EP3074222A1 - Vitrage feuilleté déstine a etre utilisé comme écran de systeme de visualisation tete haute - Google Patents

Vitrage feuilleté déstine a etre utilisé comme écran de systeme de visualisation tete haute

Info

Publication number
EP3074222A1
EP3074222A1 EP14821741.7A EP14821741A EP3074222A1 EP 3074222 A1 EP3074222 A1 EP 3074222A1 EP 14821741 A EP14821741 A EP 14821741A EP 3074222 A1 EP3074222 A1 EP 3074222A1
Authority
EP
European Patent Office
Prior art keywords
laminated glazing
interlayer
glass
thickness
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP14821741.7A
Other languages
German (de)
English (en)
French (fr)
Inventor
Corinne Payen
David Fournier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3074222A1 publication Critical patent/EP3074222A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10568Shape of the cross-section varying in thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the present invention relates to laminated glazing for use as a head-up display (HUD) screen.
  • Head-up display systems are useful in all types of vehicles, especially motor vehicles.
  • the head-up display systems display information projected on a laminated glazing, which is reflected towards the driver or the observer. These systems allow in particular to give information to the driver of the vehicle without the driver away from the field of vision in front of the vehicle, to ensure safe driving. The driver then perceives a virtual image that is at a distance behind the windshield.
  • a conventional laminated glazing is used for such a system, the driver observes a dual image: a first image reflected by the surface of the windshield facing the interior of the habitable and a second image reflected by the outer surface of the pare -brise, these two images being slightly offset relative to each other.
  • This gap can disrupt the vision of information.
  • PVB polyvinyl butyral interlayer
  • an interlayer sheet is used, the thickness of which decreases from the upper edge of the glazing to the lower edge.
  • Vehicle shapes have also been modified to improve air penetration and reduce turbulence which is itself a source of noise.
  • Laminated glazing also has other advantages such as eliminating the risk of splashing fragments in case of sudden breakage, constitute a burglar-proofing device.
  • the thickness of the glass sheet intended to be turned towards the outside of the vehicle is generally 2.1 mm and the thickness of the glass sheet intended to be turned towards the interior of the vehicle is generally 1.6 mm.
  • lighter vehicles to reduce their consumption and the release of CO 2 .
  • One way is to offer lighter automotive windows.
  • One solution for reducing the weight of the glazings is to reduce the thickness of the glass sheets.
  • this reduction in thickness causes degradation of the acoustic properties of the laminated glazing.
  • the laminated glazing intended to be used as a head-up display system screen, the laminated glazing also having vibro-acoustic damping properties and which allows a reduction in the thickness of the glass sheets. without degradation of vibro-acoustic damping properties.
  • the invention proposes a laminated glazing intended to be used as a head-up display system screen, comprising:
  • a viscoelastic plastic interlayer disposed between the two sheets of glass, the interlayer comprising at least one layer of viscoelastic plastic material with vibroacoustic damping properties and the insert having a cross-section decreasing in wedge shape from the top to the bottom of the laminated glazing,
  • the spacer is such that the resonant frequency f 2 of the second resonance mode of a 25 mm x 300 mm laminated glazing bar made of two glass sheets 2.1 mm thick each between which embedded in the interlayer, determined by a measurement of the mechanical impedance (MIM) at 20 ° C according to ISO 16940, is between 760 Hz and 1000 Hz and the loss factor ⁇ 2 of the second resonance mode of the same bar, determined by MIM under the same conditions, is greater than or equal to 0.25 a viscoelastic plastic interlayer intended to be incorporated between two sheets of glass to form a laminated glazing unit having vibroacoustic damping properties, the interlayer comprising at least one layer of viscoelastic plastic material with vibroacoustic damping properties, the interlayer being such that the resonance frequency f 2 of the second resonance mode of a bar 25 mm x 300 mm laminated glazing consisting of two 2.1 mm thick glass sheets between which the spacer is incorporated, determined by measuring the mechanical impedance (M
  • the layer is based on polyvinylbutyral and plasticizer.
  • the glass sheets are curved.
  • the resonance frequency f 2 is between 800 and 900 Hz, preferably between 800 Hz and 850 Hz.
  • the loss factor ⁇ 2 is greater than 0.30.
  • the interlayer further comprises two outer layers of standard PVB, the layer being between the two outer layers. According to another particularity, only one of the two outer layers has a cross-section decreasing wedge-shaped from top to bottom of the laminated glazing, the viscoelastic plastic material layer with vibro-acoustic damping properties and the other layer external having a constant cross section from the top to the bottom of the laminated glazing.
  • the two outer layers have a cross-section decreasing wedge-shaped from the top to the bottom of the laminated glazing, the layer of viscoelastic plastic material with vibro-acoustic damping properties having a constant cross-section from the top to the bottom. bottom of the laminated glazing.
  • the measurement of the mechanical impedance is performed at least one month after assembly of the laminated glazing bar, the laminated glazing bar having itself been assembled at least 1 month after the manufacture of the interlayer.
  • the invention also relates to a glazing unit comprising:
  • one of the glass sheets has a thickness of between 0.5 mm and 2.6 mm
  • one of the glass sheets has a thickness of between 0.5 mm and 1.6 mm
  • the total thickness of the glass sheets being strictly less than 3.7 mm.
  • the invention also relates to a motor vehicle comprising a glazing unit described above, the glass sheet having a thickness of between 0.5 mm and 2.6 mm being turned towards the outside of the vehicle and the thick glass sheet between 0.5 mm and 1, 6 mm being turned towards the inside of the vehicle.
  • the invention also relates to a use of the glazing described above as a motor vehicle windshield.
  • Figure 1 shows a curve of sound insulation as a function of frequency, measured on three windshields
  • Figure 2 shows a sectional view of a glazing according to the invention.
  • the invention relates to a laminated glazing intended to be used as a head-up display system screen, comprising two glass sheets and a viscoelastic plastic interlayer disposed between the two sheets of glass, the interlayer comprising at least one layer of material viscoelastic plastic with vibro-acoustic damping properties and the insert having a cross-section decreasing wedge-shaped from top to bottom of the laminated glazing.
  • the spacer is such that the resonant frequency f 2 of the second resonance mode of a laminated glazing bar with a surface area of 25 mm x 300 mm composed of two glass sheets 2.1 mm thick each between which incorporated the interlayer, determined by a measurement of the mechanical impedance (MIM) at 20 ° C according to ISO 16940 (with a single difference regarding the thickness of the glass sheets of the bar which is 2.1 mm instead of 4 mm), is between 760 Hz and 1000 Hz and the loss factor ⁇ 2 of the second resonance mode of the same bar, determined by MIM under the same conditions, is greater than or equal to 0.25.
  • MIM mechanical impedance
  • an interlayer comprising these features makes it possible to obtain a thin laminated glazing with acoustic performances equivalent to or even greater than those of a laminated glazing unit with conventional glass thicknesses. incorporating an interlayer with known improved acoustic properties.
  • FIG. 2 shows a sectional view of a glazing unit according to the invention.
  • the glazing comprises two sheets of glass 1, 2 between which is inserted the interlayer according to the invention.
  • the interlocking of the interlayer with the glass sheets is carried out by known means, for example by stacking the glass sheets and the interlayer and by passing the assembly in an autoclave.
  • the glass sheet 1 of the glazing is intended to be turned towards the outside of the vehicle while the glass sheet 2 is intended to be turned towards the inside of the vehicle.
  • the glass sheet 1 is preferably thicker than the glass sheet 2 so that the glazing allows better protection against external attacks (inclement weather, projection of chippings, etc.). Indeed, the thicker the glass, the more mechanically resistant it is. However, the thicker the glass, the heavier it is. We must therefore find a compromise between the re- mechanical resistance and the weight of the glazing.
  • the thickness of the glass sheet 1 is for example between 0.5 mm and 2.6 mm, preferably between 1.4 and 2.0 mm and the thickness of the glass sheet 2 is for example between 0.5 mm and 1, 6 mm, preferably between 1, 1 and 1.5 mm.
  • the thickness of the glass sheet 1 is generally 2.1 mm and the thickness of the glass sheet 2 is generally 1.6 mm, ie a total glass thickness of 3, 7 mm.
  • the glazing according to the present invention comprises a total glass thickness strictly less than 3.7 mm, preferably less than or equal to 3.2 mm.
  • the thickness of the glass sheet 1 is the thickness of the glass sheet 1 .
  • the thickness of the glass sheet 2 is 1.4 mm to limit the weight of the glazing, which reduces the fuel consumption of a vehicle equipped with such a glazing. It also makes it easier to handle the glazing and save material.
  • the glazing according to the invention may also have a glass sheet 1 having a thickness of 1.6 mm and a glass sheet 2 having a thickness of 1.2 mm, or a glass sheet 1 having a thickness of 1.4 mm and a thickness of 1 mm. glass sheet 2 of thickness 1, 1 mm.
  • the interlayer consists of at least one viscoelastic plastic layer 3 with vibroacoustic damping properties. It is preferably based on polyvinylbutyral and plasticizer. The rate and the nature of the plasticizer and the degree of acetalization of the polyvinyl butyral make it possible to play in a known manner on the rigidity of a component based on polyvinyl butyral and plasticizer.
  • the spacer also comprises two layers 4, 5, said outer layers, between which is inserted the layer 3.
  • the outer layers 4, 5 are preferably standard PVB.
  • the interlayer may comprise at least two viscoelastic plastic layers with vibro-acoustic damping properties, surrounded or not by standard PVB layers.
  • the acoustic characteristics of the interlayer are determined by measuring the mechanical impedance (MIM) at 20 ° C according to ISO 16940 of a laminated glass pane with a surface area of 25 mm x 300 mm made of two sheets 2.1 mm thick glass (and not 4 mm as recommended in ISO 16940) each between which is incorporated a spacer according to the invention, that is to say an interlayer comprising at least one layer of viscoelastic plastic with vibro-acoustic damping properties.
  • MIM mechanical impedance
  • the MIM makes it possible to determine resonance frequencies and loss factors of the various resonance modes of the laminated glazing bar.
  • the spacer is according to the invention if the resonance frequency f 2 of the second resonance mode of the laminated glazing bar determined by MIM is between 760 Hz and 1000 Hz and the loss factor ⁇ 2 of the second resonance mode of the bar. of laminated glazing determined by MIM is greater than or equal to 0.25.
  • the resonant frequency f 2 is between 800 Hz and 900 Hz, which makes it possible to have improved acoustic performances by degrading less the level of weakening of the laminated glazing before the critical frequency. More preferably, the resonant frequency f 2 is between 800 Hz and 850 Hz, which makes it possible to have further improved acoustic performance by further degrading the attenuation level of the laminated glazing before the critical frequency.
  • the loss factor ⁇ 2 is greater than 0.30, which makes it possible to have improved acoustic performance by improving the acoustic damping.
  • the measurement of the mechanical impedance (MIM) is carried out at least 1 month after assembly of the laminated glazing bar, the laminated glazing bar having itself been assembled at least 1 month after the manufacture of the interlayer. This makes it possible to be sure that the interlayer and the laminated glazing have reached stable states and thus to determine reliable values.
  • Figure 1 shows a curve of sound insulation as a function of frequency, measured on three windshields.
  • the acoustic insulation of a glazing unit accounts for the acoustic performance that can be observed on a vehicle equipped with said glazing.
  • a first windshield (21 -16 known) comprises:
  • interlayer comprising two outer layers of standard PVB and a viscoelastic plastic core layer with vibro-acoustic damping properties, the interlayer having a resonance frequency f 2 of 675 Hz ( ⁇ 15 Hz) and a loss factor ⁇ 2 equal to 0.35 ( ⁇ 0.03).
  • the first windshield corresponds to a conventional windshield with an interlayer with known acoustic damping properties.
  • the sound insulation curve (represented by diamonds) of the first windshield shows a hollow around 6500 Hz.
  • a second windshield (18-14 known) includes:
  • interlayer comprising two outer layers made of standard PVB and a viscoelastic plastic core layer with vibroacoustic damping properties, the interlayer having a resonance frequency f 2 of 675 Hz ( ⁇ 15 Hz) and a loss factor ⁇ 2 equal to 0.35
  • the second windshield is a thinned windshield with an interlayer identical to that of the first windshield.
  • the acoustic insulation curve (represented by squares) of the second windshield shows a behavior similar to that of the first windshield up to 5000 Hz, but a hollow shifted towards the high frequencies, towards 8000 Hz.
  • the hollow is very troublesome because it implies that this windshield lets airborne sounds at high frequencies that are annoying to the human ear.
  • a third windshield (18-14 invention) comprises:
  • interlayer comprising two outer layers made of standard PVB and a viscoelastic plastic core layer with vibroacoustic damping properties, the interlayer having a resonance frequency f 2 of 800 Hz ( ⁇ 15 Hz) and a loss factor ⁇ 2 equal to 0.30
  • the third windshield is a thinned windshield with a spacer according to the invention.
  • the acoustic insulation curve (represented by triangles) of the third windshield shows a behavior similar to that of the first windshield, with a recentered hollow around 6500 Hz and sound insulation values similar to those of the first windshield. broken.
  • the windshield with an interlayer according to the invention therefore makes it possible to compensate for the acoustic degradation associated with the thinning of the glazing.
  • the laminated glazing according to the invention can be used as a windshield for a motor vehicle.
  • it satisfies all the requirements of United Nations Regulation No. 43 (known as R43) to withstand hard shocks to ensure its mechanical strength.
  • R43 United Nations Regulation No. 43
  • the thickness of these outer layers 4, 5 is for example adapted in known manner, for example by the patent application FR 09 52567.
  • the insert has a cross-section decreasing in wedge-shaped form from the top to the bottom of the laminated glazing unit.
  • the layer 3 of viscoelastic plastic material with vibro-acoustic damping properties having a constant cross section from the top to the bottom of the laminated glazing.
  • the two sheets of glass 1, 2 are curved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
EP14821741.7A 2013-11-27 2014-11-25 Vitrage feuilleté déstine a etre utilisé comme écran de systeme de visualisation tete haute Pending EP3074222A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361723A FR3013630B1 (fr) 2013-11-27 2013-11-27 Vitrage feuillete destine a etre utilise comme ecran de systeme de visualisation tete haute
PCT/FR2014/053026 WO2015079158A1 (fr) 2013-11-27 2014-11-25 Vitrage feuillete destine a etre utilise comme ecran de systeme de visualisation tete haute

Publications (1)

Publication Number Publication Date
EP3074222A1 true EP3074222A1 (fr) 2016-10-05

Family

ID=50179738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14821741.7A Pending EP3074222A1 (fr) 2013-11-27 2014-11-25 Vitrage feuilleté déstine a etre utilisé comme écran de systeme de visualisation tete haute

Country Status (11)

Country Link
US (1) US9770888B2 (zh)
EP (1) EP3074222A1 (zh)
JP (1) JP6546171B2 (zh)
KR (1) KR102309793B1 (zh)
CN (2) CN110001163A (zh)
BR (1) BR112016011362B1 (zh)
CA (1) CA2930369C (zh)
EA (1) EA031385B1 (zh)
FR (1) FR3013630B1 (zh)
MX (1) MX2016006556A (zh)
WO (1) WO2015079158A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013631B1 (fr) * 2013-11-27 2017-04-28 Saint Gobain Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
WO2017142078A1 (ja) * 2016-02-18 2017-08-24 東レ・ダウコーニング株式会社 フレキシブル積層体及びそれを用いたフレキシブルディスプレイ
WO2017157660A1 (de) * 2016-03-17 2017-09-21 Saint-Gobain Glass France Verbundscheibe mit elektrisch leitfähiger beschichtung für ein head-up-display
FR3054167A1 (fr) * 2016-07-19 2018-01-26 Saint-Gobain Glass France Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
FR3054169B1 (fr) * 2016-07-22 2018-08-17 Saint Gobain Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
US10696021B2 (en) * 2017-01-20 2020-06-30 Pittsburgh Glass Works, Llc Asymmetric glazing laminates with high impact resistance
US10438575B2 (en) * 2017-11-20 2019-10-08 Chang Chun Petrochemical Co., Ltd. Multilayer film, interlayer film comprising the multilayer film and laminated glass and sound-insulating glass laminate comprising the interlayer film
WO2021105241A1 (en) * 2019-11-29 2021-06-03 Agc Glass Europe Laminated glazing for projecting an image from a head-up display (hud)
WO2021204550A1 (de) 2020-04-07 2021-10-14 Saint-Gobain Glass France Gefärbte thermoplastische zwischenschicht mit keilförmigem querschnitt
CN113400744B (zh) * 2021-05-25 2022-11-11 福耀玻璃工业集团股份有限公司 夹层玻璃和夹层玻璃的制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2732968A1 (de) * 2012-11-16 2014-05-21 Kuraray Europe GmbH Penetrationsfeste Mehrschichtfolien aus weichmacherhaltigem Polyvinylacetal mit schalldämpfenden Eigenschaften

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE254293T1 (de) * 1997-07-24 2003-11-15 Saint Gobain Verbundglas-windschutzscheibe zur gleichzeitigen nutzung als reflektor in einer head-up anzeige
CN1537247A (zh) * 2001-06-15 2004-10-13 ��Ļ���Ű˾ 平视显示风挡的成型中间层和用于制备该中间层的方法
US7846532B2 (en) * 2005-03-17 2010-12-07 Solutia Incorporated Sound reducing wedge shaped polymer interlayers
CN101038349A (zh) * 2005-12-26 2007-09-19 旭硝子株式会社 用于车辆的层压玻璃
JP2007223883A (ja) * 2005-12-26 2007-09-06 Asahi Glass Co Ltd 車両用合せガラス
DE102006042538B4 (de) * 2006-09-11 2011-07-14 FuTech GmbH, 39124 Verbundglas, Verglasungselement und Verfahren zu deren Herstellung, und Verwendung des Verbundglases
EP2153989B1 (de) * 2008-08-01 2021-09-29 Kuraray Europe GmbH Mehrschichtfolien aus weichmacherhaltigem Polyvinylacetal mit schalldämpfenden Eigenschaften
DE102009017805B4 (de) * 2009-04-20 2012-05-16 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparentes Verbundglas und dessen Verwendung
US20120094084A1 (en) * 2010-10-15 2012-04-19 William Keith Fisher Chemically-strengthened glass laminates
US10173396B2 (en) * 2012-03-09 2019-01-08 Solutia Inc. High rigidity interlayers and light weight laminated multiple layer panels
FR2990948B1 (fr) * 2012-05-22 2019-08-30 Saint-Gobain Glass France Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
CN103874325B (zh) * 2012-12-11 2017-04-12 财团法人工业技术研究院 层叠结构、其制造方法及发光装置
US20150251377A1 (en) * 2014-03-07 2015-09-10 Corning Incorporated Glass laminate structures for head-up display system
KR102057442B1 (ko) * 2014-04-09 2019-12-19 세키스이가가쿠 고교가부시키가이샤 자동차용 프론트 유리용 중간막, 롤상체 및 자동차용 프론트 유리
CN105094402B (zh) * 2014-05-15 2018-06-12 宸鸿科技(厦门)有限公司 触控显示设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2732968A1 (de) * 2012-11-16 2014-05-21 Kuraray Europe GmbH Penetrationsfeste Mehrschichtfolien aus weichmacherhaltigem Polyvinylacetal mit schalldämpfenden Eigenschaften

Also Published As

Publication number Publication date
CA2930369A1 (fr) 2015-06-04
BR112016011362B1 (pt) 2021-11-16
JP2017500264A (ja) 2017-01-05
KR102309793B1 (ko) 2021-10-08
EA031385B1 (ru) 2018-12-28
EA201691098A1 (ru) 2016-09-30
FR3013630A1 (fr) 2015-05-29
MX2016006556A (es) 2016-08-03
CA2930369C (fr) 2022-01-04
FR3013630B1 (fr) 2017-04-28
JP6546171B2 (ja) 2019-07-17
US20160375659A1 (en) 2016-12-29
KR20160090817A (ko) 2016-08-01
CN104853914A (zh) 2015-08-19
WO2015079158A1 (fr) 2015-06-04
BR112016011362A2 (zh) 2017-08-08
CN110001163A (zh) 2019-07-12
US9770888B2 (en) 2017-09-26

Similar Documents

Publication Publication Date Title
FR2990948B1 (fr) Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
WO2015079158A1 (fr) Vitrage feuillete destine a etre utilise comme ecran de systeme de visualisation tete haute
CA2930238A1 (fr) Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
WO2018015702A1 (fr) Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
EP2026963B1 (fr) Vitrage feuillete acoustique, intercalaire acoustique et procede de selection de l'intercalaire pour un amortissement acoustique optimal
EP2608958B1 (fr) Procédé de sélection d'un intercalaire pour un amortissement vibro-acoustique, intercalaire et vitrage comprenant un tel intercalaire
CA2930240C (fr) Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
EP2134557B1 (fr) Vitrage a propriete d'amortissement vibro-acoustique ameliore, procede de fabrication d'un tel vitrage et procede de protection acoustique dans un habitacle de vehicule
WO2009053620A2 (fr) Vitrage a propriete d'amortissement vibro-acoustique ameliore, procede de fabrication d'un tel vitrage et procede de protection acoustique dans un habitacle de vehicule
EP2152513A2 (fr) Vitrage acoustique
EP2419288B1 (fr) Vitrage a propriete d'amortissement vibro-acoustique ameliore, procede de fabrication d'un tel vitrage et procede de protection acoustique dans un habitacle de vehicule
FR3054167A1 (fr) Intercalaire plastique viscoelastique pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
WO2005075955A1 (fr) Vitrage a propriete d'isolement acoustique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOURNIER, DAVID

Inventor name: PAYEN, CORINNE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

17Q First examination report despatched

Effective date: 20200609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS