EP3060364B1 - Lingotière de coulée continue équipée d'un capteur de température et procédé de fabrication de la lingotière de coulée continue équipée du capteur de température - Google Patents
Lingotière de coulée continue équipée d'un capteur de température et procédé de fabrication de la lingotière de coulée continue équipée du capteur de température Download PDFInfo
- Publication number
- EP3060364B1 EP3060364B1 EP14781094.9A EP14781094A EP3060364B1 EP 3060364 B1 EP3060364 B1 EP 3060364B1 EP 14781094 A EP14781094 A EP 14781094A EP 3060364 B1 EP3060364 B1 EP 3060364B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cannula
- bore
- groove
- graphite foil
- optical waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000009749 continuous casting Methods 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000011888 foil Substances 0.000 claims description 72
- 230000003287 optical effect Effects 0.000 claims description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 43
- 229910002804 graphite Inorganic materials 0.000 claims description 41
- 239000010439 graphite Substances 0.000 claims description 41
- 239000003365 glass fiber Substances 0.000 claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 28
- 229910052802 copper Inorganic materials 0.000 claims description 28
- 239000010949 copper Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 239000000835 fiber Substances 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 239000000057 synthetic resin Substances 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 230000008859 change Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D2/00—Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
- B22D2/006—Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/057—Manufacturing or calibrating the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/181—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
- B22D11/182—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/20—Controlling or regulating processes or operations for removing cast stock
- B22D11/201—Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
- B22D11/202—Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by measuring temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0818—Waveguides
- G01J5/0821—Optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
Definitions
- the present invention relates to the technical field of continuous casting.
- liquid metal e.g. Steel
- cast to an at least partially solidified strand which is continuously drawn out of the continuous casting mold and supported in the subsequent strand guide of the continuous casting machine, guided and cooled further.
- the invention relates to a continuous casting mold with at least one temperature sensor, comprising a copper plate having a groove with a groove bottom, an optical waveguide as a temperature sensor extending in a cannula, and a filler material which closes the groove at least in sections.
- the temperature sensor can detect events, e.g. on the adhesion of the strand to the mold inner wall, be inferred inside the continuous casting mold.
- simply the temperature of the mold itself can be measured.
- the invention relates to a production method for the continuous casting mold with the temperature sensor.
- the continuous casting mold has a plurality of so-called thermocouples, wherein the temperature distribution via thermoelectric voltage change of the thermocouples can be measured in the mold.
- thermocouples have been proven in practice, many thermocouples are needed to detect a spatially relatively precisely discretized temperature distribution in the mold, resulting in a high cabling effort.
- thermocouples are sensitive to electromagnetic fields, as they occur, for example, in agitators for molds.
- optical fibers typically glass fibers
- multiple fiber Bragg gratings are used instead of thermocouples. This allows the temperature in the mold to be measured at a plurality of measuring points (the locations where the fiber Bragg gratings are located) of the glass fiber at a distance from each other. This reduces the cabling effort.
- the coefficients C s and C t indicate the dependence on the strain and the temperature, cf. http://en.wikipedia.org/wiki/Fiber Bragg grating).
- optical waveguides require the best possible thermal connection to the mold.
- the fibers are mechanically much more sensitive than conventional thermocouples, the fibers must be mechanically protected.
- the glass fibers are poured directly into the workpiece, for example by the positive pouring of the glass fiber by synthetic resin, polyester or the like. Although this gives a sufficiently high mechanical protection, but the fiber is imposed on the thermal expansion of the surrounding material, which the measured Temperature value falsified and also computationally can not always be completely corrected. In addition, the glass fiber reacts only slowly to temperature changes in the mold.
- a metal cannula is laid with a glass fiber in a groove or a bore.
- the fiber is indeed decoupled from the thermal stresses of the workpiece, however, results due to the air gap between the bore or groove and the cannula outer wall poor heat connection, resulting in a highly time-delayed temperature signal.
- the isotropic thermal conductivity of the metal cannula means that the temperature signal to be measured is falsified and the spatial-temporal resolution suffers (blurred temperature profile over several temperature measuring points).
- JP H09-47855 is a continuous casting mold with at least one temperature sensor known, comprising a copper plate with a groove and a groove bottom, an optical waveguide as a temperature sensor extending in a cannula, and a filler material which closes the groove at least in sections.
- a continuous casting mold with at least one temperature sensor known comprising a copper plate which is at least partially penetrated by a bore and an optical waveguide as a temperature sensor which extends in a cannula.
- a cannula with a glass fiber optical fiber or a portion thereof laid in a groove on the cold side of a continuous casting mold between two graphite films, so that the cannula does not rest on the groove base and then closed the groove with a filler .
- the foils ensure a good thermal connection of the glass fiber with at the same time very low transmission of thermal stresses of the surrounding material.
- the filling material closing off the groove provides the necessary mechanical and chemical protection and can be suitably selected for use: criteria include water-tightness, mechanical strength, elasticity with regard to thermal expansions, temperature and corrosion resistance, etc.
- the hot side ie the side in contact with the liquid metal
- the hot side facing away from the copper plate, regardless of whether the copper plate made of pure copper or a copper alloy and whether the cold side of the copper plate possibly supported on a support structure (eg the water tank).
- a tear resistant layer e.g., a textile tape
- the second heat conducting foil is disposed between the second heat conducting foil and the filling material.
- thermal conductivity of the tear-resistant layer in the thickness direction ⁇ as the lowest thermal conductivity of the first and second thermally conductive films.
- thermal conductivity in the thickness direction is z ⁇ as the thermal conductivity in the longitudinal and transverse directions x, y.
- the filler is a synthetic resin, a plastic such as polyester or PTFE, or a metal.
- the filling material may e.g. by casting, laminating or joining (e.g., soldering).
- a Layer of a first thermally conductive foil disposed between the cannula and the inner wall of the bore, so that a high heat flux is ensured from the inner wall of the bore to the outer wall of the cannula.
- the film completely bridges the gap between the inner wall of the bore and the outer wall of the cannula. In a technically almost equivalent embodiment, however, an (air) gap may remain.
- thermoelectric voltages are only very slightly transmitted to the glass fiber (this results in a more accurate temperature signal), on the other hand is due to the increased thermal conductivity of the graphite in the direction x, y the film layers ⁇ xy ⁇ 100 W / ( mK ) in comparison to the thickness direction z ⁇ z ⁇ 10 W / ( mK ) given a very good temperature connection, so that compared to conventional only with air filled holes a much more timely and spatially better resolved temperature signal in the fiber sensor arises.
- the first and / or the second graphite foil has an anisotropic thermal conductivity.
- a good heat conduction from the bore or the groove to the cannula and the optical waveguide is ensured;
- an excessively high heat conduction in the longitudinal direction of the bore or the groove is prevented, so that the spatial or temporal resolution does not suffer.
- the first and / or the second graphite foil consist essentially of graphite or graphene. Films of these materials have a high thermal conductivity in the longitudinal and transverse directions, but a much lower thermal conductivity in the thickness direction of the film.
- the thickness direction of the first and / or second thermally conductive foil in the longitudinal direction of the groove or the bore extends.
- the cannula is made of plastic, preferably heavy duty PTFE, glass fiber, fiberglass or a ceramic. All these materials have a much lower thermal conductivity compared to metal, which has a favorable effect on the spatial resolution. The mechanical stability of these materials is also sufficiently high.
- the optical waveguide has a plurality of temperature measuring points over the longitudinal extent of the optical waveguide, wherein the temperature measuring points are preferably formed as a fiber Bragg grating.
- the temperatures can also be determined by a measuring system based on the Rayleigh principle.
- the continuous casting mold with the optical waveguide has an evaluation unit for evaluating the temperature at the temperature measuring points of the optical waveguide, the evaluation unit being connected to the optical waveguide.
- a graphite foil has the highest thermal conductivity in its longitudinal and transverse directions.
- a rigid cannula preferably a metal or plastic cannula occurs.
- the piercing can be done by another impact tool.
- the heat flow in the radial direction is maximum and minimal in the axial direction.
- the FIG. 1 shows a continuous casting mold 1 with a hot side 3 and a cold side 2 of the DE 10 2009 060548 A1 ,
- an optical waveguide 8 is inserted into the groove base 4a of a groove 4 as a temperature sensor 7.
- the optical waveguide 8 has a plurality of temperature measuring points indicated by X in the figure. As the optical waveguide 8 is secured in the groove 4 and protected from mechanical damage is open.
- the Fig. 2 shows a first variant of a copper plate 13 of a continuous casting mold with a groove 4, in which a glass fiber optical waveguide 8, which runs in a cannula 12 (eg. From the plastic PTFE) has been inserted.
- The, for example produced by milling or erosion, groove 4 is disposed on the cold side 2 of the copper plate 13.
- the cannula 12 is embedded between a first thermally conductive foil 5, which rests on the groove base 4 a, and a second thermally conductive foil 6.
- the two heat-conducting foils 5, 6 are each aligned such that the thickness direction z of the foils runs in the depth direction t of the groove 4.
- the longitudinal, transverse and thickness directions x, y, z of the films form a Cartesian coordinate system.
- the two films 5, 6 are made of graphite, wherein the graphite films in the longitudinal and transverse directions x, y have a thermal conductivity of about 100 W / (mK) and in the thickness direction z a thermal conductivity of about 10 W / (mK).
- the groove is completely filled by a filler 9, for example. From synthetic resin.
- the cannula 12 is fully embedded in its longitudinal direction between the first and second thermally conductive sheets 5, 6. alternative For this purpose, it would also be possible to embed the cannula 12 in sections only in the region of the temperature measuring points X in the heat-conducting foils 5, 6.
- the longitudinal sections between two adjacent temperature measuring points X could therefore have either an air gap or an insulating material between the groove base 4a and the cannula 12.
- the Fig. 3 shows a second variant Fig. 2 ,
- a tear-resistant layer here a fabric tape inserted. Through this layer, the filling material 9 can be removed without injuring the cannula 12 or the glass fiber 8. This is advantageous in a revision or repair of the copper plate.
- the heat conduction would be at the FIGS. 2 and 3 better to orient the films 5, 6 so that their thickness direction z extends in the longitudinal direction of the groove 4. This would result in a low thermal conductivity in the longitudinal direction of the groove 4 and a high thermal conductivity transverse thereto, ie also in the depth direction t of the groove 4. Since the films have only a small layer thickness 5.6, but this requires a higher manufacturing cost.
- FIGS. 4 and 5 show the results of two comparative calculations, each with identical initial and boundary conditions, showing the heat transfer from the groove bottom 4a of the groove 4 to the glass fiber 8.
- the thickness directions z of the first and the second heat-conductive foils 5, 6 extend in the width direction b of the groove 4; in Fig. 5 the thickness directions of the films 5, 6 are aligned in the depth direction t of the groove 4. It turns out that although the thermally conductive foils 5, 6 of the Fig. 4 are substantially thicker than the films 5, 6 of the Fig. 5 and in Fig. 5 the cannula 12 rests directly on the groove base 4a - the glass fiber 8 of the Fig.
- the Fig. 6 shows the cold side 2 of a copper plate 13 in an oblique angle.
- a cooling medium here water
- the groove 4 can also be laid meandering to capture by a glass fiber, which is inserted into the groove, not only the temperature in a horizon, but in several horizons, the mold.
- the Fig. 7 shows a section through a copper plate 13 with a groove 4, in which a glass fiber optic cable 8 is inserted.
- the arrangement of the filling material 9, the cannula 12, the glass fiber 8 and the first and second thermally conductive foils 5,6 and their orientation corresponds to the Fig. 4 ,
- the cannula 12 is inserted between a first thermally conductive foil 5 and a second thermally conductive foil 6 so that the thickness direction z of the two heat-conducting foils 5, 6 is normal to the longitudinal direction of the cannula 12.
- the thermally conductive foils 5, 6 embedding the cannula 12 are inserted into the groove base 4a of the groove 4, so that the longitudinal direction x of the thermally conductive foils 5, 6 extends in the depth direction t of the groove 4.
- the groove 4 is closed by a filling material 9, so that the filling material 9, the groove 4 at least partially, preferably completely, closes.
- FIGS. 8 and 9 Two variants for laying a glass fiber optical waveguide 8 in a bore 11 through a copper plate 13 of a continuous casting mold are shown.
- a metal cannula 12 is retracted with the glass fiber 8 in the bore 11, wherein - to the best possible heat transfer to allow the glass fiber 8 - the radial gap between the bore 11 and the cannula 12 is as narrow as possible.
- layers of a first thermally conductive foil 5 is inserted between the bore 11 and the cannula, the thickness direction z of the foils 5 extending in the longitudinal direction of the bore 11.
- first thermally conductive film could be pushed onto the cannula so that the thickness direction z of the films extends in the longitudinal direction of the cannula.
- the cannula together with the layers pushed on the outside and the glass fiber-optic cable inside are then inserted into the bore.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Claims (15)
- Lingotière de coulée continue (1) équipée d'au moins un capteur de température (7), comprenant- une plaque en cuivre (13) qui comporte une rainure (4) avec un fond de rainure (4a) ;- un guide d'ondes optiques (8) en tant que capteur de température (7), qui s'étend dans une canule (12) ; et- une matière de remplissage (9) qui ferme la rainure (4), au moins par endroits,caractérisée en ce que la rainure (4) est située sur le côté froid (2) de la plaque en cuivre (13), en ce qu'un premier film en graphite (5) repose sur le fond de rainure (4a) et un second film en graphite (6) repose, au moins en partie, sur le premier film en graphite (5), et en ce que la canule (12) est insérée entre le premier (5) et le second film en graphite (6).
- Dispositif selon la revendication 1, caractérisé en ce qu'une bande textile est disposée entre le second film en graphite (6) et la matière de remplissage (9).
- Dispositif selon la revendication 2, caractérisé en ce que la conductivité thermique de la bande textile (10) dans le sens de l'épaisseur de cette dernière est << à la conductivité thermique la plus faible du premier (5) et du second film en graphite (6).
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que la matière de remplissage (9) est une résine synthétique, une matière synthétique telle que le polyester ou le PTFE, ou un métal.
- Lingotière de coulée continue (1) équipée d'au moins un capteur de température (7), comprenant- une plaque en cuivre (13) qui est percée, au moins en partie, d'un alésage (11) ;- un guide d'ondes optiques (8) en tant que capteur de température (7), qui s'étend dans une canule (12) ; caractérisée par- un premier film en graphite (5) qui comble, au moins par endroits, la fente entre la paroi intérieure de l'alésage (11) et la paroi extérieure de la canule (12) sur l'étendue longitudinale de la canule (12).
- Procédé selon l'une des revendications précédentes, caractérisé en ce que le premier (5) et/ou le second (6) film en graphite présente(nt) une conductivité thermique anisotrope.
- Dispositif selon la revendication 6, caractérisé en ce que le premier (5) et/ou le second (6) film en graphite est/sont composé(s) principalement de graphite ou de graphène.
- Dispositif selon l'une des revendications 6 à 7, caractérisé en ce que le sens de l'épaisseur (z) du premier (5) et/ou du second film en graphite (6) s'étend dans la direction longitudinale de la rainure (4) ou de l'alésage (11).
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que la canule est en matière synthétique, de préférence en PTFE, soie de verre, fibre de verre, ou en céramique.
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que le guide d'ondes optiques (8) présente plusieurs points de mesure de température sur son étendue longitudinale, les points de mesure de température étant de préférence réalisés en tant que réseau de Bragg à fibre.
- Dispositif selon la revendication 10, comprenant une unité d'analyse pour l'analyse de la température au niveau des points de mesure de température du guide d'ondes optiques, l'unité d'analyse étant reliée au guide d'ondes optiques (8).
- Procédé de fabrication d'une lingotière de coulée continue (1) équipée d'un capteur de température (7) selon l'une des revendications 1 à 4, dans lequel la lingotière de coulée continue (1) comprend une plaque en cuivre pourvue d'une rainure (4) sur son côté froid (2) et un guide d'ondes optiques (8) s'étend en tant que capteur de température (7) dans une canule (12), comprenant les étapes de procédé consistant à :- introduire la canule (12) entre un premier film en graphite (5) et un second film en graphite (6) de façon que le sens de l'épaisseur (z) des deux films en graphite (5, 6) soit perpendiculaire à la direction longitudinale de la canule (12) ;- insérer les films en graphite (5, 6) incorporant la canule (12) dans le fond de rainure (4a) de la rainure (4) de façon que la direction des films en graphite présentant la conductivité thermique la plus élevée (x ou y) s'étende dans le sens de la profondeur t de la rainure (4) ; et- fermer la rainure (4) à l'aide d'une matière de remplissage (9), la matière de remplissage (9) fermant la rainure (4) au moins par endroits.
- Procédé de fabrication d'une lingotière de coulée continue (1) équipée d'un capteur de température (7) selon l'une des revendications 5 à 11, dans lequel la lingotière de coulée continue (1) est pourvue d'un alésage (11) et un guide d'ondes optiques (8) en tant que capteur de température (7) s'étend dans une canule (12), comprenant les étapes de procédé consistant à :- enfiler plusieurs couches d'un premier film en graphite (5) sur la canule (12), de façon que le sens de l'épaisseur (z) du premier film en graphite (5) s'étende dans la direction longitudinale de la canule (2) et que les couches du premier film en graphite soient en contact avec la surface périphérique de la canule (12) ;- introduire le premier film en graphite (5), la canule (12) et le guide d'ondes optiques (8) dans l'alésage (11), grâce à quoi, au moins par endroits, les couches du premier film en graphite (5) sont en contact avec la paroi intérieure de l'alésage (11).
- Procédé de fabrication d'une lingotière de coulée continue (1) équipée d'un capteur de température (7) selon l'une des revendications 5 à 11, dans lequel la lingotière de coulée continue (1) est pourvue d'un alésage (11) et un guide d'ondes optiques (8) en tant que capteur de température (7) s'étend dans une canule (12), comprenant les étapes de procédé consistant à :- introduire plusieurs premiers films en graphite (5) dans l'alésage (11), de façon que le sens de l'épaisseur (z) des premiers films en graphite (5) s'étende dans la direction longitudinale de l'alésage (11) ;- traverser, en poussant, l'alésage (11) rempli de premiers films en graphite (5) ;- introduire dans l'alésage (11) la canule (12) contenant le guide d'ondes optiques (8), grâce à quoi les premiers films en graphite (5) remplissent la fente entre la paroi intérieure de l'alésage (11) et la canule (12).
- Procédé de fabrication selon la revendication 14, caractérisé en ce que c'est la canule (12) contenant le guide d'ondes optiques (8) qui effectue la traversée en poussant.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013221485 | 2013-10-23 | ||
DE201310224977 DE102013224977A1 (de) | 2013-10-23 | 2013-12-05 | Stranggießkokille mit einem Temperatursensor und Herstellungsverfahren für die Stranggießkokille mit dem Temperatursensor |
PCT/EP2014/069950 WO2015058911A1 (fr) | 2013-10-23 | 2014-09-19 | Lingotière de coulée continue équipée d'un capteur de température et procédé de fabrication de la lingotière de coulée continue équipée du capteur de température |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3060364A1 EP3060364A1 (fr) | 2016-08-31 |
EP3060364B1 true EP3060364B1 (fr) | 2018-03-14 |
Family
ID=52775203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14781094.9A Not-in-force EP3060364B1 (fr) | 2013-10-23 | 2014-09-19 | Lingotière de coulée continue équipée d'un capteur de température et procédé de fabrication de la lingotière de coulée continue équipée du capteur de température |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3060364B1 (fr) |
DE (1) | DE102013224977A1 (fr) |
WO (1) | WO2015058911A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1026975B1 (fr) * | 2019-06-21 | 2020-08-12 | Ebds Eng Sprl | Lingotière de coulée continue de métaux, système de mesure de la température et système et procédé de détection de percée dans une installation de coulée continue de métaux |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017032392A1 (fr) * | 2015-08-21 | 2017-03-02 | Abb Schweiz Ag | Moule de coulée et procédé de mesure de la température d'un moule de coulée |
JP6640583B2 (ja) * | 2016-02-02 | 2020-02-05 | 三菱重工業株式会社 | 複合材の成形装置及び複合材の成形方法 |
AT518569A1 (de) * | 2016-04-27 | 2017-11-15 | Primetals Technologies Austria GmbH | Instrumentierung einer Seitenwand einer Stranggießkokille mit Lichtwellenleitern |
EP3424614A1 (fr) * | 2017-07-03 | 2019-01-09 | Primetals Technologies Austria GmbH | Montage d'un capteur de température à fibre optique dans un moule et moule comprenant plusieurs capteurs de température à fibre optique |
DE102019134440A1 (de) | 2019-12-16 | 2021-06-17 | Endress + Hauser Wetzer Gmbh + Co. Kg | Messgerät |
CN112776237B (zh) * | 2020-12-28 | 2023-04-21 | 哈尔滨工业大学 | 一种浇注式树脂基分布式光纤传感器封装装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3408901B2 (ja) * | 1995-08-02 | 2003-05-19 | 新日本製鐵株式会社 | 連続鋳造におけるブレークアウト予知方法 |
DE10236033A1 (de) * | 2002-08-06 | 2004-02-19 | Lios Technology Gmbh | Verfahren und Anordnung zum Überwachen des Erhaltungszustands der feuerfesten Auskleidung von Schmelzöfen |
JP4688755B2 (ja) * | 2006-08-17 | 2011-05-25 | 新日本製鐵株式会社 | 鋼の連続鋳造方法 |
DE102008060507A1 (de) * | 2008-07-10 | 2010-01-14 | Sms Siemag Aktiengesellschaft | Temperaturmessung in einer Kokille durch ein faseroptisches Messverfahren |
DE102010008480A1 (de) * | 2009-09-30 | 2011-03-31 | Sms Siemag Ag | Kokille zur Verarbeitung von flüssigem metallischem Material |
DE102009060548B4 (de) | 2009-12-23 | 2020-06-04 | Vdeh-Betriebsforschungsinstitut Gmbh | Kokille für eine Stranggießanlage und Verwendung einer solchen Kokille |
DE102010034729A1 (de) * | 2010-02-09 | 2011-08-11 | SMS Siemag AG, 40237 | Metallurgisches Gefäß und Verfahren zur Herstellung einer Wandung des Gefäßes |
-
2013
- 2013-12-05 DE DE201310224977 patent/DE102013224977A1/de not_active Withdrawn
-
2014
- 2014-09-19 WO PCT/EP2014/069950 patent/WO2015058911A1/fr active Application Filing
- 2014-09-19 EP EP14781094.9A patent/EP3060364B1/fr not_active Not-in-force
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1026975B1 (fr) * | 2019-06-21 | 2020-08-12 | Ebds Eng Sprl | Lingotière de coulée continue de métaux, système de mesure de la température et système et procédé de détection de percée dans une installation de coulée continue de métaux |
WO2020254688A1 (fr) * | 2019-06-21 | 2020-12-24 | Ebds Engineering | Lingotière de coulée continue de métaux, système de mesure de la température et système et procédé de détection de percée dans une installation de coulée continue de métaux |
Also Published As
Publication number | Publication date |
---|---|
DE102013224977A1 (de) | 2015-04-23 |
EP3060364A1 (fr) | 2016-08-31 |
WO2015058911A1 (fr) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3060364B1 (fr) | Lingotière de coulée continue équipée d'un capteur de température et procédé de fabrication de la lingotière de coulée continue équipée du capteur de température | |
EP2310155B1 (fr) | Mesure de la température dans une lingotière à l'aide d'un procédé de mesure à fibre optique | |
EP2318162B2 (fr) | Mesure du niveau du bain de coulée dans un moule par procédé de mesure à fibre optique | |
EP2483650B1 (fr) | Elément capteur servant à mesurer un gradient de température | |
EP2293891B1 (fr) | Lingotière pour la coulée de métal | |
DE102009008457A1 (de) | Verfahren zur Herstellung eines Sensors mit nahtloser Umspritzung eines Sensorelementes | |
EP2440883B1 (fr) | Intégration d'un guide d'ondes optiques d'un capteur de mesure dans un composant | |
EP2312250B1 (fr) | Récipient métallurgique | |
DE19621797A1 (de) | Verfahren und Vorrichtung zur Leckageüberwachung an Objekten und Bauwerken | |
EP2483013B1 (fr) | Lingotière de traitement de matière métallique liquide | |
DE9318404U1 (de) | Einrichtung zum Bestimmen von Temperaturen an und in ausgedehnten Objekten | |
EP2151673A2 (fr) | Procédé et dispositif de mesure de la température | |
EP2603789A1 (fr) | Procédé et dispositif pour déterminer la conductivité thermique et la conductibilité thermique d'un échantillon de mesure | |
EP3078938A2 (fr) | Procede et dispositif de surveillance d'un cable sous-marin | |
DE19950111C1 (de) | Sensorkabel für faseroptische Temperaturmessungen | |
EP2934789B1 (fr) | Dispositif avec une sonde de température pour lingotière de coulée continue | |
EP2533920B1 (fr) | Recipient metallurgique et procede de fabrication d´une parois du recipient | |
DE10052922A1 (de) | Sensorkabel für faseroptische Temperturmessungen | |
WO2017186702A1 (fr) | Implantation de guides optiques dans une paroi latérale d'une lingotière de coulée continue | |
EP4047305A1 (fr) | Capteur de couche limite et procédé de détection de l'épaisseur d'une couche limite | |
DE102009060548B4 (de) | Kokille für eine Stranggießanlage und Verwendung einer solchen Kokille | |
EP4005697B1 (fr) | Dispositif et procede pour determiner la temperature dans une paroi laterale d'un moule de fonderie | |
EP3546906B1 (fr) | Agencement de capteur de température, composant de capteur de température pour une installation métallurgique et procédé de fabrication d'un tel composant | |
DE102019105373A1 (de) | System und Verfahren zur Bestimmung einer Wärmeleitfähigkeit | |
DE29821213U1 (de) | Vorrichtung zur Leckageüberwachung an Objekten und Bauwerken |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160523 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01K 11/32 20060101ALI20171012BHEP Ipc: B22D 11/057 20060101ALI20171012BHEP Ipc: B22D 11/059 20060101ALI20171012BHEP Ipc: B22D 2/00 20060101AFI20171012BHEP Ipc: G01K 1/14 20060101ALI20171012BHEP Ipc: B22D 11/20 20060101ALI20171012BHEP Ipc: G01J 5/08 20060101ALI20171012BHEP Ipc: B22D 11/18 20060101ALI20171012BHEP |
|
INTG | Intention to grant announced |
Effective date: 20171102 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 978363 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014007643 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180614 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180615 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014007643 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180716 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
26N | No opposition filed |
Effective date: 20181217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180919 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190918 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140919 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180714 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 978363 Country of ref document: AT Kind code of ref document: T Effective date: 20190919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190919 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502014007643 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 |