EP3071131B1 - Auswechselbare chirurgische zugangsanordnung - Google Patents

Auswechselbare chirurgische zugangsanordnung Download PDF

Info

Publication number
EP3071131B1
EP3071131B1 EP14849207.7A EP14849207A EP3071131B1 EP 3071131 B1 EP3071131 B1 EP 3071131B1 EP 14849207 A EP14849207 A EP 14849207A EP 3071131 B1 EP3071131 B1 EP 3071131B1
Authority
EP
European Patent Office
Prior art keywords
access port
surgical
surgical access
instrument
port assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14849207.7A
Other languages
English (en)
French (fr)
Other versions
EP3071131A1 (de
EP3071131A4 (de
Inventor
Sundaram Ravikumar
Guy Osborne
Harry Allan ALWARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teleflex Medical Inc
Original Assignee
Teleflex Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teleflex Medical Inc filed Critical Teleflex Medical Inc
Priority claimed from PCT/US2014/056456 external-priority patent/WO2015047886A1/en
Publication of EP3071131A1 publication Critical patent/EP3071131A1/de
Publication of EP3071131A4 publication Critical patent/EP3071131A4/de
Application granted granted Critical
Publication of EP3071131B1 publication Critical patent/EP3071131B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0042Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3405Needle locating or guiding means using mechanical guide means
    • A61B2017/3407Needle locating or guiding means using mechanical guide means including a base for support on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • A61B2017/3488Fixation to inner organ or inner body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3492Means for supporting the trocar against the body or retaining the trocar inside the body against the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • A61M2039/027Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body having a particular valve, seal or septum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • A61M2039/0279Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body for introducing medical instruments into the body, e.g. endoscope, surgical tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • A61M2039/0288Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body protectors, caps or covers therefor

Definitions

  • the present invention relates to surgical instruments and more particularly to minimally invasive surgical instruments, an exchanger surgical access port assembly so that multiple surgical instruments can be used therein.
  • Minimally invasive surgery generally involves introducing an optical element (e.g., laparoscopic or endoscope) through a surgical or natural port in the body, advancing one or more surgical instruments through additional ports or through the endoscope, conducting the surgery with the surgical instruments, and withdrawing the instruments and scope from the body.
  • an optical element e.g., laparoscopic or endoscope
  • laparoscopic surgery (broadly defined herein to be any surgery where a port is made via a surgical incision, including but not limited to abdominal laparoscopy, arthroscopy, spinal laparoscopy, etc.), a port for a scope is typically made using a surgical trocar assembly.
  • the trocar assembly often includes a port, a pointed element extending through and beyond the distal end of the port, and at least in the case of abdominal laparoscopy, a sealing valve on the proximal portion of the port.
  • the term trocar typically includes a combination of cooperating elements such as a cannula, a seal housing and an obturator.
  • the obturator which has a blunt or pointed edge, cuts or pierces the body wall so that the cannula may be inserted.
  • the cannula defines a pathway through a body wall through which the surgical instruments are placed.
  • the seal valve and seal housing provides an isolation of the cannula so that if insufflation is employed the body region remains distended and sealed. All three components are usually fitted together and used as a single unit for passage by one or more surgical instruments through the body wall and into a body cavity.
  • Laparoscopic surgery typically begins as the surgeon inserts a large bore needle through a body wall and into the internal region associated with the body wall. Next, an inflation or insufflation gas is pumped into the internal region until it is properly distended. The body wall and body cavity are now ready for insertion of trocars.
  • a small incision is made in the skin at a desired trocar location in the patient.
  • the incision may be made via a scalpel or other sharp instrument.
  • the trocar assembly, with the trocar extending out of the port, is then forced through the incision via the obturator which cuts or pierces the body wall, thereby widening the incision and permitting the port to extend through the incision, past any fascia, and into the body cavity.
  • the obturator is then withdrawn, leaving the port in place.
  • an insufflation element may be attached to the trocar port in order to insufflate the surgical site.
  • An optical element may then be introduced through the trocar port. Additional incisions and trocars and ports are then typically used so that additional laparoscopic instruments may be introduced into the body.
  • Trocar assemblies are manufactured in different sizes.
  • Typical trocar port sizes include diameters of about 5 mm, 10 mm, and 12 mm, which are sized to permit variously sized laparoscopic instruments to be introduced therethrough including, e.g., graspers, dissectors, staplers, scissors, suction/irrigators, clamps, forceps, biopsy forceps, etc.
  • 5 mm diameter trocar ports are relatively small, in some circumstances where internal working space is limited (e.g., children), it is difficult to place multiple 5 mm diameter ports in the limited area.
  • 5 mm diameter trocar ports tend to limit movement of instruments inside the body cavity to a great extent.
  • Such a conventional 5 mm diameter trocar has a sealing valve and sealing mechanism and therefore the opening for the surgical instrument is limited.
  • a second area of trauma associated with laparoscopic surgery relates to trauma resulting from the manipulation (e.g., angling) of the trocar ports required in order to conduct the surgery due to inexact placement.
  • the port may need to be angled so that the instrument, for instance, can be placed within the body cavity to cut tissue or an organ, grasp it, or other actions during surgery. Angling of the port can cause tearing at the incision periphery. Such tearing can lead to extensive scar tissue and in general an extension of the incision area.
  • conventional 5 mm diameter trocars including a valve and sealing mechanism are hard to angle in regard to the opening for the surgical instrument.
  • a further problem with having multiple surgical instruments within a body cavity at the same time via multiple ports, especially where the surgical instrument includes a needle tip is inadvertent needle penetration in tissue and resulting scarring or even more serious complications during the surgery if other tissue is nicked or penetrated unintentionally.
  • placing a sharp instrument such as an inflation needle or trocar obturator through a body wall and into an associated internal region comes with considerable risk.
  • the human abdomen, for example, is a tightly packed region that is filled with delicate structures and organs. There is no open space between the abdominal wall and those structures or organs until inflation gas is inserted and a pneumoperitoneum is established. Great care must be taken when placing inflation needles so as to avoid penetration of intestine, bowel or other structures. Even after insufflation is established, there is a risk of injury during placement of additional sharp instruments through the distended body wall.
  • the body wall is comprised of skin, muscle, fat and a thin membrane.
  • the wall may be thick, muscular and tough or it may be lean and soft.
  • placement of a blunt or sharp obturator through the body wall requires great skill and knowledge of what lies within the internal region.
  • the force required to insert a blunt or sharp obturator through a body wall can exceed forty pounds in some cases. This applied force easily overcomes the pneumoperitoneum and forces the body wall down and against delicate structures where there is the danger of piercing or cutting those structures. Further, the force needed to pierce the body wall may result in excessive tearing of the skin and scarring.
  • US 5505710 A purports to disclose a telescoping surgical probe which allows the user to accomplish various functions including several suction techniques and irrigation with a single surgical probe.
  • the telescoping probe includes an inner cannula operatively associated with an outer cannula.
  • the telescoping probe is used with a valve including trumpet valves.
  • the needlescopic surgical instrument including a surgical access port has a trocar having a cannula with a diameter of about 1 mm to about 3 mm which is inserted into a patient's skin and body wall via the needlescopic surgical instrument, meaning a surgical instrument which includes a needle tip on the lumen or cannula of the surgical instrument.
  • a surgical access port may be inserted via a needlescopic surgical instrument wherein the instrument has a needle for insertion into the patient's skin and body wall.
  • conventional trocars include a valve and sealing means so as to prevent gas leakage during insufflation.
  • US5505710A provides sealing between the trocar and the instrument and O-ring trocar.
  • the design does not necessarily provide sufficient sealing to prevent gas leakage and its shape must be altered to achieve better sealing properties.
  • an exchanger surgical access port assembly broadly includes a cannula having a diameter of less than about 3 mm and a tapered hub.
  • the hub is capable of attachment to a laparoscopic surgical instrument and the hub is connected to the proximal end of the cannula.
  • the surgical access port assembly does not include a sealing valve or a sealing mechanism as found in conventional trocars.
  • FIG. 1 exemplary embodiments of a surgical access port assembly in accordance with the invention, or aspects thereof, are shown in Figures 1 through 8E .
  • the surgical assembly of the invention is a low cost,easy to manufacture, surgical access port assembly, which can be used, for example,during minimally invasive surgical procedures to reduce trauma to a patient.
  • the present disclosure includes an exchanger surgical access port assembly 100, which includes a surgical access port including a cannula and a hub.
  • the inventive surgical access port 100 is connected to a laparoscopic instrument having an elongated cannula, optionally including a needle (a needlescopic surgical instrument), such that the surgical access port is placed over cannula and thus does not require an obturator as the needle of the surgical instrument pierces the patient's skin and thereafter the surgical access port 100 is moved down the cannula and inserted into the incision at the surgical site.
  • the surgical access port assembly 100 includes a cannula 100 with a diameter of about 1 mm to about 5 mm (+ 20%) thereby reducing trauma to the patient and eliminates the need for a larger incision point or for a series of small incision cuts through the various layers of fascia.
  • the diameter of the cannula 100 is preferably less than about 3 mm, preferably between about 2.0 mm to about 2.96 mm.
  • the incision point may be about 4 mm or less depending on the diameter of the distal tip portion of the needle 209 of the laparoscopic surgical instrument 200.
  • the inventive surgical access port assembly has a smaller diameter and thus a smaller incision point and working area within the body wall of the patient. Thus the potential scarring area is smaller and there is potential for reduced complications.
  • the diameter of the cannula is smaller there is reduced tearing of the skin when the surgical access port assembly is angled during use in surgery when a surgical instrument is within the surgical access port.
  • the smaller diameter should not affect the working area within the body cavity during the surgery thus maintaining the effectiveness and efficacy of the surgical process.
  • the smaller diameter of the cannula of the surgical access port assembly is particularly useful in pediatric patients, geriatric patients and other patients where the body wall may be negatively affected by a larger incision point and port access area.
  • the surgical access port 100 has an elongated cannula 110.
  • the distal end 117 of the elongated cannula 110 may be blunt or beveled.
  • the elongated cannula 110 has a hollow shaft, a cannula shaft 115, through which surgical instruments may enter when the surgical access port is in use.
  • the elongated cannula 110 has a proximal end connected to a hub 120.
  • the hub 120 has a diameter, which expands outwardly from the proximal end of the elongated cannula 110.
  • the hub 120 includes a portion 122 connected to the proximal end of the elongated cannula 110, an outer ring portion 125 which may be used for manual manipulation of the surgical access port 100, and an open end tapered portion 126 of the hub with a diameter exceeding that of the elongated cannula 110.
  • the open end portion 126 of the hub 120 is capable of providing access for surgical instruments and devices during surgery. Further the open end portion 126 of the hub 120 may be connected to a portion of proximal end 203 of a surgical instrument cannula 207.
  • the connection of the hub 120 of the inventive surgical access port 100 to the surgical instrument's hub 203 may be via friction, force, or snapped onto the hub 203.
  • the surgical access port 100 may be made of various materials such as rigid materials such as metals, for example stainless steel, as well as rigid plastics such as liquid crystal polymer or polycarbonate, glass-filled polycarbonate, or the like.
  • the material should be compatible with the human fascia, body wall and any body cavity into which it is inserted so as to prevent or reduce any allergic reaction by the patient upon insertion.
  • the surgical access port 100 may be covered on the outside or even within the cannula shaft 117 with an insulating material (not shown) to prevent electrical current transfer to the patient, for instance upon inadvertent contact with an electrical surgical apparatus such as a monopolar or bipolar surgical instrument.
  • the insulating material may be a plastic shrink wrap or any other insulating materials such as plastics, polymers, elastomers and the like, and combinations thereof.
  • the hub 120 of the surgical access port100 has an inner portion including at least one inner ring 118, shown in Figures 3 and 4 as one embodiment of at least three inner rings 118A, 118B and 118C.
  • Each of these inner rings 118 is a securing means for attachment of the surgical access port 100 to a surgical instrument 200 or other device over such instrument's cannula 207.
  • one of the inner rings 118 may be an O-ring made of a compressible material so as to seal a portion of the surgical access port 100 and deter the leakage of gas during surgical insufflation.
  • the O-ring may be made of rubbers, foams, plastics, silicones, fluorocarbons, polymers, elastomers, nitriles and the like, including combinations thereof.
  • the surgical access port 100 may also include a cap 150, as seen in Figure 5 , connected to the hub 120 via a cap tether 160 and a ring 170 on the hub 120.
  • the cap 150 may be inserted into the open end portion 126 of the hub 120 and the opening sealed for anti-contamination reasons and also resulting in less gas leakage during surgical insufflation. For instance, when one surgical instrument is removed and before the next is exchanged or inserted the cap 150 may be employed. Thereafter at any time during the surgery when the exchanger surgical access port does not include any surgical instrument within the elongated cannula 110 the cap 150 may be used.
  • Figures 6 and 7 show another embodiment of the present invention wherein the surgical access port 100 is connected to a needle lumen 400 having a lumen shaft 420 and an end effector such as a needle 410, which needle lumen 400 may be inserted into a resposable handgrip surgical instrument or any other surgical instrument.
  • the needle lumen 400 is inserted into an aperture of the surgical access port 100 via the open end tapered portion 126 of the hub 120 through to the shaft 117 of the elongated cannula 110.
  • the surgical access port 100 is thus connected to the needle lumen 400 in this embodiment by friction and light compression of the inner rings 118A, 118B and 118C of the hub 120 against a hub 430 of the needle lumen 400.
  • Other connection or securing means may be used in other embodiments.
  • the needle of the needlescopic surgical instrument is used to penetrate the patient's fascia, the exchanger surgical access port assembly 100 is moved in an axial movement down the needle lumen via manual manipulation of the outer ring 125 and the surgical access port 100 is inserted into the patient's fascia and through the body wall.
  • the surgical access port 100 is attached to the lumen of a percutaneous instrument, or single needle lumen, by pressure, friction or snapping on to the back of the exposed lumen.
  • the surgical access port 100 is then advanced along the lumen, away from the percutaneous instrument, into the patient's fascia, through the body wall and into a body cavity when and as required and will remain in the body cavity as the lumen is removed and such initial instrument may be exchanged and replaced with a different instrument.
  • a surgical instrument including a surgical access port 100.
  • a needlescopic instrument having a lumen with a diameter of less than about 3 mm, preferably between about 2.3 mm to about 2.96 mm, with the lumen including a needle and optionally additional end-effectors such as jaws, dissectors, scissors, spatulas, cauterizers and the like including any known or later developed end-effectors.
  • the exchanger surgical access port assembly 100 can be placed around the lumen that in normal working of the surgical instrument is outside of the patient, but can be unattached, and inserted into the patient's fascia, providing a guide for additional percutaneous instruments to be exchanged and inserted therein.
  • FIG. 8A through 8E describe one method in which the surgical access port 100 could be utilized when in surgery wherein the surgical access port 100 is connected to a surgical instrument.
  • the percutaneous surgical instrument 200 could be pre-packaged with surgical access port 100 connect in place or the surgical access port 100 could be separate and is placed onto percutaneous instrument 200 by the user prior to inserting the distal end of a lumen 207, or a needle 209, of the instrument into the patient's fascia, body wall 300 and body cavity 350 as seen in Figure 8A .
  • the percutaneous instrument shaft traverses the body wall 300 and the instrument working end is used as an operative instrument.
  • the surgeon withdraws the surgical instrument 200 as shown in Figure 8C .
  • the surgical access port 100 is used by the surgeon to insert a different instrument into the same position as the original instrument.
  • the surgical access port 100 is advanced over the instrument shaft, or lumen, into the body wall 300 and into a body cavity 350.
  • the surgeon may then employ the surgical instrument 200 and engaged the end effectors, in this example shown as graspers 210.
  • the original instrument is removed from the body and is independent from the surgical access port 100.
  • the surgical access port 100 is left in the body cavity 350 as seen in Figure 8D .
  • the body cavity 350 is therefore accessible for various surgical instruments via the surgical access port 100.
  • a cap 150 on the hub 120 of the surgical access port 100 may be inserted to seal the body cavity 350 opening accessible through the surgical access port 100.
  • a new instrument 600 (not shown) is exchanged and inserted into the surgical access port 100 as seen in Figure 8E with the cannula 607 and the needle end 609 being set for insertion into the surgical access port 100 via the hub opening 126.
  • a number of instruments may be exchanged and access the body cavity 350 via the surgical access port 100 throughout the surgery.
  • the further surgical instrument is shown with a needle tip 609 but also could be any known end-effector such as a grasper, dissector, spatula, scissors and the like including any known or later developed end-effectors and in other examples the further surgical instrument could be a specimen retrieval bag and other known or later developed surgical instruments.
  • the surgical access port 100 may be removed manually, or may be slid back up the last instrument's shaft or lumen (i.e., 507), connected onto the back of said instrument's lumen, and removed from the patient's body cavity 350, back through the body wall 300 and out of the patient's fascia.
  • the surgeon may forgo the step of suturing the incision point once the surgical access port assembly is removed, resulting in a faster surgical time and reduced scarring to the patient's facia.
  • the surgical access port assembly 100 of the present invention includes retention of abdominal pressure during an abdominal surgery.
  • the inventive device when in use during a surgery may be self- sealing without compromising insufflation pressure. While not being bound by theory, it is opined that dynamic friction between the outer edge of the small diameter cannula 110 and the patient's fascia and body wall 300 result in minimal gas leakage during insufflation.
  • the surgical access assembly 100 of the present invention has a smaller diameter smaller incision point, better angle for surgical instrument access into the body cavity, while still maintaining sufficient insufflation.
  • the absence of a sealing valve and sealing mechanism results in lower friction, which in turn may improve precision during the surgery. Such improved precision also reduces the surgical time and duration of the surgery which in turn improves surgical recovery by the patient and may reduce surgical complications and scarring.
  • the inventive surgical access port 100 would be attached to the back end of the percutaneous instrument and would only be slid down the shaft of the instrument into the patient's body to provide re-access to the same site location if the percutaneous instrument were to be removed or exchanged. While trocars are independently inserted in to the body cavity, the surgical access port 100 differs as it is slid into the body cavity over an instrument pre-inserted into the body wall.
  • the surgical access port 100 and percutaneous surgical instrument could come packaged as a kit, whereby the surgical access port 100 is placed onto and snapped onto the lumen of the surgical instrument. It is also envisioned where the surgical access port 100 would be packaged separately, as a stand-alone product and is utilized whenever needed.

Claims (8)

  1. Chirurgische Zugangsöffnungsanordnung (100), die an einem chirurgischen Instrument befestigt werden kann, umfassend eine hohle Kanüle (110) und eine sich verjüngende Nabe (120), wobei:
    die hohle Kanüle einen inneren Schaft (115) definiert, der sich in Längsrichtung durch diesen hindurch erstreckt und einen Durchmesser von weniger als 3 mm hat; und
    die sich verjüngende Nabe an einem proximalen Ende der hohlen Kanüle bereitgestellt ist, wobei die sich verjüngende Nabe einen inneren offenen, sich verjüngenden Abschnitt aufweist, der mindestens einen Innenring (118) definiert, der konfiguriert ist, um das chirurgische Instrument durch Kompression des mindestens einen Innenrings zu befestigen.
  2. Chirurgische Zugangsöffnungsanordnung nach Anspruch 1, wobei die hohle Kanüle ein stumpfes distales Ende aufweist.
  3. Chirurgische Zugangsöffnungsanordnung nach Anspruch 1, wobei die hohle Kanüle ein spitzes distales Ende aufweist.
  4. Chirurgische Zugangsöffnungsanordnung nach einem der Ansprüche 1 bis 3, wobei der mindestens eine Innenring aus drei Innenringen (118A, 118B, 118C) besteht und jeder der drei Innenringe so konfiguriert ist, dass er die chirurgische Zugangsöffnung fest mit dem chirurgischen Instrument verbindet und einen Teil des chirurgischen Zugangs abdichtet.
  5. Chirurgische Zugangsöffnungsanordnung nach Anspruch 4, wobei der mindestens eine der drei Innenringe ein O-Ring ist.
  6. Chirurgische Zugangsöffnungsanordnung nach einem der Ansprüche 1 bis 5, ferner umfassend eine Kappe (150), die die sich verjüngende Nabe abdichtet.
  7. Chirurgische Zugangsöffnungsanordnung nach Anspruch 1, ferner umfassend ein chirurgisches Instrument (200),
    wobei das chirurgische Instrument ein Lumen (207, 400) definiert und das chirurgische Instrument an einem distalen Ende eine Nadelspitze (209, 410) und an einem proximalen Ende eine Griffanordnung (205) aufweist.
  8. Chirurgische Zugangsöffnungsanordnung nach Anspruch 5, wobei der O-Ring aus Kautschuken, Schaumstoffen, Kunststoffen, Silikonen, Fluorkohlenstoffen, Polymeren, Elastomeren und/oder Nitrilen besteht.
EP14849207.7A 2014-07-15 2014-09-19 Auswechselbare chirurgische zugangsanordnung Active EP3071131B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462024999P 2014-07-15 2014-07-15
PCT/US2014/056456 WO2015047886A1 (en) 2013-09-18 2014-09-19 Exchanger surgical access port assembly and methods of use

Publications (3)

Publication Number Publication Date
EP3071131A1 EP3071131A1 (de) 2016-09-28
EP3071131A4 EP3071131A4 (de) 2016-12-21
EP3071131B1 true EP3071131B1 (de) 2019-02-27

Family

ID=55073570

Family Applications (3)

Application Number Title Priority Date Filing Date
EP14849207.7A Active EP3071131B1 (de) 2014-07-15 2014-09-19 Auswechselbare chirurgische zugangsanordnung
EP15822363.6A Active EP3169257B1 (de) 2014-07-15 2015-07-14 Chirurgische zugangsportkombination für austauscher
EP20161377.5A Pending EP3682826A1 (de) 2014-07-15 2015-07-14 Verriegelungsmechanismus eines chirurgischen zugangsports

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP15822363.6A Active EP3169257B1 (de) 2014-07-15 2015-07-14 Chirurgische zugangsportkombination für austauscher
EP20161377.5A Pending EP3682826A1 (de) 2014-07-15 2015-07-14 Verriegelungsmechanismus eines chirurgischen zugangsports

Country Status (6)

Country Link
US (3) US10368907B2 (de)
EP (3) EP3071131B1 (de)
JP (2) JP6400682B2 (de)
CN (2) CN105592809B (de)
CA (2) CA2955040C (de)
WO (1) WO2016011023A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267784B2 (ja) 2013-04-16 2018-01-24 テレフレックス メディカル インコーポレイテッド 再使用可能なハンドル及び取り外し可能な針組立体付きのニードルスコピック器械
US10856901B2 (en) 2013-09-18 2020-12-08 Teleflex Medical Incorporated Exchanger surgical access port assembly and methods of use
CN105592809B (zh) 2014-07-15 2019-09-06 泰利福医疗公司 交换器外科手术进入端口组件及使用方法
JP6871279B2 (ja) * 2016-07-11 2021-05-12 コンメッド コーポレーション ロボット支援圧力制御腹腔鏡外科処置のためのカニューレアセンブリ
EP3493754A4 (de) * 2016-08-04 2020-03-11 Macquarie University Laparoskopische führung
US20180271506A1 (en) * 2016-09-30 2018-09-27 Timothy G. Reish Devices and methods for use in performing arthroscopic total shoulder replacement
CN110234367B (zh) * 2016-11-22 2022-04-19 阿尔弗雷德医疗集团 手术系统和使用方法
US20200085524A1 (en) * 2017-05-24 2020-03-19 Covidien Lp Surgical sleeve for robotic systems
WO2019180154A1 (en) * 2018-03-21 2019-09-26 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin A stabiliser
TWI695703B (zh) * 2019-04-26 2020-06-11 李乾坤 內視鏡夾持總成及其夾持器
US20210338269A1 (en) * 2020-05-01 2021-11-04 Ethicon Llc Latchless obturator with interference fit feature
US11559329B2 (en) 2020-05-01 2023-01-24 Cilag Gmbh International Balancing feature for reusable trocar
US11712267B2 (en) 2020-05-01 2023-08-01 Cilag Gmbh International Tilting tang cannula depth limiter
US11633211B2 (en) 2020-05-01 2023-04-25 Cilag Gmbh International Pinch to release cannula depth limiter

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133348U (ja) * 1982-03-03 1983-09-08 メデイキツト株式会社 カテ−テル
US4655750A (en) * 1985-11-22 1987-04-07 Manresa, Inc. Closed system catheter with guide wire
JPH0215159A (ja) 1988-07-01 1990-01-18 Mitsubishi Metal Corp 表面被覆サーメット製切削工具の製造法
JPH048918Y2 (de) * 1988-07-15 1992-03-05
US5201742A (en) * 1991-04-16 1993-04-13 Hasson Harrith M Support jig for a surgical instrument
US5658272A (en) * 1992-09-15 1997-08-19 Hasson; Harrith M. Surgical instrument support and method of using the same
US5282800A (en) 1992-09-18 1994-02-01 Edward Weck, Inc. Surgical instrument
US5413561A (en) * 1993-05-13 1995-05-09 Cathco, Inc. Guiding catheter with sealing cap system for reducing blood loss when inserting guiding catheters
US5425376A (en) * 1993-09-08 1995-06-20 Sofamor Danek Properties, Inc. Method and apparatus for obtaining a biopsy sample
US5456673A (en) 1994-03-23 1995-10-10 Stryker Corporation Locking cannula for endoscopic surgery
US5454790A (en) 1994-05-09 1995-10-03 Innerdyne, Inc. Method and apparatus for catheterization access
US5505710A (en) * 1994-08-22 1996-04-09 C. R. Bard, Inc. Telescoping probe
US5626597A (en) * 1995-02-21 1997-05-06 United States Surgical Corporation Percutaneous introducer
WO1997014457A1 (en) * 1995-10-18 1997-04-24 Stouder Albert E Jr Adjustable length cannula and trocar
US5868714A (en) 1996-09-16 1999-02-09 Endoscopic Concepts, Inc. Trocar reducer system
US5759188A (en) 1996-11-27 1998-06-02 Yoon; Inbae Suturing instrument with rotatably mounted needle driver and catcher
US6159224A (en) 1996-11-27 2000-12-12 Yoon; Inbae Multiple needle suturing instrument and method
US6197002B1 (en) * 1997-12-10 2001-03-06 Phillips Plastics Corporation Laparoscopic tool and method
US20030130693A1 (en) * 1999-05-18 2003-07-10 Levin John M. Laparoscopic/thorascopic insertion caps
US6224569B1 (en) * 1999-09-24 2001-05-01 Becton, Dickinson And Company Compact needle point shield
US6336914B1 (en) 2000-01-13 2002-01-08 Gillespie, Iii Richard D. Releasable interlock assembly having axial and rotational engagement
DE50101193D1 (de) * 2001-06-19 2004-01-29 Storz Karl Gmbh & Co Kg Zugangskanüle für endoskopische Operationen, insbesondere für die Arthroskopie
US20040111061A1 (en) 2002-11-12 2004-06-10 Diana Curran Trocar having an inflatable cuff for maintaining an insufflated abdominal cavity during an open laparaoscopy procedure
JP2007525242A (ja) * 2003-04-25 2007-09-06 タイコ ヘルスケア グループ エルピー 外科手術用アクセス装置
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7479150B2 (en) * 2003-09-19 2009-01-20 Tyco Healthcare Group Lp Trocar insertion apparatus
AU2004216609B2 (en) * 2003-09-30 2010-08-12 Ethicon Endo-Surgery, Inc. Rotational latching system for a trocar
US7329233B2 (en) * 2004-10-05 2008-02-12 Tyco Healthcare Group Lp Surgical system for laparoscopic surgery
US8113548B2 (en) * 2005-06-30 2012-02-14 Ti Group Automotive Systems, Llc Quick connector for high pressure applications
US20070093755A1 (en) * 2005-09-23 2007-04-26 Koos David R Cannula handle and storage system
EP2000099A3 (de) * 2005-10-14 2009-07-29 Applied Medical Resources Corporation Chirurgischer Zugriffsanschluss
US8080004B2 (en) 2005-10-26 2011-12-20 Earl Downey Laparoscopic surgical instrument
US20070162066A1 (en) 2006-01-10 2007-07-12 Lyon Thomas R Clear view cannula
US9486238B2 (en) * 2006-03-13 2016-11-08 Teleflex Medical Incorporated Minimally invasive surgical clamps, assemblies and methods
US7766937B2 (en) 2006-03-13 2010-08-03 Mini-Lap Technologies, Inc. Minimally invasive surgical assembly and methods
US8313507B2 (en) 2006-03-13 2012-11-20 Mini-Lap Technologies, Inc. Minimally invasive rake retractor and method for using same
US8133255B2 (en) 2006-03-13 2012-03-13 Mini-Lap Technologies, Inc. Minimally invasive surgical assembly and methods
MX2008011789A (es) 2006-03-13 2009-01-22 Minilap Technologies Inc Montaje quirurgico minimamente invasivo y metodos.
US8230863B2 (en) 2006-05-30 2012-07-31 Mini-Lap Technologies, Inc. Platform for fixing surgical instruments during surgery
US20070282170A1 (en) 2006-05-30 2007-12-06 Sundaram Ravikumar Rake Retractor and Needle Assembly for Minimally Invasive Surgical Applications
US20080215078A1 (en) 2007-01-31 2008-09-04 Bennett Michael D Surgical blade and trocar system
JP5105939B2 (ja) * 2007-04-06 2012-12-26 株式会社八光 医療用挿入ガイド器具
US20090247900A1 (en) * 2008-03-25 2009-10-01 Brian Zimmer Push button adjustable spacer
US8956351B2 (en) 2008-04-09 2015-02-17 Teleflex Medical Incorporated Minimally invasive surgical needle and cauterizing assembly and methods
US8636686B2 (en) * 2008-04-28 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical access device
JP5464872B2 (ja) 2009-03-06 2014-04-09 株式会社トップ 鉗子
IT1395219B1 (it) * 2009-05-19 2012-09-05 Ab Medica Spa Otturatore per trocar e relativo trocar.
US9326757B2 (en) 2009-12-31 2016-05-03 Teleflex Medical Incorporated Surgical instruments for laparoscopic aspiration and retraction
US20110196205A1 (en) * 2010-02-05 2011-08-11 Tyco Healthcare Group Lp Surgical portal locking system
US8783542B2 (en) 2010-09-30 2014-07-22 Ethicon Endo-Surgery, Inc. Fasteners supported by a fastener cartridge support
JP5782267B2 (ja) * 2011-02-16 2015-09-24 株式会社トップ トロカーの外套管部
US20120277576A1 (en) 2011-04-26 2012-11-01 Chun Kee Lui Echogenic infusion port catheter
JP2013106771A (ja) 2011-11-21 2013-06-06 Olympus Corp 医療用処置具および神経刺激電極留置システム
JP5999415B2 (ja) * 2012-06-01 2016-09-28 株式会社ジェイ・エム・エス 留置針装置
US10058343B2 (en) 2013-03-14 2018-08-28 Covidien Lp Systems for performing endoscopic procedures
AU2014253956B2 (en) 2013-04-16 2017-04-20 Teleflex Medical Incorporated Minimally invasive surgical assembly and methods
JP6267784B2 (ja) 2013-04-16 2018-01-24 テレフレックス メディカル インコーポレイテッド 再使用可能なハンドル及び取り外し可能な針組立体付きのニードルスコピック器械
CN105592809B (zh) 2014-07-15 2019-09-06 泰利福医疗公司 交换器外科手术进入端口组件及使用方法
US20170224413A1 (en) 2014-08-07 2017-08-10 Teleflex Medical Incorporated Surgical instrument electrodes and methods of use
US20170156789A1 (en) 2014-08-13 2017-06-08 Teleflex Medical Incorporated Surgical instrument electrodes and methods of use

Also Published As

Publication number Publication date
CA3079418C (en) 2023-01-03
CN105592809B (zh) 2019-09-06
CN106659521A (zh) 2017-05-10
US20190298408A1 (en) 2019-10-03
CN106659521B (zh) 2020-08-18
US10368907B2 (en) 2019-08-06
EP3071131A1 (de) 2016-09-28
WO2016011023A1 (en) 2016-01-21
JP2017527331A (ja) 2017-09-21
EP3071131A4 (de) 2016-12-21
JP2016534763A (ja) 2016-11-10
CA3079418A1 (en) 2016-01-21
JP6411626B2 (ja) 2018-10-24
CN105592809A (zh) 2016-05-18
CA2955040A1 (en) 2016-01-21
JP6400682B2 (ja) 2018-10-03
EP3169257A1 (de) 2017-05-24
CA2955040C (en) 2020-09-15
EP3169257A4 (de) 2018-02-14
EP3169257B1 (de) 2020-03-18
US20230248389A1 (en) 2023-08-10
US11627984B2 (en) 2023-04-18
EP3682826A1 (de) 2020-07-22
US20160015423A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
EP3071131B1 (de) Auswechselbare chirurgische zugangsanordnung
EP2277464B1 (de) Chirurgischer Anschluss und zerbrechliche Einführanordnung
US8435174B2 (en) Methods and devices for accessing a body cavity
EP2138106B1 (de) Zugangsöffnung mit mehreren Lumen
US20130225932A1 (en) Multi-portion wound protector
US20120123202A1 (en) Insufflating optical surgical instrument
EP2316360A1 (de) Radial ausdehnbares Zugangssystem mit Trokarverschluss
US10765443B2 (en) Needlescopic scissor end effector and methods of use
CA2924097C (en) Exchanger surgical access port assembly
AU2003231858B2 (en) Direct vision port site dissector
US20210299416A1 (en) Balloon cannula including a plurality of balloons
US20200268412A1 (en) Access assembly including flexible cannula

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20161123

RIC1 Information provided on ipc code assigned before grant

Ipc: A61M 39/02 20060101ALI20161117BHEP

Ipc: A61B 17/34 20060101AFI20161117BHEP

Ipc: A61B 17/29 20060101ALI20161117BHEP

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181002

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014042045

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1100214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1100214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014042045

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140919

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230927

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230925

Year of fee payment: 10

Ref country code: DE

Payment date: 20230927

Year of fee payment: 10