EP2648424B1 - Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen - Google Patents

Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen Download PDF

Info

Publication number
EP2648424B1
EP2648424B1 EP13160298.9A EP13160298A EP2648424B1 EP 2648424 B1 EP2648424 B1 EP 2648424B1 EP 13160298 A EP13160298 A EP 13160298A EP 2648424 B1 EP2648424 B1 EP 2648424B1
Authority
EP
European Patent Office
Prior art keywords
channel
level
specific
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13160298.9A
Other languages
English (en)
French (fr)
Other versions
EP2648424A2 (de
EP2648424A3 (de
Inventor
Oliver Dressler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP2648424A2 publication Critical patent/EP2648424A2/de
Publication of EP2648424A3 publication Critical patent/EP2648424A3/de
Application granted granted Critical
Publication of EP2648424B1 publication Critical patent/EP2648424B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing

Definitions

  • the present invention relates to a method for amplifying an input signal in a hearing device by predetermining a respective channel-specific compression characteristic in a plurality of spectrally separated processing channels of the hearing device, which defines a relationship between an input level and an output level in the respective processing channel of the hearing device, and amplifying a respective input signal portion of the hearing device in each processing channel as a function of a channel-specific operating compression characteristic.
  • a hearing device here means any device which can be worn in or on the ear and causes a hearing, in particular a hearing aid, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit.
  • FIG. 1 illustrated by the example of a behind-the-ear hearing aid.
  • a hearing aid housing 1 for carrying behind the ear one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • the performance of a hearing aid is determined in accordance with the standard (see IEC 60118-7: 2005) by the achievable output sound pressure level at an input level of 90 dB SPL (Sound Pressure Level).
  • the resulting so-called OSPL 90 playback curve must be optimally adjusted in order to avoid too loud output levels and excessive distortion of the output signal on the one hand and to preclude operation in the saturation region of the listener if the speech intelligibility is insufficient.
  • Signal processing in digital hearing aids usually takes place in several (eg 48 or 64) channels. Each of these channels is assigned a specific frequency band. In each of the channels, an input signal component is then processed frequency-dependent or channel-specific.
  • the level thresholds which are frequency-dependent or channel-specific are generally below a frequency-independent, d. H. broadband level threshold to which the broadband overall level of the output signal is related.
  • the broadband output level limitation which is applied in the signal flow after the frequency-dependent or channel-specific level limitation, can also act.
  • narrowband signals eg, sinusoids
  • broadband eg, noise-like
  • the level of a narrowband signal can be higher given the same loudness must be considered the level of a broadband signal.
  • So z. For example, a sinewave signal at the frequency of 1 kHz with the level of 78 dB SPL is equally loud to a uniformly stimulating noise with the level of 60 dB SPL felt like this E. Zwicker, H. Fastl: “Psychoacoustics, Facts and Models", Springer (1999 ). This is in contrast to the above behavior for output level limiting by dynamic compression with fixed frequency dependent thresholds for the output level. Due to this limitation, the loudness of a broadband signal is then much higher than that of a narrowband signal.
  • the US 5 553 151 A relates to a method and a device for hearing aids for improved processing of acoustic speech signals.
  • an input signal is amplified or attenuated based on output signals of one or more level detectors.
  • a hearing aid in which a sound pressure of an input signal is detected, and in which a sound pressure of an output signal of the hearing aid is reduced when the sound pressure of the input signal reaches a predetermined threshold value.
  • the object of the present invention is therefore to provide a method for amplifying an input signal in a hearing device, with which the natural hearing sense can be better taken into account.
  • this object is achieved by a method for amplifying an input signal in a hearing device by predetermining a channel-specific compression characteristic in a plurality of spectrally separated processing channels of the hearing device, which defines a relationship between an input level and an output level in the respective processing channel of the hearing device, and amplifying a respective input signal component the hearing device in each Processing channel as a function of a channel-specific operating compression characteristic, Specifying a channel-specific input level threshold for each processing channel, setting the respective channel-specific operating compression characteristic corresponding to the predetermined channel-specific compression characteristic below the channel-specific input level threshold, and setting a respective profile of the channel-specific operating compression characteristic with a compression ratio greater than 8 above the channel-specific input level threshold.
  • the amplification of an input signal is channel-specific in a plurality of processing channels, each corresponding to a frequency band.
  • the compression is determined channel-specifically by a respective compression characteristic which depends on the input signal or the proportion of the input signal in the respective channel.
  • This results in a gain of the input signal, which does not depend on the output level, but on the nature of the input signal.
  • This signal-specific amplification can be realized, which rather takes the natural hearing sense into account.
  • the input level of each channel-specific input signal component is determined with a time constant that is substantially greater than 250 ms. It is therefore a relatively long time constant, d. H. slow processing, which avoids signal distortions.
  • a channel-specific output level limit for each processing channel can be specified, wherein the respective channel-specific compression characteristic does not fall below a fixed distance to the channel-specific output level limit.
  • a distance to a predetermined output level limit has the advantage that the specific output level limit is not exceeded even if the input level is subject to a certain dynamics, in particular during a settling time.
  • This fixed distance of the compression characteristic to the channel-specific output level limit should be at least 15 dB. This is therefore favorable, since speech signals have on average a dynamics of +/- 15 dB. The distance should therefore not fall below 15 dB.
  • a frequency-independent overall level of the input signal components comprising all input signal components is measured, a time is determined at which the measured total level reaches a predetermined total level threshold value for the time in each processing channel the respective channel-specific input level threshold corresponding to the current level of the respective input signal component (whereby the specification of the channel-specific Input level threshold), and the channel-specific operating compression characteristics in all the processing channels are set accordingly.
  • the level limit is not signal-specific. Rather, it is thus established that an input signal with a high overall level (broadband) is present, and then the compression or limitation takes place very specifically as a function of the channel or of the frequency.
  • the channel-specific operating compression characteristic can be kept unchanged as long as the measured total level is greater than or equal to the total level threshold. Thus, if the overall level of the input signal remains very high, a new compression curve need not be constantly determined.
  • each channel-specific operating compression characteristic may correspond to the respective given channel-specific compression characteristic when the measured overall level is below the overall level threshold. At low overall levels of the input signal, therefore, the predetermined compression characteristic can be used in the respective channel, without having to determine this as a function of the input signal or input signal component.
  • a minimum level value can be specified for each channel-specific input level threshold. This may have advantages if narrowband input signals are present. In this case, the level limitation or strong compression is not already at very low input levels.
  • an input signal is typically split by an analysis filter bank into a plurality of input signal components, and the input signal components are processed in a frequency-specific manner in a plurality of channels. There is thus a specific amplification in each channel.
  • the individual channels are brought together in a synthesis filter bank, which finally results in a broadband output signal.
  • the proposed solution according to the invention relates to an input-side or input-dependent limitation of the gain to reduce the distortion in loud broadband input signals.
  • the limitation of the gain is determined by a compression characteristic 10 according to FIG. 2 achieved specifically for each channel.
  • the compression characteristic 10 is frequency-dependent and thus channel-specific. From the compression characteristic curve 10 in the input-output level diagram, the output level L A of the hearing device results as a function of the input level L E at the input of the hearing device.
  • the output level L A corresponds to the input level L E.
  • the compression ratio is 1.
  • the vertical distance from the bisector 11 to the compression curve 10 corresponds to the level-specific gain, which is caused by the compression curve 10.
  • a frequency-dependent or channel-specific input level threshold L S is additionally specified for each channel.
  • Such a channel-specific input level threshold L S divides the operating compression characteristic curve 10 actually used in operation into two halves.
  • Below the input level threshold L S corresponds to the operating-compression characteristic 10 a predetermined compression characteristic.
  • Above the input level threshold L S the operating compression characteristic curve 10 deviates from the predetermined characteristic curve 12 (dotted line in FIG FIG. 2 ). It continues here horizontally steadily. This corresponds to an infinitely high compression ratio.
  • the present invention it is sufficient if the operating-compression characteristic above the channel-specific or frequency-dependent input level threshold with very low slope, namely with a compression ratio of more than 8.
  • a frequency-dependent output level limit L G is shown. It indicates an output level that should not be exceeded at any input level.
  • the output sound pressure generated by the hearing device or the hearing aid should be at least 15 dB below the channel-specific or frequency-dependent output level limit value L G in accordance with the operating compression characteristic curve 10. This is because the language has an average dynamic range of 30 dB (+/- 15dB). Since the measurement of the input level is, for example, in the range of 1 ms, the operating point is fixed only after a certain time. This transient time can cause significant distortion if the level is not limited.
  • the vertical distance d of the operating compression curve 10 corresponds to the mid perpendicular 11 of the actual applied gain at the respective input level L E. At low input levels, there is typically a higher gain than at higher input levels Input levels. At very high input levels it is even attenuated.
  • operating compression curve 10 is channel-specific or frequency-dependent and applies here for the frequency f 1 .
  • the respective compression characteristic may have a different course.
  • the channel-specific input level threshold L S is not fixed or predetermined. Rather, it is also calculated as a function of a broadband input sound pressure level (ie the frequency-independent total input level). For this purpose, for example, the input level of the respective input signal component is sampled in each channel exactly when the associated frequency-independent or broadband total input level reaches a predetermined frequency-independent level threshold (eg 15 dB below the output level limit value L G ). It is the break point 13 of the operating compression curve 10 dynamically determined. Accordingly, the break point 13 and the associated input level threshold L S may be low in some of the processing channels and higher in others.
  • the effect of the dynamic determination of the channel-specific input level threshold L S as a function of the total input level can be determined on the basis of 3 and 4 be explained.
  • the 3 and 4 represent spectral power densities L at the output 14, 15 and at the input 16, 17, respectively.
  • FIG. 3 applies to a broadband signal BB (eg broadband noise) while FIG. 4 for a narrowband signal SB (eg sinusoidal tone).
  • Both signals have added the same broadband total input level across all channels, ie the area under the dashed curve 16 corresponds to the area under the dashed curve 17.
  • This total input level corresponds to the sum of the individual levels and represents the total energy of the input signal. For example is measured at a total input level of 90 dB.
  • FIG. 2 can be seen schematically as a section through the 3 and 4 be considered at the frequency f 1 .
  • the distance d 'between the input 17 and the output 15 results at the frequency f 1 .
  • FIG. 3 Is in accordance with a broadband input signal BB FIG. 3 reaches the threshold for the total input level, the levels of the individual channels according to curve 16 are at a medium level and it is in accordance with FIG. 2 applied a corresponding average gain.
  • the energy increase between the input signal and the output signal represents the area between the curves 14 and 16.
  • the threshold for the total input level is reached when the levels around the frequency f 2 are very high, while the levels outside this maximum are relatively low. Accordingly, the level maximum at the frequency f 2 is less amplified than outside this maximum at the lower level frequencies.
  • the total energy increase results again from the area between the curves 15 and 17. Since in the narrowband signal predominantly low levels, resulting over a large part of the spectrum, a greater gain than the broadband signal BB, so that the area between the curves 15 and 17 is greater than the area between the curves 14 and 16. However, this means that the overall input level of a narrowband signal is amplified more than the overall input level of a wideband signal.
  • the natural hearing is exploited, because it is a narrow-band signal amplified more than a broadband, the narrow-band amplified signal is then perceived no louder than the broadband amplified signal.
  • the input-side boundary is independent of the spectral distribution of the signal.
  • different frequency-dependent input level thresholds L S are determined, which are dependent on the current spectral distribution of the signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Verstärken eines Eingangssignals in einer Hörvorrichtung durch Vorgeben je einer kanalspezifischen Kompressionskennlinie in mehreren spektral getrennten Verarbeitungskanälen der Hörvorrichtung, die einen Zusammenhang zwischen einem Eingangspegel und einem Ausgangspegel im jeweiligen Verarbeitungskanal der Hörvorrichtung definiert, und Verstärken eines jeweiligen Eingangssignalanteils der Hörvorrichtung in jedem Verarbeitungskanal in Abhängigkeit von einer kanalspezifischen Betriebs-Kompressionskennlinie. Unter einer Hörvorrichtung wird hier jedes im oder am Ohr tragbare, einen Hörreiz verursachende Gerät verstanden, insbesondere ein Hörgerät, ein Headset, Kopfhörer und dergleichen.
  • Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.
  • Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinterdem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.
  • Die Leistungsfähigkeit eines Hörgeräts wird normgemäß (vergleiche IEC 60118-7:2005) durch den erzielbaren Ausgangsschalldruckpegel bei einem Eingangspegel von 90 dB SPL (Sound Pressure Level) bestimmt. Die daraus resultierende so genannte OSPL 90-Wiedergabekurve muss optimal eingestellt werden, um einerseits zu laute Ausgangspegel und zu starke Verzerrungen des Ausgangssignals zu vermeiden und andererseits einen Betrieb im Sättigungsbereich des Hörers bei nicht ausreichender Sprachverständlichkeit auszuschließen.
  • Im Allgemeinen stehen zwei Verfahren zur Begrenzung des maximalen Ausgangsschalldruckpegels zur Verfügung, wie dies in Dillon H.: "Hearing aids" Turramurra, Australien, Boomerang Press (2001) geschildert ist. Zum einen können durch so genanntes "peak clipping" Signalspitzen abgeschnitten werden. Alternativ kann eine ausgangspegelgesteuerte Dynamikkompression (compression limiting) mit hoher Kompressionsrate durchgeführt werden, die das Verhältnis zwischen Eingangspegelbereich zu Ausgangspegelbereich darstellt. In den meisten Fällen wird die ausgangspegelgesteuerte Dynamikkompression eingesetzt. Nur bei Hörgeräten zur Versorgung sehr schwerer Hörverluste werden lediglich die Signalspitzen abgeschnitten.
  • Allen Verfahren gemeinsam ist der Vergleich des Ausgangsschalldruckpegels mit einer bestimmten Pegelschwelle. Die jeweiligen Begrenzungsalgorithmen werden dann bei Überschreiten dieser Pegelschwelle wirksam. Für die Begrenzung durch ausgangspegelgesteuerte Dynamikkompression kann sowohl eine frequenzabhängige als auch frequenzunabhängige Pegelschwelle vorgegeben werden. Mit der geeigneten Wahl frequenzabhängiger Pegelschwellen wird der erzielbare maximale Ausgangsschalldruckpegel in einzelnen Frequenzbereichen optimiert.
  • Die Signalverarbeitung in digitalen Hörgeräten erfolgt üblicherweise in mehreren (z. B. 48 oder 64) Kanälen. Jedem dieser Kanäle ist ein bestimmtes Frequenzband zugeordnet. In jedem der Kanäle wird dann ein Eingangssignalanteil frequenzabhängig bzw. kanalspezifisch verarbeitet.
  • Die für die Begrenzung frequenzabhängigen bzw. kanalspezifischen (auf die Frequenzbänder der jeweiligen Kanalsignalverarbeitung umgerechneten) Pegelschwellen liegen im Allgemeinen unterhalb einer frequenzunabhängigen, d. h. breitbandigen Pegelschwelle, auf die der breitbandige Gesamtpegel des Ausgangssignals bezogen wird. Neben der kanalspezifischen Ausgangspegelbegrenzung kann auch die breitbandige Ausgangspegelbegrenzung wirken, die im Signalfluss nach der frequenzabhängigen bzw. kanalspezifischen Pegelbegrenzung appliziert wird. Als Folge davon werden jedoch schmalbandige Signale (z. B. Sinustöne) bei einem niedrigeren Breitbandpegel begrenzt als breitbandige (z. B. rauschartige) Signale. Dies führt dazu, dass lediglich die frequenzunabhängige Pegelschwelle für sehr laute breitbandige Eingangssignale wirksam wird. Die damit verbundenen Verzerrungen sind bei lauten Signalen sehr störend.
  • Weiterhin ist bekannt, dass unter der Voraussetzung gleicher Lautheit der Pegel eines schmalbandigen Signals höher sein muss als der Pegel eines breitbandigen Signals. So wird z. B. ein Sinussignal bei der Frequenz 1 kHz mit dem Pegel 78 dB SPL gleich laut zu einem gleichmäßig anregenden Rauschen mit dem Pegel von 60 dB SPL empfunden, wie dies aus E. Zwicker, H. Fastl: "Psychoacoustics, Facts and Models", Springer (1999) hervorgeht. Dies steht im Gegensatz zu obigem Verhalten bei einer Ausgangspegelbegrenzung durch Dynamikkompression mit festen frequenzabhängigen Schwellen für den Ausgangspegel. Durch diese Begrenzung ist dann die Lautheit eines breitbandigen Signals wesentlich höher als die eines schmalbandigen Signals.
  • Die US 5 553 151 A betrifft ein Verfahren und eine Vorrichtung für Hörhilfegeräte zur verbesserten Verarbeitung von akustischen Sprachsignalen. Hierzu wird ein Eingangssignal anhand von Ausgangssignalen eines oder mehrerer Pegeldetektoren verstärkt oder gedämpft.
  • Aus der US 2007/263891 A1 ist ein Hörgerät bekannt, bei welchem ein Schalldruck eines Eingangssignals erfasst wird, und bei welchem ein Schalldruck eines Ausgangssignals des Hörgeräts reduziert wird, wenn der Schalldruck des Eingangssignals einen vorgegebenen Schwellwert erreicht.
  • Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Verfahren zum Verstärken eines Eingangssignals in einer Hörvorrichtung bereitzustellen, mit dem dem natürlichen Hörempfinden besser Rechnung getragen werden kann.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zum Verstärken eines Eingangssignals in einer Hörvorrichtung durch Vorgeben je einer kanalspezifischen Kompressionskennlinie in mehreren spektral getrennten Verarbeitungskanälen der Hörvorrichtung, die einen Zusammenhang zwischen einem Eingangspegel und einem Ausgangspegel im jeweiligen Verarbeitungskanal der Hörvorrichtung definiert, und Verstärken eines jeweiligen Eingangssignalanteils der Hörvorrichtung in jedem Verarbeitungskanal in Abhängigkeit von einer kanalspezifischen Betriebs-Kompressionskennlinie,
    Vorgeben einer kanalspezifischen Eingangspegelschwelle für jeden Verarbeitungskanal, Festlegen der jeweiligen kanalspezifischen Betriebs-Kompressionskennlinie entsprechend der vorgegebenen kanalspezifischen Kompressionskennlinie unterhalb der kanalspezifischen Eingangspegelschwelle und Festlegen eines jeweiligen Verlaufs der kanalspezifischen Betriebs-Kompressionskennlinie mit einem Kompressionsverhältnis größer 8 oberhalb der kanalspezifischen Eingangspegelschwelle.
  • In vorteilhafter Weise erfolgt also das Verstärken eines Eingangssignals kanalspezifisch in mehreren Verarbeitungskanälen, die jeweils einem Frequenzband entsprechen. Dabei wird die Kompression kanalspezifisch durch jeweils eine Kompressionskennlinie festgelegt, die von dem Eingangssignal bzw. dem Anteil des Eingangssignals im jeweiligen Kanal abhängt. Damit ergibt sich also eine Verstärkung des Eingangssignals, die nicht fest von dem Ausgangspegel abhängt, sondern von der Natur des Eingangssignals. Damit kann eine signalspezifische Verstärkung realisiert werden, was dem natürlichen Hörempfinden eher Rechnung trägt.
  • Vorzugsweise wird der Eingangspegel jedes kanalspezifischen Eingangssignalanteils mit einer Zeitkonstante ermittelt, die wesentlich größer als 250 ms ist. Es liegt damit eine verhältnismäßig lange Zeitkonstante, d. h. eine langsame Verarbeitung vor, wodurch Signalverzerrungen vermieden werden.
  • Darüber hinaus kann ein kanalspezifischer Ausgangspegelgrenzwert für jeden Verarbeitungskanal vorgegeben werden, wobei die jeweilige kanalspezifische Kompressionskennlinie einen festen Abstand zu dem kanalspezifischen Ausgangspegelgrenzwert nicht unterschreitet. Ein solcher Abstand zu einer vorgegebenen Ausgangspegelgrenze hat den Vorteil, dass die bestimmte Ausgangspegelgrenze auch dann nicht überschritten wird, wenn der Eingangspegel insbesondere während einer Einschwingzeit einer gewissen Dynamik unterliegt.
  • Dieser feste Abstand der Kompressionskennlinie zu dem kanalspezifischen Ausgangspegelgrenzwert sollte mindestens 15 dB betragen. Dies ist daher günstig, da Sprachsignale im Mittel eine Dynamik von +/-15 dB besitzen. Der Abstand sollte daher 15 dB nicht unterschreiten.
  • Erfindungsgemäß wird ein frequenzunabhängiger Gesamtpegel des alle Eingangssignalanteile umfassenden Eingangssignals gemessen, ein Zeitpunkt ermittelt, zu dem der gemessene Gesamtpegel einen vorgegebenen Gesamtpegelschwellwert erreicht, für den Zeitpunkt in jedem Verarbeitungskanal die jeweilige kanalspezifische Eingangspegelschwelle entsprechend dem momentanen Pegel des jeweiligen Eingangssignalanteils festgelegt (wodurch das Vorgeben der kanalspezifischen Eingangspegelschwelle weitergebildet ist), und es werden die kanalspezifischen Betriebs-Kompressionskennlinien in allen Verarbeitungskanälen dementsprechend festgelegt. Dies hat den Vorteil, dass bei höheren Eingangspegeln die Pegelbegrenzung nicht signalunspezifisch erfolgt. Vielmehr wird also festgestellt, dass ein Eingangssignal mit hohem Gesamtpegel (breitbandig) vorliegt, und anschließend erfolgt die Kompression bzw. Begrenzung sehr spezifisch in Abhängigkeit vom Kanal bzw. von der Frequenz.
  • Hierbei kann die kanalspezifische Betriebs-Kompressionskennlinie so lange unverändert beibehalten werden, wie der gemessene Gesamtpegel größer oder gleich dem Gesamtpegelschwellwert ist. Wenn also der Gesamtpegel des Eingangssignals sehr hoch bleibt, muss nicht ständig eine neue Kompressionskennlinie bestimmt werden.
  • Darüber hinaus kann jede kanalspezifische Betriebs-Kompressionskennlinie der jeweiligen vorgegebenen kanalspezifischen Kompressionskennlinie entsprechen, wenn der gemessene Gesamtpegel unter dem Gesamtpegelschwellwert liegt. Bei niedrigen Gesamtpegeln des Eingangssignals kann also die vorgegebene Kompressionskennlinie im jeweiligen Kanal verwendet werden, ohne diese in Abhängigkeit von dem Eingangssignal bzw. Eingangssignalanteil ermitteln zu müssen.
  • Darüber hinaus ist es günstig, wenn in jedem Verarbeitungskanal die Kompression in einem Pegelintervall unmittelbar unterhalb der jeweiligen kanalspezifischen Eingangspegelschwelle nahe 1 liegt. Dies hat den Vorteil einer natürlichen Dynamik des Ausgangssignals im Bereich der frequenzabhängigen bzw. kanalspezifischen Eingangspegelschwelle.
  • Ferner kann für jede kanalspezifische Eingangspegelschwelle ein minimaler Pegelwert vorgegeben werden. Dies hat unter Umständen dann Vorteile, wenn schmalbandige Eingangssignale vorliegen. In diesem Fall erfolgt die Pegelbegrenzung bzw. starke Kompression nicht bereits bei sehr kleinen Eingangspegeln.
  • Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
  • FIG 1
    den schematischen Aufbau einer Hörvorrichtung gemäß dem Stand der Technik;
    FIG 2
    ein Eingangs-Ausgangs-Pegeldiagramm mit einer Verstärkungsbegrenzung oberhalb einer frequenzabhängigen Eingangspegelschwelle;
    FIG 3
    spektrale Leistungsdichten am Eingang und Ausgang bei einem breitbandigen Signal; und
    FIG 4
    spektrale Leistungsdichten am Eingang und Ausgang bei identischem breitbandigen Eingangspegel wie in FIG 3 jedoch einem schmalbandigen Signal.
  • Die nachfolgend näher geschilderten Ausführungsformen stellen bevorzugte Ausführungsbeispiele der vorliegenden Erfindung dar.
  • In einer Hörvorrichtung und insbesondere in einem Hörgerät wird ein Eingangssignal typischerweise durch eine Analysefilterbank in mehrere Eingangssignalanteile zerlegt, und die Eingangssignalanteile werden in mehreren Kanälen frequenzspezifisch weiterverarbeitet. Es erfolgt also in jedem Kanal eine spezifische Verstärkung. Am Ende der kanalspezifischen Verarbeitung werden die einzelnen Kanäle in einer Synthesefilterbank zusammengeführt, woraus schließlich ein breitbandiges Ausgangssignal resultiert.
  • Die erfindungsgemäß vorgeschlagene Lösung bezieht sich auf eine eingangsseitige bzw. eingangsabhängige Begrenzung der Verstärkung zur Reduktion der Verzerrungen bei lauten breitbandigen Eingangssignalen. Die Begrenzung der Verstärkung wird durch eine Kompressionskennlinie 10 gemäß FIG 2 speziell für jeden Kanal erreicht. Die Kompressionskennlinie 10 ist frequenzabhängig und damit kanalspezifisch erreicht. Aus der Kompressionskennlinie 10 in dem Eingangs-Ausgangs-Pegeldiagramm ergibt sich der Ausgangspegel, LA der Hörvorrichtung in Abhängigkeit von dem Eingangspegel LE am Eingang der Hörvorrichtung.
  • Auf der Winkelhalbierenden 11 des Eingangs-Ausgangs-Pegeldiagramms entspricht der Ausgangspegel LA dem Eingangspegel LE. Auf der Winkelhalbierenden 11 erfolgt also keine Verstärkung und das Kompressionsverhältnis beträgt 1. Der vertikale Abstand von der Winkelhalbierenden 11 zu der Kompressionskennlinie 10 entspricht der pegelspezifischen Verstärkung, die durch die Kompressionskennlinie 10 verursacht wird.
  • Um nun die eingangsseitige Begrenzung der Verstärkung zu realisieren, wird für jeden Kanal zusätzlich eine frequenzabhängige bzw. kanalspezifische Eingangspegelschwelle LS vorgegeben. Eine solche kanalspezifische Eingangspegelschwelle LS teilt die tatsächlich im Betrieb verwendete Betriebs-Kompressionskennlinie 10 in zwei Hälften. Unterhalb der Eingangspegelschwelle LS entspricht die Betriebs-Kompressionskennlinie 10 einer vorgegebenen Kompressionskennlinie. Oberhalb der Eingangspegelschwelle LS weicht die Betriebskompressionskennlinie 10 von der vorgegebenen Kennlinie 12 (gepunktete Linie in FIG 2) ab. Sie verläuft hier horizontal stetig weiter. Dies entspricht einem unendlich hohen Kompressionsverhältnis. Für die vorliegende Erfindung genügt es aber, wenn die Betriebs-Kompressionskennlinie oberhalb der kanalspezifischen bzw. frequenzabhängigen Eingangspegelschwelle mit sehr geringer Steigung verläuft, nämlich mit einem Kompressionsverhältnis von mehr als 8. Mit einem derart hohen Kompressionsverhältnis der eingangspegelbezogenen Dynamikkompression oberhalb der (festen) frequenzabhängigen Eingangspegelschwelle LS und einer langsamen Zeitkonstante für die Signalverarbeitung (wesentlich größer 250 ms) ergeben sich Kompressionsverhältnisse, bei denen die statische Verstärkung mit einer weiteren Zunahme des Eingangspegels über die Eingangspegelschwelle LS hinaus reduziert wird.
  • In FIG 2 ist weiterhin ein frequenzabhängiger Ausgangspegelgrenzwert LG dargestellt. Er kennzeichnet einen Ausgangspegel, der bei keinem Eingangspegel überschritten werden soll. Der durch die Hörvorrichtung bzw. das Hörgerät erzeugte Ausgangsschalldruck soll entsprechend der Betriebs-Kompressionskennlinie 10 mindestens 15 dB unter dem kanalspezifischen bzw. frequenzabhängigen Ausgangspegelgrenzwert LG liegen. Dies liegt daran, dass die Sprache im Mittel einen Dynamikbereich von 30 dB (+/- 15dB) besitzt. Da die Messung des Eingangspegels beispielsweise im Bereich von 1 ms liegt, steht der Arbeitspunkt erst nach einer gewissen Zeit fest. In dieser Einschwingzeit kann es zu deutlichen Verzerrungen kommen, wenn der Pegel nicht begrenzt ist.
  • Wie bereits angedeutet wurde, entspricht der vertikale Abstand d der Betriebs-Kompressionskennlinie 10 von der Mittelsenkrechten 11 der tatsächlich applizierten Verstärkung beim jeweiligen Eingangspegel LE. Bei niedrigen Eingangspegeln erfolgt typischerweise eine höhere Verstärkung als bei höheren Eingangspegeln. Bei sehr hohen Eingangspegeln wird sogar gedämpft.
  • Die in FIG 2 dargestellte Betriebs-Kompressionskennlinie 10 ist kanalspezifisch bzw. frequenzabhängig und gilt hier für die Frequenz f1. Für andere Frequenzen kann die jeweilige Kompressionskennlinie einen anderen Verlauf besitzen.
  • Die kanalspezifische Eingangspegelschwelle LS ist
    nicht fest eingestellt bzw. vorgegeben. Vielmehr wird sie auch in Abhängigkeit eines breitbandigen Eingangsschalldruckpegels (d. h. des frequenzunabhängigen Gesamteingangspegels) berechnet. Dazu wird beispielsweise in jedem Kanal der Eingangspegel des jeweiligen Eingangssignalanteils genau dann abgetastet, wenn der zugehörige frequenzunabhängige bzw. breitbandige Gesamteingangspegel eine vorgegebene frequenzunabhängige Pegelschwelle (z. B. 15 dB unter dem Ausgangspegelgrenzwert LG) erreicht. Es wird dabei der Knickpunkt 13 der Betriebs-Kompressionskennlinie 10 dynamisch bestimmt. Demnach kann der Knickpunkt 13 bzw. die dazugehörige Eingangspegelschwelle LS in einigen der Verarbeitungskanäle niedrig liegen und in anderen höher liegen.
  • Die Auswirkung der dynamischen Festlegung der kanalspezifischen Eingangspegelschwelle LS in Abhängigkeit vom Gesamteingangspegel kann anhand der FIG 3 und 4 erläutert werden. Die FIG 3 und 4 stellen jeweils spektrale Leistungsdichten L am Ausgang 14, 15 und am Eingang 16, 17 dar. FIG 3 gilt für ein breitbandiges Signal BB (z. B. breitbandiges Rauschen), während FIG 4 für ein schmalbandiges Signal SB (z. B. Sinuston) gilt. Beide Signale haben über alle Kanäle addiert den gleichen breitbandigen Gesamteingangspegel, d. h. die Fläche unter der gestrichelten Kurve 16 entspricht der Fläche unter der gestrichelten Kurve 17. Dieser Gesamteingangspegel entspricht der Summe der Einzelpegel und repräsentiert die Gesamtenergie bzw. Gesamtleistung des Eingangssignals. Beispielsweise wird bei einem Gesamteingangspegel von 90 dB gemessen.
  • Die FIG 2 kann schematisch als Schnitt durch die FIG 3 und 4 bei der Frequenz f1 betrachtet werden. Für einen bestimmten Pegel ergibt sich dann bei der Frequenz f1 der Abstand d' zwischen Eingang 17 und Ausgang 15.
  • Bei einem breitbandigen Rauschen gemäß FIG 3 ist der Abstand zwischen spektraler Leistungsdichte am Ausgang 14 und am Eingang 16 beispielsweise nahezu konstant. Dies liegt daran, dass der Eingangspegel LE kaum über der Frequenz variiert, sodass gemäß FIG 2 auch nahezu immer die gleiche Verstärkung appliziert wird, und somit auch die spektrale Leistungsdichte am Ausgang 14 nahezu konstant bleibt.
  • Besitzt das Eingangssignal jedoch gemäß FIG 4 beispielsweise bei einer Frequenz f2 eine deutlich höhere spektrale Leistungsdichte als bei anderen Frequenzen, so ändert sich gemäß FIG 2 auch die Verstärkung deutlich über der Frequenz. Da sie typischerweise bei höheren Pegeln abnimmt, beträgt der Abstand der Kurven 15 und 17 bei der Frequenz f2 weniger als bei anderen Frequenzen.
  • Wird bei einem breitbandigen Eingangssignal BB gemäß FIG 3 der Schwellwert für den Gesamteingangspegel erreicht, liegen die Pegel der einzelnen Kanäle gemäß Kurve 16 auf einem mittleren Niveau und es wird gemäß FIG 2 eine entsprechende mittlere Verstärkung appliziert. Den Energiezuwachs zwischen Eingangssignal und Ausgangssignal repräsentiert die Fläche zwischen den Kurven 14 und 16.
  • Bei dem schmalbandigen Signal SB wird der Schwellwert für den Gesamteingangspegel erreicht, wenn die Pegel um die Frequenz f2 sehr hoch sind, während die Pegel außerhalb dieses Maximums verhältnismäßig niedrig sind. Dementsprechend wird um das Pegelmaximum bei der Frequenz f2 weniger verstärkt als außerhalb dieses Maximums bei den Frequenzen mit niedrigerem Pegel. Der gesamte Energiezuwachs ergibt sich wieder aus der Fläche zwischen den Kurven 15 und 17. Da bei dem schmalbandigem Signal vorwiegend niedrige Pegel vorliegen, ergibt sich über einen Großteil des Spektrums eine größere Verstärkung als bei dem breitbandigen Signal BB, sodass die Fläche zwischen den Kurven 15 und 17 größer ist als die Fläche zwischen den Kurven 14 und 16. Dies aber bedeutet, dass der Gesamteingangspegel eines schmalbandigen Signals mehr verstärkt wird als der Gesamteingangspegel eines breitbandigen Signals. Damit wird das natürliche Hörempfinden ausgenutzt, denn es wird ein schmalbandiges Signal mehr verstärkt als ein breitbandiges, wobei das schmalbandige verstärkte Signal dann auch nicht lauter empfunden wird als das breitbandige verstärkte Signal.
  • Bei der Verwendung langsamer Kompressionszeitkonstanten ergeben sich somit für den Fall der hohen Kompressionsverhältnisse oberhalb der Eingangspegelschwellen LS vernachlässigbare Signalverzerrungen. Nach Überschreiten der Eingangspegelschwellen verhindert ein ausreichend dimensionierter Abstand der resultierenden Ausgangspegel zu den frequenzabhängigen Ausgangspegelgrenzwerten LG eine Verzerrung sehr lauter Sprachsignale. Nur in einer dynamischen Betrachtung kommt es kurzzeitig während der Einschwingzeit zu Verzerrungen.
  • Durch die Verwendung einer frequenzunabhängigen Gesamteingangspegelschwelle erfolgt die eingangsseitige Begrenzung unabhängig von der spektralen Verteilung des Signals. Es werden jedoch unterschiedliche frequenzabhängige Eingangspegelschwellen LS ermittelt, die von der aktuellen spektralen Verteilung des Signals abhängig sind.
  • Gemäß einer Weiterbildung werden in einem definierten Eingangspegelintervall 18 unmittelbar unterhalb der frequenzabhängigen Eingangspegelschwelle LS nur Kompressionsverhältnisse nahe 1 verwendet. Die applizierten Verstärkungsfaktoren sind damit in diesem Intervall pegelunabhängig (gleicher Abstand der Betriebs-Kompressionskennlinie 10 zu der Mittelsenkrechten 11). Darüber hinaus sollte die Verstärkung in diesem Bereich deutlich abgeschwächt im Vergleich zu den statisch eingestellten Verstärkungsfaktoren bei sehr niedrigen Pegeln sein. Dadurch ergibt sich in Summe, wie oben dargestellt wurde, trotz der identischen breitbandigen Gesamteingangspegelschwelle (=Gesamtpegelschwellwert) ein höherer Ausgangsschalldruckpegel für schmalbandige Signale als für breitbandige Signale. Die Lautheit der dadurch begrenzten Ausgangssignale ist somit deutlich besser den psychoakustischen Randbedingungen angeglichen.

Claims (6)

  1. Verfahren zum Verstärken eines Eingangssignals in einer Hörvorrichtung durch
    - Vorgeben je einer kanalspezifischen Kompressionskennlinie (12) in mehreren spektral getrennten Verarbeitungskanälen der Hörvorrichtung, die einen Zusammenhang zwischen einem Eingangspegel (LE) und einem Ausgangspegel (LA) im jeweiligen Verarbeitungskanal der Hörvorrichtung definiert,
    - Verstärken eines jeweiligen Eingangssignalanteils der Hörvorrichtung in jedem Verarbeitungskanal in Abhängigkeit von einer kanalspezifischen Betriebs-Kompressionskennlinie (10),
    - Vorgeben einer kanalspezifischen Eingangspegelschwelle (LS) für jeden Verarbeitungskanal,
    - Festlegen der jeweiligen kanalspezifischen Betriebs-Kompressionskennlinie (10) entsprechend der vorgegebenen kanalspezifischen Kompressionskennlinie (12) unterhalb der kanalspezifischen Eingangspegelschwelle (LS) und
    - Festlegen eines jeweiligen Verlaufs der kanalspezifischen Betriebs-Kompressionskennlinie (10) mit einem Kompressionsverhältnis größer 8 oberhalb der kanalspezifischen Eingangspegelschwelle (LS),
    dadurch gekennzeichnet,
    - dass ein frequenzunabhängiger Gesamtpegel des alle Eingangssignalanteile umfassenden Eingangssignals gemessen wird, ein Zeitpunkt ermittelt wird, zu dem der gemessene Gesamtpegel einen vorgegebenen Gesamtpegelschwellwert erreicht, für den Zeitpunkt in jedem Verarbeitungskanal die jeweilige kanalspezifische Eingangspegelschwelle (LS) entsprechend dem momentanen Pegel des jeweiligen Eingangssignalsanteils festgelegt wird, und die kanalspezifischen Betriebs-Kompressionskennlinien (10) in allen Verarbeitungskanälen dementsprechend festgelegt werden.
  2. Verfahren nach Anspruch 1, wobei ein kanalspezifischer Ausgangspegelgrenzwert (LG) für jeden Verarbeitungskanal vorgegeben wird und die jeweilige kanalspezifische Betriebs-Kompressionskennlinie (10) einen festen Abstand zu dem kanalspezifischen Ausgangspegelgrenzwert (LG) nicht unterschreitet.
  3. Verfahren nach Anspruch 2, wobei der feste Abstand mindestens 15 dB beträgt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die kanalspezifischen Betriebs-Kompressionskennlinien (10) solange unverändert beibehalten werden, wie der gemessene Gesamteingangspegel größer oder gleich dem Gesamtpegelschwellwert ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei jede kanalspezifische Betriebs-Kompressionskennlinie (10) der jeweiligen vorgegebenen kanalspezifischen Kompressionskennlinie (12) entspricht, wenn der gemessene Gesamtpegel unter dem Gesamtpegelschwellwert liegt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei für jede kanalspezifische Eingangspegelschwelle (LS) ein minimaler Pegelwert vorgegeben wird.
EP13160298.9A 2012-04-05 2013-03-21 Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen Active EP2648424B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012205651.3A DE102012205651B4 (de) 2012-04-05 2012-04-05 Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen

Publications (3)

Publication Number Publication Date
EP2648424A2 EP2648424A2 (de) 2013-10-09
EP2648424A3 EP2648424A3 (de) 2017-07-19
EP2648424B1 true EP2648424B1 (de) 2019-08-28

Family

ID=47997086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13160298.9A Active EP2648424B1 (de) 2012-04-05 2013-03-21 Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen

Country Status (4)

Country Link
EP (1) EP2648424B1 (de)
AU (1) AU2013202444B2 (de)
DE (1) DE102012205651B4 (de)
DK (1) DK2648424T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020043A1 (en) * 2018-07-25 2020-01-30 Dolby Laboratories Licensing Corporation Compressor target curve to avoid boosting noise

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007341A1 (en) * 1992-09-11 1994-03-31 Hyman Goldberg Electroacoustic speech intelligibility enhancement method and apparatus
US8249861B2 (en) * 2005-04-20 2012-08-21 Qnx Software Systems Limited High frequency compression integration
US8213653B2 (en) * 2006-05-10 2012-07-03 Phonak Ag Hearing device
DE102010022632A1 (de) * 2010-06-04 2011-08-18 Siemens Medical Instruments Pte. Ltd. Verstärkungseinstellung bei Hörhilfegeräten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2013202444B2 (en) 2014-11-20
DE102012205651A1 (de) 2013-10-10
EP2648424A2 (de) 2013-10-09
EP2648424A3 (de) 2017-07-19
DE102012205651B4 (de) 2018-01-04
DK2648424T3 (da) 2019-12-02
AU2013202444A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
EP2180726B1 (de) Richtungshören bei binauraler Hörgeräteversorgung
DE69933141T2 (de) Tonprozessor zur adaptiven dynamikbereichsverbesserung
EP1737270B1 (de) Hörhilfegerät mit Mitteln zur Rückkopplungskompensation
DE102007017761B4 (de) Verfahren zur Anpassung eines binauralen Hörgerätesystems
DE10131964A1 (de) Verfahren zum Betrieb eines digitalen programmierbaren Hörgerätes sowie digitales programmierbares Hörgerät
EP2164283B1 (de) Hörgerät und Betrieb eines Hörgeräts mit Frequenztransposition
DE102010041653A1 (de) Verfahren und Vorrichtung zur Frequenzkompression mit selektiver Frequenzverschiebung
DE102011006129B4 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
EP2595414B1 (de) Hörvorrichtung mit einer Einrichtung zum Verringern eines Mikrofonrauschens und Verfahren zum Verringern eines Mikrofonrauschens
EP2114089A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Verschlussgrads bei Hörgeräten
EP2584795B1 (de) Verfahren zum Ermitteln einer Kompressionskennlinie
EP3448063B1 (de) Verfahren zum anpassen einer hörvorrichtung
EP2648424B1 (de) Verfahren zur Ausgangspegelbegrenzung bei Hörvorrichtungen
EP1351550B1 (de) Verfahren zur Anpassung einer Signalverstärkung in einem Hörgerät sowie ein Hörgerät
EP2437521B2 (de) Verfahren zur Frequenzkompression mit harmonischer Korrektur und entsprechende Vorrichtung
EP1416764B1 (de) Verfahren zur Einstellung eines Hörgerätes sowie Vorrichtung zur Durchführung des Verfahrens
EP2635048B1 (de) Verstärken eines Sprachsignals in Abhängigkeit vom Eingangspegel
DE102006046699B3 (de) Hörvorrichtung mit unsymmetrischer Klangwaage und entsprechendes Einstellverfahren
EP3048813B1 (de) Verfahren und vorrichtung zur rauschunterdrückung basierend auf inter-subband-korrelation
EP2506602B1 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegeräts
DE10159928A1 (de) Verfahren zum Vermeiden rückkopplungsbedingter Oszillationen in einem Hörgerät sowie Hörgerät
WO2012041372A1 (de) Verfahren zur frequenzkompression, anpasseinrichtung und hörvorrichtung
DE102010039303A1 (de) Verfahren zum Reduzieren von Interferenzen und Hörvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20170614BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1173924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013443

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191126

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013443

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1173924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 12

Ref country code: GB

Payment date: 20240322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 12

Ref country code: DK

Payment date: 20240321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 12