EP3070964A1 - Hörgerät, insbesondere hörhilfegerät - Google Patents

Hörgerät, insbesondere hörhilfegerät Download PDF

Info

Publication number
EP3070964A1
EP3070964A1 EP16155817.6A EP16155817A EP3070964A1 EP 3070964 A1 EP3070964 A1 EP 3070964A1 EP 16155817 A EP16155817 A EP 16155817A EP 3070964 A1 EP3070964 A1 EP 3070964A1
Authority
EP
European Patent Office
Prior art keywords
sound
sound generator
signal
hearing aid
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16155817.6A
Other languages
English (en)
French (fr)
Other versions
EP3070964B1 (de
Inventor
Hoong Yih Chan
Chuan Foong LEE
Eduardo BAS Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3070964A1 publication Critical patent/EP3070964A1/de
Application granted granted Critical
Publication of EP3070964B1 publication Critical patent/EP3070964B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/002Transducers other than those covered by groups H04R9/00 - H04R21/00 using electrothermic-effect transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/456Prevention of acoustic reaction, i.e. acoustic oscillatory feedback mechanically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/48Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using constructional means for obtaining a desired frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/021Behind the ear [BTE] hearing aids
    • H04R2225/0213Constructional details of earhooks, e.g. shape, material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/49Reducing the effects of electromagnetic noise on the functioning of hearing aids, by, e.g. shielding, signal processing adaptation, selective (de)activation of electronic parts in hearing aid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology

Definitions

  • the invention relates to a hearing aid, in particular a hearing aid, comprising a housing, a signal processing unit arranged in the housing and a first sound generator, which is arranged in the housing, wherein the first sound generator is adapted to convert an output signal of the signal processing unit into sound.
  • a hearing aid having a microphone and an electroacoustic transducer
  • mechanical vibrations caused by the electroacoustic transducer can lead to instability of the signal path.
  • the vibrations may be recorded by the microphone through an acoustic feedback and converted into an electrical signal which, after amplification, is applied to the electroacoustic transducer and converted into sound by it.
  • a closed loop is formed, in which the vibrations are amplified more and more.
  • instability of the system which is noticeable in an increase of unwanted signal components that may exceed the load limit of individual components of the hearing aid or the pain threshold of a user of the hearing aid.
  • frequencies between 1 kHz and 12 kHz are particularly affected by the electro-acoustic amplification and resonant feedback of mechanical vibrations.
  • a sufficiently high gain of a signal before the sound generation is particularly important for frequencies between 2 kHz and 4 kHz. Since particularly important formants for the detection of consonants occur in this frequency band, a good reproduction dynamics, ie in particular a very high output level, is of particular importance for speech intelligibility.
  • the hearing aid should therefore allow the loudest possible generation of sound in this frequency band in order to be able to produce as rich a sound image as possible when reproducing speech.
  • the invention is therefore based on the object to provide a hearing aid, which allows the highest possible reproduction dynamics over a wide frequency spectrum in the generation of sound, and should have a compact design and the lowest possible susceptibility to mechanical vibrations.
  • a hearing aid in particular a hearing aid, comprising a housing, a signal processing unit arranged in the housing, a first sound generator, which is arranged in the housing, and a second sound generator, wherein the first sound generator and the second sound generator each set up are to convert an output signal of the signal processing unit into sound, and wherein the second sound generator comprises a thermoacoustic transducer.
  • the hearing device further comprises a crossover with a signal input, a low-frequency output and a high-frequency output, wherein the signal processing unit for supplying the output signal is connected to the crossover via the signal input, and wherein the low-frequency output with the first sound generator and the high-frequency Output is connected to the second sound generator.
  • the invention is based on a hearing device which has a housing, a signal processing unit arranged in the housing, and a sound generator arranged in the housing, which is set up to convert an output signal of the signal processing unit into sound.
  • the sound generator is designed as an electroacoustic transducer.
  • the invention recognizes in a first step that for the highest possible playback dynamics in a wide frequency spectrum, a frequency-dependent attenuation of the signal level to prevent vibration is counterproductive, since the lack of dynamics in the corresponding frequency bands impaired the sound quality, that this is not remedied by other measures can be. It should therefore be attempted to prevent the occurrence of vibrations through design measures and not by regulating the gain.
  • the vibrations to be prevented arise substantially initially as vibrations of the housing surrounding the sound generator, which receives, for example, by an insufficiently damped suspension of the sound generator of this vibration energy, which generates the sound, and thereby the housing is excited according to its resonance characteristics.
  • An improvement in the suspension damping is limited, however, due to space limitations.
  • such an adaptation of the damping in a compact design is sufficiently effective only for certain frequency bands, since on the one hand, the damping effect at a given elasticity of a damper is frequency-dependent, and on the other hand depend on the corresponding attenuation constants of the suspension of the dimension.
  • the second sound generator would be interpreted in particular for a high playback performance in this frequency band.
  • the first - that is, the originally existing - sound generator could then be designed, for example, for lower frequency bands, and the suspension of the first sound generator could be designed especially for the attenuation of low-frequency vibrations.
  • the invention proposes that the second sound generator comprises a thermoacoustic transducer. This allows a particularly compact generation of sound in particular higher frequencies with high playback dynamics.
  • thermoacoustic transducer While usually the generation of sound in a hearing aid by electro-acoustic transducers, the use of a thermoacoustic transducer in the second sound generator in this case first has the advantage that it does not generate vibration energy in the generation of sound.
  • a thermoacoustic transducer from an electrical signal a sound signal is generated by the fact that on a surface or surface of the thermoacoustic transducer by the electric Signal temperature fluctuations are generated.
  • These rapidly oscillating temperature fluctuations on the surface or surface of the thermoacoustic transducer lead to a time-variable temperature gradient of the adjacent air layers. By this time-varying temperature gradient, the adjacent air layers can be set in vibration, which propagate as a sound signal.
  • thermoacoustic transducer For such a sound generation of any kind of proper movement of the thermoacoustic transducer is not required, and not provided.
  • the sound is generated by the thermoacoustic transducer thus no vibrations, which can be delivered to the environment or to a suspension.
  • a sound generator with a thermoacoustic transducer in particular one which is suitable for an arrangement in a hearing aid because of its dimensions, also has particularly dynamic playback behavior for frequencies above 1 kHz.
  • a low-frequency output is understood to mean an output at which signal components of a signal input into the crossover via the signal input in such a way be issued that decreases from a first cutoff frequency of the signal level up to a second cutoff frequency and from the second cutoff frequency no appreciable signal level is more recorded.
  • a high-frequency output is accordingly defined as an output at which signal components are output which have a significant signal level only above a third limit frequency.
  • the third cutoff frequency is preferably well below the second cutoff frequency and particularly preferably in the range of the first cutoff frequency, so that a sufficient overlap of the frequency responses of the low frequency output and the high frequency output is ensured.
  • the crossover is set up such that the frequency response of the low-frequency output is tuned to the frequency response of the first sound generator, and that the frequency response of the high-frequency output to the frequency response of the second sound generator, so the thermoacoustic transducer is tuned.
  • the use of such a crossover allows the operation of the first sound generator and designed as a thermoacoustic transducer second sound generator with a common output signal of the signal processing unit, whereby only one signal output is required at this.
  • thermoacoustic transducer comprises at least one film formed of carbon nanotubes, which is connected to at least one signal terminal, wherein by applying a signal voltage to the or each signal terminal, a time-varying heating in the or each film is caused, by means of which the thermoacoustic effect a sound is generated.
  • the carbon nanotubes can be aligned substantially parallel to each other, even several layers of bundles of parallel carbon nanotubes, wherein the orientations of the carbon nanotubes of two successive layers are mutually orthogonal, is possible in this case.
  • thermoacoustic transducer with a carbon nanotube film can also be dimensioned particularly compact under the specifications of the desired sound reproduction.
  • the second sound generator is arranged in the housing. Such positioning simplifies the connection of the second sound generator to the signal processing unit.
  • an arrangement of the second sound generator is in principle also possible in a connectable to the hearing aid sound conductor, via which a generated sound signal is continued to the hearing of a user. Such a procedure allows a further reduction in the size of the hearing aid.
  • the first sound generator is designed such that it has a higher maximum reproduction level for frequencies in a frequency range up to 4 kHz, preferably up to 2 kHz, than for frequencies above this frequency range.
  • the maximum playback level must be related to the maximum sound pressure that can be generated.
  • the frequency response of the first sound generator can decrease below a first cutoff frequency below 4 kHz, preferably below 3 kHz, and at a second cutoff frequency, preferably above 4 kHz, in particular above 6 kHz, have a complete cut-off.
  • thermoacoustic transducer in particular one which is suitable for an arrangement in a hearing aid in terms of its dimensioning, is designed especially for the generation of sound of frequencies above 1 kHz, and thereby a maximum reproduction level preferably in the range between 2 kHz and 4 kHz has to show
  • a first sound generator that reaches its maximum playback level in lower frequency bands, in combination with the second sound generator, can contribute to a complete sound image.
  • a sound chamber is formed with a sound outlet in the housing, wherein the first sound generator is adapted to generate sound in the sound space, and wherein the second sound generator is arranged in the sound space.
  • the generated sound can be continued here via the sound output and possibly a sound conductor and / or an earmold for the hearing of a user.
  • a sound generation of the first sound generator in the sound chamber is to be understood that a significant proportion of the generated sound power is recordable as sound pressure in the sound space, with radiation into other areas of the hearing aid is not excluded.
  • Such an arrangement makes it possible in particular for a modular design of the hearing device, in which the first sound generator, the second sound generator, the corresponding suspensions and signal connections, and, if present, a crossover can be combined to form a module in an inner housing surrounding the said components.
  • the sound chamber is formed in the inner housing.
  • the modular design allows for design and layout of the remaining components of the hearing aid - e.g. the signal processing unit or the or each microphone - independent of the sound generators.
  • the second sound generator is arranged in the sound path between the first sound generator and the sound outlet.
  • the primary - that is, as possible reflection-free way to understand - along which propagates a sound signal generated by the first sound generator to the sound output.
  • the microstructure is thereby produced the thermoacoustic transducer is optimally utilized, which allows an almost unhindered propagation of a sound signal through the film.
  • the second sound generator is preferably arranged laterally to the sound path between the first sound generator and the sound outlet.
  • the selection of the positioning of the second sound generator can be made dependent in particular on its dimensioning and on the desired individual spectral properties with regard to the reproduction dynamics.
  • the hearing aid comprises a third sound generator, which is adapted to convert an output signal of the signal processing unit into sound, wherein the third sound generator comprises a thermoacoustic transducer.
  • the third sound generator may be different from the second sound generator, and in particular, the third sound generator may have a different frequency response than the second sound generator.
  • the hearing aid comprises a reversibly connectable to the housing sound conductor, which has a number of signal terminals, wherein the second sound generator and / or the third sound generator is arranged in the sound conductor, and wherein in the connected state of the sound conductor with the housing on the number of signal terminals of the Sound conductor a signal connection from the signal processing unit to the second and third sound generator is made.
  • the spectral properties of the sound conductor can be used to improve the playback dynamics.
  • FIG. 1 is shown in a sectional view schematically a hearing aid 1, which is designed here as a hearing aid 2.
  • the hearing aid 1 comprises a housing 4, in which a modular unit 6 is inserted.
  • the modular unit 6 has an inner housing 8, which surrounds a sound space 10.
  • a first sound generator 12 is arranged on a damping suspension 14.
  • the first sound generator 12 is designed here as a conventional, electroacoustic transducer.
  • a second sound generator 16 is arranged in the inner housing 8 of the modular unit 6, which is designed as a thermoacoustic transducer 18.
  • the second sound generator 16 has two signal terminals 20 and a film 22 of carbon nanotubes.
  • a signal splitter 24 having a signal input 26 for receiving an output signal 28 of a signal processing unit 30 is first arranged in the inner housing 8. From a low-frequency output 32 of the signal splitter 24 performs a low-frequency connection 34 to the first sound generator 12. Further, the signal splitter 24 has a high-frequency output 36, from each of which high-frequency connections 38 to the two signal terminals 20 of the thermoacoustic transducer 18 lead. The output signal 28 output by the signal processing unit 30 is decomposed in the signal splitter 24 into a low-frequency component and a high-frequency component.
  • the low-frequency component of the output signal 28 is output at the low-frequency output 32 via the low-frequency connection 34 to the first sound generator, and converted by the latter into sound with predominantly low frequencies.
  • the sound generated by the first sound generator 12 propagates predominantly in the sound space 10 to a sound output 40, whereby a sound path 44 is formed.
  • the sound output 40 in this case has a rubber nozzle 42, on which a not shown sound conductor can be placed, through which the sound generated in the sound space 10 can be forwarded to another earmold and ultimately to the user of the hearing aid.
  • the high-frequency signal component of the output signal 28 is output at the high-frequency output 36 via the respective high-frequency connections 38 to the thermoacoustic transducer 18, and converted by the latter into sound with predominantly high frequencies.
  • the arrangement of the thermoacoustic transducer 18 in the sound path 44 of the first sound generator 12 has here due to the microstructure of the carbon nanotube film 22 no significant effect on the sound of the first sound generator 12 and its propagation.
  • the first sound generator 12 is designed as an electroacoustic transducer for powerful sound generation up to frequencies of 3 kHz, above these frequencies, the playback spectrum decreases continuously to a complete cut-off at about 6-7 kHz.
  • the thermoacoustic transducer 18 is designed for a particularly powerful sound generation in the range of about 1 kHz to 15 kHz.
  • thermoacoustic design of the playback performance of the thermoacoustic transducer 18 is a certain freedom, but the lower limit - ie the frequency from which the thermoacoustic Transducer can generate a significant sound pressure - is to choose the frequency range so that a significant overlap with the playback spectrum of the first sound generator 12 is ensured, and the upper limit - from which the producible sound pressure decreases - primarily of the still for the respective Application depends on desired and / or required frequencies.
  • the gains for corresponding frequency bands can be optimized in the signal processing unit 30, that with the lowest possible feedback in a not shown in detail in the drawing microphone of the hearing aid 1 as dynamic a reproduction is achieved. Due to the damping suspension 14 of the first sound generator 12, on the one hand mechanical vibrations of the first sound generator can be partially absorbed. Furthermore, the first sound generator can be optimized for low-vibration operation in the low-frequency range.
  • first sound generator 12 and a second sound generator 16 now on the one hand allows to optimize the first sound generator in terms of its low-frequency reproduction and vibration characteristics, and the second sound generator for maximum gain in certain higher frequency bands -. in the range of 2 kHz to 4 kHz relevant for speech intelligibility.
  • thermoacoustic transducer 18th In combination with a conventional electroacoustic transducer, as given in the first sound generator 12. Due to the microstructure of the film 22 of carbon nanotubes, which is similar to a fine tissue through which the sound of the first sound generator 12 can propagate, there are no restrictions on the arrangement of the thermoacoustic transducer 18 with respect to the sound path 44.
  • FIG. 2 is shown in a sectional view of an alternative arrangement of the thermoacoustic transducer 18 in a hearing aid 1, which up to the positioning of the thermoacoustic transducer 18 already in FIG. 1 is shown.
  • the thermoacoustic transducer 18 is in this case not in the sound path 44 of the sound, which propagates from the first sound generator 12 to the sound output 40 of the sound chamber 10, but laterally and longitudinally to the sound path 44.
  • the concrete selection of the arrangement can of the required dimensioning of the thermoacoustic transducer 18th , in particular the carbon nanotube film 22, which in turn is related to the desired optimum frequency response of the second sound generator 16.
  • FIG. 2 a sound conductor 46 is shown, which has a connector 48 at one end.
  • the connector 48 is in this case inserted into the rubber nozzle 42, whereby a vibration-damped mechanical connection between the hearing aid 1 and the sound conductor 46 is made.
  • the sound conductor 46 has a signal connection 50 and a third sound generator 52 which, like the second sound generator 16, is likewise designed as a thermoacoustic transducer 54.
  • the signal connection 50 is connected to the thermoacoustic converter 54, so that a signal connection 56 between the thermoacoustic converter 54 and the signal processing unit 30 can be produced via a corresponding contact pin on the housing 4 of the hearing device or on the inner housing 8.
  • a signal connection 56 between the thermoacoustic converter 54 and the signal processing unit 30 can be produced via a corresponding contact pin on the housing 4 of the hearing device or on the inner housing 8.
  • thermoacoustic transducer 2 shown representation is also an arrangement of designed as a thermoacoustic transducer second sound generator in the sound conductor conceivable, and by a corresponding signal connection directly via contact pins or indirectly - via a high-frequency output of a signal switch - is connected to the signal processing unit.
  • the first sound generator in the housing of the hearing device generates primarily low-frequency sound, which propagates directly into the sound conductor. There, the high-frequency sound is "added" by the thermoacoustic transducer for the widest possible signal converter.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

Die Erfindung nennt ein Hörgerät (1), insbesondere Hörhilfegerät (2), umfassend ein Gehäuse (4), eine im Gehäuse angeordnete Signalverarbeitungseinheit (30), einen ersten Schallerzeuger (12), der im Gehäuse (4) angeordnet ist, und einen zweiten Schallerzeuger (16), wobei der erste Schallerzeuger (12) und der zweite Schallerzeuger (16) jeweils dazu eingerichtet sind, ein Ausgangssignal (28) der Signalverarbeitungseinheit (30) in Schall umzuwandeln, und wobei der zweite Schallerzeuger (16) einen thermoakustischen Wandler (18) umfasst.

Description

  • Die Erfindung betrifft ein Hörgerät, insbesondere ein Hörhilfegerät, umfassend ein Gehäuse, eine im Gehäuse angeordnete Signalverarbeitungseinheit und einen ersten Schallerzeuger, der im Gehäuse angeordnet ist, wobei der erste Schallerzeuger dazu eingerichtet ist, ein Ausgangssignal der Signalverarbeitungseinheit in Schall umzuwandeln.
  • In einem Hörhilfegerät, welches ein Mikrofon und einen elektroakustischen Wandler aufweist, können durch den elektroakustischen Wandler hervorgerufene mechanische Vibrationen zu einer Instabilität des Signalweges führen. Beispielsweise können die Vibrationen durch eine akustische Rückkopplung vom Mikrofon aufgezeichnet und in ein elektrisches Signal umgewandelt werden, welches nach Verstärkung dem elektroakustischen Wandler zugeführt und von diesem in Schall umgewandelt wird. Hierdurch wird eine geschlossene Schleife gebildet, in welcher die Vibrationen immer weiter verstärkt werden. Als Folge droht eine Instabilität des Systems, welche sich bemerkbar macht in einer Verstärkung von unerwünschten Signalanteilen, die die Belastungsgrenze einzelner Komponenten des Hörhilfegeräts oder die Schmerzgrenze eines Benutzers des Hörhilfegeräts überschreiten können.
  • Insbesondere ist hierbei nicht nur eine rein elektroakustische Rückkopplung eines durch den elektroakustischen Wandler wiedergegebenen Schallsignals über das Mikrofon in den Signalweg von Belang. Auch mechanische Vibrationen des elektroakustischen Wandlers, welche beispielsweise durch eine resonante Anregung des ihn umgebenden Gehäuses im Hörhilfegerät resultieren können, finden im Fall unzureichender akustischer Abschirmung des Mikrofons gegen die Vibrationen durch dieses Eingang in den elektrischen Signalweg. Durch eine Verstärkung in der Signalverarbeitung des Hörhilfegeräts und eine Wiedergabe über den elektroakustischen Wandler können die den mechanischen Vibrationen entsprechenden Frequenzen die sie ursprünglich erzeugenden Vibrationen weiter verstärken. Durch diese elektroakustische Rückkopplung wird die mechanische Vibration ebenso resonant angeregt. Die Anregung erfolgt dabei umso stärker, je größer die Verstärkung des Signals in der Signalverarbeitung ist.
  • Aufgrund der Dimensionen üblicher Hörhilfegeräte und der daraus resultierenden Resonanzeigenschaften sind Frequenzen zwischen 1 kHz und 12 kHz besonders von der elektroakustischen Verstärkung und resonanten Rückkopplung mechanischer Vibrationen betroffen. Eine hinreichend hohe Verstärkung eines Signals vor der Schallerzeugung ist jedoch insbesondere für Frequenzen zwischen 2 kHz und 4 kHz wichtig. Da in diesem Frequenzband besonders wichtige Formanten zur Erkennung von Konsonanten auftreten, ist eine gute Wiedergabedynamik, also insbesondere ein möglichst hoher Ausgangspegel, gerade für die Sprachverständlichkeit von Bedeutung. Das Hörhilfegerät soll also in diesem Frequenzband eine möglichst laute Schallerzeugung ermöglichen, um bei einer Wiedergabe von Sprache ein möglichst reiches Klangbild erzeugen zu können.
  • Üblicherweise wird daher anhand von Testreihen und entsprechender Algorithmen versucht, für verschiedene Frequenzen die maximale Verstärkung zu ermitteln, bei welcher eine Instabilität des Signalwegs infolge resonanter Anregung noch unterbunden bleibt. Jedoch sind der maximalen Verstärkung und somit einem reichen Klangbild auch bei einer derartigen frequenzabhängigen Optimierung der Verstärkung an die jeweilige Stabilitätsgrenze hin enge Grenzen durch die mechanischen Gegebenheiten des Hörhilfegeräts gesetzt. Bei derartigen Testreihen sind zudem die ggf. in realen Situationen auftretenden nichtlinearen Effekte bei der resonanten Anregung zu berücksichtigen, um den noch zulässigen Verstärkungsfaktor nicht fälschlich als zu hoch anzusetzen, was in der Praxis eine Instabilität begünstigen würde. Eine aus den genannten Überlegungen konservative Abschätzung der noch zulässigen Verstärkung bei einer jeweiligen Frequenz begrenzt allerdings die Dynamik der Wiedergabe zusätzlich.
  • Der Erfindung liegt die daher Aufgabe zugrunde, ein Hörgerät anzugeben, welches bei der Schallerzeugung eine möglichst hohe Wiedergabedynamik über ein breites Frequenzspektrum hinweg erlaubt, und dabei eine kompakte Bauweise sowie eine möglichst geringe Anfälligkeit für mechanische Vibrationen aufweisen soll.
  • Die genannte Aufgabe wird erfindungsgemäß gelöst durch ein Hörgerät, insbesondere ein Hörhilfegerät, umfassend ein Gehäuse, eine im Gehäuse angeordnete Signalverarbeitungseinheit, einen ersten Schallerzeuger, der im Gehäuse angeordnet ist, und einen zweiten Schallerzeuger, wobei der erste Schallerzeuger und der zweite Schallerzeuger jeweils dazu eingerichtet sind, ein Ausgangssignal der Signalverarbeitungseinheit in Schall umzuwandeln, und wobei der zweite Schallerzeuger einen thermoakustischen Wandler umfasst. Weiter umfasst das Hörgerät eine Frequenzweiche mit einem Signaleingang, einem Niederfrequenz-Ausgang und einem Hochfrequenz-Ausgang, wobei über den Signaleingang die Signalverarbeitungseinheit zur Einspeisung des Ausgangssignals mit der Frequenzweiche verbunden ist, und wobei der Niederfrequenz-Ausgang mit dem ersten Schallerzeuger und der Hochfrequenz-Ausgang mit dem zweiten Schallerzeuger verbunden ist.
  • Vorteilhafte und teils für sich gesehen erfinderische Ausgestaltungen sind Gegenstand der Unteransprüche und der nachfolgenden Beschreibung.
  • Die Erfindung geht dabei von einem Hörgerät aus, welches ein Gehäuse, eine im Gehäuse angeordnete Signalverarbeitungseinheit, und einen im Gehäuse angeordneten Schallerzeuger aufweist, welcher dazu eingerichtet ist, ein Ausgangssignal der Signalverarbeitungseinheit in Schall umzuwandeln. Insbesondere ist der Schallerzeuger dabei als ein elektroakustischer Wandler ausgebildet.
  • Die Erfindung erkennt in einem ersten Schritt, dass für eine möglichst hohe Wiedergabedynamik in einem breiten Frequenzspektrum eine frequenzabhängige Abschwächung der Signalpegel zur Unterbindung von Vibrationen kontraproduktiv ist, da die fehlende Dynamik in den entsprechenden Frequenzbändern die Klangqualität derart beeinträchtigt, dass dies nicht durch andere Maßnahmen behoben werden kann. Es soll somit versucht werden, das Entstehen von Vibrationen über konstruktive Maßnahmen und nicht über eine Regelung der Verstärkung zu unterbinden.
  • Die zu unterbindenden Vibrationen entstehen hierbei im Wesentlichen zunächst als Vibrationen des den Schallerzeuger umgebenden Gehäuses, welches beispielsweise durch eine nicht ausreichend gedämpfte Aufhängung des Schallerzeugers von diesem Vibrationsenergie aufnimmt, welche der Schallerzeugung entsteht, und hierdurch das Gehäuse entsprechend seiner Resonanzeigenschaften angeregt wird. Eine Verbesserung der Dämpfung der Aufhängung ist jedoch aus Platzgründen nur eingeschränkt möglich. Insbesondere ist eine derartige Anpassung der Dämpfung bei kompakter Bauweise nur für bestimmte Frequenzbänder ausreichend wirksam, da einerseits die Dämpfungswirkung bei einer vorgegebenen Elastizität eines Dämpfers frequenzabhängig ist, und andererseits die entsprechenden Dämpfungskonstanten der Aufhängung von deren Abmessung abhängen.
  • Die Unterdrückung einer Einkopplung von durch den Schallerzeuger generierter Vibrationsenergie in das ihn umgebende Gehäuse ist somit unter den konstruktiven Vorgaben nicht für beliebig breitbandige Frequenzspektren zu erreichen. Da jedoch gerade im Frequenzband von 2 kHz bis 4 kHz eine besonders hohe Dynamik in der Wiedergabe von Signalen erwünscht ist, um eine hohe Sprachverständlichkeit zu erreichen, könnte man geneigt sein, einen zweiten Schallerzeuger vorzusehen, und dessen Aufhängung derart auszugestallten, dass in diesem Frequenzband Vibrationen besonders wirksam gedämpft werden.
  • Dies würde erlauben, im besagten Frequenzband eine besonders hohe Signalverstärkung anzuwenden. Der zweite Schallerzeuger wäre dabei insbesondere für eine hohe Wiedergabeleistung in diesem Frequenzband auszulegen. Der erste - also der bereits ursprünglich vorhandene - Schallerzeuger könnte dann beispielsweise für niedrigere Frequenzbänder ausgelegt sein, und die Aufhängung des ersten Schallerzeugers könnte besonders für die Dämpfung von niederfrequenten Vibrationen konzipiert werden.
  • Dies ist jedoch vor dem Hintergrund der gewünschten kompakten Konstruktion nur schwer zu realisieren. Selbst bei einer kompakten Dimensionierung des zweiten Schallerzeugers ist seine bauliche Integration in ein Hörgerät, in welchem ein weiterer Schallerzeuger vorgesehen ist, nicht zuletzt vor dem Hintergrund der erforderlichen dämpfenden Aufhängung der beiden Schallerzeuger nicht ohne weiteres zu bewerkstelligen. Überdies ist der mittels eines Schallerzeugers maximal erzeugbare Schalldruck - und somit auch die durch diesen erreichbare Wiedergabedynamik - meist auch dimensionsabhängig. Eine zu weitgehende Verringerung der Größe des zweiten Schallerzeugers hätte wiederum ein unbefriedigendes Klangbild in den Frequenzbändern zur Folge, für welche der zweite Schallerzeuger überhaupt besonders vorgesehen wäre.
  • Demgegenüber schlägt die Erfindung vor, dass der zweite Schallerzeuger einen thermoakustischen Wandler umfasst. Dies erlaubt eine besonders kompakte Schallerzeugung insbesondere höherer Frequenzen bei hoher Wiedergabedynamik.
  • Während üblicherweise die Schallerzeugung in einem Hörgerät durch elektroakustische Wandler erfolgt, hat der Einsatz eines thermoakustischen Wandlers im zweiten Schallerzeuger hierbei zunächst den Vorteil, dass dieser bei der Schallerzeugung keine Vibrationsenergie generiert. Bei einem thermoakustischen Wandler wird aus einem elektrischen Signal ein Schallsignal dadurch erzeugt, dass an einer Fläche oder einer Oberfläche des thermoakustischen Wandlers durch das elektrische Signal Temperaturschwankungen erzeugt werden. Diese schnell oszillierenden Temperaturschwankungen an der Fläche oder Oberfläche des thermoakustischen Wandlers führen zu einem zeitveränderlichen Temperaturgradienten der angrenzenden Luftschichten. Durch diesen zeitveränderlichen Temperaturgradienten können die angrenzenden Luftschichten in Schwingungen versetzt werden, welche sich als ein Schallsignal ausbreiten.
  • Für eine derartige Schallerzeugung ist eine wie auch immer geartete Eigenbewegung des thermoakustischen Wandlers nicht erforderlich, und auch nicht vorgesehen. Bei der Schallerzeugung durch den thermoakustischen Wandler entstehen somit keine Vibrationen, welche an die Umgebung oder an eine Aufhängung abgegeben werden können. Dies ist im Fall eines Schallerzeugers für ein Hörgerät insbesondere vor dem Hintergrund relevant, dass die üblicherweise verwendeten Dimensionen insbesondere für das Gehäuse und die Aufhängung des Schallerzeugers zu einem Resonanzspektrum führen, welches durch eine mechanische Vibration in Frequenzbereichen oberhalb von 1 kHz leicht zu einer Instabilität des Systems führen kann. Ein Schallerzeuger mit einem thermoakustischen Wandler, insbesondere ein solcher, welcher von seiner Dimensionierung her für eine Anordnung in einem Hörgerät geeignet ist, weist zudem für Frequenzen oberhalb von 1 kHz besonders dynamisches Wiedergabeverhalten auf.
  • Dadurch, dass also bei der Schallerzeugung durch den zweiten Schallerzeuger keine Vibrationsenergie generiert wird, welche über eine Aufhängung in das Gehäuse einkoppeln und dort zum Mikrofon gelangen kann, werden durch Vibrationen bedingte Instabilitäten wirksam unterbunden. Durch die besonders hohe Dynamik bei der Wiedergabe von Frequenzen im Bereich oberhalb von 1 kHz kann diese Erhöhung der Systemstabilität ohne zu erwartende Verluste bei der Klangqualität erreicht werden.
  • Unter einem Niederfrequenz-Ausgang ist vorliegend ein Ausgang zu verstehen, an welchem Signalanteile eines über den Signaleingang in die Frequenzweiche eingegebenen Signals derart ausgegeben werden, dass ab einer ersten Grenzfrequenz der Signalpegel bis zu einer zweiten Grenzfrequenz abnimmt und ab der zweiten Grenzfrequenz kein nennenswerter Signalpegel mehr zu verzeichnen ist. Ein Hochfrequenz-Ausgang ist entsprechend als ein Ausgang definiert, an welchem Signalanteile ausgegeben werden, welche nur oberhalb einer dritten Grenzfrequenz einen nennenswerten Signalpegel aufweisen. Die dritte Grenzfrequenz liegt dabei bevorzugt deutlich unterhalb der zweiten Grenzfrequenz und besonders bevorzugt im Bereich der ersten Grenzfrequenz, damit ein ausreichender Überlapp der Frequenzgänge des Niederfrequenz-Ausgangs und des Hochfrequenz-Ausgangs gewährleistet ist.
  • Bevorzugt ist dabei die Frequenzweiche derart eingerichtet, dass der Frequenzgang des Niederfrequenz-Ausgangs auf den Frequenzgang des ersten Schallerzeugers abgestimmt ist, und dass der Frequenzgang des Hochfrequenz-Ausgangs auf den Frequenzgang des zweiten Schallerzeugers, also des thermoakustischen Wandlers abgestimmt ist. Die Verwendung einer derartigen Frequenzweiche erlaubt den Betrieb des ersten Schallerzeugers und des als thermoakustischen Wandler ausgebildeten zweiten Schallerzeugers mit einem gemeinsamen Ausgangssignal der Signalverarbeitungseinheit, wodurch an dieser nur ein Signalausgang erforderlich ist.
  • Zweckmäßigerweise umfasst der thermoakustische Wandler wenigstens einen aus Carbon-Nanoröhren gebildeten Film, welcher mit wenigstens einem Signalanschluss verbunden ist, wobei durch ein Anlegen einer Signalspannung an den oder jeden Signalanschluss ein zeitveränderliches Erhitzen in dem oder jedem Film hervorgerufen wird, durch welches mittels des thermoakustischen Effekts ein Schall erzeugt wird. In einem derartigen Film können die Carbon-Nanoröhren weitgehend parallel zueinander ausgerichtet sein, auch mehrere Lagen von Bündeln zueinander paralleler Carbon-Nanoröhren, wobei die Ausrichtungen der Carbon-Nanoröhren zweier aufeinander folgender Lagen zueinander orthogonal sind, ist hierbei möglich.
  • Die beschriebene Mikrostruktur des Films erlaubt eine weitgehend ungehinderte Propagation eines Schalls durch den Film hindurch. Dies ermöglicht eine Anordnung des zweiten Schallerzeugers zwischen dem ersten Schallerzeuger und einem Schallausgang, von welchem aus das erzeugte Schallsignal zum Gehör eines Benutzers weitergeführt wird, z.B. mittels eines Schallleiters und/oder eines Ohrpassstücks. Ein thermoakustischer Wandler mit einem Carbon-Nanoröhren-Film kann überdies unter den Vorgaben der erwünschten Klangwiedergabe besonders kompakt dimensioniert sein.
  • Günstigerweise ist der zweite Schallerzeuger im Gehäuse angeordnet. Eine derartige Positionierung vereinfacht die Verbindung des zweiten Schallerzeugers mit der Signalverarbeitungseinheit. Eine Anordnung des zweiten Schallerzeugers ist prinzipiell jedoch auch in einem mit dem Hörgerät verbindbaren Schallleiter möglich, über welchen ein erzeugtes Schallsignal zum Gehör eines Benutzers weitergeführt wird. Ein derartiges Vorgehen erlaubt eine weitere Verringerung der Größe des Hörgeräts.
  • In einer vorteilhaften Ausgestaltung der Erfindung ist der erste Schallerzeuger derart ausgebildet, dass er für Frequenzen in einem Frequenzbereich bis zu 4 kHz, bevorzugt bis 2 kHz, einen höheren maximalen Wiedergabepegel aufweist als für Frequenzen oberhalb dieses Frequenzbereichs. Der maximale Wiedergabepegel ist hierbei auf den maximal erzeugbaren Schalldruck zu beziehen. Insbesondere kann der Frequenzgang des ersten Schallerzeugers ab einer ersten Grenzfrequenz unterhalb von 4 kHz, bevorzugt unterhalb von 3 kHz, abnehmen und bei einer zweiten Grenzfrequenz, bevorzugt oberhalb von 4 kHz, insbesondere oberhalb von 6 kHz, ein vollständiges Cut-off aufweisen. Während ein thermoakustischer Wandler, insbesondere ein solcher, welcher von seiner Dimensionierung her für eine Anordnung in einem Hörgerät geeignet ist, besonders für die Schallerzeugung von Frequenzen oberhalb von 1 kHz ausgelegt ist, und dabei einen maximalen Wiedergabepegel bevorzugt im Bereich zwischen 2 kHz und 4 kHz aufzuweisen hat, kann ein erster Schallerzeuger, welcher seinen maximalen Wiedergabepegel in tieferen Frequenzbändern erreicht, in Kombination mit dem zweiten Schallerzeuger zu einem vollständigen Klangbild beitragen.
  • Bevorzugt ist im Gehäuse ein Schallraum mit einem Schallausgang ausgebildet, wobei der erste Schallerzeuger dazu eingerichtet ist, Schall im Schallraum zu erzeugen, und wobei der zweite Schallerzeuger im Schallraum angeordnet ist. Der erzeugte Schall kann hierbei über den Schallausgang und ggf. einen Schallleiter und/oder ein Ohrpassstück zum Gehör eines Benutzers weitergeführt werden. Unter einer Schallerzeugung des ersten Schallerzeugers im Schallraum ist dabei zu verstehen, dass ein wesentlicher Anteil der erzeugten Schallleistung als Schalldruck im Schallraum registrierbar ist, wobei eine Abstrahlung in andere Bereiche des Hörgerätes nicht ausgeschlossen ist. Eine derartige Anordnung ermöglicht insbesondere eine modulare Bauweise des Hörgeräts, bei welcher der erste Schallerzeuger, der zweite Schallerzeuger, die entsprechenden Aufhängungen und Signalverbindungen, sowie, falls vorhanden, eine Frequenzweiche zu einem Modul in einem die genannten Komponenten umgebenden Innengehäuse zusammengefasst werden können. Der Schallraum ist dabei im Innengehäuse ausgebildet. Die modulare Bauweise erlaubt ein Design und eine Auslegung der verbleibenden Komponenten des Hörgeräts - z.B. der Signalverarbeitungseinheit oder des oder jedes Mikrofons - unabhängig von den Schallerzeugern.
  • Günstigerweise ist hierbei der zweite Schallerzeuger im Schallweg zwischen dem ersten Schallerzeuger und dem Schallausgang angeordnet. Unter dem Schallweg zwischen dem ersten Schallerzeuger und dem Schallausgang ist hierbei der primäre - also möglichst reflexionsfreie - Weg zu verstehen, entlang dessen ein vom ersten Schallerzeuger erzeugtes Schallsignal zum Schallausgang propagiert. Eine derartige Anordnung erlaubt einerseits eine besonders kompakte Bauweise, anderseits wird hierdurch insbesondere im Fall, dass der zweite Schallerzeuger einen Film aus Carbon-Nanoröhren aufweist, die Mikrostruktur des thermoakustischen Wandlers optimal ausgenutzt, welche eine nahezu ungehinderte Propagation eines Schallsignals durch den Film hindurch erlaubt.
  • Alternativ dazu ist der zweite Schallerzeuger bevorzugt seitlich zum Schallweg zwischen dem ersten Schallerzeuger und dem Schallausgang angeordnet. Die Auswahl der Positionierung des zweiten Schallerzeugers kann dabei insbesondere von seiner Dimensionierung und von den gewünschten individuellen spektralen Eigenschaften hinsichtlich der Wiedergabedynamik abhängig gemacht werden.
  • In einer weiter vorteilhaften Ausgestaltung der Erfindung umfasst das Hörgerät einen dritten Schallerzeuger, welcher dazu eingerichtet ist, ein Ausgangssignal der Signalverarbeitungseinheit in Schall umzuwandeln, wobei der dritte Schallerzeuger einen thermoakustischen Wandler umfasst. Insbesondere kann der dritte Schallerzeuger unterschiedlich zum zweiten Schallerzeuger sein, und insbesondere kann der dritte Schallerzeuger einen anderen Frequenzgang aufweisen als der zweite Schallerzeuger. Hierdurch kann die Klangqualität bei gleichbleibender Vibrationsunterdrückung weiter verbessert werden, da das erzeugbare Schallspektrum auf die einzelnen Schallerzeuger weiter ausdifferenziert werden kann.
  • Zweckmäßigerweise umfasst das Hörgerät einen mit dem Gehäuse reversibel verbindbaren Schallleiter, welcher eine Anzahl an Signalanschlüssen aufweist, wobei der zweite Schallerzeuger und/oder der dritte Schallerzeuger im Schallleiter angeordnet ist, und wobei in verbundenem Zustand des Schallleiters mit dem Gehäuse über die Anzahl an Signalanschlüssen des Schallleiters eine Signalverbindung von der Signalverarbeitungseinheit zum zweiten bzw. dritten Schallerzeuger hergestellt ist. Über einen in einem Schallleiter angeordneten Schallerzeuger mit einem thermoakustischen Wandler lassen sich die spektralen Eigenschaften des Schallleiters zur Verbesserung der Wiedergabedynamik ausnutzen.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierbei zeigen jeweils schematisch:
  • FIG 1
    in einer Schnittdarstellung ein Hörgerät mit einem konventionellen und einem thermoakustischen Wandler, und
    FIG 2
    in einer Schnittdarstellung das Hörgerät nach FIG 1 mit einer alternativen Anordnung des thermoakustischen Wandlers.
  • Einander entsprechende Teile und Größen sind in allen Figuren jeweils mit gleichen Bezugszeichen versehen.
  • In FIG 1 ist in einer Schnittdarstellung schematisch ein Hörgerät 1 gezeigt, welches hier als ein Hörhilfegerät 2 ausgebildet ist. Das Hörgerät 1 umfasst ein Gehäuse 4, in welchem eine modulare Einheit 6 eingesetzt ist. Die modulare Einheit 6 weist ein Innengehäuse 8 auf, welches einen Schallraum 10 umgibt. Innerhalb des Innengehäuses 8 der modularen Einheit 6 ist ein erster Schallerzeuger 12 an einer dämpfenden Aufhängung 14 angeordnet. Der erste Schallerzeuger 12 ist hierbei als ein konventioneller, elektroakustischer Wandler ausgebildet. Weiter ist im Innengehäuse 8 der modularen Einheit 6 ein zweiter Schallerzeuger 16 angeordnet, welcher als ein thermoakustischer Wandler 18 ausgebildet ist. Der zweite Schallerzeuger 16 weist zwei Signalanschlüsse 20 und einen Film 22 aus Carbon-Nanoröhren auf.
  • Für die Erzeugung eines Schallsignals ist zunächst im Innengehäuse 8 eine Signalweiche 24 mit einem Signaleingang 26 zum Empfang eines Ausgangssignals 28 einer Signalverarbeitungseinheit 30 angeordnet. Von einem Niederfrequenz-Ausgang 32 der Signalweiche 24 führt eine Niederfrequenz-Verbindung 34 zum ersten Schallerzeuger 12. Weiter weist die Signalweiche 24 einen Hochfrequenz-Ausgang 36 auf, von welchem jeweils Hochfrequenz-Verbindungen 38 zu den beiden Signalanschlüssen 20 des thermoakustischen Wandlers 18 führen. Das von der Signalverarbeitungseinheit 30 ausgegebene Ausgangssignal 28 wird in der Signalweiche 24 in einen niederfrequenten Anteil und einen hochfrequenten Anteil zerlegt.
  • Der niederfrequente Anteil des Ausgangssignals 28 wird am Niederfrequenz-Ausgang 32 über die Niederfrequenz-Verbindung 34 an den ersten Schallerzeuger ausgegeben, und von diesem in Schall mit vorwiegend niedrigen Frequenzen umgewandelt. Der vom ersten Schallerzeuger 12 erzeugte Schall propagiert dabei vorwiegend im Schallraum 10 zu einem Schallausgang 40, wodurch ein Schallweg 44 gebildet wird. Der Schallausgang 40 weist dabei einen Gummistutzen 42 auf, auf welchen ein nicht näher dargestellter Schallleiter aufsetzbar ist, durch den der im Schallraum 10 erzeugte Schall zu einem weiteren Ohrpassstück und letztlich zum Benutzer des Hörgeräts weitergeleitet werden kann.
  • Der hochfrequente Signalanteil des Ausgangssignals 28 wird am Hochfrequenz-Ausgang 36 über die jeweiligen Hochfrequenz-Verbindungen 38 zum thermoakustischen Wandler 18 ausgegeben, und von diesem in Schall mit vorwiegend hohen Frequenzen umgewandelt. Die Anordnung des thermoakustischen Wandlers 18 im Schallweg 44 des ersten Schallerzeugers 12 hat hierbei aufgrund der Mikrostruktur des Carbon-Nanoröhren-Films 22 keine nennenswerten Auswirkungen auf den Schall des ersten Schallerzeugers 12 und seine Propagation.
  • Der erste Schallerzeuger 12 ist als elektroakustischer Wandler für eine leistungsstarke Schallerzeugung bis zu Frequenzen von 3 kHz ausgelegt, oberhalb dieser Frequenzen nimmt das Wiedergabe-Spektrum kontinuierlich bis zu einem vollständigen Cut-Off bei ca. 6-7 kHz ab. Der thermoakustische Wandler 18 ist für eine besonders leistungsstarke Schallerzeugung im Bereich von ca. 1 kHz bis 15 kHz ausgelegt. Bei der akustischen Auslegung der Wiedergabeleistung des thermoakustischen Wandlers 18 besteht eine gewisse Freiheit, wobei jedoch die Untergrenze - also die Frequenz, ab der der thermoakustische Wandler einen nennenswerten Schalldruck zu erzeugen vermag - für den Frequenzbereich so zu wählen ist, dass ein nennenswerter Überlapp mit dem Wiedergabe-Spektrum des ersten Schallerzeugers 12 gewährleistet ist, und die Obergrenze - ab welcher der erzeugbare Schalldruck abnimmt - vorrangig von den noch für die jeweilige Anwendung gewünschten und/oder erforderlichen Frequenzen abhängt.
  • Dadurch, dass das Ausgangssignal 28 durch die Signalweiche 24 in einen niederfrequenten Anteil und einen hochfrequenten Anteil aufgeteilt wird, welche jeweils von unterschiedlichen Schallerzeugern in Schall umgewandelt werden, können in der Signalverarbeitungseinheit 30 die Gains für entsprechende Frequenzbänder dahingehend optimiert werden, dass bei möglichst geringer Rückkopplung in ein in der Zeichnung nicht näher dargestelltes Mikrofon des Hörgeräts 1 eine möglichst dynamische Wiedergabe erzielt wird. Durch die dämpfende Aufhängung 14 des ersten Schallerzeugers 12 können zum einen mechanische Vibrationen des ersten Schallerzeugers teilweise aufgefangen werden. Der erste Schallerzeuger kann des Weiteren auf einen möglichst vibrationsarmen Betrieb im niederfrequenten Bereich optimiert werden.
  • Eine derartige Optimierung des Betriebs ist aufgrund der mechanischen Komplexität von typischerweise in einem Hörgerät eingesetzten Schallerzeugern meist nur für bestimmte, eingeschränkte Frequenzbänder möglich. Die Verwendung eines ersten Schallerzeugers 12 und eines zweiten Schallerzeugers 16 erlaubt nun einerseits, den ersten Schallerzeuger hinsichtlich seiner Wiedergabe- und Vibrationseigenschaften im niederfrequenten Bereich zu optimieren, und den zweiten Schallerzeuger für einen maximalen Gain in bestimmten höheren Frequenzbändern - z.B. im für die Sprachverständlichkeit relevanten Bereich von 2 kHz bis 4 kHz - zu optimieren.
  • Die Anordnung eines zweiten Schallerzeugers 16 in einem Hörgerät 1 ist üblicherweise aus Platzgründen nicht realisierbar. Durch die Verwendung eines thermoakustischen Wandlers 18 ist dieser jedoch in Kombination mit einem konventionellen, elektroakustischen Wandler möglich, wie er im ersten Schallerzeuger 12 gegeben ist. Aufgrund der Mikrostruktur des Films 22 aus Carbon-Nanoröhren, welche einem feinen Gewebe gleicht, durch welches der Schall des ersten Schallerzeugers 12 propagieren kann, entstehen auch keine Einschränkungen für die Anordnung des thermoakustischen Wandlers 18 bzgl. des Schallwegs 44.
  • In FIG 2 ist in einer Schnittdarstellung eine alternative Anordnung des thermoakustischen Wandlers 18 in einem Hörgerät 1 gezeigt, welches bis auf die Positionierung des thermoakustischen Wandlers 18 bereits in FIG 1 dargestellt ist. Der thermoakustische Wandler 18 ist hierbei nicht im Schallweg 44 des Schalls angeordnet, welcher vom ersten Schallerzeuger 12 zum Schallausgang 40 des Schallraums 10 propagiert, sondern seitlich und längs zum Schallweg 44. Die konkrete Auswahl der Anordnung kann dabei von der erforderlichen Dimensionierung des thermoakustischen Wandlers 18, insbesondere des Carbon-Nanoröhren-Films 22, abhängig gemacht werden, welche wiederum in Zusammenhang mit dem gewünschten optimalen Frequenzgang des zweiten Schallerzeugers 16 steht.
  • Zur Vollständigkeit der Darstellung ist in FIG 2 ein Schallleiter 46 gezeigt, welcher an einem Ende einen Steckverbinder 48 aufweist. Der Steckverbinder 48 ist hierbei in den Gummistutzen 42 gesteckt, wodurch eine vibrationsgedämpfte mechanische Verbindung zwischen dem Hörgerät 1 und dem Schallleiter 46 hergestellt ist. Weiter weist der Schallleiter 46 einen Signalanschluss 50 und einen dritten Schallerzeuger 52 auf, welcher wie der zweite Schallerzeuger 16 ebenfalls als ein thermoakustischer Wandler 54 ausgebildet ist. Der Signalanschluss 50 ist hierbei mit dem thermoakustischen Wandler 54 verbunden, so dass über einen entsprechenden Kontakt-Pin am Gehäuse 4 des Hörgeräts bzw. am Innengehäuse 8 eine Signalverbindung 56 zwischen dem thermoakustischen Wandler 54 und der Signalverarbeitungseinheit 30 herstellbar ist. Alternativ zur in FIG 2 gezeigten Darstellung ist auch eine Anordnung des als thermoakustischer Wandler ausgebildeten zweiten Schallerzeugers im Schallleiter denkbar, und durch eine entsprechende Signalverbindung unmittelbar über Kontakt-Pins oder mittelbar - über einen Hochfrequenz-Ausgang einer Signalweiche - mit der Signalverarbeitungseinheit verbunden ist. Der erste Schallerzeuger im Gehäuse des Hörgeräts erzeugt hierbei vorrangig niederfrequenten Schall, welcher direkt in den Schallleiter propagiert. Dort wird für ein möglichst breitbandiges Signal Wandler der hochfrequente Schall durch den thermoakustischen Wandler "hinzugefügt".
  • Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, ist die Erfindung nicht durch dieses Ausführungsbeispiel eingeschränkt. Andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 1
    Hörgerät
    2
    Hörhilfegerät
    4
    Gehäuse
    6
    modulare Einheit
    8
    Innengehäuse
    10
    Schallraum
    12
    erster Schallerzeuger
    14
    dämpfende Aufhängung
    16
    zweiter Schallerzeuger
    18
    thermoakustischer Wandler
    20
    Signalanschluss
    22
    Film aus Karbon-Nanoröhren
    24
    Signalweiche
    26
    Signaleingang
    28
    Ausgangssignal
    30
    Signalverarbeitungseinheit
    32
    Niederfrequenz-Ausgang
    34
    Niederfrequenz-Verbindung
    36
    Hochfrequenz-Ausgang
    38
    Hochfrequenz-Verbindung
    40
    Schallausgang
    42
    Gummistutzen
    44
    Schallweg
    46
    Schallleiter
    48
    Steckverbinder
    50
    Signalanschluss
    52
    dritter Schallerzeuger
    54
    thermoakustischer Wandler
    56
    Signalverbindung

Claims (9)

  1. Hörgerät (1), insbesondere Hörhilfegerät (2), umfassend ein Gehäuse (4), eine im Gehäuse angeordnete Signalverarbeitungseinheit (30), einen ersten Schallerzeuger (12), der im Gehäuse (4) angeordnet ist, und einen zweiten Schallerzeuger (16),
    wobei der erste Schallerzeuger (12) und der zweite Schallerzeuger (16) jeweils dazu eingerichtet sind, ein Ausgangssignal (28) der Signalverarbeitungseinheit (30) in Schall umzuwandeln, und
    wobei der zweite Schallerzeuger (16) einen thermoakustischen Wandler (18) umfasst,
    sowie weiter umfassend eine Frequenzweiche (24) mit einem Signaleingang (26), einem Niederfrequenz-Ausgang (32) und einem Hochfrequenz-Ausgang (36),
    wobei über den Signaleingang (26) die Signalverarbeitungseinheit (30) zur Einspeisung des Ausgangssignals (28) mit der Frequenzweiche (24) verbunden ist,
    und wobei
    - der Niederfrequenz-Ausgang (32) mit dem ersten Schallerzeuger (12) und
    - der Hochfrequenz-Ausgang (36) mit dem zweiten Schallerzeuger (16) verbunden ist
  2. Hörgerät (1) nach Anspruch 1,
    wobei der thermoakustische Wandler (18) eine Anzahl an Signalanschlüssen (20) und wenigstens einen jeweils mit wenigstens einem Signalanschluss (20) verbundenen, aus Carbon-Nanoröhren gebildeten Film (22) umfasst, und
    wobei durch ein Anlegen einer Signalspannung an den oder jeden Signalanschluss (20) ein zeitveränderliches Erhitzen in dem oder jedem Film (22) hervorgerufen wird, durch welches mittels des thermoakustischen Effekts ein Schall erzeugt wird.
  3. Hörgerät (1) nach Anspruch 1 oder Anspruch 2,
    wobei der zweite Schallerzeuger (16) im Gehäuse (4) angeordnet ist.
  4. Hörgerät (1) nach einem der vorhergehenden Ansprüche,
    wobei der erste Schallerzeuger (12) derart ausgebildet ist, dass er für Frequenzen in einem Frequenzbereich bis zu 4 kHz einen höheren maximalen Wiedergabepegel aufweist als für Frequenzen oberhalb dieses Frequenzbereichs.
  5. Hörgerät (1) nach einem der vorhergehenden Ansprüche,
    wobei im Gehäuse ein Schallraum (10) mit einem Schallausgang (40) ausgebildet ist,
    wobei der erste Schallerzeuger (12) dazu eingerichtet ist, Schall im Schallraum (10) zu erzeugen, und wobei der zweite Schallerzeuger (16) im Schallraum angeordnet ist.
  6. Hörgerät (1) nach Anspruch 5,
    wobei der zweite Schallerzeuger (16) im Schallweg (44) zwischen dem ersten Schallerzeuger (12) und dem Schallausgang (40) angeordnet ist.
  7. Hörgerät (1) nach Anspruch 5,
    wobei der zweite Schallerzeuger (16) seitlich zum Schallweg (44) zwischen dem ersten Schallerzeuger (12) und dem Schallausgang (40) angeordnet ist.
  8. Hörgerät nach einem der vorhergehenden Ansprüche, umfassend einen dritten Schallerzeuger (52), welcher dazu eingerichtet ist, ein Ausgangssignal (28) der Signalverarbeitungseinheit (30) in Schall umzuwandeln,
    wobei der dritte Schallerzeuger (52) einen thermoakustischen Wandler (54) umfasst.
  9. Hörgerät nach einem der vorhergehenden Ansprüche, umfassend einen mit dem Gehäuse (4) reversibel verbindbaren Schallleiter (46), welcher eine Anzahl an Signalanschlüssen (50) aufweist,
    wobei der zweite Schallerzeuger (16) und/oder der dritte Schallerzeuger (52) im Schallleiter (46) angeordnet ist, und
    wobei in verbundenem Zustand des Schallleiters (46) mit dem Gehäuse (4) über die Anzahl an Signalanschlüssen (50) des Schallleiters (46) eine Signalverbindung (56) von der Signalverarbeitungseinheit (30) zum zweiten (16) bzw. dritten Schallerzeuger (52) hergestellt ist.
EP16155817.6A 2015-03-19 2016-02-16 Hörgerät, insbesondere hörhilfegerät Active EP3070964B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015204996 2015-03-19

Publications (2)

Publication Number Publication Date
EP3070964A1 true EP3070964A1 (de) 2016-09-21
EP3070964B1 EP3070964B1 (de) 2019-04-17

Family

ID=55359460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16155817.6A Active EP3070964B1 (de) 2015-03-19 2016-02-16 Hörgerät, insbesondere hörhilfegerät

Country Status (3)

Country Link
US (2) US9883293B2 (de)
EP (1) EP3070964B1 (de)
DK (1) DK3070964T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244301B2 (en) 2016-10-27 2019-03-26 Starkey Laboratories, Inc. Power management shell for ear-worn electronic device
WO2019139989A1 (en) * 2018-01-11 2019-07-18 Newtonoid Technologies, L.L.C. Thermal pads
WO2020188415A1 (en) * 2019-03-18 2020-09-24 Cochlear Limited System and method for tinnitus suppression
DE102021206011A1 (de) * 2021-06-14 2022-12-15 Sivantos Pte. Ltd. Hörvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159298A1 (en) * 2005-01-14 2006-07-20 Von Dombrowski Sven Hearing instrument
US20070291971A1 (en) * 2006-06-19 2007-12-20 Sonion Nederland B.V. Hearing aid having two receivers each amplifying a different frequency range
US20100195858A1 (en) * 2009-02-04 2010-08-05 Oticon A/S Hearing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208367B1 (de) * 2007-10-12 2017-09-27 Earlens Corporation Multifunktionssystem und verfahren zum integrierten hören und kommunizieren mit geräuschlöschung und rückkopplungsverwaltung
US8068624B2 (en) * 2008-04-28 2011-11-29 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US9467761B2 (en) * 2014-06-27 2016-10-11 Apple Inc. In-ear earphone with articulating nozzle and integrated boot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159298A1 (en) * 2005-01-14 2006-07-20 Von Dombrowski Sven Hearing instrument
US20070291971A1 (en) * 2006-06-19 2007-12-20 Sonion Nederland B.V. Hearing aid having two receivers each amplifying a different frequency range
US20100195858A1 (en) * 2009-02-04 2010-08-05 Oticon A/S Hearing device

Also Published As

Publication number Publication date
US10284967B2 (en) 2019-05-07
DK3070964T3 (da) 2019-07-22
EP3070964B1 (de) 2019-04-17
US9883293B2 (en) 2018-01-30
US20180063650A1 (en) 2018-03-01
US20160277852A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
DE4446690B4 (de) Lautsprecheranordnung
EP2180726B1 (de) Richtungshören bei binauraler Hörgeräteversorgung
EP3070964B1 (de) Hörgerät, insbesondere hörhilfegerät
DE3107872A1 (de) Akustische vorrichtung
DE10204894A1 (de) Im Ohr tragbares Hörhilfegerät oder Hörhilfegerät mit im Ohr tragbarer Otoplastik
DE102011006129B4 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
DE10334396B3 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
EP1406469B1 (de) Rückkopplungskompensator in einem akustischen Verstärkungssystem, Hörhilfsgerät, Verfahren zur Rückkopplungskompensation und Anwendung des Verfahrens in einem Hörhilfsgerät
DE602004011327T2 (de) Mikrofon, hörgerät mit einem mikrofon und einlass-struktur für ein mikrofon
DE19640412C1 (de) Kommunikationsendgerät
EP3448063B1 (de) Verfahren zum anpassen einer hörvorrichtung
DE102015204997B4 (de) Schallleiter für ein Hörgerät
DE112009005145T5 (de) Elektronische Audiovorrichtung
DE3602000A1 (de) Schwerhoerigengeraet
DE102016226112A1 (de) Verfahren zum Betrieb eines Hörgerätes
DE102012203253B3 (de) Verstärken eines Sprachsignals in Abhängigkeit vom Eingangspegel
DE102015122524A1 (de) Kopfhörereinheit
EP1309225B1 (de) Verfahren zur Bestimmung einer Rückkopplungsschwelle in einem Hörgerät
EP1273204B1 (de) Akustischer wandler für breitband-lautsprecher oder kopfhörer
DE102006046699B3 (de) Hörvorrichtung mit unsymmetrischer Klangwaage und entsprechendes Einstellverfahren
DE3925919C2 (de)
EP2648424B1 (de) Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen
DE102008058496B4 (de) Filterbanksystem mit spezifischen Sperrdämpfungsanteilen für eine Hörvorrichtung
DE60031558T2 (de) Lautsprechervorrichtung
DE10015833C2 (de) Schaltungsanordnung zur Verarbeitung von Audiosignalen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170320

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171006

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 3/14 20060101ALN20181003BHEP

Ipc: H04R 25/00 20060101AFI20181003BHEP

Ipc: H04R 23/00 20060101ALN20181003BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 23/00 20060101ALN20181010BHEP

Ipc: H04R 3/14 20060101ALN20181010BHEP

Ipc: H04R 25/00 20060101AFI20181010BHEP

INTG Intention to grant announced

Effective date: 20181025

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 23/00 20060101ALN20190305BHEP

Ipc: H04R 3/14 20060101ALN20190305BHEP

Ipc: H04R 25/00 20060101AFI20190305BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190308

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004187

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1122852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190718

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004187

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20200220

Year of fee payment: 5

Ref country code: GB

Payment date: 20200225

Year of fee payment: 5

Ref country code: DE

Payment date: 20200220

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200224

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200220

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016004187

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1122852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417