EP3074471A1 - Encre pour former des couches p dans des dispositifs electroniques organiques - Google Patents

Encre pour former des couches p dans des dispositifs electroniques organiques

Info

Publication number
EP3074471A1
EP3074471A1 EP14812650.1A EP14812650A EP3074471A1 EP 3074471 A1 EP3074471 A1 EP 3074471A1 EP 14812650 A EP14812650 A EP 14812650A EP 3074471 A1 EP3074471 A1 EP 3074471A1
Authority
EP
European Patent Office
Prior art keywords
ionomer
nanoparticles
type
layer
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14812650.1A
Other languages
German (de)
English (en)
Inventor
Matthieu Manceau
Solenn Berson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3074471A1 publication Critical patent/EP3074471A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of organic electronic devices such as organic photovoltaic cells, organic light-emitting diodes (OLEDs) and organic photodetectors (OPDs).
  • organic electronic devices such as organic photovoltaic cells, organic light-emitting diodes (OLEDs) and organic photodetectors (OPDs).
  • These devices consist of a first and a second electrode, respectively disposed above and below a stack of several layers including in particular a so-called “active” layer adjacent to a so-called “P-type” layer and a "N-type” layer.
  • the object of the invention is to provide an improved P-type layer, and in this respect advantageous for accessing organic electronic devices, whose thermal and air stability is improved and which has high performances.
  • Organic electronic devices and in particular organic photovoltaic cells, are generally classified according to the structure of their architecture: standard or inverse.
  • the layers are deposited in the following order:
  • conductive layer as a second electrode (cathode).
  • the stack is inverted and the layers are arranged in the following sequence:
  • first electrode cathode
  • an N-type semiconductor layer called an "electron transport layer"
  • the P-type semiconductor layers are formed essentially from a mixture of two polymers, the poly (3,4-ethylenedioxythiophene) (PEDOT) and sodium poly (styrene sulfonate) (PSS) called PEDOT: PSS. As such, these layers have the property of being hydrophilic.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS sodium poly (styrene sulfonate)
  • This material has many advantages in terms of conductivity, transparency, stability including photochemical and oxidation.
  • the electrically active layers consist of a mixture containing at least two semiconductor materials: an N-type material, an electron acceptor, and a P-type material, which is a donor. electrons (hole transporter). These active layers are therefore generally hydrophobic.
  • PEDOT PSS is obtained from a complex formulation of two polymers and several solvents and additives, is not conducive to adjustments. It is indeed difficult to intervene at the level of the formulation without fear of destabilizing it.
  • P-type semiconducting metal oxides such as, for example, V 2 O 5 , O, M0O 3 and WO 3 , in the form of nanoparticles, may constitute an alternative to the use of PEDOT: PSS.
  • These metal oxides are also generally very transparent, and may have good wettability and strong adhesion to the active layer. In addition, their reduced conductivity can be perfectly compensated by reducing the thickness of the final layer.
  • the present invention precisely aims to meet this need.
  • the object of the invention is to propose an improved solution for producing a P layer and more generally for producing organic electronic devices and consequently improved modules in terms of stability, performance and service life.
  • Another object of the invention is to propose a method for preparing an organic electronic device, in which the implementation of the P-type layer is facilitated in particular with respect to that of the P-type PEDOT: PSS layers.
  • the main subject of the present invention is an ink, capable of forming a P-type layer in an organic electronic device, characterized in that it comprises at least nanoparticles of metal oxide (s) semiconducting P-type selected from V 2 O 5 , NiO, M0O 3 , WO 3 and mixtures thereof and an ionomer said ionomer being a perfluorosulfonated copolymer, the mass ratio between the ionomer and the nanoparticles of metal oxide (s) P-type semiconductors ranging from 0.005 to 0.115.
  • the weight ratio between the ionomer and the P-type semiconductor metal oxide nanoparticles is between 0.01 and 0.055.
  • the nanoparticles of P-type semiconducting metal oxide (s) are formed wholly or partly of WO 3.
  • the present invention relates to a P type layer of an organic electronic device, characterized in that it comprises at least nanoparticles of metal oxide (s) semiconducting type P selected from V 2 O 5 , NiO, M0O 3 , WO 3 and mixtures thereof and an ionomer which is a perfluorosulphonated copolymer, the mass ratio between the ionomer and the nanoparticles of the metal oxide (s) semiconductors of type P being between 0.005 and 0, 115.
  • metal oxide (s) semiconducting type P selected from V 2 O 5 , NiO, M0O 3 , WO 3 and mixtures thereof and an ionomer which is a perfluorosulphonated copolymer, the mass ratio between the ionomer and the nanoparticles of the metal oxide (s) semiconductors of type P being between 0.005 and 0, 115.
  • the present invention is an organic electronic device comprising a P-type layer as defined above.
  • the present invention relates to the use of nanoparticles of WO 3 to form a P-type layer in an organic electronic device, characterized in that said nanoparticles are formulated with at least one ionomer, preferably said ionomer being a perfluorosulfonated copolymer, in said P-type layer in an ionomer / nanoparticle mass ratio of WO 3 between 0.005 and 0.115.
  • ionomer preferably ionomer being a perfluorosulfonated copolymer
  • the other expected properties namely uniformity and homogeneity of the layer P on the active layer, and performance in OPV cells, are furthermore unaltered by such a combination.
  • the organic electronic device may be an organic photovoltaic cell, an organic light-emitting diode (OLED) or an organic photodetector (OPD), in standard or inverse structure (NIP).
  • OLED organic light-emitting diode
  • OPD organic photodetector
  • the ink according to the invention comprises at least nanoparticles of P-type semiconductor metal oxide (s) and an ionomer.
  • the mass ratio between the ionomer and the P-type semiconductor metal oxide nanoparticles is between 0.005 and 0.115.
  • the mass ratio between the ionomer and the P-type semiconductor metal oxide nanoparticles is between 0.01 and 0.055.
  • the nanoparticles of P-type semiconductive metal oxide (s) are advantageously chosen from the following metal oxides: V 2 O 5 , O, M0O 3 , WO 3 and mixtures thereof.
  • the P-type semiconductor metal oxide nanoparticles are formed wholly or in part of WO 3 .
  • the nanoparticles of metal oxide (s) semiconducting type P can be in the form of hydrates.
  • the amount of P-type semiconducting metal oxide nanoparticles ranges from 90% to 99.5%, preferably from 95% to 99% by weight, relative to the total weight of the P-type semiconducting metal oxide (s).
  • the term "ionomer” means a synthetic polymer, homopolymer or copolymer, comprising ionic or ionizable groups such as carboxylate, sulphonate or phosphonate functions. It can also be called “ionic polymer”.
  • the ionomer used according to the invention is not an electrically conductive polymer.
  • the ionomer used according to the invention is advantageously a perfluorosulfonated copolymer, and in particular a sulfonated tetrafluoroethylene copolymer.
  • the ionomer is a tetrafluoroethylene backbone copolymer comprising perfluorovinyl ether groups and whose terminal ends are functionalized with sulphonate groups or sulphonic acid functional groups.
  • the ionomer used in the invention is Nafion ® marketed by Dupont.
  • the amount of ionomer (s) ranges from 0.5% to 10%, preferably from 1% to 5% by weight, relative to the total weight of the nanoparticles of semi-metallic oxide (s). P-type conductors and ionomer (s).
  • an ink according to the invention may comprise from 0.5% to 20% by weight of dry matter relative to the total weight of the ink.
  • dry material is understood to mean the constituents of the ink with the exception of the solvent, that is to say essentially the nanoparticles of P-type semiconducting metal oxide (s) and the ionomer.
  • An ink according to the invention may further comprise an alcoholic solvent, in particular a lower alcohol, preferably a C 2 -C 4 lower monoalcohol and in particular ethanol, n-propanol, isopropanol, n-propanol and the like. butanol, 2-butanol or methylpropanol.
  • an ink according to the invention may comprise from 80% to 99.5% by weight of alcoholic solvent relative to the total weight of the ink.
  • the ink is usually formulated without surfactant.
  • these post-treatments can be performed such treatments capable of homogenizing the mixture or to sediment the secondary particles. More specifically, these treatments may consist of agitation or centrifugation.
  • the ink according to the invention consists of an organic solvent, at least nanoparticles of P-type semiconducting metal oxide (s) chosen from V 2 O 5 , NiO , M0O 3 , WO 3 and mixtures thereof and at least one ionomer which is a perfluorosulphonated copolymer, the mass ratio between the ionomer and the P-type semiconductor metal oxide nanoparticles chosen from V 2 O 5 , NiO, M0O 3 , WO 3 and mixtures thereof ranging from 0.005 to 0.115.
  • P-type semiconducting metal oxide s
  • the ink thus formed is useful for constituting the P layer of an organic electronic device.
  • the present invention relates to a P-type layer of an organic electronic device, characterized in that it comprises at least nanoparticles of metal oxide (s) semiconductor semiconductors. type P and an ionomer, the mass ratio between the ionomer and the nanoparticles of metal oxide (s) semiconductor P type is between 0.005 and 0.115, and preferably between 0.01 and 0.055.
  • the layer according to the invention consists of at least P-type semiconductor metal oxide nanoparticles selected from V 2 O 5 , NiO, M0O 3 , WO 3 and their mixtures and at least one ionomer which is a perfluorosulfonated copolymer, the mass ratio between the ionomer and the P-type semiconductor metal oxide nanoparticles selected from V 2 O 5 , NiO, M0O 3 , WO 3 and mixtures thereof ranging from 0.005 to 0.115.
  • the layer P may be formed by depositing the ink layer on the surface of the substrate under consideration by any wet process such as solution coating, dipping, inkjet printing, spin coating, dip coating, roller coating, spray coating.
  • the deposit will be implemented by spin-coating, by strip casting, for example by scraping ("doctor bleading" in English), soaking, by spin coating, slot dye, spray jet. ink, by gravure or by screen printing.
  • the thickness of the layer can be controlled during the deposition. Indeed, the constituents of the expected layer P being dissolved in a liquid, the fluid layer can be spread on the support in a thin film.
  • a drying step is advantageously carried out.
  • the solvent (s) of the ink can be easily evaporated during this drying step.
  • This step is in particular carried out at a temperature ranging from 80 ° C. to 140 ° C. for a period ranging from 1 minute to 30 minutes.
  • the thickness of the layer P according to the invention varies from 0.01 microns to approximately 50 microns.
  • the thickness of the layer P is less than 20 microns, preferably less than 5 microns, and preferably less than 1 micron.
  • the thickness of the layer P is between 0.05 microns and 0.1 microns.
  • the invention also relates to a method of forming a P-type layer in an organic electronic device comprising the following steps:
  • the support is respectively an anode electrode or an active layer.
  • the deposition of the ink on the support can be carried out by any suitable wet process.
  • the ink deposit is then dried or allowed to dry.
  • the present invention also relates to an organic electronic device, characterized in that it comprises a P-type layer as defined above.
  • An organic electronic device has a standard structure or a reverse structure.
  • it may be an organic photovoltaic cell, an organic light-emitting diode (OLED) or an organic photodetector (OPD).
  • OLED organic light-emitting diode
  • OPD organic photodetector
  • the invention also relates to a method of forming an organic electronic device, characterized in that it comprises a step of depositing an ink layer as defined above under conditions conducive to the formation of a layer of the type P.
  • the present invention relates to a method of forming an organic electronic device in reverse structure comprising the following steps:
  • - Have a stack composed of the following layers in this order: substrate, cathode, N-type layer, active layer;
  • an ink layer according to the invention depositing on said active layer, an ink layer according to the invention under conditions conducive to the formation of a P-type layer.
  • an anode and preferably a silver electrode.
  • the present invention relates to a method of forming an organic electronic device in standard structure comprising the following steps:
  • an ink layer according to the invention depositing on said anode, an ink layer according to the invention under conditions conducive to the formation of a P-type layer.
  • Example 1 Formulation of an ink
  • An ink is prepared from a commercial dispersion of WO 3 nanoparticles (2.5% by weight, without surfactant, 2-propanol base, particle size 10-20 nm, crystalline structure: triclinic) distributed by the Nanograde Company. Lie and a commercial formulation of Nafion ® (solution of Nafion ® 117 at ⁇ 5% dry matter, marketed by Sigma-Aldrich).
  • the ink thus formed comprises 96.5 wt% isopropanol, 1% by weight of n-propanol, 2.45% by weight of W0 3 and 0.1% by mass Nafion ®.
  • Example 2 Use of the Ink According to Example 1 to Form a P-Coat
  • the organic electronic device under consideration is a NIP device (reverse) structure as follows:
  • N layer is a zinc oxide (ZnO) layer and its active layer is a polymeric [6,6] -phenyl-C6i-methyl butyrate (PCBM) layer.
  • ZnO zinc oxide
  • PCBM polymeric [6,6] -phenyl-C6i-methyl butyrate
  • Example 1 dedicated to forming the layer P, at the surface of the active layer of the stack, is applied by spin coating, spin coating and dried at a temperature of 120 ° C for 2 minutes.
  • the thus formed p-layer contains 4% by weight of Nafion ® and 96% by weight of WO 3.
  • the silver electrode is then formed on its surface.
  • the active surface of the devices is 0.28 cm 2 .
  • a NIP device (reverse) of the same structure, but control, is formed with a layer P comprising only WO 3 .
  • ink used to form this layer P comprises 97.5% by weight of isopropanol, and 2.5% by weight of WO 3 .
  • the corresponding layer P then contains 100% by weight of W0 3 .
  • the performance of the PIN type devices (inverse) of Example 2 are measured at 25 ° C under an inert atmosphere in illumination standard conditions (1000 W / m 2, AM 1.5G).
  • Jsc short circuit current density
  • Table 1 shows the performance of the device with a P layer according to the invention.
  • Table 2 reports the performance of the control device.
  • Performance 2 performance of the device considered after exposure to air for 2 hours, in the absence of light
  • Performance 3 performance of the device under consideration after heat treatment for 2 minutes at 150 ° C. in a glove box.
  • the beneficial effect of Nafion ® appears clearly after exposure to air for 2 hours, in the absence of light, since the efficiency of the cells does not decrease.
  • the initial performance of the devices are evaluated based on the mass ratio Nafion ® / W0 3 in the dry layer.
  • test parameters are identical to those of example 3.

Abstract

La présente invention concerne une encre, apte à former une couche de type P dans un dispositif électronique organique, caractérisée en ce qu'elle comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, MoO3, WO3 et leurs mélangeset un ionomère, ledit ionomère étant un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, MoO3, WO3 et leurs mélanges étant compris entre 0,005 et 0,115. Elle concerne également une couche P d'un dispositif électronique organique, un dispositif électronique et son procédé de formation.

Description

Encre pour former des couches P dans des dispositifs électroniques organiques
La présente invention concerne le domaine des dispositifs électroniques organiques tels que les cellules photovoltaïques organiques, les diodes électroluminescentes organiques (OLED) et les photo-détecteurs organiques (OPD).
Ces dispositifs sont constitués d'une première et d'une deuxième électrodes, respectivement disposées au-dessus et en-dessous d'un empilement de plusieurs couches comprenant notamment une couche dite « active » jouxtant une couche dite « de type P » et une couche « de type N ».
L'invention vise à proposer une couche de type P améliorée, et à ce titre avantageuse pour accéder à des dispositifs électroniques organiques, dont la stabilité notamment thermique et à l'air est améliorée et qui présente des performances élevées.
Les dispositifs électroniques organiques, et en particulier des cellules photovoltaïques organiques, sont généralement classés selon la structure de leur architecture : standard ou inverse.
Dans une structure standard, les couches sont déposées selon l'ordre suivant :
- un substrat ;
- couche conductrice en tant que première électrode (anode) ;
- couche semi-conductrice de type P dite « couche de transport de trous » ;
- couche électriquement active ;
- couche semi-conductrice de type N dite « couche de transport d'électrons » ; et
- couche conductrice en tant que seconde électrode (cathode).
Dans une structure inverse, l'empilement est inversé et les couches sont disposées selon la séquence suivante :
- un substrat ;
- couche conductrice en tant que première électrode (cathode) ;
- une couche semi-conductrice de type N dite « couche de transport d'électrons » ;
- une couche électriquement active ;
- une couche semi-conductrice de type P dite « couche de transport de trous » ;
- seconde électrode (anode) ou électrode supérieure.
Généralement, les couches semi-conductrices de type P, considérées dans ces structures, sont formées pour l'essentiel à partir d'un mélange de deux polymères, le poly(3,4-éthylènedioxythiophène) (PEDOT) et le poly(styrène sulfonate) de sodium (PSS) dit PEDOT:PSS. A ce titre, ces couches présentent la propriété d'être hydrophiles.
Ce matériau présente de nombreux avantages en termes de conductivité, transparence, stabilité notamment photochimique et à l'oxydation.
Par ailleurs, les couches électriquement actives, classiquement considérées dans ces structures, sont constituées d'un mélange contenant au moins deux matériaux semi-conducteurs : un matériau de type N, accepteur d'électrons, et un matériau de type P, donneur d'électrons (transporteur de trous). Ces couches actives sont donc généralement hydrophobes.
II y a donc naturellement une incompatibilité entre ces deux types de couches,
Ce défaut d'affinité a par ailleurs pour conséquence de rendre difficile la réalisation de leur empilement.
De plus, le fait que ce matériau PEDOT:PSS est obtenu à partir d'une formulation complexe de deux polymères et plusieurs solvants et additifs, est peu propice à des ajustements. Il est en effet délicat d'intervenir au niveau de la formulation sans craindre de la déstabiliser.
Les oxydes métalliques semi-conducteurs de type P, tels que par exemple V2O5, O, M0O3 et WO3, sous forme de nanoparticules, peuvent constituer une alternative à l'utilisation du PEDOT:PSS. Ces oxydes métalliques sont également généralement très transparents, et peuvent présenter une bonne mouillabilité ainsi qu'une forte adhérence sur la couche active. En outre, leur conductivité réduite peut être parfaitement compensée en réduisant l'épaisseur de la couche finale.
Ainsi, l'utilisation du W03 permet d'atteindre des performances initiales très élevées. Malheureusement, il présente deux inconvénients majeurs : une dégradation très rapide à l'air y compris en absence de lumière, et une stabilité thermique médiocre. Dans les deux cas, ceci entraîne une chute brutale des performances du dispositif qui met en œuvre des particules de W03 à titre de composants de la couche P.
En conséquence, il demeure un besoin de disposer d'une solution permettant l'obtention d'une couche de type P particulièrement stable, notamment à l'air, à la chaleur et à l'humidité.
La présente invention a précisément pour objectif de répondre à ce besoin. L'invention a pour objectif de proposer une solution améliorée pour réaliser une couche P et plus généralement pour réaliser des dispositifs électroniques organiques et par conséquent des modules améliorés en termes de stabilité, performances et durée de vie.
L'invention a également pour objectif de proposer un procédé de préparation d'un dispositif électronique organique, dans lequel la mise œuvre de la couche de type P est facilitée notamment par rapport à celle des couches de type P en PEDOT:PSS.
Ainsi, la présente invention a pour objet principal une encre, apte à former une couche de type P dans un dispositif électronique organique, caractérisée en ce qu'elle comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges et un ionomère ledit ionomère étant un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P étant compris entre 0,005 et 0, 115.
De manière préférée, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P est compris entre 0,01 et 0,055.
Avantageusement, les nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P sont formées en tout ou partie de WO3.
Selon un autre de ses aspects, la présente invention concerne une couche de type P d'un dispositif électronique organique, caractérisée en ce qu'elle comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges et un ionomère qui est un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P étant compris entre 0,005 et 0, 115.
Selon encore un autre de ses aspects, la présente invention vise un dispositif électronique organique comprenant une couche de type P telle que définie ci-dessus.
Selon encore un autre de ses aspects, la présente invention concerne l'utilisation de nanoparticules de WO3 pour former une couche de type P dans un dispositif électronique organique, caractérisée en ce que lesdites nanoparticules sont formulées avec au moins un ionomère, de préférence ledit ionomère étant un copolymère perfluorosulfonaté, dans ladite couche de type P dans un rapport massique ionomère/nanoparticules de WO3 compris entre 0,005 et 0, 115. Contre toute attente, les inventeurs ont ainsi constaté que la mise en œuvre, lors de la fabrication de dispositif électronique organique, de nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P telles que le W03 sous une forme combinée à un ionomère s'avère particulièrement avantageuse. Une telle combinaison permet en effet d'accéder à une couche de type P manifestant des propriétés en termes de stabilité thermique et à l'air, significativement améliorées comparativement à une couche de type P formée à partir de mêmes nanoparticules de WO3 mais sous une forme non combinée à un ionomère. Ces avantages sont plus particulièrement illustrés dans les exemples décrits ci- après.
Qui plus est, les autres propriétés attendues, à savoir uniformité et homogénéité de la couche P sur la couche active, et performances en cellules OPV, s'avèrent en outre non altérées par une telle combinaison.
Le dispositif électronique organique selon l'invention peut être une cellule photovoltaïque organique, une diode électroluminescente organique (OLED) ou un photo- détecteur organique (OPD), en structure standard ou inverse (NIP).
D'autres avantages et caractéristiques apparaîtront à la lecture de la description et des exemples qui suivent.
Description détaillée
Comme déjà mentionné, l'encre selon l'invention comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P et un ionomère.
Le rapport massique entre l 'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P est compris entre 0,005 et 0, 115.
De manière préférée, le rapport massique entre Γ ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P est compris entre 0,01 et 0,055.
Les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P sont avantageusement choisies parmi les oxydes de métaux suivants : V2O5, O, M0O3, WO3 et leurs mélanges.
De préférence, les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P sont formées en tout ou partie de WO3.
Elles ont une taille avantageusement comprise entre 2 nm et 200 nm. Par « taille », on entend de préférence la dimension la plus grande des particules. Selon un mode de réalisation particulier, les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P peuvent être sous forme d'hydrates.
De préférence, la quantité de nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P varie de 90 % à 99,5 %, de préférence de 95 % à 99 % en poids, par rapport au poids total des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P et d'ionomère(s).
Au sens de la présente invention, on entend par « ionomère », un polymère synthétique, homopolymère ou copolymère, comprenant des groupements ioniques ou ionisables à l'image des fonctions carboxylates, sulfonates ou phosphonates. Il peut également être appelé « polymère ionique ».
L'ionomère utilisé selon l'invention n'est pas un polymère conducteur électrique.
L'ionomère utilisé selon l'invention est avantageusement un copolymère perfluorosulfonaté, et en particulier un copolymère tétrafluoroéthylène sulfonaté.
De manière encore préférée, l'ionomère est un copolymère à squelette tétrafluoroéthylène comprenant des groupes éthers perfluorovinyliques et dont les extrémités terminales sont fonctionnalisées par des groupes sulfonates ou des fonctions acides sulfoniques.
Avantageusement, l'ionomère utilisé selon l'invention est le Nafion® commercialisé par la société Dupont.
De préférence, la quantité d'ionomère(s) varie de 0,5 % à 10 %, de préférence de 1 % à 5 % en poids, par rapport au poids total des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P et d'ionomère(s).
En particulier, une encre selon l'invention peut comprendre de 0,5 % à 20 % en poids de matière sèche par rapport au poids total de l'encre.
Par « matière sèche » on entend les constituants de l'encre à l'exception du solvant c'est-à-dire essentiellement les nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P et l'ionomère.
Une encre selon l'invention peut comprendre en outre un solvant alcoolique, en particulier un alcool inférieur, de manière préférée un mono-alcool inférieur en C2-C4 et en particulier l'éthanol, le n-propanol, l'isopropanol, le n-butanol, le 2-butanol ou le méthylpropanol. En particulier, une encre selon l'invention peut comprendre de 80 % à 99,5 % en poids de solvant alcoolique par rapport au poids total de l'encre.
L'encre est généralement formulée sans tensio-actif.
Lors de la formulation de l'encre, après mélange des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P et de l'ionomère, plusieurs post-traitements peuvent être effectués tels des traitements aptes à homogénéiser le mélange ou à sédimenter les particules secondaires. Plus précisément, ces traitements peuvent consister en une agitation ou une centrifugation.
Selon une réalisation particulière, l'encre selon l'invention est constituée d'un solvant organique, d'au moins des nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P choisies parmi V2O5, NiO, M0O3, W03 et leurs mélanges et d'au moins un ionomère qui est un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges étant compris entre 0,005 et 0, 115.
Comme précisé ci-dessus, l'encre ainsi formée est utile pour constituer la couche P d'un dispositif électronique organique.
Ainsi, selon un autre de ses aspects, la présente invention concerne une couche de type P d'un dispositif électronique organique, caractérisée en ce qu'elle comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P et un ionomère, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P étant compris entre 0,005 et 0, 115, et de préférence compris entre 0,01 et 0,055.
Selon une réalisation particulière, la couche selon l'invention est constituée d'au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges et d'au moins un ionomère qui est un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges étant compris entre 0,005 et 0,115.
De manière générale, la couche P peut être formée par dépôt de la couche d'encre en surface du substrat considéré par tout procédé par voie humide tels que revêtement en solution, trempage, impression jet d'encre, enduction centrifuge, revêtement au trempé, revêtement au rouleau, revêtement par pulvérisation. Le dépôt sera mis en œuvre par enduction centrifuge (« spin-coating »), par coulage en bande, par exemple au racloir (« doctor bleading » en langue anglaise), trempage, par spin coating, par slot dye, par jet d'encre, par héliogravure ou encore par sérigraphie.
L'épaisseur de la couche peut être contrôlée lors du dépôt. En effet, les constituants de la couche P attendue, étant dissous dans un liquide, la couche fluide peut être étalée sur le support selon un film fin.
Après le dépôt, une étape de séchage est avantageusement effectuée. Le ou les solvants de l'encre peuvent être aisément évaporés lors de cette étape de séchage.
Cette étape est notamment effectuée à une température allant de 80°C à 140°C pendant une période allant de 1 minute à 30 minutes.
Il est bien entendu possible de procéder à la formation de la couche P via la superposition de plusieurs couches d'encre selon l'invention.
En général, l'épaisseur de la couche P selon l'invention, encore figurée par l'écart existant entre les couches qui encadrent ladite couche P, varie de 0,01 microns à environ 50 microns.
De préférence, l'épaisseur de la couche P est inférieure à 20 microns, de manière préférée inférieure à 5 microns, et avantageusement inférieure à 1 micron.
De manière encore plus préférée, l'épaisseur de la couche P est comprise entre 0,05 microns et 0, 1 microns.
L'invention concerne également un procédé de formation d'une couche de type P dans un dispositif électronique organique comprenant les étapes suivantes :
- disposer d'un support ;
- disposer d'une encre selon l'invention ;
- procéder au dépôt d'une couche d'encre en surface dudit support ; et, le cas échéant, au séchage de cette couche pour former la couche P.
Selon l'architecture de la cellule que l'on souhaite obtenir : structure standard ou inverse, le support est respectivement une électrode de type anode ou une couche active.
Le dépôt de l'encre sur le support peut être effectué par tout procédé par voie humide approprié. Le dépôt d'encre est ensuite séché ou laissé sécher.
La présente invention vise également un dispositif électronique organique, caractérisé en ce qu'il comprend une couche de type P telle que définie précédemment.
Un dispositif électronique organique selon l'invention possède une structure standard ou une structure inverse.
Comme mentionné précédemment, il peut s'agir d'une cellule photovoltaïque organique, d'une diode électroluminescente organique (OLED) ou d'un photo-détecteur organique (OPD).
L'invention vise également un procédé de formation d'un dispositif électronique organique, caractérisé en qu'il comprend une étape de dépôt d'une couche d'encre telle que définie précédemment dans des conditions propices à la formation d'une couche de type P.
Selon une première variante, la présente invention concerne un procédé de formation d'un dispositif électronique organique en structure inverse comprenant les étapes suivantes :
- disposer d'un empilement composé des couches suivantes dans cet ordre : substrat, cathode, couche de type N, couche active ;
- déposer sur ladite couche active, une couche d'encre selon l'invention dans des conditions propices à la formation d'une couche de type P.
Il est ensuite superposé à cette couche de type P, une anode, et de préférence une électrode d'argent.
Selon une deuxième variante, la présente invention concerne un procédé de formation d'un dispositif électronique organique en structure standard comprenant les étapes suivantes :
- disposer d'un substrat revêtu d'une électrode (anode),
- déposer sur ladite anode, une couche d'encre selon l'invention dans des conditions propices à la formation d'une couche de type P.
D'une manière générale, il est ensuite superposé successivement à cette couche de type P, les couches suivantes : une couche active, une couche de type N, une cathode. EXEMPLES
Exemple 1 : Formulation d'une encre
Une encre est préparée à partir d'une dispersion commerciale de nanoparticules de W03 (2,5 % en poids, sans tensioactif, base 2-propanol, taille des particules 10-20 nm, structure cristalline : triclinique) distribuée par la Société Nanograde Lie et d'une formulation commerciale de Nafion® (Solution de Nafion® 117 à ~ 5% en matière sèche, commercialisé par Sigma-aldrich).
L'encre ainsi formée comprend 96,5 % en masse d'isopropanol, 1 % en masse de n-propanol, 2,45 % en masse de W03 et 0,1 % en masse de Nafion®.
Exemple 2 : Utilisation de l'encre selon l'exemple 1 pour former une couche P
Le dispositif électronique organique considéré est un dispositif de type NIP (inverse) de structure comme suit :
Sa couche N est une couche d'oxyde de zinc (ZnO) et sa couche active est une couche polymère/[6,6]-phényl-C6i-butyrate de méthyle (PCBM).
L'encre de l'exemple 1 dédiée à former la couche P, en surface de la couche active de l'empilement, est appliquée par enduction centrifuge, dépôt à la tournette (« spin- coating ») et séchée, à une température de 120°C pendant 2 minutes. La couche P ainsi formée contient 4 % en masse de Nafion® et 96 % en masse de WO3.
L'électrode d'argent est ensuite formée à sa surface.
La surface active des dispositifs est de 0,28 cm2.
De la même manière, un dispositif de type NIP (inverse) de même structure, mais témoin, est formé avec une couche P comprenant uniquement du WO3. L'encre utilisée pour former cette couche P comprend 97,5 % en masse d'isopropanol, et 2,5 % en masse de W03. La couche P correspondante contient alors 100 % en masse de W03.
Exemple 3 : Performances et stabilité des dispositifs
Les performances des dispositifs de type NIP (inverse) de l'exemple 2, sont mesurées à 25°C sous atmosphère inerte dans des conditions standards d'éclairement (1 000 W/m2, AM 1,5G).
Les paramètres testés sont les suivants :
Voc : tension en circuit ouvert ;
Jsc : densité de courant en court-circuit ;
FF : « Fill factor » en langue anglaise : facteur de remplissage ;
PCE : « Power Conversion Efficiency » en langue anglaise : rendement de conversion de puissance.
Ces paramètres sont testés selon les protocoles décrits dans Perrier et al, Solar Energy Materials and Solar Cells, Juin 2012, Vol. 101, Pages 210-216.
Le tableau 1 ci-dessous rend compte des performances du dispositif doté d'une couche P selon l'invention. Le tableau 2 rend compte des performances du dispositif témoin.
- Performance 1 : performance initiale du dispositif considéré ;
- Performance 2 : performance du dispositif considéré après une exposition à l'air de 2 heures, en absence de lumière ; et
- Performance 3 : performance du dispositif considéré après un traitement thermique pendant 2 minutes à 150°C en boîte à gants.
Tableau 1 (Dispositif selon l'invention)
Tableau 2 (Dispositif témoin)
Pour un dispositif doté d'une couche P selon l'invention, l'effet bénéfique du Nafion® apparaît clairement après une exposition à l'air de 2 heures, en absence de lumière, puisque le rendement des cellules ne diminue pas.
De même, on note qu'après un traitement thermique pendant 2 minutes à 150°C en boîte à gants, une augmentation du rendement démontrant que les performances initiales sont optimisées. L'effet bénéfique du Nafion® est donc vérifié.
A l'inverse, pour ce qui est du dispositif témoin, on distingue clairement que le rendement des cellules diminue significativement, en absence de lumière, après une exposition à l'air de 2 heures.
En outre, après un traitement thermique pendant 2 minutes à 150°C en boîte à gants, leurs performances sont quasiment nulles.
Exemple 4 : Gamme de concentration en Nafion® en association avec WOj
D'autre part, les performances initiales des dispositifs sont évaluées en fonction du rapport massique Nafion®/W03 au sein de la couche sèche.
Les paramètres tests sont identiques à ceux de l'exemple 3.
Les résultats sont détaillés dans le tableau 3 ci-après. Tableau 3
Lorsque le rapport massique Nafion /W03 est compris entre 0,01 et 0, 111, les performances des dispositifs sont très bonnes.
Au contraire, lorsque le rapport massique Nafion® AV03 au sein de la couche sèche est égale à 0,25 ou 1, les performances des dispositifs sont mauvaises.

Claims

REVENDICATIONS
1. Encre, apte à former une couche de type P dans un dispositif électronique organique, caractérisée en ce qu'elle comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, O, M0O3, W03 et leurs mélanges et un ionomère, ledit ionomère étant un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P choisies parmi V2O5, O, M0O3, W03 et leurs mélanges étant compris entre 0,005 et 0, 115.
2. Encre selon la revendication 1, dans laquelle le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P est compris entre 0,01 et 0,055.
3. Encre selon l'une quelconque des revendications précédentes, dans laquelle les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P sont formées en tout ou partie de WO3.
4. Encre selon l'une quelconque des revendications précédentes, dans laquelle l'ionomère est un copolymère tétrafluoroéthylène sulfonaté, et plus particulièrement un copolymère à squelette tetrafluoroéthylène comprenant des groupes éthers perfluorovinyliques et dont les extrémités terminales sont fonctionnalisées par des groupes sulfonates ou des fonctions acides sulfoniques.
5. Encre selon l'une quelconque des revendications précédentes, comprenant en outre un solvant alcoolique, en particulier un alcool inférieur, de manière préférée un mono-alcool inférieur en C2-C4, et en particulier l'éthanol, le n-propanol, l'isopropanol, le n-butanol, le 2- butanol ou le méthylpropanol.
6. Encre selon l'une quelconque des revendications précédentes caractérisée en ce qu'elle est constituée d'un solvant organique, d'au moins des nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, MO, M0O3, WO3 et leurs mélanges et d'au moins un ionomère qui est un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, MO, M0O3, WO3 et leurs mélanges étant compris entre 0,005 et 0,115.
7. Couche de type P d'un dispositif électronique organique, caractérisée en ce qu'elle comprend au moins des nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P choisies parmi V2O5, O, M0O3, W03 et leurs mélanges et un ionomère, ledit ionomère étant un copolymère perfluorosulfonaté,
le rapport massique entre Γ ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, W03 et leurs mélanges étant compris entre 0,005 et 0,115, et de préférence compris entre 0,01 et 0,055.
8. Couche selon la revendication 7, dans laquelle les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P sont formées en tout ou partie de W03
9. Couche selon l'une quelconque des revendications 7 ou 8, dans laquelle l'ionomère est un copolymère tétrafluoroéthylène sulfonaté, et plus particulièrement un copolymère à squelette tétrafluoroéthylène comprenant des groupes éthers perfluorovinyliques et dont les extrémités terminales sont fonctionnalisées par des groupes sulfonates ou des fonctions acides sulfoniques.
10. Couche selon l'une quelconque des revendications 7 à 9 caractérisée en ce qu'elle est constituée d'au moins des nanoparticules d'oxyde(s) métallique(s) semi- conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges et d'au moins un ionomère qui est un copolymère perfluorosulfonaté, le rapport massique entre l'ionomère et les nanoparticules d'oxyde(s) métallique(s) semi-conductrices de type P choisies parmi V2O5, NiO, M0O3, WO3 et leurs mélanges étant compris entre 0,005 et 0, 115.
11. Dispositif électronique organique, caractérisé en ce qu'il comprend une couche de type P telle que définie selon l'une quelconque des revendications 7 à 10.
12. Dispositif électronique organique selon la revendication 11, caractérisé en ce qu'il possède une structure standard ou une structure inverse.
13. Dispositif électronique organique selon l'une quelconque des revendications 11 ou 12, caractérisé en ce qu'il s'agit d'une cellule photovoltaïque organique, d'une diode électroluminescente organique (OLED) ou d'un photo-détecteur organique (OPD).
14. Procédé de formation d'un dispositif électronique organique, caractérisé en qu'il comprend une étape de dépôt d'une couche d'encre telle que définie selon l'une quelconque des revendications 1 à 6 dans des conditions propices à la formation d'une couche de type P.
15. Utilisation de nanoparticules de W03 pour former une couche de type P dans un dispositif électronique organique, caractérisée en ce que lesdites nanoparticules sont formulées avec au moins un ionomère dans ladite couche de type P, ledit ionomère étant un copolymère perfluorosulfonaté, dans un rapport massique ionomère/nanoparticules de W03 compris entre 0,005 et 0,115.
EP14812650.1A 2013-11-26 2014-11-25 Encre pour former des couches p dans des dispositifs electroniques organiques Withdrawn EP3074471A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361621A FR3013719B1 (fr) 2013-11-26 2013-11-26 Encre pour former des couches p dans des dispositifs electroniques organiques
PCT/IB2014/066313 WO2015079378A1 (fr) 2013-11-26 2014-11-25 Encre pour former des couches p dans des dispositifs electroniques organiques

Publications (1)

Publication Number Publication Date
EP3074471A1 true EP3074471A1 (fr) 2016-10-05

Family

ID=50102024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14812650.1A Withdrawn EP3074471A1 (fr) 2013-11-26 2014-11-25 Encre pour former des couches p dans des dispositifs electroniques organiques

Country Status (6)

Country Link
US (1) US10174216B2 (fr)
EP (1) EP3074471A1 (fr)
JP (1) JP2017505531A (fr)
KR (1) KR20160090858A (fr)
FR (1) FR3013719B1 (fr)
WO (1) WO2015079378A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961875B2 (en) 2017-12-20 2024-04-16 Lumileds Llc Monolithic segmented LED array architecture with islanded epitaxial growth
ES2722475B2 (es) * 2018-02-09 2020-03-25 Torrecid Sa Juego de tintas para obtener dispositivos hibridos electroluminiscentes
US11271033B2 (en) 2018-09-27 2022-03-08 Lumileds Llc Micro light emitting devices
FR3089969B1 (fr) * 2018-12-13 2023-02-24 Genesink Méthode de synthèse de nanoparticules d’oxyde de tungstène
CN109749507B (zh) * 2019-01-23 2021-11-19 纳晶科技股份有限公司 功能层墨水、光电器件功能层的制备方法及光电器件
CN110350091A (zh) * 2019-07-02 2019-10-18 上海大学 有机光电探测器及其制备方法
US11777059B2 (en) 2019-11-20 2023-10-03 Lumileds Llc Pixelated light-emitting diode for self-aligned photoresist patterning
US11848402B2 (en) 2020-03-11 2023-12-19 Lumileds Llc Light emitting diode devices with multilayer composite film including current spreading layer
US11569415B2 (en) 2020-03-11 2023-01-31 Lumileds Llc Light emitting diode devices with defined hard mask opening
US11942507B2 (en) 2020-03-11 2024-03-26 Lumileds Llc Light emitting diode devices
US11735695B2 (en) 2020-03-11 2023-08-22 Lumileds Llc Light emitting diode devices with current spreading layer
US11901491B2 (en) 2020-10-29 2024-02-13 Lumileds Llc Light emitting diode devices
US11626538B2 (en) 2020-10-29 2023-04-11 Lumileds Llc Light emitting diode device with tunable emission
US11955583B2 (en) 2020-12-01 2024-04-09 Lumileds Llc Flip chip micro light emitting diodes
US11705534B2 (en) 2020-12-01 2023-07-18 Lumileds Llc Methods of making flip chip micro light emitting diodes
US11600656B2 (en) 2020-12-14 2023-03-07 Lumileds Llc Light emitting diode device
US11935987B2 (en) 2021-11-03 2024-03-19 Lumileds Llc Light emitting diode arrays with a light-emitting pixel area

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937113B2 (ja) * 1998-06-05 2007-06-27 日産化学工業株式会社 有機−無機複合導電性ゾル及びその製造法
JP2003331869A (ja) * 2002-05-14 2003-11-21 Hitachi Ltd プロトン伝導性材料
JP4395292B2 (ja) * 2002-08-30 2010-01-06 三菱重工業株式会社 燃料電池用電極触媒、燃料電池および燃料電池システム
US7390438B2 (en) * 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
WO2007094019A1 (fr) * 2006-02-17 2007-08-23 Nm Tech Ltd. Nanomaterials And Microdevices Technology Procede de fabrication de films nanocristallins transparents d'oxyde de tungstene
JP2007336790A (ja) * 2006-06-19 2007-12-27 Kuraray Co Ltd 高分子電気化学素子
CN101688052A (zh) * 2007-07-27 2010-03-31 E.I.内穆尔杜邦公司 包含无机纳米颗粒的导电聚合物的含水分散体
JP5205013B2 (ja) * 2007-08-31 2013-06-05 株式会社東芝 燃料電池用アノードおよびそれを用いた燃料電池
JP2010118214A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 燃料電池
GB2475247B (en) * 2009-11-10 2012-06-13 Cambridge Display Tech Ltd Organic optoelectronic device and method
JP2013127865A (ja) * 2011-12-16 2013-06-27 Toyota Motor Corp 燃料電池用電極触媒、電極触媒に用いられるアイオノマーの製造方法、膜電極接合体の製造方法、膜電極接合体、および燃料電池
JP5870722B2 (ja) * 2012-02-02 2016-03-01 コニカミノルタ株式会社 有機光電変換素子、および太陽電池
EP2631008A1 (fr) * 2012-02-22 2013-08-28 nanograde AG Couches de tampon d'oxyde de tungstène pouvant être traitées par des solutions et dispositifs électroniques les comportant
WO2013137274A1 (fr) * 2012-03-12 2013-09-19 三菱化学株式会社 Procédé de fabrication de module de cellule solaire à film mince organique, et module de cellule solaire à film mince organique
EP2879230A4 (fr) * 2012-07-27 2015-10-28 Daicel Corp Composition de couche de conversion photoélectrique et élément de conversion photoélectrique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015079378A1 *

Also Published As

Publication number Publication date
KR20160090858A (ko) 2016-08-01
JP2017505531A (ja) 2017-02-16
FR3013719B1 (fr) 2018-01-12
WO2015079378A1 (fr) 2015-06-04
US20170137645A1 (en) 2017-05-18
FR3013719A1 (fr) 2015-05-29
US10174216B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2015079378A1 (fr) Encre pour former des couches p dans des dispositifs electroniques organiques
EP3161883B1 (fr) Cellules tandem multifils
FR3013897A1 (fr) Dispositifs electroniques organiques
FR2899385A1 (fr) Dispositif photovoltaique tout solide comprenant une couche d'absorbeur a base de sulfure d'antimoine
EP2561560B1 (fr) Cellule solaire organique à hétérojonction en volume comprenant une couche active électriquement, présentant une ségrégation verticale.
FR2917898A1 (fr) Dispositif photovoltaique tout solide comprenant une couche d'absorption a base de compose(s) de sulfure d'antimoine et d'argent ou de compose(s) de sulfure d'antimoine et de cuivre
EP2763203A2 (fr) Élaboration de dispositifs optoélectroniques, notamment de cellules OPV de type inverse
WO2017121830A1 (fr) Solution d'ions tungstates et dispositif photovoltaïque hybride
EP3435436B1 (fr) Empilement multicouche utile à titre de couche p pour dispositif photovoltaique
EP3227933B1 (fr) Procede pour recouvrir une couche d'oxyde transparent conducteur d'une couche continue de materiau conducteur
EP3155670A1 (fr) Dispositif électronique organique et son procédé de préparation
FR3102887A1 (fr) Couche N à taux de carbone contrôlé dans un dispositif photovoltaïque de type pérovskite
FR3115928A1 (fr) Dispositif photovoltaïque tandem combinant une sous-cellule à base de silicium et une sous-cellule à base de pérovskite comportant une couche N à taux de carbone contrôlé
EP3333920B1 (fr) Cellule photovoltaïque pourvue d'une couche n composite
EP3552243B1 (fr) Photodétecteur à couche de collecte de porteurs de charge comprenant des nanofils fonctionnalisés
FR2881880A1 (fr) Dispositif photovoltaique solide avec une couche monolithique de materiau semi-conducteur comprenant des pores sous forme de canaux
EP3836218A1 (fr) Couche composite perovskite/materiau de type p ou de type n dans un dispositif photovoltaïque
FR3115929A1 (fr) Dispositif photovoltaïque tandem combinant une sous-cellule à base de silicium et une sous-cellule à base de pérovskite comportant une couche composite pérovskite/matériau de type P ou N
FR3060205A1 (fr) Preparation d'un empilement multicouche pour un dispositif photovoltaique de type tandem comportant une unique couche de recombinaison

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191022