtain a zinc oxide nanoring structure, and the average center-center distance between the nanorings was about 73 nm.
상기 실시예 3에서 제조한 산화아연 나노링에 대한 원자현미경 이미지인 도 5의 (b)에서 알 수 있는 바와 같이, 분자량이 상대적으로 큰 폴리스티렌 영역으로 인하여 산화아연 나노링 중심간 거리가 실시예 1에서 제조한 산화아연의 나노링의 중심간 거리와 비교했을 때 더 증가함을 관찰할 수 있었다.As can be seen in (b) of FIG. 5, which is an atomic microscope image of the zinc oxide nanoring prepared in Example 3, the distance between the centers of the zinc oxide nanorings due to the relatively high molecular weight of the zinc oxide nanorings was found in Example 1 The increase was further observed when compared with the distance between the centers of the zinc oxide nanorings prepared in.
상기 실시예 4에서 제조한 산화아연 나노링에 대한 원자현미경 이미지인 도 5의 (c)에서 알 수 있는 바와 같이, 산화아연 나노링의 충전밀도가 실시예 1과 3에서 제조한 산화아연 나노링의 충전밀도보다 큰 것을 관찰할 수 있었고, 중심간 거리가 약 57 ㎚로 감소함을 관찰할 수 있었다. 또한 산화아연 나노구조체의 형태가 링 보다는 중앙 부분에 홈이 있는 디스크 형태에 가까움을 관찰할 수 있었다.As can be seen in (c) of FIG. 5, which is an atomic microscope image of the zinc oxide nanoring prepared in Example 4, the zinc oxide nanoring prepared in Examples 1 and 3 has a packing density of the zinc oxide nanoring. It was observed that the packing density was larger than, and the distance between the centers was reduced to about 57 nm. It was also observed that the shape of the zinc oxide nanostructures is closer to the shape of a disk with a groove in the center than the ring.
도 5에서 알 수 있는 바와 같이, 서로 다른 분자량을 가지는 이중블록 공중합체, 폴리스티렌-블록-폴리(4-비닐피리딘)을 사용함에 따라 산화아연 나노링의 중심간 거리와 형태가 뚜렷하게 차이나는 것을 확인하였고, 이를 통해 각각의 산화아연 나노링의 형태와 배열 간격을 이중블록 공중합체의 분자량 또는 두 블록 간의 상대적 부피분율의 변화에 따라 조절할 수 있음을 확인하였다.As can be seen in Figure 5, using a diblock copolymer having a different molecular weight, polystyrene-block-poly (4-vinylpyridine), it is confirmed that the distance between the center and the shape of the zinc oxide nanoring is distinctly different Through this, it was confirmed that the shape and spacing interval of each zinc oxide nanoring can be adjusted according to the molecular weight of the diblock copolymer or the change of the relative volume fraction between the two blocks.
<실험예 3> 산화아연 졸-겔 전구체의 농도 변화에 따른 산화아연 나노링 구조체의 구조변화Experimental Example 3 Structural Changes of Zinc Oxide Nano Ring Structures According to Concentration of Zinc Oxide Sol-Gel Precursor
산화아연 졸-겔 전구체의 농도변화에 따른 산화아연 나노링 구조체의 구조변화를 알아보기 위하여 하기의 실험을 수행하였다. The following experiment was conducted to investigate the structural change of the zinc oxide nanoring structure according to the concentration change of the zinc oxide sol-gel precursor.
상기 실시예 1, 5, 6, 7 및 8에 대하여 각 박막의 표면을 원자힘현미경(AFM)으로 관찰하여 도 2 및 도 6 에 나타내었다. 보다 상세하게는 상기 실시예 1, 5, 6, 7 및 8의 단계 5의 표면을 원자힘현미경(AFM)으로 관찰하여 각각 도 2의 (c)와 도 6의 (a), (b), (c) 및 (d)에 나타내었다.For Examples 1, 5, 6, 7, and 8, the surface of each thin film was observed with an atomic force microscope (AFM) and shown in FIGS. 2 and 6. In more detail, the surface of step 5 of Examples 1, 5, 6, 7 and 8 was observed with an atomic force microscope (AFM), and FIGS. 2 (c) and 6 (a), 6 (b), It is shown to (c) and (d).
상기 실시예 1에서 제조한 산화아연 나노링에 대한 원자힘현미경(AFM) 이미지인 도 2의 (c)에서 알 수 있는 바와 같이, 균일한 분포도와 준-육각형 배열의 충전밀도를 가지는 산화아연 나노링 구조체를 얻을 수 있었다.As can be seen in (c) of FIG. 2, which is an atomic force microscope (AFM) image of the zinc oxide nanoring prepared in Example 1, zinc oxide nano having a uniform distribution and a packing density of a quasi-hexagonal array The ring structure was obtained.
상기 실시예 5 및 6에서 제조한 산화아연 나노링에 대한 원자힘현미경(AFM) 이미지인 도 6의 (a) 및 (b)에서 알 수 있는 바와 같이, 산화아연 나노링의 형태와 분포가 상기 실시예 1에서 제조한 산화아연의 나노링 구조체와 유사함을 관찰할 수 있었다.As can be seen in Figure 6 (a) and (b) of the atomic force microscope (AFM) image of the zinc oxide nanoring prepared in Examples 5 and 6, the shape and distribution of the zinc oxide nanoring It can be observed that similar to the nanoring structure of zinc oxide prepared in Example 1.
상기 실시예 7 및 8에서 제조한 산화아연 나노링에 대한 원자힘현미경(AFM) 이미지인 도 6의 (c) 및 (d)에서 알 수 있는 바와 같이, 산화아연 나노링의 형태가 일그러지고, 인접 나노링 간에 겹쳐지기 시작함을 관찰할 수 있었고, 특히 상기 실시예 8에서 제조한 산화아연 구조체의 경우 타원형이면서 길어진 나노링이 주로 얻어짐을 확인할 수 있었다.As can be seen in Figure 6 (c) and (d) of the atomic force microscope (AFM) image of the zinc oxide nanoring prepared in Examples 7 and 8, the shape of the zinc oxide nanoring is distorted, It was observed that the overlap between the adjacent nano-rings, especially in the case of the zinc oxide structure prepared in Example 8 was confirmed that the elliptical and elongated nano-rings are mainly obtained.
도 2 및 6에서 알 수 있는 바와 같이, 상대적으로 많은 양의 산화아연 전구체가 도입될 경우 즉, 산화아연 졸-겔 전구체의 농도가 증가할 경우, 결과적으로 산화아연 나노링의 형태가 변화함을 확인 하였고, 이를 통해 균일한 분포도와 준-육각형 배열의 충전밀도를 가지는 산화아연 나노링 구조체를 얻기 위해서 폴리(4-비닐피리딘)이 수용할 수 있는 전구체의 양이 0.5 M 정도로 제한됨을 알 수 있었다.As can be seen in Figures 2 and 6, when a relatively large amount of zinc oxide precursor is introduced, that is, when the concentration of the zinc oxide sol-gel precursor is increased, the shape of the zinc oxide nanoring changes as a result. Through this, it was found that the amount of precursor that poly (4-vinylpyridine) can accommodate is limited to 0.5 M in order to obtain a zinc oxide nanoring structure having uniform distribution and quasi-hexagonal packing density. .
이로부터, 본원의 초고집적 산화아연 나노링 구조체 배열이 생성되는 현상은 산화아연 전구체에 함유된 알코올 성분의 역할이 큰 것을 알 수 있으며, 서로 다른 조성의 이중블록 공중합체를 이용하거나 산화아연 전구체의 상대적인 농도를 변화시킴으로써 산화아연 나노링 구조체의 형태와 배열을 조절할 수 있음을 알 수 있었다.From this, it can be seen that the phenomenon in which the ultra-high density zinc oxide nanoring structure arrangement of the present application plays a large role of the alcohol component contained in the zinc oxide precursor, and uses a diblock copolymer having a different composition or It was found that the shape and arrangement of the zinc oxide nanoring structure could be controlled by changing the relative concentrations.
<실험예 4> 산화아연 나노링 구조체의 결정구조Experimental Example 4 Crystal Structure of Zinc Oxide Nano Ring Structure
산화아연 나노링 구조체의 결정구조를 알아보기 위하여 하기의 실험을 수행하였다.In order to investigate the crystal structure of the zinc oxide nanoring structure, the following experiment was performed.
상기 실시예 2에 대하여 각 나노링 구조체를 원자힘현미경(AFM) 및 X-선 회절장치(XRD)로 분석하여 도 7에 나타내었다. 보다 상세하게는 상기 실시예 2의 단계 5의 표면을 원자힘현미경(AFM)으로 관찰하여 도 7의 (a)에 나타내었고, 열처리 온도 조건에 따라 관찰하여 X-선 회절장치(XRD)로 분석하여 도 7의 (b)에 나타내었다.The nanoring structures of Example 2 were analyzed by atomic force microscope (AFM) and X-ray diffractometer (XRD), and are shown in FIG. 7. More specifically, the surface of step 5 of Example 2 was observed in an atomic force microscope (AFM), and is shown in FIG. 7 (a). It is shown in Figure 7 (b).
도 7에서 알 수 있는 바와 같이, 불활성 기체 분위기 하의 고온에서 열처리한 후, 산화아연 나노링 구조체의 배열과 결정구조를 얻을 수 있었다. 원자힘현미경(AFM) 사진으로부터 불활성 기체 분위기 하의 고온에서 열처리 함으로써 자기조립 공중합체가 제거되면서 산화된 산화아연 나노링 구초제의 배열을 얻을 수 있음을 알 수 있었다. X-선 회절장치(XRD)의 특정 피크로부터 상기 실시예 2에서 제조한 산화아연 나노링 구조체는 육방정계 부르트차이트(Wurtzite) 구조를 가짐을 알 수 있었다. 또한, 도 7의 (b)에서 알 수 있는 바와 같이, 열처리 온도가 높을수록 X-선 회절장치(XRD)의 피크 강도가 증가함을 확인 하였고, 이로부터 결정성이 증가한 산화아연 나노링 구조체를 제조할 수 있었다.As can be seen in Figure 7, after the heat treatment at a high temperature in an inert gas atmosphere, it was possible to obtain the arrangement and crystal structure of the zinc oxide nanoring structure. From the atomic force microscope (AFM) image, it was found that the heat-treated at high temperature under an inert gas atmosphere can obtain an array of oxidized zinc oxide nanoring herbicides while removing the self-assembled copolymer. From the specific peak of the X-ray diffractometer (XRD), it can be seen that the zinc oxide nanoring structure prepared in Example 2 has a hexagonal wurtzite structure. In addition, as can be seen in Figure 7 (b), the higher the heat treatment temperature was confirmed that the peak intensity of the X-ray diffractometer (XRD) increased, from which the zinc oxide nanoring structure with increased crystallinity Could be manufactured.
<실험예 5> 금 나노입자 도입에 의한 산화아연 나노링의 하이브리드화Experimental Example 5 Hybridization of Zinc Oxide Nano Rings by Introduction of Gold Nanoparticles
금 나노입자 도입함으로써 형성된 하이브리드 금-산화아연 나노링 구조체를 확인하기 위하여 하기의 실험을 수행하였다.In order to identify the hybrid gold-zinc oxide nanoring structure formed by introducing gold nanoparticles, the following experiment was performed.
상기 실시예 9에 대하여 하이브리드 박막의 표면을 전계방출 주사 전자현미경(FESEM)으로 관찰하여 도 8의 (a)에 나타내었고, 금 및 산화아연 성분을 X-선 분광분석 (EDS)로 분석하여 도 8의 (b)에 나타내었다.In Example 9, the surface of the hybrid thin film was observed by field emission scanning electron microscopy (FESEM), and is shown in FIG. 8 (a). The gold and zinc oxide components were analyzed by X-ray spectroscopy (EDS). It is shown to 8 (b).
도 8에서 알 수 있는 바와 같이, 금 나노입자가 성공적으로 산화아연 나노링과 하이브리드 되었음을 확인할 수 있었다. 산성 수용액 하에서 해리된 음전하를 띄는 금 나노입자 전구체가 양성자화된 폴리(4-비닐피리딘)에 선택적으로 결합함으로써 이중블록 공중합체가 제거된 후에 금 나노입자가 산화아연 나노링과 하이브리드 되었음을 전계방출 주사 전자방출현미경(SEM)으로부터 확인할 수 있었다. 또한 하이브리드 박막의 X-선 분광분석(EDS)을 통하여서도 금 나노입자의 도입을 확인할 수 있었다. As can be seen in FIG. 8, it was confirmed that the gold nanoparticles were successfully hybridized with the zinc oxide nanorings. Field emission injection that the gold nanoparticles hybridized with the zinc oxide nanoring after the diblock copolymer was removed by selectively binding the negatively charged gold nanoparticle precursors dissociated in an acidic aqueous solution to protonated poly (4-vinylpyridine). It was confirmed from an electron emission microscope (SEM). In addition, the introduction of gold nanoparticles was confirmed through X-ray spectroscopy (EDS) of the hybrid thin film.

Claims (20)

  1. (a) 자기 조립 이중블록 공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계;(a) dissolving the self-assembling diblock copolymer in a solvent to prepare a reverse micelle solution;
    (b) 알코올을 함유하는 용매와 산화아연 전구체를 첨가하여 산화아연 졸-겔 전구체 용액을 제조하는 단계; 및(b) adding a solvent containing an alcohol and a zinc oxide precursor to prepare a zinc oxide sol-gel precursor solution; And
    (c) 상기 역마이셀 용액과 상기 산화아연 졸-겔 전구체 용액을 혼합하여 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 제조하는 단계:(c) mixing the reverse micelle solution and the zinc oxide sol-gel precursor solution to prepare a reverse micelle solution containing a zinc oxide sol-gel precursor;
    를 포함하는, 산화아연 나노링 구조체의 제조방법.A method of manufacturing a zinc oxide nanoring structure, comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    (d) 상기 산화아연 졸-겔 전구체를 함유하는 역마이셀 용액을 기판 상에 코팅하여 산화아연-자기조립 공중합체 박막을 제조하는 단계; 및,(d) coating a reverse micelle solution containing the zinc oxide sol-gel precursor onto a substrate to prepare a zinc oxide-self-assembled copolymer thin film; And,
    (e) 상기 박막을 후처리 하여 상기 자기 조립 이중블록 공중합체를 제거하는 단계: 를 추가로 포함하는, 산화아연 나노링 구조체의 제조방법.(e) post-treating the thin film to remove the self-assembling diblock copolymer: further comprising, zinc oxide nanoring structure manufacturing method.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 알코올이 프로판올, 에탄올, 메탄올, 2-메톡시에탄올 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The alcohol comprises a one selected from the group consisting of propanol, ethanol, methanol, 2-methoxyethanol, and combinations thereof.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 단계 (b)에서, 상기 알코올을 함유하는 용매가 안정화제를 추가 포함하는 것인, 산화아연 나노링 구조체의 제조방법.In the step (b), the solvent containing the alcohol further comprises a stabilizer, the method of producing a zinc oxide nanoring structure.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 안정화제가 다이에탄올아민(diethanolamine, DEA), 모노에탄올아민(monoethanolamine, MEA) 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The stabilizer is selected from the group consisting of diethanolamine (diethanolamine, DEA), monoethanolamine (MEA), and combinations thereof, The method of producing a zinc oxide nanoring structure.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 자기 조립 이중블록 공중합체가 양친성 이중블록 공중합체를 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The self-assembling diblock copolymer will include an amphiphilic diblock copolymer, a method of producing a zinc oxide nanoring structure.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 양친성 이중블록 공중합체가 폴리스티렌-블록-폴리(4-비닐피리딘)(PS-b-P4VP), 폴리스티렌-블록-폴리(2-비닐피리딘)(PS-b-P2VP), 폴리스티렌-블록-폴리에틸렌옥사이드(PS-b-PEO), 폴리스티렌-블록-폴리메틸메타크릴레이트(PS-b-PMMA), 폴리아이소피렌-블록-폴리(2-비닐피리딘)(PI-b-P2VP), 폴리(2-비닐피리딘)-블록-폴리다이메틸실록세인(P2VP-b-PDMS) 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The amphiphilic diblock copolymers are polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP), polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), polystyrene-block- Polyethylene oxide (PS-b-PEO), polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polyisoprene-block-poly (2-vinylpyridine) (PI-b-P2VP), poly ( 2-vinylpyridine) -block-polydimethylsiloxane (P2VP-b-PDMS) and a combination thereof, the method of manufacturing a zinc oxide nanoring structure.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 단계 (a)에서, 상기 용매는 상기 자기 조립 이중 블록 공중합체에 포함된 이중블록 중 어느 한쪽 블록만을 선택적으로 용해시키는 것인, 산화아연 나노링 구조체의 제조방법.In the step (a), the solvent is to selectively dissolve only one block of the diblock contained in the self-assembled double block copolymer, zinc oxide nano ring structure manufacturing method.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 용매는 톨루엔, 클로로포름, 테트라하이드로푸란(THF), 벤젠, 헵테인, 자일렌 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것인, 나노링 구조체의 제조방법.Wherein the solvent comprises one selected from the group consisting of toluene, chloroform, tetrahydrofuran (THF), benzene, heptane, xylene, and combinations thereof.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 단계 (a)의 역마이셀 용액이 상기 자기 조립 이중블록 공중합체를 0.1 중량% 내지 1.0 중량% 함유하는 것인, 산화아연 나노링 구조체의 제조방법.The reverse micelle solution of step (a) will contain 0.1 wt% to 1.0 wt% of the self-assembling diblock copolymer.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 산화아연 전구체가 아세트산 아연 이수화물, 아연 아세틸아세토네이트 일수화물, 질산아연 육수화물, 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.And the zinc oxide precursor is selected from the group consisting of zinc acetate dihydrate, zinc acetylacetonate monohydrate, zinc nitrate hexahydrate, and combinations thereof.
  12. 제 4 항에 있어서,The method of claim 4, wherein
    상기 산화아연 전구체와 상기 안정화제의 몰비가 1: 0.1 내지 2인 것인, 산화아연 나노링 구조체의 제조방법.The molar ratio of the zinc oxide precursor and the stabilizer is 1: 0.1 to 2, the method of manufacturing a zinc oxide nanoring structure.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 단계 (b)에서, 상기 산화아연 졸-겔 전구체의 농도가 0.3 M 내지 2 M인, 나노링 구조체의 제조방법.In the step (b), the concentration of the zinc oxide sol-gel precursor is 0.3 M to 2 M, the manufacturing method of the nano-ring structure.
  14. 제 2 항에 있어서,The method of claim 2,
    상기 기판이 실리콘 웨이퍼, 쿼츠, 유리 마이카, 및 이들의 조합으로 이루어진 그룹으로부터 선택되는 것을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.And the substrate is selected from the group consisting of silicon wafers, quartz, glass mica, and combinations thereof.
  15. 제 2 항에 있어서, The method of claim 2,
    상기 후처리는 산소 플라즈마 처리, 열처리, 자외선 조사, 및 이들의 조합으로 이루어진 그룹에서 선택되는 공정을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The post-treatment will include a process selected from the group consisting of oxygen plasma treatment, heat treatment, ultraviolet irradiation, and combinations thereof.
  16. 제 2 항에 있어서,The method of claim 2,
    상기 산화아연 나노링 구조체에 금 나노입자를 도입하여 하이브리드 형태의 금-산화아연 나노링 구조체를 형성하기 위하여, 상기 단계 (d) 에서, 상기 제조된 산화아연-자기조립 공중합체 박막을 금 전구체를 함유하는 산성 수용액에 침지시키는 단계를 추가로 포함하는, 산화아연 나노링 구조체의 제조방법.In order to form a gold-zinc oxide nanoring structure in a hybrid form by introducing gold nanoparticles into the zinc oxide nanoring structure, in the step (d), the prepared zinc oxide-self-assembled copolymer thin film to a gold precursor Further comprising the step of immersing in an acidic aqueous solution containing, a method for producing a zinc oxide nanoring structure.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 금 나노입자의 전구체가 HAuCl4, KAuCl4, NaAuCl4, NH4AuCl4, LiAuCl4, KAuBr4, NaAuBr4, HAuBr4, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The precursor of the gold nanoparticles are oxidized, including those selected from the group consisting of HAuCl 4 , KAuCl 4 , NaAuCl 4 , NH 4 AuCl 4 , LiAuCl 4 , KAuBr 4 , NaAuBr 4 , HAuBr 4 , and combinations thereof. Method of manufacturing zinc nanoring structure.
  18. 제 16 항에 있어서, The method of claim 16,
    상기 산성 수용액은 염산, 질산, 황산, 아세트산, 포름산 및 이들의 조합으로 이루어진 그룹에서 선택되는 산을 포함하는 것인, 산화아연 나노링 구조체의 제조방법.The acidic aqueous solution comprises an acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, and combinations thereof, a method for producing a zinc oxide nanoring structure.
  19. 제 1 항 내지 제 18 항 중 어느 한 항의 방법에 의해 제조된 산화아연 나노링 구조체.Zinc oxide nanoring structure produced by the method of any one of claims 1 to 18.
  20. 기판 상에 제 19 항에 따른 산화아연 나노링 구조체가 배열된, 산화아연 나노링 구조체 어레이.An array of zinc oxide nanoring structures, wherein the zinc oxide nanoring structures according to claim 19 are arranged on a substrate.
PCT/KR2011/001283 2010-02-25 2011-02-24 Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process WO2011105822A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0017008 2010-02-25
KR20100017008 2010-02-25

Publications (2)

Publication Number Publication Date
WO2011105822A2 true WO2011105822A2 (en) 2011-09-01
WO2011105822A3 WO2011105822A3 (en) 2012-02-09

Family

ID=44507438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001283 WO2011105822A2 (en) 2010-02-25 2011-02-24 Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process

Country Status (2)

Country Link
KR (1) KR101305052B1 (en)
WO (1) WO2011105822A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495511C2 (en) * 2011-09-02 2013-10-10 Федеральное государственное бюджетное учреждение " Петербургский институт ядерной физики им. Б.П. Константинова" Method of producing nanoring arrays

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674236A (en) * 2011-03-10 2012-09-19 中国科学院合肥物质科学研究院 Gold micro-nano composite structure array and preparation method thereof
WO2015084132A1 (en) * 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
CN105980342B (en) 2013-12-06 2019-02-15 株式会社Lg化学 Monomer and block copolymer
CN105899556B (en) 2013-12-06 2019-04-19 株式会社Lg化学 Block copolymer
WO2015084121A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
WO2015084129A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
JP6432846B2 (en) 2013-12-06 2018-12-05 エルジー・ケム・リミテッド Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
JP6334706B2 (en) 2013-12-06 2018-05-30 エルジー・ケム・リミテッド Block copolymer
JP6402867B2 (en) 2013-12-06 2018-10-10 エルジー・ケム・リミテッド Block copolymer
WO2015084131A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
EP3078689B1 (en) 2013-12-06 2020-12-02 LG Chem, Ltd. Block copolymer
EP3078685B1 (en) 2013-12-06 2020-09-09 LG Chem, Ltd. Block copolymer
EP3078692B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
JP6505212B2 (en) 2014-09-30 2019-04-24 エルジー・ケム・リミテッド Block copolymer
CN107075054B (en) 2014-09-30 2020-05-05 株式会社Lg化学 Block copolymer
WO2016052999A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
EP3202800B1 (en) 2014-09-30 2021-12-29 LG Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
CN107078026B (en) 2014-09-30 2020-03-27 株式会社Lg化学 Method for preparing patterned substrate
WO2016053011A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
JP6394798B2 (en) 2014-09-30 2018-09-26 エルジー・ケム・リミテッド Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
KR101638377B1 (en) * 2015-02-11 2016-07-11 영남대학교 산학협력단 Anti-reflection coatings for solar cell and method of manufacturing the same, and solar cell of high photovoltaic efficiency using the same
KR101638450B1 (en) * 2015-02-11 2016-07-11 영남대학교 산학협력단 Zinc oxide thin film and method of manufacturing the same, and backlight unit and solar cell using the same
KR101730812B1 (en) 2016-03-30 2017-04-27 충남대학교산학협력단 Aluminum ion doped zinc oxide luminous material and method for continuous synthesis the same
CN107934911A (en) * 2017-11-14 2018-04-20 西安交通大学 Liquid microarray preparation method based on template-mediated self assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108836A (en) * 2008-04-14 2009-10-19 이화여자대학교 산학협력단 The preparation method of 2D arrays of titania nanoparticles using self-assembly of diblock copolymer and sol-gel process
KR20100011184A (en) * 2008-07-24 2010-02-03 광주과학기술원 Nanoporous inorganic layer, method for fabricating the layer, photocatalyst layer including the layer, and dye-sensitized solar cell including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090087353A (en) * 2008-02-12 2009-08-17 포항공과대학교 산학협력단 Fabrication of nanostructure using self-assembled block copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108836A (en) * 2008-04-14 2009-10-19 이화여자대학교 산학협력단 The preparation method of 2D arrays of titania nanoparticles using self-assembly of diblock copolymer and sol-gel process
KR20100011184A (en) * 2008-07-24 2010-02-03 광주과학기술원 Nanoporous inorganic layer, method for fabricating the layer, photocatalyst layer including the layer, and dye-sensitized solar cell including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LADENBURGER, A. ET AL.: 'Characterization of regular ZnO and ZnxCdl-xO nano-'donuts' cast in particle templated porous membranes.' PHYSICA E. vol. 17, 2003, pages 489 - 493 *
LI, XUE ET AL.: 'Au/Titania composite nanoparticle arrays with controlled size and spacing by organic-inorganic nanohybridization in thin film block copolymer templates.' BULL. KOREAN CHEM. SOC. vol. 28, no. 6, 2007, pages 1015 - 1020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495511C2 (en) * 2011-09-02 2013-10-10 Федеральное государственное бюджетное учреждение " Петербургский институт ядерной физики им. Б.П. Константинова" Method of producing nanoring arrays

Also Published As

Publication number Publication date
KR101305052B1 (en) 2013-09-11
KR20110097707A (en) 2011-08-31
WO2011105822A3 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2011105822A2 (en) Method for producing a zinc oxide nanoring structure using a self-assembled diblock copolymer and a sol-gel process
Fan et al. Semiconductor nanowires: from self‐organization to patterned growth
Braun et al. Epitaxial Growth of High Dielectric Contrast Three‐Dimensional Photonic Crystals
Chen et al. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas
KR101012123B1 (en) Preparation method of metal/zinc oxide hetero nanostructures with enhanced photocatalytic efficiency and metal/zinc oxide hetero nanostructures
JP2010100061A (en) Polymer-inorganic particle composition
WO2018062646A2 (en) Gold nanoparticle superlattice embedded in porous silica and method for manufacturing same
Saifullah et al. Sub‐10 nm high‐aspect‐ratio patterning of ZnO using an electron beam
WO2012070908A2 (en) Organic/inorganic hybrid hierarchical structure and method for manufacturing a superhydrophobic or superhydrophilic surface using same
WO2012144728A2 (en) Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof
WO2020180029A1 (en) Metal particle-loaded hollow mesoporous organosilica nano/microparticles and method for manufacturing same
WO2019177205A1 (en) Anisotropic 2d silver nano plates and method for manufacturing same
WO2012093776A2 (en) Method for preparing inorganic-nanostructure composite material, method for preparing carbon nanotube composite using same, and carbon nanotube composite prepared thereby
Harish et al. Chemical synthesis and properties of spindle-like CuO nanostructures with porous nature
KR101019747B1 (en) The preparation method of Au/titania hybrid nanostructures using self-assembled diblock copolymer and 2D arrays of Au/titania nanodot/nanowire
Shirahata et al. Micro-emulsion synthesis of blue-luminescent silicon nanoparticles stabilized with alkoxy monolayers
KR100986705B1 (en) The preparation method of 2D arrays of titania nanoparticles using self-assembly of diblock copolymer and sol-gel process
KR20210011397A (en) Method of manufacturing a gas separation membrane
Sepulveda-Guzman et al. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography
Qurashi et al. Density-controlled selective growth of well-aligned ZnO nanorod arrays by a hybrid approach
RU2550316C1 (en) Method of creating nano-sized nanostructured oxide films on inp with application of vanadium pentaxide gel
Ghoshal et al. Size controlled fabrication of ordered monodispersed iron, cobalt and cobalt iron composite oxides nanoparticles arrays: A common block copolymer methodology
WO2019139352A1 (en) Perovskite-embedded photonic crystal and manufacturing method therefor
KR101424329B1 (en) Silica Nano Structure, Method of fabricating the same and Etching Mask using the same
KR20120046388A (en) Preparation mathod of nano structure with 2d array of tio2 nano particle, nano structure with 2dimensional array of tio2 nano particle made by the same, and organic solar cell including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747712

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747712

Country of ref document: EP

Kind code of ref document: A2