WO2012144728A2 - Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof - Google Patents

Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof Download PDF

Info

Publication number
WO2012144728A2
WO2012144728A2 PCT/KR2012/001216 KR2012001216W WO2012144728A2 WO 2012144728 A2 WO2012144728 A2 WO 2012144728A2 KR 2012001216 W KR2012001216 W KR 2012001216W WO 2012144728 A2 WO2012144728 A2 WO 2012144728A2
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
metal ion
metal
polymer
array
Prior art date
Application number
PCT/KR2012/001216
Other languages
French (fr)
Korean (ko)
Other versions
WO2012144728A3 (en
Inventor
김상욱
신동옥
문정호
박수진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120005865A external-priority patent/KR20120123183A/en
Priority claimed from KR1020120005867A external-priority patent/KR20120123184A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012144728A2 publication Critical patent/WO2012144728A2/en
Publication of WO2012144728A3 publication Critical patent/WO2012144728A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material

Definitions

  • the present invention relates to a method for manufacturing a nanoparticle array which can be adjusted in size, and to a nanoparticle array prepared by the present invention and its application, and more particularly, the nanoparticle size can be easily controlled by the loading time of the metal ion, such as a catalyst and the like.
  • the present invention relates to a method for manufacturing a scalable nanoparticle array, which can be effectively applied to various applications of the nanoparticle array and its application.
  • Nanoscale particles have a large surface area resulting from nanoscale quantum confinement effects and small sizes, from which they exhibit size-dependent electrical, magnetic, chemical, optical, and catalytic properties. Patterning nanoparticles into two-dimensional (2D) arrays is already under considerable research due to their potential applications in sensors, magnetic data reservoirs, flash memories, and catalysts. However, despite active research in nanoparticle synthesis, the technique of precisely positioning, aligning and immobilizing nanoparticles on a desired substrate remains a technical challenge. In addition, it is very important to arrange nanopatterned particles on a desired substrate in a controlled manner. If the accuracy of the technique of locating and arranging nanoparticles is high, a nanoparticle array with controlled size can be applied to the various applications described above.
  • Block copolymer lithography is evolving into lithography technology to overcome the inherent resolution limitations of conventional photolithography processes.
  • the horizontal self-assembly technique of the separated block copolymer nanodomains of the microphase allows the fabrication of nanolithography masks that repeat at a size of 30 nm or less on any large area.
  • recent self-assembly and orientation techniques using external electric field application, chemical or topography prepattern methods have achieved nano-patterns arranged horizontally over large areas.
  • the inherent polydispersity of self-assembled nanoregions remains a technical challenge for producing nanopatterned morphologies with monodispersity.
  • scaled pattern transfer techniques have not been achieved on a block copolymer lithography basis to date.
  • the problem to be solved by the present invention is to provide a method for producing a nanoparticle array having a monodisperse property and controllable in size on a substrate and a nanoparticle array produced thereby.
  • a nanoparticle array of monodisperse properties are provided on a substrate and a nanoparticle array produced thereby.
  • the present invention provides a nanoparticle array comprising contacting a metal ion solution with a charged polymer that electrostatically bonds with the metal ion in the solution, thereby binding the metal ion to the polymer.
  • a nanoparticle array comprising contacting a metal ion solution with a charged polymer that electrostatically bonds with the metal ion in the solution, thereby binding the metal ion to the polymer.
  • monodisperse nanoparticle arrays can be deposited by block copolymer lithography.
  • the nanoparticle size can be easily controlled by the loading time of the metal ion, it can be effectively applied to various applications such as a catalyst.
  • metals having different physical properties may be deposited on a substrate in an array of lines and dots.
  • it is possible to freely determine the type of metal array and the type of metal through the selective electrostatic bonding of the block copolymer of self-assembly and the specific polymer of the block copolymer with the metal ion, and also there is no limitation on the substrate area.
  • an alloy array due to the simultaneous bonding of dissimilar metal ions can also be easily manufactured.
  • FIG. 1 is a process schematic diagram according to an embodiment of the present invention.
  • FIG. 2 is a process schematic diagram according to another embodiment of the present invention.
  • PS-b-P4VP thin film SEM images (FIG. 1B) after spin on a silicon substrate
  • PS-b-P4VP thin film images (FIG. 1C, 1D) after solvent-annealing.
  • 6 to 8 are SEM images of Fe 2 O 3 nanoparticle arrays prepared by immersing a spincast-solvent annealed block copolymer template in an aqueous solution containing a metal ion complex for 1 minute.
  • 9-11 are statistical distributions of Fe 2 O 3 nanoparticle diameters.
  • FIG. 12 is an SEM image showing the growth of an array of nanoparticles obtained from a solvent annealed template for 5 hours with time the template was immersed (loaded) in a metal complex ion solution.
  • FIG. 13 is a graph illustrating change in diameter of nanoparticles according to metal ion loading time.
  • 15 is a cross-sectional SEM image of vertically grown carbon nanotubes.
  • FIG. 16 is an SEM image of the lower portion of the carbon nanotube at high magnification.
  • 17 and 18 are SEM images of carbon nanotubes grown from double-walled and triple-walled nanoparticle catalysts.
  • FIG. 19 is a graph of statistically comparing the number of carbon walls prepared from the block copolymer template in the spin state with the block copolymer template after annealing for 5 hours.
  • FIG. 20 shows single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), triple-walled carbon nanotubes (TWNTs), and four-walled multi-walled carbon nanotubes (MWNTs) prepared from a 5-hour annealed block copolymer template. The relative fractions of) are analyzed according to the loading time of the complex complex.
  • SWNTs single-walled carbon nanotubes
  • DWNTs double-walled carbon nanotubes
  • TWNTs triple-walled carbon nanotubes
  • MWNTs four-walled multi-walled carbon nanotubes
  • FIG. 21 is a schematic diagram of hierarchical patterning of nanoparticle arrays and corresponding carbon nanotube growth.
  • FIG. 26 is a photograph after formation of a Pt line (34 nm period, 10 nm wide) according to the first block copolymer lithography prepared according to the present invention.
  • FIG. 27 is a photograph showing that the P4VP cylinder structure protruding in a plane at the 34 nm period and the 10 nm diameter was correctly formed between Pt lines.
  • FIG. 28 is a photograph showing that a 10 nm diameter Pd nanopoint is formed at a position of the P4VP cylinder nanodomain of FIG. 27.
  • FIG. 29 shows an array of nanoparticles formed in the form of an intersection of a Pt line and a Pd line
  • FIG. 30 is a dot-dot form
  • FIGS. 31 and 32 are EDS mapping images of the Pt line and the Pd dot array.
  • 33 to 37 are images of Pt line-Co point, Pt line-Au point, Pd line-Fe 2 O 3 point, Pt point-Fe 2 O 3 point, and Pd line-Pd line, respectively.
  • 39 to 41 are SEM images and size distribution graphs, FePt alloy nanodot arrays and size distribution graphs, TEM images and high temperature heat treatment graphs of self-assembled cylinder block copolymers, respectively.
  • the present invention provides a method for achieving monodisperse nanoparticle arrays that can be scaled to sub-nanometer levels directly from block copolymer lithography in order to solve the above problems.
  • the present invention produces monodisperse nanoparticle arrays on a substrate, in particular by inducing an electrostatic interaction between a polymer and a metal ion of any of the self-assembled block copolymers.
  • the interaction of block copolymers with metal ions in the present invention has a very high specificity (because electrostatic interactions only occur for certain block polymers of limited size) and are oriented in a specific direction with metal deposition.
  • Monodispersed nanoparticle arrays can be deposited to a desired size, depending on the uniformity of the block copolymer morphology of the structure.
  • the method for producing a nanoparticle array according to the present invention produces a nanoparticle array using a block copolymer comprising at least two different types of polymers, namely, a first polymer and a second polymer, as described above.
  • the copolymer is self-assembled to prepare a block copolymer template having a specific structure, and the metal ions of the specific polymer (first polymer) in the self-assembled block copolymer template and the nanoparticles to be prepared are subjected to electrostatic interaction. Selectively bind and remove the block copolymer again.
  • the block copolymer is used as a template for preparing nanoparticle arrays, and in particular, the present invention specifically binds the self-assembled first polymer and precursor solution ions of nanoparticles (metal nanoparticles).
  • the selective bonding between the base metal ion and the first polymer proceeds in such a way that the self-assembled block copolymer is immersed in the solution containing the metal ion.
  • the metal ion is in the form of an anionic metal complex and the first polymer bears a cation in the aqueous solution.
  • a polymer having a cation-containing nitrogen-containing group for example, pyridine
  • a metal such as Fe
  • FIG. 1 is an overall schematic diagram of a process according to an embodiment of the present invention.
  • the amphiphilic poly (styrene-block-4-vinylpyridine) (PS-b-P4VP) on any substrate PS block (second polymer) is 24.0 kg / mol
  • P4VP block ( 1 polymer) was mixed with a 9.5 kg / mol) block copolymer thin film in a toluene: tetrahydrofuran (THF) mixed solution, spin-cast and immediately self-assembled to form a P4VP nanocylinder array perpendicular to the PS matrix.
  • THF tetrahydrofuran
  • the size of the self-assembled cylinder region structure was fairly uniform.
  • a horizontally-arranged hexagonal cylinder array with a very narrow size distribution was produced.
  • the block copolymer thin film having a high order, horizontally arranged nanoarea structure, and deposited on the substrate was immersed in a 1 mM K 3 [Fe (CN) 6 ]: 0.1% HCl aqueous solution.
  • the anionic metal complex of Fe (CN) 6-3 binds to the quantized pyridine nitrogen (cationic) of the P4VP cylinder nanodomain, which is the first polymer.
  • the nanoparticle size can be controlled to be less than nanometers.
  • the Fe 2 O 3 nanoparticle array prepared according to the present invention may function as a catalytic functional material for carbon nanotube (CNT) growth.
  • CNT carbon nanotube
  • K 3 [Fe (CN) 6 ] any other ionic metal complex ion can be used to fabricate and fix various types of metal nanoparticle arrays on any substrate.
  • the following examples of the present invention used one kind of metal ion complex, but when two or more ion complexes are mixed and used, heterogeneous metal nanoparticle arrays are also possible.
  • a specific block copolymer (P4VP in one embodiment of the present invention) that is protonated in an acidic solution is immersed in an acidic solution, and the specific block is formed by electrostatic action with a metal anion.
  • P4VP polyvinyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-styrene-styrene-styrene-styl-styl-styl-styl-styrene-styrene-styrene-styrene-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-
  • FIG. 2 is a process schematic diagram of a metal layer manufacturing method according to the embodiment of the present invention.
  • a P4VP polymer substrate deposited on a silicon substrate is immersed in an acid solution containing metal anion (M ⁇ ) to electrostatically bond a metal anion to the polymer substrate charged with a cation, thereby providing the metal Anions are deposited on the polymer substrate. Thereafter, the polymer substrate is removed to prepare a metal layer deposited in a form corresponding to the polymer substrate.
  • M ⁇ metal anion
  • Polystyrene-block-poly (4-vinylpyridine) PS-b-P4VP, molecular weight: 24 kg mol-1 PS, 9.5 kg mol-1 P4VP), asymmetric block copolymer, potassium hexacyanoate (III) (Potassium ferricyanide), pure ammonia and acetylene gas were prepared.
  • the silicon wafer was immersed in a piranha solution ((7: 3 H 2 SO 4: H 2 O 2) for 1 hour at 110 ° C. and washed several times with deionized water.
  • Ps-b-P4VP block copolymer (0.5 wt%) was added to the toluene / THF mixture.
  • a 25 nm thick PS-b_P4VP thin film from 0.5 wt% toluene was dissolved and spincoated onto the washed silicon
  • the spinned film was solvent annealed in a small sealed container, first toluene and THF (toluene: THF).
  • the solvent annealed sample was immersed in a 1 mM K 3 [Fe (CN) 6]: 0.1% HCl aqueous solution for a given time (loading time) After metal ion bonding (loading), the sample was washed several times with deionized water, The metal ions were removed, and then dried with nitrogen, and then subjected to oxygen plasma treatment to remove the polymer template to prepare an array of Fe 2 O 3 nanoparticles of iron oxide on a silicon substrate.
  • the present invention selected the catalyst as one of the applications of the prepared nanoparticle array.
  • the carbon nanotubes were grown by PECVD using the nanoparticle array according to the present invention as a catalyst.
  • the substrate on which the Fe 2 O 3 nanoparticle array was prepared was first heated to 600 ° C. while flowing hydrogen and ammonia mixed gas.
  • the hydrogen and ammonia content was 80: 20% by volume and the total mixed gas flow rate was maintained at 100 sccm.
  • the substrate temperature reached 600 ° C. the substrate was annealed (usually less than 2 minutes) and the Fe 2 O 3 nanoparticles were reduced to Fe metal particles.
  • the chamber pressure was increased to 5 torr, and the direct current plasma proceeded according to the application of the cathode DC voltage of 470V.
  • acetylene gas was slowly flowed at a flow rate of 5 sccm for 1 to 2 minutes to prepare carbon nanotubes grown densely and vertically.
  • FIG. 3 to 5 are PS-b-P4VP thin film SEM images (FIG. 1B) after spin on a silicon substrate, and PS-b-P4VP thin film images (FIG. 1C, 1D) after solvent-annealing.
  • FIG. 1B PS-b-P4VP thin film SEM images
  • FIG. 1C, 1D PS-b-P4VP thin film images
  • the nanocylinders of the P4VP blockpolymer are oriented vertically, which is due to the high directional vapors generated during the spin-cast process.
  • the arrangement density in the horizontal direction of the cylinder is not uniform and the size distribution is also wide (see Fig. 3).
  • the horizontal orientation and size uniformity of the cylinder is greatly improved after solvent annealing at room temperature in toluene: THF (20:80 v: v).
  • Samples annealed for 2 hours are orderly ordered in a hexagon and exhibit a relatively small grain size (see FIG. 4).
  • FFT Fast Fourier transform
  • 6 to 8 are SEM images of Fe 2 O 3 nanoparticle arrays prepared by immersing a spincast-solvent annealed block copolymer template in an aqueous solution containing a metal ion complex for 1 minute.
  • the anionic metal complex easily binds to the quantized pyridine group even in mildly acidic conditions.
  • the resulting Fe2O3 nanoparticle array accurately replicates the morphology of the block copolymer template.
  • the particles obtained after the spin, or from an insufficiently annealed block copolymer template have a large particle diameter and a wide size distribution (10.84 nm 2.98 nm after spin, 8.40 nm 1.79 nm after 2 hours annealing).
  • nanoparticles obtained from well grown molds have a cylinder structure of small size and narrow size distribution (6.03 nm to 1.0 nm).
  • 9-11 are statistical distributions of Fe 2 O 3 nanoparticle diameters.
  • Table 1 summarizes the nanosize characteristics of the block copolymer nano template and the obtained nanoparticle array of FIG. 1.
  • the average diameter of the nanoparticles is somewhat smaller than the block copolymer cylinder diameter, due to the particle density that occurs when the block copolymer is removed by plasma treatment.
  • FIG. 12 is an SEM image showing the growth of an array of nanoparticles obtained from a solvent annealed template for 5 hours with time the template was immersed (loaded) in a metal complex ion solution.
  • the size of monodispersed nanoparticles gradually increases with loading time. Precise control of particle size down to nanometer-sized sizes is possible at relatively low concentrations of aqueous metal complex ions (1 mM K3 [Fe (CN) 6]).
  • the difference in average diameter and height is graphed according to loading time, which is shown in FIG. 13.
  • the growth rate was fast at short loading times but gradually slowed down.
  • the growth behavior may correspond to a typical power law curve, At ⁇ . According to the least square fit, an index ⁇ of 0.16 in diameter and 0.39 in height is obtained.
  • the PS matrix functions as a barrier to diffusion of metal ions around the P4VP cylinder structure, but the nanoparticles are adsorbed as the loading time gradually increases.
  • 14 is an XPS spectrum of an Fe 2 O 3 nanoparticle array obtained after oxygen plasma treatment. Referring to Figure 14 results, Fe-2p3 / 1 peak of 710.5eV proves that the Fe 2 O 3 Fe state exists.
  • the catalytic functionality of monodisperse nanoparticle arrays was analyzed through catalyst-based carbon nanotube growth experiments.
  • plasma vapor deposition (PECVD) was used to induce vertically oriented carbon nanotube growth.
  • PECVD enables low temperature growth at temperatures below 600 ° C., which is one of the important conditions for device integration.
  • the Fe 2 O 3 particle array prepared in the present invention is converted into Fe particles by thermal reduction before carbon nanotube growth. That is, vertically oriented carbon nanotubes were prepared with high yield by slowly adding nitrogen, ammonia, and acetylene mixed gas (FIG. 15).
  • Such high yield growth of carbon nanotubes proves the high purity and high functionality of the monodisperse nanoparticle array prepared according to the present invention.
  • FIG. 16 is an SEM image of the lower portion of the carbon nanotube at high magnification.
  • FIG. The carbon nanotube diameter is 5.3 nm, which corresponds to 2/3 of the diameter of the catalyst particles of 8.6 nm.
  • 17 and 18 are high-resolution TEM images of carbon nanotubes grown from monodisperse catalyst particles prepared according to the present invention. When the images are analyzed, average diameters of 5.8 and 9.9 nm appear. The narrow distribution of carbon nanotube diameters and the number of carbon walls in the graphite structure is due to the monodisperse nature of the catalyst particles.
  • FIG. 18 is a statistical comparison of the number of carbon walls prepared from the block copolymer template in the spin state with the block copolymer template after annealing for 5 hours. The loading of the complex ion was maintained at 5 minutes. Since spinned nanoparticle arrays have a wide size distribution, carbon nanotubes grown from them also exhibit a wide carbon wall number distribution. In contrast, the carbon wall numbers of the carbon nanotubes obtained from the blow copolymer templates annealed for 5 hours showed a much narrower distribution.
  • FIG. 19 shows single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), triple-walled carbon nanotubes (TWNTs) and four-walled multi-walled carbon nanotubes (MWNTs) prepared from a block copolymer template annealed for 5 hours.
  • the relative fractions of) were analyzed according to the ion complex loading time.
  • the relative fraction of each carbon wall number varied with catalyst size as a function of loading time.
  • the growth of single-walled carbon nanotubes was suppressed, which is thought to be due to the nitrogen doping effect.
  • FIG. 21 illustrates a process of growing carbon nanotubes in a desired substrate region through selective deposition of block copolymers.
  • the monodisperse nanoparticle array deposition method according to the present invention can be controlled in size, which can be achieved by block copolymer lithography.
  • Vertically aligned cylindrical block copolymer nanoregions are prepared by a solvent annealed PS-b-P4VP block copolymer thin film, which is immersed in a water soluble ion metal complex solution, whereby the anionic metal complex is transferred to the P4VP cylinder core. Diffusion, which is achieved by very specific electrostatic interactions.
  • the specific dispersion of metal ions in nanoscale confined spaces enables the production of monodisperse nanoparticle arrays arranged sideways at sub-nanometer levels to the desired size.
  • the catalytic functionality of monodisperse nanoparticle arrays was demonstrated through carbon nanotubes grown vertically by catalytic PECVD.
  • the present invention which controls the catalyst particle size to a size less than nanometers, enables the growth of carbon nanotubes in a vertical orientation, in particular where the number of carbon walls can be selectively determined. It is also possible to align nanoparticle arrays within the trenches through graphoepitaxy. That is, in the case of Graphoepitaxy, since the block copolymer is aligned in the trench formed in the substrate, it is possible to form a nanostructure having a single domain, and to form a single or dissimilar metal array according to various methods described below. Can be formed in the desired trench structure.
  • another heterogeneous metal is deposited on the metal nanoparticle array (first metal array) manufactured according to the present invention to an area other than the first metal array formation region by electrostatic interaction.
  • a block copolymer is raised, followed by solvent annealing or heat treatment to form nanolines parallel to the substrate. After applying the block copolymer again on the formed nano-line again, to form a nano dot by the method according to the invention. As a result, nanodots are located between the spaces of the pre-formed nanoline.
  • alloy nanopoints of dissimilar metal on a substrate using two kinds of metal precursor solutions together. Even in this case, the dissimilar metal precursor solution must be selectively electrostatically bonded to the self-assembled block copolymer. That is, when loading a metal anion, alloy nanoparticles can be obtained by using a heterogeneous sample, and the properties of the alloy nanoparticles can be observed by heat treatment and recrystallization thereof.
  • FIG. 25 illustrates a process of depositing nanoparticles of a so-called core-shell structure on a substrate, in which a plurality of nanopoint deposition processes according to the present invention are sequentially performed, in which a second nanopoint is sequentially stacked on a first nanopoint.
  • the method is shown.
  • Yet another embodiment of the present invention provides a method of manufacturing a dissimilar metal array according to such an electrostatic loading method.
  • PS-b-P4VP poly (styrene-block-4-vinylpyridine)
  • THF tetrahydrofuran
  • a homogeneous toluene: tetrahydrofuran mixture (760/30 v / v or 80/20 v / v) is injected into the annealed vessel to form a cylinder array.
  • In-plane structures and planar protrusion structures of are derived, respectively.
  • a 59 kg / mol PS-b-P4VP block copolymer thin film was treated with THF vapor to assemble into a cylinder array of planar protrusion structures. The vessel was saturated with solvent vapor which spontaneously evaporated at room temperature for several minutes.
  • the spin-coated thin film was then annealed for 1 to 5 hours to form orderly arranged cylindrical nanodomains.
  • the solvent annealed sample was immersed in an aqueous HCl solution containing metal ions to load the metal ions into the thin film.
  • the first metal ion-containing solution was 2 mM Na 2 PdCl 4 / 0.1% HCl solution
  • another second metal ion-containing solution was 1 mM Na 2 PtCl 4 / 0.1% HCl.
  • the sample was washed several times with deionized water, excess metal ions were removed, and the thin film was dried again with nitrogen. Thereafter, an oxygen plasma treatment was performed on the entire area to remove the block polymer template. Thereafter, for the second block copolymer lithography process, a 33.5 kg / mol PS-b-P4VP block copolymer thin film was spin-coated to a thickness of 30 nm on the substrate on which the metal nanopattern was formed. Subsequent solvent annealing was performed to form a cylindrical array included in the planar layer, or to form an array of cylindrical structures projecting from the planar layer.
  • the manufactured assembly pattern may be in the form of a dot-point, a line-line, a dot-line, as shown in FIG. 1, and various types of metals are formed in a desired shape on a large-area substrate by repeating the above steps. You can.
  • FIG. 26 is a photograph after the Pt line (34 nm period, 10 nm width) is formed according to the first block copolymer lithography prepared according to the present invention, and FIG. 27 is protruded in plane at the 34 nm period and 10 nm diameter. Photograph showing that the P4VP cylinder structure was correctly formed between Pt lines. FIG. 28 is a photograph showing that 10 nm diameter Pd nanopoints are formed at the position of the P4VP cylinder nanodomain of FIG. 27.
  • FIG. 29 shows an array of nanoparticles formed in the form of an intersection of a Pt line and a Pd line
  • FIG. 30 is a dot-dot form
  • FIGS. 31 and 32 are EDS mapping images of the Pt line and the Pd dot array.
  • 33 to 37 show various heterogeneous metal arrays fabricated on a substrate in an electrostatic manner according to the present invention, wherein Pt line-Co point, Pt line-Au point, Pd line-Fe 2 O 3 point, Pt point, respectively -Images of Fe 2 O 3 point and Pd line-Pd line.
  • the present invention can form metal arrays of various shapes and components on a substrate through electrostatic coupling between block copolymer lithography and polymer-metal ions.
  • Another embodiment of the present invention is not a multi-step process to configure the first metal array and the second metal array in different positions, but rather a block copolymer mold according to the present invention in a solution containing two or more metal ions. Is immersed to form a composite metal array.
  • a block copolymer prepared according to the present invention is immersed in a mixed solution of Fe (CN) 6-3 and PtCl4-2, and the two kinds of metal ions are protonated polymers in the block copolymer.
  • a FePt alloy pattern is formed on the substrate.
  • the alloy pattern corresponds to the electrostatically coupled polymer pattern, when the polymer pattern is in the form of dots, the alloy pattern may be in the form of dots. Alternatively, when the polymer pattern is in the form of a line, the alloy pattern may be in the form of a line.
  • a FePt alloy nanoarray is formed through heat treatment.
  • a vertical cylinder PS-b-P4VP thin film formed on a substrate is immersed in an aqueous hydrochloric acid solution in which ferricyanide and chloroplatinate anions are dissolved.
  • metal complex anions are located by electrostatic attraction. If this is removed and only the polymer is removed by oxygen plasma, the metal sample remaining in the cylinder block remains in the form of nanoparticles.
  • the specimen is flowed a little hydrogen and heat treated at an appropriate high temperature, the specimen is aggregated to form an array of single crystal nanopoints.
  • the polymer pattern is in the form of a line, an array of alloys in the form of a line may be formed on a substrate by the same method as described above.
  • 39 to 41 are SEM images and size distribution graphs, FePt alloy nanodot arrays and size distribution graphs, TEM images and high temperature heat treatment graphs of self-assembled cylinder block copolymers, respectively.
  • a metal nanostructure array of about 8 nanometers can be obtained from a cylinder block of about 11 to 12 nanometers, and the nano-structure having a narrow size distribution of about 4.5 nanometers is subjected to heat treatment. You will get an array of points.
  • a specific block copolymer (P4VP in one embodiment of the present invention) that is protonated in an acidic solution is immersed in an acidic solution, and the specific block is formed by electrostatic action with a metal anion. Precipitates by bonding a metal to it.
  • various metal layers may be formed according to the form of the substrate. For example, when the copolymer substrate is in the form of a brush, a metal may be bonded to the surface of the brush and a rod-shaped metal layer may grow. In contrast, in the case of a thin film form, since the metal is electrostatically coupled to the entire thin film, the metal array may be aggregated and converted into a film form.
  • a P4VP polymer substrate deposited on a substrate is immersed in an acidic solution containing metal anion (M-). Contact in such a way. This causes the cation-charged polymer substrate and the metal anion to electrostatically interact and bind, thereby depositing the metal anion on the polymer substrate to form a metal thin film. Thereafter, the polymer substrate is removed to prepare a metal thin film deposited in a form corresponding to the polymer substrate.
  • the polymer may be in the form of a thin film, or a polymer in which an anion is charged electrostatically may include a brush.
  • Nanoparticle array according to the present invention has the industrial applicability to produce a catalyst, using nanoparticle growth.

Abstract

The present invention relates to a method for manufacturing a monodisperse nanoparticle array, the size of which is adjustable, to a nanoparticle array manufactured thereby, and to the uses thereof. According to the present invention, the method for manufacturing a size adjustable nanoparticle array, the size of which is adjustable, is characterized by comprising the steps of: self-assembling block copolymers; selectively binding, through electrostatic interaction, a first polymer of the self-assembled block copolymers to metal ions of the nanoparticles to be deposited; and removing the copolymers. According to the present invention, monodisperse nanoparticle arrays can be deposited through a block copolymer lithographic process. Also, since nanoparticle size can be controlled simply by means of adjusting the loading time of metal ions, the present invention can be effectively used for various applied elements such as catalysts.

Description

크기 조절이 가능한 나노입자 어레이 제조방법, 이에 의하여 제조된 나노입자 어레이와 그 응용Method for manufacturing nanoparticle array with adjustable size, nanoparticle array manufactured by the present invention and its application
본 발명은 크기 조절이 가능한 나노입자 어레이 제조방법, 이에 의하여 제조된 나노입자 어레이와 그 응용에 관한 것으로, 보다 상세하게는 금속이온의 로딩 시간에 의하여 나노입자 크기를 간단히 제어할 수 있으므로, 촉매 등의 다양한 응용소자에 효과적으로 적용될 수 있는, 크기 조절이 가능한 나노입자 어레이 제조방법, 이에 의하여 제조된 나노입자 어레이와 그 응용에 관한 것이다. The present invention relates to a method for manufacturing a nanoparticle array which can be adjusted in size, and to a nanoparticle array prepared by the present invention and its application, and more particularly, the nanoparticle size can be easily controlled by the loading time of the metal ion, such as a catalyst and the like. The present invention relates to a method for manufacturing a scalable nanoparticle array, which can be effectively applied to various applications of the nanoparticle array and its application.
나노스케일 입자는 나노스케일에 의한 양자 제한 효과와 적은 크기로부터 얻어지는 대용량 표면적을 가지며, 이로부터 크기-의존적인 전기, 자성, 화학, 광학 및 촉매 특성을 나타낸다. 2차원(2D) 어레이로 나노입자를 패턴하는 것은 센서, 자성 데이터 저장소자, 플래쉬 메모리, 촉매 등으로의 응용 가능성 때문에 이미 상당한 연구가 진행되고 있다. 하지만, 나노입자 합성에 있어서의 활발한 연구에도 불구하고, 원하는 기판 상에 나노입자를 정밀하게 위치, 배열시키고, 이를 고정화(immobilization)시키는 기술은 여전히 기술적 난제로 남아있다. 또한, 원하는 기판에 나노패턴된 입자를 제어된 방식으로 배열시키는 것은 상당히 중요한데, 만약 나노입자를 위치, 배열시키는 기술의 정확도가 높아지면, 크기가 제어되는 나노입자 어레이가 상술한 다양한 응용소자에 적용될 수 있기 때문이다.블록공중합체 리쏘그래피는 종래의 포토리쏘그래피 공정의 본질적인 해상도 한계를 극복하기 위한 리쏘그래피 기술로 발전되고 있다. 마이크로상의 분리된 블록공중합체 나노영역(nanodomain)의 수평 자기조립 기술은 30nm 이하 크기로 반복하는 나노리쏘그래피 마스크를 임의의 대면적 상에 제조할 수 있게 한다. 더 나아가, 최근 외부 전기장 인가, 화학적, 또는 토포그래피 프리패턴(topography prepattern) 방식을 활용한 자기조립, 배향기술은 대면적 상에 수평으로 배열된 나노패턴을 달성하였다. 하지만, 자기조립된 나노영역의 본질적인 다분산특성(polydispersity)은 단분산(monodipsersity)으로 나노패턴된 모폴로지를 제조하는데 있어 여전히 기술적인 난제로 여겨지고 있다. 게다가, 크기가 조절되는 패턴 전사기술은 현재까지 블록공중합체 리소그래피 기반에서는 달성되지 않은 상태이다. Nanoscale particles have a large surface area resulting from nanoscale quantum confinement effects and small sizes, from which they exhibit size-dependent electrical, magnetic, chemical, optical, and catalytic properties. Patterning nanoparticles into two-dimensional (2D) arrays is already under considerable research due to their potential applications in sensors, magnetic data reservoirs, flash memories, and catalysts. However, despite active research in nanoparticle synthesis, the technique of precisely positioning, aligning and immobilizing nanoparticles on a desired substrate remains a technical challenge. In addition, it is very important to arrange nanopatterned particles on a desired substrate in a controlled manner. If the accuracy of the technique of locating and arranging nanoparticles is high, a nanoparticle array with controlled size can be applied to the various applications described above. Block copolymer lithography is evolving into lithography technology to overcome the inherent resolution limitations of conventional photolithography processes. The horizontal self-assembly technique of the separated block copolymer nanodomains of the microphase allows the fabrication of nanolithography masks that repeat at a size of 30 nm or less on any large area. Furthermore, recent self-assembly and orientation techniques using external electric field application, chemical or topography prepattern methods have achieved nano-patterns arranged horizontally over large areas. However, the inherent polydispersity of self-assembled nanoregions remains a technical challenge for producing nanopatterned morphologies with monodispersity. Moreover, scaled pattern transfer techniques have not been achieved on a block copolymer lithography basis to date.
따라서, 본 발명이 해결하려는 과제는 단분산 특성을 가지며, 크기가 제어가능한 나노입자 어레이를 기판상에 제조하는 방법 및 이에 의하여 제조된 나노입자 어레이를 제공하는 것이다.본 발명이 해결하려는 또 다른 과제는 단분산 특성의 나노입자 어레이를 이용한 응용 방법을 제공하는 것이다.Accordingly, the problem to be solved by the present invention is to provide a method for producing a nanoparticle array having a monodisperse property and controllable in size on a substrate and a nanoparticle array produced thereby. To provide an application method using a nanoparticle array of monodisperse properties.
본 발명은 금속이온 용액에 상기 용액 내에서 상기 금속이온과 정전기적으로 결합하는 전하를 띠는 중합체를 접촉시켜, 상기 중합체에 상기 금속이온을 결합시키는 단계를 포함하는 것을 특징으로 하는 나노입자 어레이 제조방법을 제공한다.The present invention provides a nanoparticle array comprising contacting a metal ion solution with a charged polymer that electrostatically bonds with the metal ion in the solution, thereby binding the metal ion to the polymer. Provide a method.
본 발명의 일 실시예에 따르면 단분산성의 나노입자 어레이를 블록공중합체 리쏘그래피 방식으로 증착시킬 수 있다. 또한 금속이온의 로딩 시간에 의하여 나노입자 크기를 간단히 제어할 수 있으므로, 촉매 등의 다양한 응용소자에 효과적으로 적용될 수 있다. 또한, 본 발명의 또 다른 일 실시예에 따르면, 서로 다른 물성을 갖는 금속을 기판 상에 라인, 점 형태의 어레이로 증착시킬 수 있다. 특히 자기조립 특성의 블록공중합체와, 상기 블록공중합체의 특정 중합체와 금속이온의 선택적인 정전기적인 결합을 통하여 금속 어레이 형태와 금속 종류를 자유로이 결정할 수 있고, 아울러 기판 면적에 대한 제한 또한 없다. 더 나아가, 본 발명에 따르면, 이종의 금속이온의 동시 결합에 따른 합금 어레이 또한 용이하게 제조될 수 있다. According to one embodiment of the present invention, monodisperse nanoparticle arrays can be deposited by block copolymer lithography. In addition, since the nanoparticle size can be easily controlled by the loading time of the metal ion, it can be effectively applied to various applications such as a catalyst. In addition, according to another embodiment of the present invention, metals having different physical properties may be deposited on a substrate in an array of lines and dots. In particular, it is possible to freely determine the type of metal array and the type of metal through the selective electrostatic bonding of the block copolymer of self-assembly and the specific polymer of the block copolymer with the metal ion, and also there is no limitation on the substrate area. Furthermore, according to the present invention, an alloy array due to the simultaneous bonding of dissimilar metal ions can also be easily manufactured.
도 1은 본 발명의 일 실시예에 따른 공정 모식도이다.1 is a process schematic diagram according to an embodiment of the present invention.
도 2는 본 발명의 또 다른 일 실시예에 따른 공정 모식도이다.2 is a process schematic diagram according to another embodiment of the present invention.
도 3 내지 5는 실리콘 기판 상에서 스핀된 후의 PS-b-P4VP 박막 SEM 이미지(도 1b), 용매-어닐링 후의 PS-b-P4VP 박막 이미지(도 1c, 1d)이다.3 to 5 are PS-b-P4VP thin film SEM images (FIG. 1B) after spin on a silicon substrate, and PS-b-P4VP thin film images (FIG. 1C, 1D) after solvent-annealing.
도 6 내지 8은 스핀캐스트-용매 어닐링된 블록공중합체 주형을 금속이온 착화합물이 함유된 수용액에 1분 동안 침지시켜 제조한 Fe2O3 나노입자 어레이의 SEM 이미지이다.6 to 8 are SEM images of Fe 2 O 3 nanoparticle arrays prepared by immersing a spincast-solvent annealed block copolymer template in an aqueous solution containing a metal ion complex for 1 minute.
도 9 내지 11은 Fe2O3 나노입자 직경의 통계적 분포도이다.9-11 are statistical distributions of Fe 2 O 3 nanoparticle diameters.
도 12는 주형을 금속 착이온 용액에 침지(로딩)시킨 시간에 따라 5시간 용매어닐링된 주형으로부터 얻어진 나노입자 어레이의 성장을 나타내는 SEM 이미지이다. FIG. 12 is an SEM image showing the growth of an array of nanoparticles obtained from a solvent annealed template for 5 hours with time the template was immersed (loaded) in a metal complex ion solution.
도 13은 금속이온 로딩 시간에 따른 나노입자의 진경 변화를 설명하는 그래프이다.FIG. 13 is a graph illustrating change in diameter of nanoparticles according to metal ion loading time. FIG.
도 14는 산소 플라즈마 처리 후 얻어지는 Fe2O3 나노입자 어레이의 XPS 스페트럼이다. 14 is an XPS spectrum of the Fe 2 O 3 nanoparticle array obtained after oxygen plasma treatment.
도 15는 수직 성장한 탄소나노튜브의 단면 SEM 이미지이다.15 is a cross-sectional SEM image of vertically grown carbon nanotubes.
도 16은 높은 배율의 탄소나노튜브 아래 부분의 SEM 이미지이다.FIG. 16 is an SEM image of the lower portion of the carbon nanotube at high magnification. FIG.
도 17 및 18은 이중벽, 삼중벽 나노입자 촉매로부터 성장한 탄소나노튜브의 SEM 이미지이다.17 and 18 are SEM images of carbon nanotubes grown from double-walled and triple-walled nanoparticle catalysts.
도 19는 스핀된 상태의 블록공중합체 주형과 5시간 어닐링된 후의 블록공중합체 주형으로부터 제조된 탄소 벽 수를 통계적으로 비교한 결과 그래프이다.FIG. 19 is a graph of statistically comparing the number of carbon walls prepared from the block copolymer template in the spin state with the block copolymer template after annealing for 5 hours.
도 20은 5시간 어닐링된 블록공중합체 주형으로부터 제조된 단일벽 탄소나노튜브(SWNT), 이중벽 탄소나노튜브(DWNT), 삼중벽 탄소나노튜브(TWNT) 및 사중벽 이상의 다중벽 탄소나노튜브(MWNT)의 상대적인 분율을 착화합물(ion complex) 로딩 시간에 따라 분석한 결과이다.FIG. 20 shows single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), triple-walled carbon nanotubes (TWNTs), and four-walled multi-walled carbon nanotubes (MWNTs) prepared from a 5-hour annealed block copolymer template. The relative fractions of) are analyzed according to the loading time of the complex complex.
도 21은 나노입자 어레이의 계층적 패터닝과 이에 대응하는 탄소나노튜브 성장의 모식도이다.FIG. 21 is a schematic diagram of hierarchical patterning of nanoparticle arrays and corresponding carbon nanotube growth. FIG.
도 22 내지 25는 본 발명에 따른 방식에 의하여 다양한 형태로 나노입자를 증착하는 방법을 설명하는 도면이다.22-25 illustrate a method of depositing nanoparticles in various forms by a scheme in accordance with the present invention.
도 26은 본 발명에 따라 제조된 제 1 블록공중합체 리쏘그래피에 따라 Pt 라인(34nm 주기, 10 nm 너비)이 형성된 후의 사진이다.FIG. 26 is a photograph after formation of a Pt line (34 nm period, 10 nm wide) according to the first block copolymer lithography prepared according to the present invention.
도 27은 상기 34 nm 주기 및 10 nm 직경으로 평면에서 돌출된 P4VP 실린더 구조체가 Pt 라인 사이에 정확하게 형성되었음을 나타내는 사진이다. FIG. 27 is a photograph showing that the P4VP cylinder structure protruding in a plane at the 34 nm period and the 10 nm diameter was correctly formed between Pt lines.
도 28은 10nm 직경의 Pd 나노점이 도 27의 P4VP 실린더 나노도메인의 위치에 형성되었음을 나타내는 사진이다. FIG. 28 is a photograph showing that a 10 nm diameter Pd nanopoint is formed at a position of the P4VP cylinder nanodomain of FIG. 27.
도 29는 Pt 라인과 Pd 라인이 교차하는 형태로 형성된 나노입자 어레이를 나타내고, 도 30은 점-점 형태를, 도 31 및 32는 Pt 라인과 Pd 점 어레이에 대한 EDS 맵핑 이미지이다. FIG. 29 shows an array of nanoparticles formed in the form of an intersection of a Pt line and a Pd line, FIG. 30 is a dot-dot form, and FIGS. 31 and 32 are EDS mapping images of the Pt line and the Pd dot array.
도 33 내지 37은 각각 Pt 라인-Co 점, Pt 라인-Au 점, Pd 라인-Fe2O3 점, Pt 점- Fe2O3 점 및 Pd 라인-Pd 라인의 이미지이다.33 to 37 are images of Pt line-Co point, Pt line-Au point, Pd line-Fe 2 O 3 point, Pt point-Fe 2 O 3 point, and Pd line-Pd line, respectively.
도 38은 본 발명의 상기 실시예에 따른 복합금속 어레이 제조방법의 단계별 모식도이다.38 is a step-by-step schematic diagram of the composite metal array manufacturing method according to the embodiment of the present invention.
도 39 내지 41은 각각 자기조립된 실린더 구조의 블록공중합체의 SEM 이미지와 크기 분포 그래프, FePt 합금 나노점 어레이 및 크기 분포 그래프, 고온 열처리후의 TEM 이미지 및 크기 분포 그래프이다.39 to 41 are SEM images and size distribution graphs, FePt alloy nanodot arrays and size distribution graphs, TEM images and high temperature heat treatment graphs of self-assembled cylinder block copolymers, respectively.
이하, 첨부된 도면을 참조하여 본 발명의 각 실시예에 따른 아이템 이용 기간 제어 방법 및 이를 위한 서버를 설명하기로 한다.이하의 설명에서 본 발명에 대한 이해를 명확히 하기 위하여, 본 발명의 특징에 대한 공지의 기술에 대한 설명은 생략하기로 한다. 이하의 실시 예는 본 발명의 이해를 돕기 위한 상세한 설명이며, 본 발명의 권리 범위를 제한하는 것이 아님은 당연할 것이다. 따라서, 본 발명과 동일한 기능을 수행하는 균등한 발명 역시 본 발명의 권리 범위에 속할 것이다.Hereinafter, an item usage period control method and a server therefor according to an embodiment of the present invention will be described with reference to the accompanying drawings. In order to clarify the understanding of the present invention in the following description, features of the present invention will be described. Description of well-known techniques will be omitted. The following embodiments are detailed description to help understand the present invention, and it should be understood that the present invention is not intended to limit the scope of the present invention. Therefore, equivalent inventions that perform the same functions as the present invention will also fall within the scope of the present invention.
본 발명은 상술한 과제를 해결하기 위하여, 나노미터 이하 수준으로 크기가 조절될 수 있는 단분산 나노입자 어레이를 블록공중합체 리쏘그래피로부터 직접 달성하는 방법을 제공한다. 본 발명은 특히 자기조립된 블록공중합체 중 어느 하나의 중합체와 금속이온 사이의 정전기적인 상호작용을 유도함으로써, 단분산 나노입자 어레이를 기판상에서 제조한다. 본 발명에서 진행되는 블록공중합체와 금속이온의 상호작용은 매우 높은 특이성(이것은 정전기적인 상호작용이 크기가 제한된 특정 블록중합체에 대해서만 이루어지기 때문이다)을 가지며, 금속 증착과 함께 특정 방향으로 배향된 구조의 블록공중합체 모폴로지가 가지는 균일성(uniformity)에 따라 단분산 나노입자 어레이를 원하는 크기로 증착할 수 있다. The present invention provides a method for achieving monodisperse nanoparticle arrays that can be scaled to sub-nanometer levels directly from block copolymer lithography in order to solve the above problems. The present invention produces monodisperse nanoparticle arrays on a substrate, in particular by inducing an electrostatic interaction between a polymer and a metal ion of any of the self-assembled block copolymers. The interaction of block copolymers with metal ions in the present invention has a very high specificity (because electrostatic interactions only occur for certain block polymers of limited size) and are oriented in a specific direction with metal deposition. Monodispersed nanoparticle arrays can be deposited to a desired size, depending on the uniformity of the block copolymer morphology of the structure.
본 발명에 따른 나노입자 어레이 제조방법은 상술한 바와 같이 적어도 다른 두 종류의 중합체, 즉, 제 1 중합체 및 제 2 중합체를 포함하는 블록공중합체를 이용한 나노입자 어레이를 제조하며, 상기 방법은 블록공중합체를 자기조립시켜 특정 구조의 블록공중합체 주형을 제조하고, 다시 상기 자기조립된 블록공중합체 주형 중 특정 중합체(제 1 중합체)와 상기 제조하고자 하는 나노입자의 금속이온을 정전기적인 상호작용에 의하여 선택적으로 결합시키고, 다시 상기 블록공중합체를 제거한다. 본 발명의 경우, 상기 블록공중합체는 나노입자 어레이 제조를 위한 주형으로 사용되며, 특히 본 발명은 자기조립된 제 1 중합체와 나노입자(금속 나노입자)의 전구체 용액 이온을 특이적으로 결합시키는 방식으로 나노입자 어레이를 제조한다. 따라서, 본 발명의 일 실시예에 따르면, 상기기 금속이온과 제 1 중합체 간의 선택적 결합은 자기조립된 상기 블록공중합체를 상기 금속이온이 함유된 상기 용액에 침지되는 방식으로 진행되는데, 이때, 상기 금속이온은 음이온을 띠는 금속착화합물 형태이고, 상기 제 1 중합체는 상기 수용액 상에서 양이온을 띤다. 본 발명의 일 실시예에서는 HCl과 같은 약산 조건에서 양성자화됨으로써 양이온을 띠는 질소 함유기(예를 들면 피리딘)가 결합된 중합체를 제 1 중합체로 사용하고, Fe와 같은 금속을 포함하는 음이온을 상기 제 1 중합체에 결합시켰으며, 이후 중합체를 제거함으로써 금속이온으로부터 얻어지는 금속 나노입자 어레이를 얻을 수 있다. The method for producing a nanoparticle array according to the present invention produces a nanoparticle array using a block copolymer comprising at least two different types of polymers, namely, a first polymer and a second polymer, as described above. The copolymer is self-assembled to prepare a block copolymer template having a specific structure, and the metal ions of the specific polymer (first polymer) in the self-assembled block copolymer template and the nanoparticles to be prepared are subjected to electrostatic interaction. Selectively bind and remove the block copolymer again. In the case of the present invention, the block copolymer is used as a template for preparing nanoparticle arrays, and in particular, the present invention specifically binds the self-assembled first polymer and precursor solution ions of nanoparticles (metal nanoparticles). To prepare a nanoparticle array. Therefore, according to one embodiment of the present invention, the selective bonding between the base metal ion and the first polymer proceeds in such a way that the self-assembled block copolymer is immersed in the solution containing the metal ion. The metal ion is in the form of an anionic metal complex and the first polymer bears a cation in the aqueous solution. In an embodiment of the present invention, a polymer having a cation-containing nitrogen-containing group (for example, pyridine) bound by protonation under weak acid conditions such as HCl is used as the first polymer, and an anion containing a metal such as Fe is used. A metal nanoparticle array obtained from metal ions, which is bound to the first polymer and is then removed, can be obtained.
도 1은 본 발명의 일 실시예에 따른 공정의 전체 모식도이다.1 is an overall schematic diagram of a process according to an embodiment of the present invention.
도 1을 참조하면, 임의의 기판 상에 양친매성인 폴리(스티렌-블록-4-비닐피리딘)(PS-b-P4VP)(PS 블록(제 2 중합체)은 24.0kg/mol, P4VP 블록(제 1 중합체)은 9.5kg/mol) 블록 공중합체 박막을 톨루엔:테트라하이드로퓨란(THF) 혼합용액에 혼합한 후, 스핀-캐스트한 후, 즉시 자기조립하여 PS 매트릭스에 수직인 P4VP 나노실린더 어레이가 형성된, 자기조립 구조를 형성시켰다. 이어서, 톨루엔에서 용매를 어닐링하였는데, THF 혼합 증기는 서서히 시간 경과와 함께 실린더 형상의 나노영역을 옆으로 질서있게 배열되도록 하였다. 이와 같은 수평 배열과 함께, 자기조립된 실린더영역 구조의 크기는 상당히 균일하였다. 따라서, 약 5시간의 어닐링에 따라 매우 좁은 크기 분포를 갖는 수평-배열의 육각 실린더 어레이를 생성시켰다. 이와 같이 높은 질서를 가지며, 수평으로 배열된 나노영역구조를 가지며, 기판상에 증착된 블록공중합체 박막을 1mM K3[Fe(CN)6]:0.1% HCl 수용액에 침지시켰다. Fe(CN)6-3의 음이온성 금속 착화합물은 제 1 중합체인 P4VP 실린더 나노영역(nanodomain)의 양자화된 피리딘 질소(양이온성)와 결합한다. 이후, 전체 면적에 대하여 산소 플라즈마 처리를 실시하여, 유기 블록 중합체 주형을 제거하였는데, 이때 단일분산된 산화철(Fe2O3) 나노입자 어레이는 P4VP 실린더의 위치에 잔존하게 된다. 수용액 상의 철 이온 착화합물 로딩 시간(즉, 접촉시간)에 따라, 상기 나노입자 크기는 나노미터-이하로 조절될 수 있다. Referring to Figure 1, the amphiphilic poly (styrene-block-4-vinylpyridine) (PS-b-P4VP) on any substrate (PS block (second polymer) is 24.0 kg / mol, P4VP block ( 1 polymer) was mixed with a 9.5 kg / mol) block copolymer thin film in a toluene: tetrahydrofuran (THF) mixed solution, spin-cast and immediately self-assembled to form a P4VP nanocylinder array perpendicular to the PS matrix. , Self-assembled structure was formed. The solvent was then annealed in toluene, with the THF mixed vapor slowly ordering the cylindrical nanoregions sideways over time. With this horizontal arrangement, the size of the self-assembled cylinder region structure was fairly uniform. Thus, following an annealing of about 5 hours, a horizontally-arranged hexagonal cylinder array with a very narrow size distribution was produced. As such, the block copolymer thin film having a high order, horizontally arranged nanoarea structure, and deposited on the substrate was immersed in a 1 mM K 3 [Fe (CN) 6 ]: 0.1% HCl aqueous solution. The anionic metal complex of Fe (CN) 6-3 binds to the quantized pyridine nitrogen (cationic) of the P4VP cylinder nanodomain, which is the first polymer. Thereafter, an oxygen plasma treatment was performed on the entire area to remove the organic block polymer template, wherein the monodispersed iron oxide (Fe 2 O 3) nanoparticle array remained at the position of the P4VP cylinder. Depending on the loading time of the iron ion complex on the aqueous solution (ie, contact time), the nanoparticle size can be controlled to be less than nanometers.
본 발명에 따라 제조된 Fe2O3 나노입자 어레이는 탄소나노튜브(CNT) 성장을 위한 촉매 기능물질로 기능할 수 있다. 하지만, K3[Fe(CN)6] 뿐만 아니라, 임의의 다른 이온성 금속 착이온이 사용되어, 다양한 종류의 금속 나노입자 어레이를 임의 기판 상에 제조, 고정시킬 수 있다. 더 나아가, 본 발명의 하기 실시예는 일 종의 금속 이온 착화합물을 사용하였으나, 둘 이상의 이온 착화합물을 혼합, 사용하는 경우, 이종 금속 나노입자 어레이 또한 가능하다. 또한, 제 1 형성된 금속 나노 구조체 위에 또 다시 블록공중합체를 한 번 더 자기조립 시킨 후 제 2 금속을 동일한 방식으로 증착시키는 경우, 점-점, 선-점, 코어-쉘 구조의 다층 이종금속 어레이를 형성시킬 수 있다. The Fe 2 O 3 nanoparticle array prepared according to the present invention may function as a catalytic functional material for carbon nanotube (CNT) growth. However, as well as K 3 [Fe (CN) 6 ], any other ionic metal complex ion can be used to fabricate and fix various types of metal nanoparticle arrays on any substrate. Furthermore, the following examples of the present invention used one kind of metal ion complex, but when two or more ion complexes are mixed and used, heterogeneous metal nanoparticle arrays are also possible. In addition, when the self-assembly of the block copolymer on the first formed metal nanostructure again and then the second metal is deposited in the same manner, a multilayer dissimilar metal array having a point-point, line-point, and core-shell structure Can be formed.
본 발명의 또 다른 일 실시예는 산성용액에서 양성자화되는 특정 블록 공중합체(본 발명의 일 실시예에서는 P4VP) 기재만을 산성용액에 침지시키고, 다시 금속 음이온과의 정전기적 작용에 의하여 상기 특정 블록에 금속을 결합시켜 석출한다. 이 경우, 상기 기재의 형태에 따라 다양한 금속층 형성이 가능하다. 예를 들어 상기 공중합체 기재가 브러쉬 형태인 경우, 브러쉬 표면에 금속이 결합, 로드 형태의 금속층이 성장할 수 있다. 이와 달리 박막 형태인 경우, 박막 전체에 금속이 정정전기적으로 결합하므로, 상기 금속층은 막(film)형태가 될 수 있다. In another embodiment of the present invention, only a specific block copolymer (P4VP in one embodiment of the present invention) that is protonated in an acidic solution is immersed in an acidic solution, and the specific block is formed by electrostatic action with a metal anion. Precipitates by binding a metal to In this case, various metal layers may be formed according to the form of the substrate. For example, when the copolymer substrate is in the form of a brush, a metal may be bonded to the surface of the brush and a rod-shaped metal layer may grow. In contrast, in the case of a thin film form, since the metal is electrostatically coupled to the entire thin film, the metal layer may be in the form of a film.
도 2는 본 발명의 상기 실시예에 따른 금속층 제조방법의 공정모식도이다.2 is a process schematic diagram of a metal layer manufacturing method according to the embodiment of the present invention.
도 2를 참조하면, 실리콘 기판상에 증착된 P4VP 폴리머 기재를 금속음이온(M-)이 함유된 산성용액에 침지시켜, 양이온이 대전된 상기 폴리머 기재에 금속 음이온을 정전기적으로 결합시켜, 상기 금속 음이온을 폴리머 기재상에 증착시킨다. 이후, 상기 폴리머 기재를 제거하여 상기 폴리머 기재에 대응하는 형태로 증착된 금속층을 제조한다. Referring to FIG. 2, a P4VP polymer substrate deposited on a silicon substrate is immersed in an acid solution containing metal anion (M−) to electrostatically bond a metal anion to the polymer substrate charged with a cation, thereby providing the metal Anions are deposited on the polymer substrate. Thereafter, the polymer substrate is removed to prepare a metal layer deposited in a form corresponding to the polymer substrate.
이하 본 발명의 일 실시예에 따른 나노입자 어레이 제조방법 및 이를 촉매로 이용하는 방법을 상세히 설명한다. Hereinafter, a method of manufacturing a nanoparticle array and a method of using the same according to an embodiment of the present invention will be described in detail.
실시예Example
물질matter
비대칭적인 구조의 블록공중합체인 폴리스티렌-블록-폴리(4-비닐피리딘)(PS- b -P4VP, 분자량: 24 kg mol-1 PS,9.5 kg mol-1 P4VP), 육시아노철 (Ⅲ)산칼륨(Potassium ferricyanide), 순 암모니아 및 아세틸렌 가스를 준비하였다.Polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP, molecular weight: 24 kg mol-1 PS, 9.5 kg mol-1 P4VP), asymmetric block copolymer, potassium hexacyanoate (III) (Potassium ferricyanide), pure ammonia and acetylene gas were prepared.
금속 나노입자 어레이 증착Metal Nanoparticle Array Deposition
실리콘 웨이퍼를 피라냐 용액((7:3 H2SO4: H2O2)에 110℃에서 1시간 침지시키고, 탈이온수로 수 회 세척하였다. Ps-b-P4VP 블록공중합체(0.5 중량%)를 톨루엔/THF 혼합액에 용해시키고, 0.5 중량% 톨루엔으로부터 25nm 두께의 PS-b_P4VP 박막을 상기 세척된 실리콘 상에 스핀코팅하였다. 스핀된 필름을 작은 밀폐 용기에서 용매 어닐링시켰는데, 이를 위하여, 먼저 톨루엔과 THF(톨루엔:THF 20:80v/v) 균일 혼합용액을 상기 밀폐용기에 주입하고, 상온(25 2℃)에서 수 분 동안 용매를 자발적으로 증발시켜, 상기 용기를 증기 포화상태로 만들었다. 이때 툴루엔 증기와 THF 증기의 부피비는 혼합액의 비율과 일치하지 않았는데, 이것은 톨루엔과 THF의 상이한 증기압에 기인한다. 다음, 스핀필름을 0 내지 5시간 동안 어닐링하여, 옆으로 배열된 실린더 형상의 나노영역을 만들었다. 이후, 용매 어닐링된 시료를 1mM K3[Fe(CN)6]: 0.1% HCl 수용액에 주어진 시간(로딩시간)동안 침지시켰다. 금속 이온 결합(로딩) 후, 시료를 탈이온수로 수 회 세척하여, 과잉의 금속이온을 제거하고, 이후, 질소로 이를 건조시켰다. 다시 산소 플라즈마 처리를 통하여, 중합체 주형을 제거하여 산화철인 Fe2O3 나노입자 어레이를 실리콘 기판 상에 제조하였다. The silicon wafer was immersed in a piranha solution ((7: 3 H 2 SO 4: H 2 O 2) for 1 hour at 110 ° C. and washed several times with deionized water. Ps-b-P4VP block copolymer (0.5 wt%) was added to the toluene / THF mixture. A 25 nm thick PS-b_P4VP thin film from 0.5 wt% toluene was dissolved and spincoated onto the washed silicon The spinned film was solvent annealed in a small sealed container, first toluene and THF (toluene: THF). 20:80 v / v) A homogeneous mixed solution was introduced into the closed container and the solvent was evaporated spontaneously for several minutes at room temperature (25 2 ° C.) to render the vessel saturated with toluene and THF steam. The volume ratio of was inconsistent with the ratio of the mixed liquor, which is due to the different vapor pressures of toluene and THF, and then the spin film was annealed for 0 to 5 hours, creating a laterally arranged cylindrical nano-zone. The solvent annealed sample was immersed in a 1 mM K 3 [Fe (CN) 6]: 0.1% HCl aqueous solution for a given time (loading time) After metal ion bonding (loading), the sample was washed several times with deionized water, The metal ions were removed, and then dried with nitrogen, and then subjected to oxygen plasma treatment to remove the polymer template to prepare an array of Fe 2 O 3 nanoparticles of iron oxide on a silicon substrate.
수직 탄소나노튜브의 PECVD 방식 성장 PECVD growth of vertical carbon nanotubes
본 발명은 상기 제조된 나노입자 어레이의 응용예 중 하나로 촉매를 선택하였다. 이를 위하여 본 발명에 따른 나노입자 어레이를 촉매로 활용, PECVD 방법에 의하여 탄소나노튜브를 성장시켰다. 탄소나노튜브 성장을 위하여, 먼저 Fe2O3 나노입자 어레이가 제조된 기판을 수소 및 암모니아 혼합 가스를 흘리면서 600℃까지 가열하였다. 수소 및 암모니아 함량은 80:20 부피%이었으며, 전체 혼합 가스 유량은 100sccm으로 유지하였다. 기판 온도가 600℃에 도달함에 따라 상기 기판은 어닐링되어(보통 2분 미만) Fe2O3 나노입자는 Fe 금속입자로 환원되었다. 이후, 챔버 압력을 5 torr까지 증가시켰고, 직류 플라즈마가 470V의 음극 DC 전압 인가에 따라 진행되었다. 다음 서서히 아세틸렌 가스를 5sccm의 유량으로 1 내지 2분간 흘림으로써 밀도있게 수직으로 성장한 탄소나노튜브를 제조하였다. The present invention selected the catalyst as one of the applications of the prepared nanoparticle array. To this end, the carbon nanotubes were grown by PECVD using the nanoparticle array according to the present invention as a catalyst. In order to grow carbon nanotubes, the substrate on which the Fe 2 O 3 nanoparticle array was prepared was first heated to 600 ° C. while flowing hydrogen and ammonia mixed gas. The hydrogen and ammonia content was 80: 20% by volume and the total mixed gas flow rate was maintained at 100 sccm. As the substrate temperature reached 600 ° C., the substrate was annealed (usually less than 2 minutes) and the Fe 2 O 3 nanoparticles were reduced to Fe metal particles. Thereafter, the chamber pressure was increased to 5 torr, and the direct current plasma proceeded according to the application of the cathode DC voltage of 470V. Next, acetylene gas was slowly flowed at a flow rate of 5 sccm for 1 to 2 minutes to prepare carbon nanotubes grown densely and vertically.
분석analysis
블록공중합체 주형 분석Block copolymer template analysis
도 3 내지 5는 실리콘 기판 상에서 스핀된 후의 PS-b-P4VP 박막 SEM 이미지(도 1b), 용매-어닐링 후의 PS-b-P4VP 박막 이미지(도 1c, 1d)이다. 스핀 후, P4VP 블록중합체의 나노실린더는 수직으로 배향되는 것을 알 수 있는데, 이것은 스핀-캐스트 공정 시 발생하는 높은 방향성의 증기에 기인한다. 하지만, 실린더의 수평방향으로의 배열밀도는 균일하지 못하고, 크기 분포 또한 넓다는 것을 알 수 있다(도 3 참조). 하지만, 실린더의 수평 배향 및 크기 균일도는 톨루엔 : THF(20:80 v:v)에서의 상온에서 진행된 용매 어닐링 후 크게 개선된다. 2시간으로 어닐링된 시료는 육각으로 질서있게 배향되며, 상대적으로 작은 알갱이 크기를 나타낸다(도 4 참조). 5시간 어닐링된 시료는 큰 알갱이 크기를 가지는 육각 배향 구조를 나타낸다(도 5 참조). 3 to 5 are PS-b-P4VP thin film SEM images (FIG. 1B) after spin on a silicon substrate, and PS-b-P4VP thin film images (FIG. 1C, 1D) after solvent-annealing. After spin, it can be seen that the nanocylinders of the P4VP blockpolymer are oriented vertically, which is due to the high directional vapors generated during the spin-cast process. However, it can be seen that the arrangement density in the horizontal direction of the cylinder is not uniform and the size distribution is also wide (see Fig. 3). However, the horizontal orientation and size uniformity of the cylinder is greatly improved after solvent annealing at room temperature in toluene: THF (20:80 v: v). Samples annealed for 2 hours are orderly ordered in a hexagon and exhibit a relatively small grain size (see FIG. 4). Samples annealed for 5 hours show a hexagonal orientation structure with large grain size (see FIG. 5).
고속 푸리에 변환(FFT) 결과는 수평배열 구조의 개선 효과를 잘 설명한다. Fast Fourier transform (FFT) results illustrate the improvement of the horizontal array structure.
상기 결과를 참조하면, 강한 다중 고차 반사특성을 가지는 6 지점 스폿(spot)은 질서있게 수평 배열된 육각 구조체가 조밀하게 패키징되었다는 것을 나타낸다(도 5에 삽입된 부분). Referring to the above results, six spot spots with strong multiple high order reflection properties indicate that the hexagonal structures arranged in orderly horizontally are densely packaged (inset in FIG. 5).
도 6 내지 8은 스핀캐스트-용매 어닐링된 블록공중합체 주형을 금속이온 착화합물이 함유된 수용액에 1분 동안 침지시켜 제조한 Fe2O3 나노입자 어레이의 SEM 이미지이다.6 to 8 are SEM images of Fe 2 O 3 nanoparticle arrays prepared by immersing a spincast-solvent annealed block copolymer template in an aqueous solution containing a metal ion complex for 1 minute.
도 6 내지 8을 참조하면, P4VP 수직 실린더 구조는 수용성 착화합물 용액에 바로 노출되므로, 음이온 금속 복합체는 약한 산성 조건에서도 양자화된 피리딘기와 용이하게 결합된다. 따라서, 얻어진 Fe2O3 나노입자 어레이는 블록공중합체 주형의 모폴로지를 정확하게 복제한다. 스핀 후, 또는 불충분하게 어닐링된 블록공중합체 주형으로부터 얻어진 입자는 큰 입경과 넓은 크기 분포(스핀된 후 10.84nm 2.98nm, 2시간 어닐링 후, 8.40nm 1.79nm)를 갖는다. 반대로, 잘 성장된 주형으로부터 얻어진 나노입자는 작은 크기 및 좁은 크기 분포(6.03nm 1.0nm)의 실린더 구조를 갖는다. 6 to 8, since the P4VP vertical cylinder structure is directly exposed to the water-soluble complex solution, the anionic metal complex easily binds to the quantized pyridine group even in mildly acidic conditions. Thus, the resulting Fe2O3 nanoparticle array accurately replicates the morphology of the block copolymer template. The particles obtained after the spin, or from an insufficiently annealed block copolymer template, have a large particle diameter and a wide size distribution (10.84 nm 2.98 nm after spin, 8.40 nm 1.79 nm after 2 hours annealing). In contrast, nanoparticles obtained from well grown molds have a cylinder structure of small size and narrow size distribution (6.03 nm to 1.0 nm).
도 9 내지 11은 Fe2O3 나노입자 직경의 통계적 분포도이다.9-11 are statistical distributions of Fe 2 O 3 nanoparticle diameters.
도 9 내지 11의 결과뿐만 아니라, 하기 표 1은 도 1의 블록공중합체 나노주형 및 얻어진 나노입자 어레이의 나노크기 특성을 정리한 결과이다.In addition to the results of FIGS. 9 to 11, Table 1 below summarizes the nanosize characteristics of the block copolymer nano template and the obtained nanoparticle array of FIG. 1.
표 1
블록공중합체 주형 철 산화물 나노입자 어레이
평균직경(nm) 평균 중심간 거리 (nm) 평균직경 (nm) 평균 중심간 거리(nm)
스핀 후 11.04 ± 3.9 24.58 ± 4.6 10.84 ± 2.98 25.38 ± 6.1
2시간 10.35 ± 2.3 22.39 ± 2.6 8.40 ± 1.79 23.95 ± 4.5
5시간 9.01 ± 1.2 19.23 ± 1.3 6.03 ± 1.0 19.71 ± 1.7
Table 1
Block Copolymer Mold Iron Oxide Nanoparticle Array
Average diameter (nm) Average center-to-center distance (nm) Average diameter (nm) Average Center-to-Center Distance (nm)
After spin 11.04 ± 3.9 24.58 ± 4.6 10.84 ± 2.98 25.38 ± 6.1
2 hours 10.35 ± 2.3 22.39 ± 2.6 8.40 ± 1.79 23.95 ± 4.5
5 hours 9.01 ± 1.2 19.23 ± 1.3 6.03 ± 1.0 19.71 ± 1.7
도 9 내지 11 및 표 1 결과를 참조하면, 나노입자의 평균 직경은 블록공중합체 실린더 직경보다 다소 작아지는데, 이것은 플라즈마 처리에 의한 블록공중합체 제거시 발생하는 입자 밀집화에 따른 것에 기인한다. 9 to 11 and Table 1 results, the average diameter of the nanoparticles is somewhat smaller than the block copolymer cylinder diameter, due to the particle density that occurs when the block copolymer is removed by plasma treatment.
나노입자 어레이 분석Nanoparticle Array Analysis
도 12는 주형을 금속 착이온 용액에 침지(로딩)시킨 시간에 따라 5시간 용매어닐링된 주형으로부터 얻어진 나노입자 어레이의 성장을 나타내는 SEM 이미지이다. FIG. 12 is an SEM image showing the growth of an array of nanoparticles obtained from a solvent annealed template for 5 hours with time the template was immersed (loaded) in a metal complex ion solution.
도 12를 참조하면, 단분산된 나노입자의 크기는 로딩 시간에 따라 점차 증가한다. 나노미터-이하 크기로 입자 크기를 정밀하게 조절하는 것은 상대적으로 낮은 금속착이온 수용액 농도(1mM K3[Fe(CN)6]) 에서 가능하다. 평균 직경 및 높이의 차이를 로딩 시간에 따라 그래프화하여, 이를 도 13에 나타내었다. 성장 속도는 짧은 로딩 시간에서는 빨랐으나, 점차 둔화된다. 성장 거동은 전형적인 거듭제곱 법칙 곡선(power law curve), Atα에 대응될 수 있다. 최소자승법(least square fit)에 따르면, 직경에 있어서 0.16, 높이에 있어서 0.39의 지수 α를 얻게 한다. 이와 같이 낮은 수치는 금속착이온의 낮은 농도뿐만 아니라 P4VP 나노크기 실린더를 통한 금속이온의 제한된 확산에 기인한다. 즉, 블록공중합체 주형에서 PS 매트릭스는 P4VP 실린더 구조체 주변에서 금속이온 확산에 대한 장벽으로 기능하지만, 점차 로딩 시간이 길어짐에 따라 나노입자는 흡착된다. 도 14는 산소 플라즈마 처리 후 얻어지는 Fe2O3 나노입자 어레이의 XPS 스페트럼이다. 도 14 결과를 참조하면, 710.5eV의 Fe-2p3/1 피크는 Fe2O3 상태인 Fe가 존재하는 것을 증명한다.Referring to FIG. 12, the size of monodispersed nanoparticles gradually increases with loading time. Precise control of particle size down to nanometer-sized sizes is possible at relatively low concentrations of aqueous metal complex ions (1 mM K3 [Fe (CN) 6]). The difference in average diameter and height is graphed according to loading time, which is shown in FIG. 13. The growth rate was fast at short loading times but gradually slowed down. The growth behavior may correspond to a typical power law curve, Atα. According to the least square fit, an index α of 0.16 in diameter and 0.39 in height is obtained. These low values are due to the low concentration of metal ions as well as the limited diffusion of metal ions through the P4VP nanosize cylinder. In other words, in the block copolymer template, the PS matrix functions as a barrier to diffusion of metal ions around the P4VP cylinder structure, but the nanoparticles are adsorbed as the loading time gradually increases. 14 is an XPS spectrum of an Fe 2 O 3 nanoparticle array obtained after oxygen plasma treatment. Referring to Figure 14 results, Fe-2p3 / 1 peak of 710.5eV proves that the Fe 2 O 3 Fe state exists.
탄소나노튜브 분석Carbon Nanotube Analysis
단분산 나노입자 어레이의 촉매 기능성을 촉매 기반의 탄소나노튜브 성장 실험을 통하여 분석하였다. 다양한 탄소나노튜브 합성 방법 중, 플라즈마 기상증착방법(PECVD)를 사용하여 수직 배향된 탄소나노튜브 성장을 유도하였다. PECVD는 600℃ 미만의 온도에서 저온 성장을 가능하게 하는데, 이것은 소자 집적에 있어 중요한 조건 중 하나이다. 본 발명에서 제조된 Fe2O3 입자 어레이는 탄소나노튜브 성장 전 열적 환원에 의하여 Fe 입자로 변환된다. 즉, 질소, 암모니아 및 아세틸렌 혼합 가스를 천천히 넣어 줌으로써 수직으로 배향된 탄소나노튜브는 높은 수율로 제조되었다(도 15). 이와 같은 탄소나노튜브의 고수율 성장은 본 발명에 따라 제조된 단분산 나노입자 어레이의 고순도 및 고기능성을 증명한다. The catalytic functionality of monodisperse nanoparticle arrays was analyzed through catalyst-based carbon nanotube growth experiments. Among various carbon nanotube synthesis methods, plasma vapor deposition (PECVD) was used to induce vertically oriented carbon nanotube growth. PECVD enables low temperature growth at temperatures below 600 ° C., which is one of the important conditions for device integration. The Fe 2 O 3 particle array prepared in the present invention is converted into Fe particles by thermal reduction before carbon nanotube growth. That is, vertically oriented carbon nanotubes were prepared with high yield by slowly adding nitrogen, ammonia, and acetylene mixed gas (FIG. 15). Such high yield growth of carbon nanotubes proves the high purity and high functionality of the monodisperse nanoparticle array prepared according to the present invention.
본 발명에서는 26.7㎛ 높이의 탄소나노튜브가 최적 조건에서 1분 후 성장되었다. 도 16은 높은 배율의 탄소나노튜브 아래 부분의 SEM 이미지이다. 탄소나노튜브 직경은 5.3nm 수준으로, 이는 8.6nm 수준인 촉매 입자 직경의 2/3에 해당한다. 도 17, 18은 본 발명에 따라 제조된 단분산 촉매입자로부터 성장한 탄소나노튜브의 고해상도 TEM 이미지로서, 상기 이미지를 분석하면, 5.8 및 9.9nm의 평균직경이 나타난다. 탄소나노튜브 직경과 그래파이트 구조에서의 탄소 벽 갯수의 좁은 분포도는 촉매 입자의 단분산 특성에 기인한다. 즉, 5.6nm 촉매 입자로부터 성장한 탄소나노튜브의 88% 는 이중벽이었으나, 9.9nm 촉매입자로부터 성장한 탄소나노튜브의 72%는 삼중벽이었다(도 17 참조). 도 18은 스핀된 상태의 블록공중합체 주형과 5시간 어닐링된 후의 블록공중합체 주형으로부터 제조된 탄소 벽 수를 통계적으로 비교한 결과이다. 착이온의 로딩은 5분에서 유지되었다. 스핀된 나노입자 어레이는 넓은 크기 분포를 가지기 때문에, 이로부터 성장한 탄소나노튜브 또한 넓은 탄소벽 수 분포를 나타내었다. 반대로, 5시간 어닐링된 블로공중합체 주형으로부터 얻어진 탄소나노튜브의 탄소벽 수는 훨씬 좁은 분포를 나타내었다. In the present invention, carbon nanotubes having a height of 26.7 μm were grown after one minute under optimum conditions. FIG. 16 is an SEM image of the lower portion of the carbon nanotube at high magnification. FIG. The carbon nanotube diameter is 5.3 nm, which corresponds to 2/3 of the diameter of the catalyst particles of 8.6 nm. 17 and 18 are high-resolution TEM images of carbon nanotubes grown from monodisperse catalyst particles prepared according to the present invention. When the images are analyzed, average diameters of 5.8 and 9.9 nm appear. The narrow distribution of carbon nanotube diameters and the number of carbon walls in the graphite structure is due to the monodisperse nature of the catalyst particles. That is, 88% of the carbon nanotubes grown from the 5.6 nm catalyst particles were double walls, whereas 72% of the carbon nanotubes grown from the 9.9 nm catalyst particles were triple walls (see FIG. 17). FIG. 18 is a statistical comparison of the number of carbon walls prepared from the block copolymer template in the spin state with the block copolymer template after annealing for 5 hours. The loading of the complex ion was maintained at 5 minutes. Since spinned nanoparticle arrays have a wide size distribution, carbon nanotubes grown from them also exhibit a wide carbon wall number distribution. In contrast, the carbon wall numbers of the carbon nanotubes obtained from the blow copolymer templates annealed for 5 hours showed a much narrower distribution.
도 19는 5시간 어닐링된 블록공중합체 주형으로부터 제조된 단일벽 탄소나노튜브(SWNT), 이중벽 탄소나노튜브(DWNT), 삼중벽 탄소나노튜브(TWNT) 및 사중벽 이상의 다중벽 탄소나노튜브(MWNT)의 상대적인 분율을 착화합물(ion complex) 로딩 시간에 따라 분석하였다. 각 탄소 벽 수의 상대적인 분율은 로딩 시간의 함수로서 촉매 크기와 함께 변화하였다. 이는 NH3 환경에서의 탄소나노튜브 성장의 경우, 비록 가장 작은 크기의 입자에서도 단일벽 탄소나노튜브의 성장이 억제되었는데, 이는 질소 도핑 효과에 기인하는 것으로 판단된다. 도 20에서는 탄소나노튜브의 평균 직경을 이온 로딩 시간에 따라 그래프화하였다. 성장 특성은 촉매 입자 성장과 유사하였는데, 이것은 탄소나노튜브 직경은 촉매 입자 크기와 밀접하게 연관된다는 것을 의미하며,본 발명에 따른 크기-제어 나노입자증착은 촉매 및 이에 대응되는 탄소나노튜브 어레이의 계층적 패터닝을 가능하게 한다. 도 21은, 블록공중합체의 선택적 증착을 통하여, 원하는 기판 영역에서 탄소나노튜브를 성장시키는 공정을 설명한다. FIG. 19 shows single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), triple-walled carbon nanotubes (TWNTs) and four-walled multi-walled carbon nanotubes (MWNTs) prepared from a block copolymer template annealed for 5 hours. The relative fractions of) were analyzed according to the ion complex loading time. The relative fraction of each carbon wall number varied with catalyst size as a function of loading time. In the case of carbon nanotube growth in the NH3 environment, even the smallest particle size, the growth of single-walled carbon nanotubes was suppressed, which is thought to be due to the nitrogen doping effect. In FIG. 20, the average diameter of the carbon nanotubes is graphed according to the ion loading time. Growth characteristics were similar to catalyst particle growth, which means that the carbon nanotube diameter is closely related to the catalyst particle size, and the size-controlled nanoparticle deposition according to the present invention is a layer of catalyst and the corresponding carbon nanotube array. Enable enemy patterning. FIG. 21 illustrates a process of growing carbon nanotubes in a desired substrate region through selective deposition of block copolymers.
이상 살핀 바와 같이, 본 발명에 따른 단분산성의 나노입자 어레이 증착방법은 크기가 제어가 가능하며, 이는 블록공중합체 리쏘그래피에 의하여 달성될 수 있다. 수직으로 정렬된 실린더 형상의 블록공중합체 나노영역은 용매 어닐링된 PS-b-P4VP 블록공중합체 박막에 의하여 제조되며, 이를 수용성 이온 금속 착화합물 용액에 침지시킴에 따라, 음이온 금속 착화합물은 P4VP 실린더 코어로 확산되는데, 이것은 매우 특이적인 정전기적 상호작용에 의하여 이루어진다. 나노크기의 한정된 공간에서의 금속이온의 특이적 분산특성은 나노미터 미만 수준으로 옆으로 정렬된 단분산 나노입자 어레이를 원하는 크기로 제조가능하게 한다. 또한 단분산 나노입자 어레이의 촉매기능성은 촉매 PECVD에 의하여 수직 성장한 탄소나노튜브를 통하여 증명하였다. 나노미터 미만 크기로 촉매 입자 크기를 제어하는 본 발명은 특히 탄소 벽 수가 선택적으로 결졍될 수 있는 수직 배향의 탄소나노튜브의 성장을 가능하게 한다. 또한 트렌치 내에서도 그래포에피탁시(graphoepitaxy) 방식을 통하여 나노입자 어레이를 정렬시킬 수 있다. 즉, 그래포에피탁시(Graphoepitaxy)의 경우, 기판에 형성된 트렌치 내에서 블록공중합체를 정렬시키기 때문에 단일 도메인을 가지는 나노 구조를 형성할 수 있으며, 하기 설명되는 다양한 방식에 따라 단일 또는 이종 금속 배열을 원하는 트렌치 구조 내에서 형성시킬 수 있다. As described above, the monodisperse nanoparticle array deposition method according to the present invention can be controlled in size, which can be achieved by block copolymer lithography. Vertically aligned cylindrical block copolymer nanoregions are prepared by a solvent annealed PS-b-P4VP block copolymer thin film, which is immersed in a water soluble ion metal complex solution, whereby the anionic metal complex is transferred to the P4VP cylinder core. Diffusion, which is achieved by very specific electrostatic interactions. The specific dispersion of metal ions in nanoscale confined spaces enables the production of monodisperse nanoparticle arrays arranged sideways at sub-nanometer levels to the desired size. In addition, the catalytic functionality of monodisperse nanoparticle arrays was demonstrated through carbon nanotubes grown vertically by catalytic PECVD. The present invention, which controls the catalyst particle size to a size less than nanometers, enables the growth of carbon nanotubes in a vertical orientation, in particular where the number of carbon walls can be selectively determined. It is also possible to align nanoparticle arrays within the trenches through graphoepitaxy. That is, in the case of Graphoepitaxy, since the block copolymer is aligned in the trench formed in the substrate, it is possible to form a nanostructure having a single domain, and to form a single or dissimilar metal array according to various methods described below. Can be formed in the desired trench structure.
도 22 내지 25는 본 발명에 따른 방식에 의하여 다양한 형태로 나노입자를 증착하는 방법을 설명하는 도면이다.22-25 illustrate a method of depositing nanoparticles in various forms by a scheme in accordance with the present invention.
도 22를 참조하면, 본 발명에 따라 제조된 금속 나노입자 어레이(제 1 금속어레이) 상에 다시 또 다른 이종의 금속을 상기 제 1 금속 어레이 형성 영역이 아닌 영역에 정전기적 상호작용에 의하여 증착시켜, 2 종류 이상의 금속 나노점이 서로 이격된 형태로 구성된 나노입자 박막을 제조하는 단계를 나타낸다. Referring to FIG. 22, another heterogeneous metal is deposited on the metal nanoparticle array (first metal array) manufactured according to the present invention to an area other than the first metal array formation region by electrostatic interaction. , Shows a step of manufacturing a nanoparticle thin film composed of two or more types of metal nanopoints spaced apart from each other.
도 23을 참조하면, 먼저 블록공중합체를 올린 후, 용매 어닐링을 하거나 열처리를 하여, 기판에 평행한 나노라인을 먼저 형성한다. 이후 형성한 나노라인 위에 블록공중합체를 다시 한 번 더 도포한 후, 본 발명에 따른 방법에 의하여 나노점을 형성한다. 이에 따라 미리 형성된 나노라인의 이격공간 사이에 나노닷이 위치하게 된다. Referring to FIG. 23, first, a block copolymer is raised, followed by solvent annealing or heat treatment to form nanolines parallel to the substrate. After applying the block copolymer again on the formed nano-line again, to form a nano dot by the method according to the invention. As a result, nanodots are located between the spaces of the pre-formed nanoline.
도 24는 두 종류의 금속 전구체 용액을 함께 사용하여, 이종 금속의 합금 나노점을 기판에 증착시키는 방법을 나타낸다. 이 경우에도, 상기 이종 금속 전구체 용액은 자기조립된 블록공중합체와 선택적으로 정전기적으로 결합해야 함은 상술한 바와 같다. 즉, 금속 음이온을 로딩할 때, 이종의 시료를 사용함에 따라 합금 나노입자를 얻을 수 있으며, 이를 열처리, 재결정화시킴으로써 합금 나노입자의 특성을 관찰할 수 있다. 24 illustrates a method of depositing alloy nanopoints of dissimilar metal on a substrate using two kinds of metal precursor solutions together. Even in this case, the dissimilar metal precursor solution must be selectively electrostatically bonded to the self-assembled block copolymer. That is, when loading a metal anion, alloy nanoparticles can be obtained by using a heterogeneous sample, and the properties of the alloy nanoparticles can be observed by heat treatment and recrystallization thereof.
도 25는 본 발명에 따른 나노점 증착방법을 복수 회 진행하여, 제 1 나노점위로 제 2 나노점이 순차적으로 적층된, 소위 코어-쉘(core-shell) 구조의 나노입자를 기판상에 증착시키는 방법을 나타낸다. 본 발명의 또 다른 일 실시예는 이러한 정전기적인 로딩 방식에 따라 이종 금속 어레이를 제조하는 방법을 제공한다. FIG. 25 illustrates a process of depositing nanoparticles of a so-called core-shell structure on a substrate, in which a plurality of nanopoint deposition processes according to the present invention are sequentially performed, in which a second nanopoint is sequentially stacked on a first nanopoint. The method is shown. Yet another embodiment of the present invention provides a method of manufacturing a dissimilar metal array according to such an electrostatic loading method.
이종 금속어레이 제조Dissimilar Metal Array Manufacturing
실리콘 기판 상에 양친매성인 33.5kg/mol 또는 59 kg/mol의 폴리(스티렌-블록-4-비닐피리딘)(PS-b-P4VP, 0.5 중량%)를 톨루엔:테트라하이드로퓨란(THF) 혼합용액에 용해시킨 후, 제 1 블록공중합체 리쏘그래피를 수행하기 위하여, 30nm 두께로 상기 PS-b-P4VP 박막을 상기 실리콘 기판 상에 스핀코팅하여 제조하였다. 이후 스핀코팅된 박막은 용매 어닐링되었다. 33.5kg/mol의 PS-b-P4VP 블록공중합체의 경우, 균일한 톨루엔:테트라하이드로퓨란 혼합액(760/30 v/v 또는 80/20 v/v)을 상기 어닐링된 용기에 주입하여, 실린더 어레이의 평면내 구조와 평면 돌출 구조를 각각 유도하였다. 59kg/mol의 PS-b-P4VP 블록공중합체 박막을 THF 증기로 처리하여, 평면 돌출 구조의 실린더 어레이로 조립하였다. 상기 용기는 수분 동안 상온에서 자발적으로 증발하는 용매 증기로 포화된 상태이었다.Amphiphilic 33.5 kg / mol or 59 kg / mol of poly (styrene-block-4-vinylpyridine) (PS-b-P4VP, 0.5 wt%) was mixed on a silicon substrate with a toluene: tetrahydrofuran (THF) solution. After dissolution in, the PS-b-P4VP thin film was prepared by spin coating on the silicon substrate in a thickness of 30 nm to perform first block copolymer lithography. The spin-coated thin film was then solvent annealed. For 33.5 kg / mol PS-b-P4VP block copolymer, a homogeneous toluene: tetrahydrofuran mixture (760/30 v / v or 80/20 v / v) is injected into the annealed vessel to form a cylinder array. In-plane structures and planar protrusion structures of are derived, respectively. A 59 kg / mol PS-b-P4VP block copolymer thin film was treated with THF vapor to assemble into a cylinder array of planar protrusion structures. The vessel was saturated with solvent vapor which spontaneously evaporated at room temperature for several minutes.
다음, 스핀코팅된 박막을 1 내지 5 시간 동안 어닐링하여, 질서있게 배열된 실린더 형태의 나노도메인을 형성하였다. 상기 용매 어닐링된 샘플을 금속 이온이 함유된 HCl 수용액에 침지시켜, 상기 금속 이온을 상기 박막에 로딩시켰다. The spin-coated thin film was then annealed for 1 to 5 hours to form orderly arranged cylindrical nanodomains. The solvent annealed sample was immersed in an aqueous HCl solution containing metal ions to load the metal ions into the thin film.
본 발명의 일 실시예에서 상기 제 1 금속이온 함유 용액은 2 mM Na2PdCl4 / 0.1% HCl 용액이었고, 또 다른 제 2 금속이온 함유 용액은 1 mM Na2PtCl4 / 0.1% HCl 이었다. 이로써 Pt와 Pd가 상기 양성자화된 P4VP와 정전기적으로 결합하며, 상기 Pt 및 Pd 어레이의 구조는 P4VP 형태를 따른다. In one embodiment of the present invention, the first metal ion-containing solution was 2 mM Na 2 PdCl 4 / 0.1% HCl solution, and another second metal ion-containing solution was 1 mM Na 2 PtCl 4 / 0.1% HCl. As a result, Pt and Pd electrostatically bond with the protonated P4VP, and the structure of the Pt and Pd arrays follows the P4VP form.
상기 로딩 후, 시료를 탈이온수로 수 회 세척, 과량의 금속 이온을 제거하고, 다시 다시 질소로 상기 박막을 건조하였다. 이후, 전체 면적에 대하여 산소 플라즈마 처리를 실시하여, 상기 블록 중합체 주형을 제거하였다. 이후 제 2 블록공중합체 리쏘그래피 공정을 위하여, 33.5kg/mol의 PS-b-P4VP 블록공중합체 박막을 상기 금속 나노패턴이 형성된 기판 상에 30nm 두께로 스핀코팅하였다. 이후 이어지는 용매 어닐링을 수행하여, 평면층에 포함된 실린더 구조 어레이를 형성하거나, 평면층으로부터 돌출된 실린더 구조의 어레이를 형성하였다. 산소 플라즈마 공정에 따라 상기 제 2층의 블록공중합체 주형을 제거하여, 다양한 복합 다중성분 어셈블리를 기판 상에 제조하였다. 상기 제조된 어셈블리 패턴은 도 1에 도시된 바와 같이, 점-점, 선-선, 점-선 형태가 될 수 있으며, 상기 단계를 반복함에 따라 다양한 종류의 금속을 대면적 기판에 원하는 형태로 형성시킬 수 있다.After the loading, the sample was washed several times with deionized water, excess metal ions were removed, and the thin film was dried again with nitrogen. Thereafter, an oxygen plasma treatment was performed on the entire area to remove the block polymer template. Thereafter, for the second block copolymer lithography process, a 33.5 kg / mol PS-b-P4VP block copolymer thin film was spin-coated to a thickness of 30 nm on the substrate on which the metal nanopattern was formed. Subsequent solvent annealing was performed to form a cylindrical array included in the planar layer, or to form an array of cylindrical structures projecting from the planar layer. Various composite multicomponent assemblies were prepared on the substrate by removing the block copolymer template of the second layer following an oxygen plasma process. The manufactured assembly pattern may be in the form of a dot-point, a line-line, a dot-line, as shown in FIG. 1, and various types of metals are formed in a desired shape on a large-area substrate by repeating the above steps. You can.
도 26은 본 발명에 따라 제조된 제 1 블록공중합체 리쏘그래피에 따라 Pt 라인(34nm 주기, 10 nm 너비)이 형성된 후의 사진이고, 도 27은 상기 34 nm 주기 및 10 nm 직경으로 평면에서 돌출된 P4VP 실린더 구조체가 Pt 라인 사이에 정확하게 형성되었음을 나타내는 사진이다. 또한, 도 28은 10nm 직경의 Pd 나노점이 도 27의 P4VP 실린더 나노도메인의 위치에 형성되었음을 나타내는 사진이다. FIG. 26 is a photograph after the Pt line (34 nm period, 10 nm width) is formed according to the first block copolymer lithography prepared according to the present invention, and FIG. 27 is protruded in plane at the 34 nm period and 10 nm diameter. Photograph showing that the P4VP cylinder structure was correctly formed between Pt lines. FIG. 28 is a photograph showing that 10 nm diameter Pd nanopoints are formed at the position of the P4VP cylinder nanodomain of FIG. 27.
도 26 내지 28을 참조하면, 기판 상에 라인-점의 나노구조체를 금속음이온과 중합체 사이의 정전기적인 인력을 통하여 효과적으로 형성시킬 수 있음을 알 수 있다. 26 to 28, it can be seen that line-point nanostructures on the substrate can be effectively formed through the electrostatic attraction between the metal anion and the polymer.
도 29는 Pt 라인과 Pd 라인이 교차하는 형태로 형성된 나노입자 어레이를 나타내고, 도 30은 점-점 형태를, 도 31 및 32는 Pt 라인과 Pd 점 어레이에 대한 EDS 맵핑 이미지이다. FIG. 29 shows an array of nanoparticles formed in the form of an intersection of a Pt line and a Pd line, FIG. 30 is a dot-dot form, and FIGS. 31 and 32 are EDS mapping images of the Pt line and the Pd dot array.
도 29 내지 32를 참조하면, 상당히 규칙적으로 배열된 금속 어레이가 기판에 형성될 수 있음을 알 수 있다. 또한 본 발명의 일 실시예에서는 제 1 중합체 리쏘그래피에 의하여 Pt가, 제 2 중합체 리쏘그래피에 의하여 Pd가 증착되었지만, 이는 상이한 금속 이온 로딩 단계를 통하여 달라질 수 있다. 29-32, it can be seen that a fairly regularly arranged metal array can be formed in the substrate. Also, in one embodiment of the present invention, Pt was deposited by first polymer lithography and Pd was deposited by second polymer lithography, but this can be varied through different metal ion loading steps.
도 33 내지 37은 본 발명에 따른 정전기적인 방식으로 기판 상에 제조된 다양한 이종 금속 어레이를 나타내는 것으로, 각각 Pt 라인-Co 점, Pt 라인-Au 점, Pd 라인-Fe2O3 점, Pt 점- Fe2O3 점 및 Pd 라인-Pd 라인의 이미지이다.33 to 37 show various heterogeneous metal arrays fabricated on a substrate in an electrostatic manner according to the present invention, wherein Pt line-Co point, Pt line-Au point, Pd line-Fe 2 O 3 point, Pt point, respectively -Images of Fe 2 O 3 point and Pd line-Pd line.
도 33 내지 37을 참조하면, 금속 이온의 선택에 따라 다양한 형태의 다중성분의 금속 어레이를 형성시킬 수 있음을 알 수 있다.33 to 37, it can be seen that a multi-component metal array of various forms can be formed according to the selection of metal ions.
상술한 바와 같이 본 발명은 다단계로 진행되는 블록공중합체 리쏘그래피와 중합체-금속이온간의 정전기적인 결합을 통하여 다양한 형태와 성분의 금속 어레이를 기판 상에 형성시킬 수 있다.As described above, the present invention can form metal arrays of various shapes and components on a substrate through electrostatic coupling between block copolymer lithography and polymer-metal ions.
본 발명의 또 다른 일 실시예는 이러한 다단계로 진행되어 제 1 금속 어레이와 제 2 금속어레이를 상이한 위치로 구성시키는 방식이 아니라, 2 이상의 금속 이온이 함유된 용액에 본 발명에 따른 블록공중합체 주형을 침지시며, 복합 금속 어레이를 형성시킨다. Another embodiment of the present invention is not a multi-step process to configure the first metal array and the second metal array in different positions, but rather a block copolymer mold according to the present invention in a solution containing two or more metal ions. Is immersed to form a composite metal array.
도 38은 본 발명의 상기 실시예에 따른 복합금속 어레이 제조방법의 단계별 모식도이다.38 is a step-by-step schematic diagram of the composite metal array manufacturing method according to the embodiment of the present invention.
도 38을 참조하면, 본 발명에 따라 제조된 블록공중합체가 Fe(CN)6-3과 PtCl4-2의 혼합 용액에 침지되며, 상기 2 종류의 금속 이온은 상기 블록공중합체 중 양성자화된 중합체와 정전기적으로 결합하여, FePt 합금 패턴이 상기 기판에 형성된다. 본 발명의 일 실시예에서 상기 합금 패턴은 상기 정전기적으로 결합하는 중합체 패턴에 대응되며, 상기 중합체 패턴이 점 형태인 경우, 상기 합금 패턴은 점 형태가 될 수 있다. 이와 달리 상기 중합체 패턴이 라인 형태인 경우, 상기 합금 패턴은 라인 형태가 될 수 있다Referring to FIG. 38, a block copolymer prepared according to the present invention is immersed in a mixed solution of Fe (CN) 6-3 and PtCl4-2, and the two kinds of metal ions are protonated polymers in the block copolymer. In electrostatic bonding with, a FePt alloy pattern is formed on the substrate. In one embodiment of the present invention, the alloy pattern corresponds to the electrostatically coupled polymer pattern, when the polymer pattern is in the form of dots, the alloy pattern may be in the form of dots. Alternatively, when the polymer pattern is in the form of a line, the alloy pattern may be in the form of a line.
이후 열처리를 통하여 FePt 합금 나노어레이가 형성된다. 도 20에서 도시되는 바와 같이 본 발명의 일 실시예에서는 먼저 기판 위에 형성한 수직한 실린더 PS-b-P4VP 박막을 페리시아나이드(ferricyanide)와 클로로플래티네이트(chloroplatinate) 음이온을 녹인 염산 수용액 내에 침지하면 양성자화된 피리딘의 질소 위치에 금속 착화합물 음이온들이 정전기적 인력에 의해 위치하게 된다. 이를 꺼내어 산소 플라즈마로 고분자만 제거해주면 실린더 블록에 남아있던 금속 시료가 나노입자 형태로 남게 된다. 그리고 그 시편을 수소를 조금 흘려주며 적절한 고온에서 열처리 해주게 되면 응집되어 합금을 이룬 단결정 나노점 배열로 형성되게 된다. 만약, 상기 중합체 패턴이 라인 형태인 경우, 상술한 방법과 동일한 방법을 라인 형태의 합금 어레이가 기판 상에 형성될 수 있다.Subsequently, a FePt alloy nanoarray is formed through heat treatment. As shown in FIG. 20, in one embodiment of the present invention, first, a vertical cylinder PS-b-P4VP thin film formed on a substrate is immersed in an aqueous hydrochloric acid solution in which ferricyanide and chloroplatinate anions are dissolved. At the nitrogen position of the protonated pyridine, metal complex anions are located by electrostatic attraction. If this is removed and only the polymer is removed by oxygen plasma, the metal sample remaining in the cylinder block remains in the form of nanoparticles. When the specimen is flowed a little hydrogen and heat treated at an appropriate high temperature, the specimen is aggregated to form an array of single crystal nanopoints. If the polymer pattern is in the form of a line, an array of alloys in the form of a line may be formed on a substrate by the same method as described above.
도 39 내지 41은 각각 자기조립된 실린더 구조의 블록공중합체의 SEM 이미지와 크기 분포 그래프, FePt 합금 나노점 어레이 및 크기 분포 그래프, 고온 열처리후의 TEM 이미지 및 크기 분포 그래프이다.39 to 41 are SEM images and size distribution graphs, FePt alloy nanodot arrays and size distribution graphs, TEM images and high temperature heat treatment graphs of self-assembled cylinder block copolymers, respectively.
도 39 내지 41을 참조하면, 증착된 합금을 고온에서 열처리함으로써, 상기 금속은 응집되어 단결정 나노점 배열을 이룬다. 또한, 각각의 크기 분포도에서 볼 수 있듯이 약 11~12 나노미터 정도의 실린더 블록에서 8 나노미터 정도의 금속 나노 구조 배열을 얻을 수 있으며 이를 열처리를 통해 약 4.5 나노미터 정도의 좁은 사이즈 분포를 갖는 나노점 배열을 얻을 수 있게 된다. 특히 섭씨 650도 이상에서 진행되는 열처리를 통하여 기판 상에 증착된 합금 입자는 좁은 직경의 나노점으로 성장하는 것을 알 수 있다. 39 to 41, by heat-treating the deposited alloy at a high temperature, the metals are aggregated to form a single crystal nanopoint array. In addition, as can be seen in the size distribution diagram, a metal nanostructure array of about 8 nanometers can be obtained from a cylinder block of about 11 to 12 nanometers, and the nano-structure having a narrow size distribution of about 4.5 nanometers is subjected to heat treatment. You will get an array of points. In particular, it can be seen that the alloy particles deposited on the substrate through the heat treatment proceeding at more than 650 degrees Celsius to grow into a narrow nano-dots.
본 발명의 또 다른 일 실시예는 산성용액에서 양성자화되는 특정 블록 공중합체(본 발명의 일 실시예에서는 P4VP) 기재만을 산성용액에 침지시키고, 다시 금속 음이온과의 정전기적 작용에 의하여 상기 특정 블록에 금속을 결합시켜 석출한다. 이 경우, 상기 기재의 형태에 따라 다양한 금속층 형성이 가능하다. 예를 들어 상기 공중합체 기재가 브러쉬 형태인 경우, 브러쉬 표면에 금속이 결합, 로드 형태의 금속층이 성장할 수 있다. 이와 달리 박막 형태인 경우, 박막 전체에 금속이 정정전기적으로 결합하므로, 상기 금속어레이는 응집되어 막(film)형태로 전환될 수 있다. In another embodiment of the present invention, only a specific block copolymer (P4VP in one embodiment of the present invention) that is protonated in an acidic solution is immersed in an acidic solution, and the specific block is formed by electrostatic action with a metal anion. Precipitates by bonding a metal to it. In this case, various metal layers may be formed according to the form of the substrate. For example, when the copolymer substrate is in the form of a brush, a metal may be bonded to the surface of the brush and a rod-shaped metal layer may grow. In contrast, in the case of a thin film form, since the metal is electrostatically coupled to the entire thin film, the metal array may be aggregated and converted into a film form.
상기 설명된 도 2를 참조하여 본 발명에 따른 다양한 금속어레이 제조방법을 설명하면, 기판(예를 들면 실리콘 기판)상에 증착된 P4VP 중합체 기재를 금속음이온(M-)이 함유된 산성용액에 침지 방식으로 접촉시킨다. 이로써 양이온이 대전된 상기 중합체 기재와 금속 음이온은 정전기적으로 상호작용하여, 결합되며, 이로써 상기 금속 음이온이 폴리머 기재상에 증착되어, 금속 박막이 형성된다. 이후, 상기 폴리머 기재를 제거하여 상기 폴리머 기재에 대응하는 형태로 증착된 금속박막을 제조한다. 상기 중합체는 박막 형태이거나, 또는 정전기적으로 음이온이 차지되는 중합체가 브러쉬 형태를 포함할 수 있다.이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Referring to FIG. 2 described above, various metal array manufacturing methods according to the present invention will be described. A P4VP polymer substrate deposited on a substrate (for example, a silicon substrate) is immersed in an acidic solution containing metal anion (M-). Contact in such a way. This causes the cation-charged polymer substrate and the metal anion to electrostatically interact and bind, thereby depositing the metal anion on the polymer substrate to form a metal thin film. Thereafter, the polymer substrate is removed to prepare a metal thin film deposited in a form corresponding to the polymer substrate. The polymer may be in the form of a thin film, or a polymer in which an anion is charged electrostatically may include a brush. Although the above description has been made with reference to a preferred embodiment of the present invention, those skilled in the art will have the following claims It will be understood that various modifications and changes can be made in the present invention without departing from the spirit and scope of the invention as set forth in the following.
본 발명에 따른 나노입자 어레이는 나노입자 성장을 이용, 촉매 등을 제조할 수 있는 산업상 이용가능성이 있다. Nanoparticle array according to the present invention has the industrial applicability to produce a catalyst, using nanoparticle growth.

Claims (20)

  1. 금속이온 용액에 상기 용액 내에서 상기 금속이온과 정전기적으로 결합하는 전하를 띠는 중합체를 접촉시켜, 상기 중합체에 상기 금속이온을 결합시키는 단계를 포함하는 것을 특징으로 하는 나노입자 어레이 제조방법.Contacting a metal ion solution with a charged polymer that electrostatically bonds with the metal ion in the solution, thereby bonding the metal ion to the polymer.
  2. 제 1항에 있어서, 상기 중합체는 둘 이상의 중합체의 블록공중합체이며, 상기 블록공중합체 중 적어도 어느 하나는 상기 용액 내에서 상기 금속이온과 반대되는 전하를 띠는 것을 특징으로 하는 나노입자 어레이 제조방법.The method of claim 1, wherein the polymer is a block copolymer of two or more polymers, and at least one of the block copolymers has a charge opposite to the metal ion in the solution. .
  3. 제 2항에 있어서, 상기 방법은 상기 블록공중합체를 자기조립시키는 단계;The method of claim 2, wherein the method comprises: self-assembling the block copolymer;
    상기 자기조립된 블록공중합체를 상기 금속이온 용액에 침지시키는 단계;Immersing the self-assembled block copolymer in the metal ion solution;
    상기 금속이온 용액에서 상기 금속이온과 반대되는 전하를 띠는 중합체와 상기 금속이온을 정전기적인 힘으로 결합시키는 단계; 및Coupling the metal ion and the metal ion with an electrostatic force in the metal ion solution opposite to the metal ion; And
    상기 블록공중합체를 제거하는 단계를 포함하는 것을 특징으로 하는 나노입자 어레이 제조방법.Method for producing a nanoparticle array comprising the step of removing the block copolymer.
  4. 제 1 중합체 및 제 2 중합체를 포함하는 블록공중합체를 이용한 나노입자 어레이 제조방법으로, 상기 방법은 상기 블록공중합체를 자기조립시키는 단계; 상기 자기조립된 블록공중합체 중 제 1 중합체와 상기 증착시키고자 하는 나노입자의 금속이온을 정전기적인 상호작용에 의하여 선택적으로 결합시키는 단계; 및 상기 블록공중합체를 제거하는 단계를 포함하는 것을 특징으로 하는 블록공중합체를 이용한 나노입자 어레이 제조방법.A method of manufacturing a nanoparticle array using a block copolymer comprising a first polymer and a second polymer, the method comprising: self-assembling the block copolymer; Selectively bonding the first polymer of the self-assembled block copolymer and the metal ion of the nanoparticle to be deposited by electrostatic interaction; And removing the block copolymer, the nanoparticle array manufacturing method using the block copolymer, characterized in that it comprises a.
  5. 제 4항에 있어서, 상기 제 2 중합체와 상기 금속이온은 정전기적으로 상호작용하지 않는 것을 특징으로 하는 블록공중합체를 이용한 나노입자 어레이 제조방법.The method of claim 4, wherein the second polymer and the metal ion do not electrostatically interact with each other.
  6. 제 4항에 있어서, 상기 금속이온의 선택적 결합은 자기조립된 상기 블록공중합체를 상기 금속이온이 함유된 상기 용액에 침지하는 방식으로 진행되는 것을 특징으로 하는, 블록공중합체를 이용한 나노입자 어레이 제조방법.The nanoparticle array using block copolymers according to claim 4, wherein the selective bonding of the metal ions is performed by immersing the self-assembled block copolymer in the solution containing the metal ions. Way.
  7. 제 6항에 있어서, 상기 금속이온은 음이온의 금속착화합물 형태이며, 상기 제 1 중합체는 상기 수용액 상에서 양이온을 띠게 되는 것을 특징으로 하는, 블록공중합체를 이용한 나노입자 어레이 제조방법.7. The method of claim 6, wherein the metal ion is in the form of an anion metal complex, and the first polymer has a cation in the aqueous solution.
  8. 제 7항에 있어서, 상기 제 1 중합체는 질소를 포함하며, 상기 수용액은 pH<7의 산성 조건인 것을 특징으로 하는, 블록공중합체를 이용한 나노입자 어레이 제조방법.The method of claim 7, wherein the first polymer comprises nitrogen, and the aqueous solution is characterized in that the acidic condition of pH <7, nanoparticle array manufacturing method using a block copolymer.
  9. 제 4항에 있어서, 상기 블록공중합체는 폴리(스티렌-블록-4-비닐피리딘)인 것을 특징으로 하는, 블록공중합체를 이용한 나노입자 어레이 제조방법.The method of claim 4, wherein the block copolymer is poly (styrene-block-4-vinylpyridine).
  10. 제 4항 내지 제 9항 중 어느 한 항에 따른 방법에 의하여 제조된 나노입자 어레이.10. A nanoparticle array produced by the method according to claim 4.
  11. 제 10항에 따른 나노입자 어레이를 촉매로 이용, 탄소나노튜브를 성장시키는 것을 특징으로 하는 탄소나노튜브 제조방법.A method for producing carbon nanotubes, comprising growing carbon nanotubes using the nanoparticle array according to claim 10 as a catalyst.
  12. 기판 상에서 적층된 제 1 블록공중합체를 자기조립시키는 단계; Self-assembling the first block copolymer deposited on the substrate;
    상기 자기조립된 제 1 블록공중합체를 상기 제 1 금속이온 용액에 접촉시키는 단계;Contacting the self-assembled first block copolymer with the first metal ion solution;
    상기 제 1 금속이온 용액에서 상기 제 1 금속이온과 반대되는 전하를 띠는 상기 블록공중합체의 중합체와 상기 금속이온을 정전기적인 힘으로 결합시키는 단계;Bonding the polymer of the block copolymer having a charge opposite to the first metal ion and the metal ion in the first metal ion solution with an electrostatic force;
    상기 제 1 블록공중합체를 제거하여 상기 기판 상에 제 1 금속 어레이를 제조하는 단계; Removing the first block copolymer to produce a first metal array on the substrate;
    상기 제 1 금속 어레이가 제조된 기판상에 제 2 블록공중합체를 적층한 후, 상기 제 2 블록공중합체를 자기조립시키는 단계;Stacking a second block copolymer on a substrate on which the first metal array is manufactured, and then self-assembling the second block copolymer;
    상기 자기조립된 제 2 블록공중합체를 상기 제 2 금속이온 용액에 접촉시키는 단계;Contacting the self-assembled second block copolymer with the second metal ion solution;
    상기 제 2 금속이온 용액에서 상기 제 2 금속이온과 반대되는 전하를 띠는 상기 블록공중합체의 중합체와 상기 금속이온을 정전기적인 힘으로 결합시키는 단계; 및Coupling the polymer and the metal ion of the block copolymer having a charge opposite to the second metal ion in the second metal ion solution with an electrostatic force; And
    상기 제 2 블록공중합체를 제거하여, 상기 기판 상에 제 1 금속 어레이 및 제 2 금속어레이를 동시에 형성시키는 단계를 포함하는 것을 특징으로 하는 복합 금속 어레이 제조방법.Removing the second block copolymer to simultaneously form a first metal array and a second metal array on the substrate.
  13. 제 12항에 있어서, 상기 단계를 복수 회 반복하여, 복수 종류의 금속 어레이를 상기 기판상에 형성시키는 것을 특징으로 하는 복합 금속 어레이 제조방법.13. The method of claim 12, wherein the step is repeated a plurality of times to form a plurality of kinds of metal arrays on the substrate.
  14. 제 12항에 있어서, 상기 제 1 및 제 2 금속 어레이는 라인 또는 점 형태인 것을 특징으로 하는 복합 금속 어레이 제조방법.13. The method of claim 12 wherein the first and second metal arrays are in the form of lines or dots.
  15. 제 14항에 있어서, 상기 제 1 및 제 2 블록공중합체는 상기 금속이온 용액에서 전하를 띠는 제 1 중합체와 상기 금속이온에서 전하를 띠지 않는 제 2 중합체를 포함하며, 상기 제 1 중합체 영역에서 상기 제 1 및 제 2 금속 어레이가 형성되는 것을 특징으로 하는 복합 금속 어레이 제조방법.15. The method of claim 14, wherein the first and second block copolymers comprise a first polymer charged in the metal ion solution and a second polymer uncharged in the metal ion, wherein in the first polymer region And the first and second metal arrays are formed.
  16. 합금 나노입자 어레이 제조방법으로 상기 방법은Alloy nanoparticle array method as the method
    기판 상에 적층된 블록공중합체를 자기조립시키는 단계;Self-assembling the block copolymer laminated on the substrate;
    상기 자기조립된 블록공중합체를 상기 둘 이상의 금속 이온이 함유된 금속이온 용액에 침지시키는 단계;Immersing the self-assembled block copolymer in a metal ion solution containing two or more metal ions;
    상기 금속이온 용액에서 상기 금속이온과 반대되는 전하를 띠는 중합체와 상기 금속이온을 정전기적인 힘으로 결합시키는 단계;Coupling the metal ion and the metal ion with an electrostatic force in the metal ion solution opposite to the metal ion;
    상기 블록공중합체를 제거하여 상기 기판 상에 합금 패턴을 형성시키는 단계; 및 Removing the block copolymer to form an alloy pattern on the substrate; And
    상기 합금 패턴을 열처리하여 상기 합금 어레이를 제조하는 단계를 포함하는 것을 특징으로 하는 합금 어레이 제조방법.And heat-treating the alloy pattern to produce the alloy array.
  17. 제 16항에 있어서, 상기 합금 어레이는 나노점 또는 나노선 형태인 것을 특징으로 하는 합금 어레이 제조방법. 17. The method of claim 16, wherein the alloy array is in the form of nanodots or nanowires.
  18. 제 17항에 있어서, 상기 열처리는 섭씨 650도 이상에서 진행되는 것을 특징으로 하는 합금 어레이 제조방법.18. The method of claim 17, wherein the heat treatment is performed at 650 degrees Celsius or more.
  19. 금속이온이 함유된 용액에 상기 용액 내에서 상기 금속이온과 반대되는 전하를 띠는 중합체 박막과 접촉시키는 단계;Contacting a solution containing a metal ion with a polymer thin film having a charge opposite to the metal ion in the solution;
    정전기적 상호작용으로 상기 중합체 박막과 금속이온을 결합시켜, 금속 이온을 상기 중합체 기재에 증착시키는 단계; 및Bonding the polymer thin film and metal ions in an electrostatic interaction to deposit metal ions on the polymer substrate; And
    상기 중합체 기재를 제거하는 단계를 포함하는 것을 특징으로 하는, 금속박막 제조방법.Method of producing a metal thin film, characterized in that it comprises the step of removing the polymer substrate.
  20. 금속이온이 함유된 용액에 상기 용액 내에서 상기 금속이온과 반대되는 전하를 띠는 브러쉬를 포함하는 중합체 기재와 접촉시키는 단계;Contacting a solution containing a metal ion with a polymer substrate comprising a brush charged in the solution opposite to the metal ion in the solution;
    정전기적 상호작용으로 상기 중합체의 브러쉬에 상기 금속이온을 결합시켜, 금속 이온을 상기 브러쉬에 증착시키는 단계; 및Bonding the metal ions to the brush of the polymer by electrostatic interaction, thereby depositing metal ions on the brush; And
    상기 브러쉬를 포함하는 중합체 기재를 제거하는 단계를 포함하는 것을 특징으로 하는, 금속로드 제조방법. And removing the polymer substrate comprising the brush.
PCT/KR2012/001216 2011-04-19 2012-02-17 Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof WO2012144728A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0036039 2011-04-19
KR20110036039 2011-04-19
KR1020120005865A KR20120123183A (en) 2011-04-19 2012-01-18 Method for manufacturing nano-particle array of monodispersity having tunable size, nano-particle array manufactured by the same and the application thereof
KR10-2012-0005867 2012-01-18
KR1020120005867A KR20120123184A (en) 2011-04-19 2012-01-18 Method for manufacturing metal array using block copolymer, metal array manufactured by the same
KR10-2012-0005865 2012-01-18

Publications (2)

Publication Number Publication Date
WO2012144728A2 true WO2012144728A2 (en) 2012-10-26
WO2012144728A3 WO2012144728A3 (en) 2013-01-17

Family

ID=47041999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001216 WO2012144728A2 (en) 2011-04-19 2012-02-17 Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof

Country Status (1)

Country Link
WO (1) WO2012144728A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308155A (en) * 2014-11-05 2015-01-28 中国矿业大学(北京) Method for manufacturing microarray through powder microinjection molding
CN111607786A (en) * 2020-05-26 2020-09-01 复旦大学 Material surface metal nano array patterning modification method
CN112705722A (en) * 2019-10-25 2021-04-27 中国科学院广州能源研究所 Method for controlling size of platinum nano-particles with ordered structures
CN113736207A (en) * 2021-08-17 2021-12-03 复旦大学 Multi-component surface organic-inorganic composite nano particle and preparation method and application thereof
CN114050104A (en) * 2021-11-12 2022-02-15 松山湖材料实验室 Processing method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721026B (en) * 2017-10-27 2020-01-07 湖北工业大学 Method for preparing composite metal nanoparticle array with assistance of laser pulse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321652B2 (en) * 2007-12-27 2009-08-26 オムロン株式会社 Method for producing metal film
KR20100100185A (en) * 2009-03-05 2010-09-15 이화여자대학교 산학협력단 Preparation method of metal/zinc oxide hetero nanostructures with enhanced photocatalytic efficiency and metal/zinc oxide hetero nanostructures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321652B2 (en) * 2007-12-27 2009-08-26 オムロン株式会社 Method for producing metal film
KR20100100185A (en) * 2009-03-05 2010-09-15 이화여자대학교 산학협력단 Preparation method of metal/zinc oxide hetero nanostructures with enhanced photocatalytic efficiency and metal/zinc oxide hetero nanostructures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAI, JINAN ET AL.: 'Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires.' ACS NANO. vol. 2, no. 3, 2008, pages 489 - 501 *
LA YOUNG-HYE: 'Preparation and Alignment of Functional Nanomaterials Using Self- Assembled Block Copolymer Structures.' POLYMER SCIENCE AND TECHNOLOGY. vol. 21, no. 3, June 2010, pages 241 - 246 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308155A (en) * 2014-11-05 2015-01-28 中国矿业大学(北京) Method for manufacturing microarray through powder microinjection molding
CN112705722A (en) * 2019-10-25 2021-04-27 中国科学院广州能源研究所 Method for controlling size of platinum nano-particles with ordered structures
CN111607786A (en) * 2020-05-26 2020-09-01 复旦大学 Material surface metal nano array patterning modification method
CN113736207A (en) * 2021-08-17 2021-12-03 复旦大学 Multi-component surface organic-inorganic composite nano particle and preparation method and application thereof
CN114050104A (en) * 2021-11-12 2022-02-15 松山湖材料实验室 Processing method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting device
CN114050104B (en) * 2021-11-12 2022-09-30 松山湖材料实验室 Processing method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting device

Also Published As

Publication number Publication date
WO2012144728A3 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2012144728A2 (en) Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof
EP1455007B1 (en) Method for depositing and patterning carbon nanotubes using chemical self-assembly process
Corletto et al. Nanoscale patterning of carbon nanotubes: techniques, applications, and future
JP5878679B2 (en) Method for manufacturing a substrate product
Subramanian et al. Three-dimensional electroactive ZnO nanomesh directly derived from hierarchically self-assembled block copolymer thin films
WO2011037388A2 (en) 3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof
Chen et al. Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles
US8400053B2 (en) Carbon nanotube films, layers, fabrics, ribbons, elements and articles
US20080032238A1 (en) System and method for controlling the size and/or distribution of catalyst nanoparticles for nanostructure growth
US9957363B2 (en) Method for forming metal nanowire or metal nanomesh
KR20120099476A (en) Block copolymer-assisted nanolithography
Ramanathan et al. Nanofabrication with metallopolymers‐recent developments and future perspectives
KR20120123184A (en) Method for manufacturing metal array using block copolymer, metal array manufactured by the same
Ohtake et al. DNA nanopatterning with self-organization by using nanoimprint
RU2324643C1 (en) Method of preparing thin-film nanocomposite coating on solid-state body
KR101977436B1 (en) Aligned Carbon nanotube struscture having wall form, method for manufacturing the same and electric device using the same
Zu et al. General approach for fabricating nanoparticle arrays via patterned block copolymer nanoreactors
KR20120123183A (en) Method for manufacturing nano-particle array of monodispersity having tunable size, nano-particle array manufactured by the same and the application thereof
US11174166B2 (en) Methods for forming porous nanotube fabrics
US8957406B2 (en) Organic material-based graphitic material
Kim et al. Air–Water Interfacial Directed Self‐Assembly of Block Copolymer Nanostrand Array
KR100841457B1 (en) Method for preparing nano-circuit including V2O5 nanowire pattern
Ding et al. Patterning Nanoparticles by Microcontact Printing and Further Growth of One‐Dimensional Nanomaterials
Di Mauro et al. H-bonding driven assembly of colloidal Au nanoparticles on nanostructured poly (styrene-b-ethylene oxide) block copolymer templates
Weerakkodige Fabrication and Characterization of DNA Templated Electronic Nanomaterials and Their Directed Placement by Self-Assembly of Block Copolymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774565

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774565

Country of ref document: EP

Kind code of ref document: A2