EP2533920B1 - Recipient metallurgique et procede de fabrication d´une parois du recipient - Google Patents

Recipient metallurgique et procede de fabrication d´une parois du recipient Download PDF

Info

Publication number
EP2533920B1
EP2533920B1 EP11701474.6A EP11701474A EP2533920B1 EP 2533920 B1 EP2533920 B1 EP 2533920B1 EP 11701474 A EP11701474 A EP 11701474A EP 2533920 B1 EP2533920 B1 EP 2533920B1
Authority
EP
European Patent Office
Prior art keywords
vessel
wall
grooves
optical waveguides
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11701474.6A
Other languages
German (de)
English (en)
Other versions
EP2533920A1 (fr
Inventor
Dirk Lieftucht
Matthias Arzberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP2533920A1 publication Critical patent/EP2533920A1/fr
Application granted granted Critical
Publication of EP2533920B1 publication Critical patent/EP2533920B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
    • B22D11/202Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/003Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the level of the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/006Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices

Definitions

  • the invention relates to a metallurgical vessel having a cavity for treating a first liquid metal or for liquefying a metal, wherein the vessel comprises a coolable wall with a hot side facing the cavity and a cold side facing away from the cavity made of a second metal, and wherein optical fibers for detecting data of the metallurgical vessel or the first metal are introduced into the wall of the vessel.
  • the first metal is especially steel, but it may also be another metal.
  • the second metal is in particular copper, although it is also possible to provide another metal.
  • the invention further relates to the use of optical waveguides in a wall of the vessel and to a method of making the wall for the metallurgical vessel.
  • melting vessels for example electric arc furnaces, in which mainly cold or preheated starting materials such as scrap and sponge iron are used. Both molds and electric arc furnaces and other devices for melting or reserving molten metal are referred to as metallurgical vessels.
  • optical fibers As sensors optical fibers are used, is passed through the laser light. On the outside of the copper plates grooves are formed, in which the optical fibers are laid.
  • the temperature detection by means of optical waveguides allows a significantly lower cable costs than the use of thermocouples in the mold. In addition, considerably less labor and costs to install the fibers in the mold copper plate is needed.
  • the use of the optical waveguides also allows a higher spatial resolution, as they can be achieved when using thermocouples, which are used in drilling. An optical fiber can replace more than a hundred thermocouples and their cables.
  • the optical waveguides are, for example meandering between the cooling channels on the back, d. H. on the cold side, a copper plate of a mold laid in grooves.
  • the optical waveguides can be cast in the grooves by means of cast resin. Closure by other components or by electroplated layers is also known.
  • From the DE 10 2008 006 965 A1 is a method for determining a radiation level for an emanating from an arc between an electrode and melt burning thermal radiation in an electric arc furnace for the production of liquid metal, usually steel, known, which is used when the radiation to a boundary of the arc furnace incident.
  • liquid metal produced from a solid melt such as scrap or reduced iron
  • energy for melting the melt is introduced into the arc furnace by means of one or more electrodes, usually in the form of an arc between the electrode and the melt.
  • electrodes usually in the form of an arc between the electrode and the melt.
  • attempts are made to introduce as much as possible of the total energy provided by the arc into the melt.
  • Melted material is understood to mean melting solid, liquid metal and / or also slag.
  • an electrode current supplied to the electrode is detected, wherein structure-borne vibrations of the electric arc furnace are detected and from the detected electrode current a frequency range of the detected electrode current associated Stromausonnesignal is determined, from the recorded structure-borne vibrations a Schwingungsausonnesignal is determined, the one Frequency range of the structure-borne sound vibrations is assigned. It is used as a measure of the thermal vibration a quotient of vibration evaluation signal and current evaluation signal is formed for at least one frequency common to the detected electrode current and the detected structure-borne sound vibrations in order to determine the radiation measure.
  • d. H On the outer boundary of the furnace vessel structure-borne sound sensors for detecting vibrations on the furnace vessel are arranged.
  • the signals that are transmitted by them are preferably at least partially passed through an optical waveguide.
  • optical waveguides on the inside of walls of a continuous casting mold.
  • the optical waveguides are each mounted in grooves and embedded in a mixture of an alumina powder and an epoxy resin with good thermal conductivity.
  • the filling compound may be coated with layers of copper and nickel.
  • metallurgical vessel encompasses all types of metallurgical vessels, including melting furnaces, in particular electric arc furnaces, and also molds, in particular for continuous casting.
  • wall for the purposes of the present invention also includes individual wall elements, e.g. Wall panels, as part of an entire vessel wall.
  • wall plate is to be understood both as a single element as well as the entire wall of the vessel.
  • the temperatures or the expansion or vibration behavior of the metallurgical vessel can be represented on the hot side in different heights of the vessel.
  • the concept allows a representation of the thermal and mechanical load of the wall of the vessel in any operating condition, also in temporal dependence.
  • search specifically for (process) errors such as longitudinal cracks in the wall or caking of melt on the hot side, as a cause for characteristic signatures on the subsequent casting product.
  • the optical waveguides are not, as previously known, from the cold water-flowed cold side, but introduced directly from the thermally stressed hot side in the wall of the vessel. This allows very timely monitoring of the staves against overload situations. If the optical fiber LWL in the copper stave indicates an incipient overheating, the heating power of the electrode can be reduced. Due to the accurate measurement, the arc furnace can be operated closer to the operating limit with more heating power, since no unnecessarily high safety reserve to protect the staves is necessary.
  • a continuous groove is milled on the hot side, which is later closed on the hot side by a filler piece of the base material of the hot side.
  • This filler is preferably fused by the friction stir welding again with the body.
  • the groove depth is dimensioned so that the thermal stress due to the welding process can not damage the optical waveguide.
  • this concept has the advantage that the measuring fiber is arranged very close to the region in which the casting process takes place.
  • fiber optic cables can be used for temperature measurement or strain measurement without the need for too long rise or fall times.
  • the fiber Bragg method for temperature measurement in accordance with the invention laid optical waveguides rise times of only 0.1 s are achieved when using a sufficiently thin cladding tube surrounding the optical waveguide. This means that when introducing an optical waveguide surrounded by a cladding tube in the groove of a hot side / copper plate still an increase in dead time or an additional rise time of another 0.25 s can be accepted without obtaining a result worse than in a known radiometric method.
  • the optical waveguides are according to the invention, for example, in the range of 3 - 12 mm behind the hot side.
  • grooves are produced, for example by means of a disc milling cutter, which have a width of one to two millimeters. In these can be wrapped with cladding fiber optic cables insert.
  • the grooves are preferably filled by matched to the width of the grooves metal strips as patches.
  • the metal strips are connected at their side edges with the material of the copper plates. This can be done by a variety of technologies, such as welding or soldering.
  • the grooves have a groove bottom tapering cross-section. This prevents that during friction stir welding, a bolt driving with pressure over the weld metal can depress the filler piece too deeply and thereby crush the optical waveguide jacket tube.
  • the patches, which close the grooves made of the same material as the wall panels.
  • the grooves advantageously have an at least substantially trapezoidal cross-section. Due to the trapezoidal cross-section, the depression of the filler and the crushing of the cladding tube can be prevented.
  • the filler pieces preferably have a cross section adapted to the grooves, in particular a likewise trapezoidal cross section.
  • the filler pieces have a slight undersize relative to the grooves, in particular in the region which adjoins the surface of the wall pieces. This makes it possible that the filler can be connected by mechanical action, in particular by rolling or welding, with the material of the wall panels without damaging the optical waveguide cladding at the bottom of the groove.
  • connection between the filler pieces and the laterally surrounding material of the wall panels is carried out by a welding process, namely by friction welding, in particular by friction stir welding.
  • the optical waveguides in cladding tubes are introduced.
  • the filler pieces and the wall panels are coated on their externally accessible surfaces with a layer of nickel or chromium.
  • the optical fibers have a diameter of about 0.15 mm.
  • the matching sheaths have a diameter of about 0.5 to 1 mm.
  • the patches have a width of 1 to 2 mm.
  • the optical fibers can be used metrologically in many ways. Depending on their purpose they are loosely in the grooves or holes, especially for temperature measurement, because for the temperature measurement, it is important that the optical fibers can contract or expand unhindered themselves due to a change in temperature.
  • the optical waveguides are preferably laid in the vicinity of the copper staves. This has the advantage that the heating power of the electrode (s) the furnace can be reduced again as soon as the optical fibers expect a failure of the staves in the near future.
  • the optical waveguides are at least selectively, but preferably firmly connected over its entire length with the surrounding material of the wall and / or with the filler pieces. This form of attachment is required so that strains of the vessel can be transmitted directly to the optical fiber and the optical fiber can emit signals representing the strains of the metallurgical vessel. Also, the time course of strains, vibrations and / or temperatures, as they are each detected with the optical waveguides, can be recorded and evaluated. It is understood that in the same metallurgical vessel according to their different uses both loosely laid and glued optical waveguides can be present in the grooves or holes on the hot side of the wall panels.
  • the invention also relates to the use of optical waveguides in walls of metallurgical vessels.
  • the optical fibers measure the temperature of the wall, the molten metal of the first metal in the vessel or mechanical strains or vibrations of the wall.
  • the data are used, for example, to control the casting level.
  • the invention also relates to a method for producing a wall panels comprising a wall of a metallurgical vessel.
  • This is according to the invention provided that on the hot side of the wall grooves are made by material removal, in particular by milling, that optical fibers are placed in the grooves that the grooves closed by filler and then the filler by a welding process, in particular by friction stir welding, with the material of the wall panels get connected.
  • a wall plate 1 ( Fig. 1 ) of a metallurgical vessel for example a mold for casting metal, in particular steel, is preferably made of copper and has on the side facing the casting chamber receiving the liquid metal, the so-called hot side, ie in the representation on the top, grooves 2, 3 and 4, which have a rectangular, square or trapezoidal cross-section and the bottom preferably rounded.
  • the hot side ie in the representation on the top, grooves 2, 3 and 4 which have a rectangular, square or trapezoidal cross-section and the bottom preferably rounded.
  • optical fibers 5, 6 and 7 are inserted. From the top side / the hot side, the optical waveguides 5, 6 and 7 in the grooves are covered in each case with filling pieces 8, 9 and 10, respectively.
  • the optical fibers 5 to 7 and / or on them Fastening pieces 8 to 10 fix, while they are connected by a friction welding with the laterally adjoining them areas 16, 17, 18 and 19 of the wall plate 1.
  • the optical waveguides 5 to 7 consist of an optically conductive material having a refractive index which decreases in cross-section from the inside to the outside; they are preferably each received by metallic sheaths or sleeves and can endure temperature measurement temperatures up to 600 ° C as a continuous load.
  • the wall plate 1 On its rear side, the wall plate 1 is traversed by cooling water. The cooling water flows through channels (not shown).
  • the optical waveguides 5 to 7 have at the end lens plug to decouple the light waves and supply them to an evaluation unit. As a result of the fact that the light waves are conducted via lens plugs from the housing of the component in the respective measuring position to the evaluation unit, a robust signal transmission is achieved.
  • the optical waveguides 5 to 7 have a diameter of, for example, 0.15 mm without the cladding tube and including the cladding tube, for example, 1 mm.
  • the patches 8, 9, 10, have, as in Fig. 2 represented by the filler 8, a preferably trapezoidal cross-section 20.
  • side walls 21, 22 with an upper edge 23 of the filler piece 8 preferably form the same obtuse angle ⁇ which is also present between the side walls 23, 24 of the groove 2 and the regions 16, 17 adjoining them laterally.
  • the filler 8 may also have a slight undersize relative to the groove 2. It is then pressed mechanically into the groove 2 and, for example, by welding or soldering with the groove 2 surrounding areas 16, 17 is connected.
  • a filler 27 ( Fig. 3 ) is adapted sufficiently precisely to the shape of a groove 28 in a workpiece 29, for example, a copper plate for a casting mold, which is to cover it from the hot side
  • a Rlicksch spancing 32 is guided above the wall plate 1 in the direction of an arrow A over the course of the groove 28 on the filler 27, wherein a mounted on a tool shoulder 33 welding pin 34 in contact with the filler 27 simultaneously performs rotational movements.
  • the filler 27 and the areas 30, 31 heat so much that they enter into a material connection with each other due to the frictional heat, which has a high stability.
  • the introduction of the optical waveguide in the region of cooling elements, for example so-called copper staves, into the hot side of the metallurgical vessel advantageously makes possible a very fast and efficient way of introducing the fiber.
  • the time profile of the temperature of the wall of the vessel or of the molten metal in the vessel and / or the time profile of the expansion of the vessel can be detected with the aid of the optical waveguide and used, for example, to optimize / increase the electrode power.
  • the electrode power is controlled in accordance with the considered temporal courses so that the walls of the vessel are not damaged. In particular, by evaluating the temporal courses, the failure limit of the vessel can be determined and the electrical power of the electrodes can be reduced in good time before reaching the failure limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Claims (14)

  1. Cuve métallurgique comprenant une cavité pour le traitement d'un premier métal liquide pour la liquéfaction d'un métal, dans laquelle la cuve comprend une paroi (1) qui peut être refroidie comprenant un côté chaud tourné vers la cavité et un côté froid qui se détourne de la cavité, constituée d'un deuxième métal, et dans laquelle la paroi (1) est équipée, dans la zone du côté chaud, de câbles à fibres optiques (5, 6, 7) disposés à proximité de la surface pour enregistrer des données de la cuve métallurgique ou du premier métal, dans laquelle les câbles à fibres optiques (5, 6, 7) sont incorporés dans des rainures (2, 3, 4 ; 28) qui sont incluses dans la paroi (1) à partir du côté chaud et les rainures (2, 3, 4 ; 28) dans lesquelles sont incorporés les câbles à fibres optiques sont fermées avec des pièces de remplissage (8, 9, 10 ; 27) du côté chaud, caractérisée en ce que les rainures (2, 3, 4 ; 28) présentent une section transversale qui se rétrécit en direction de leur base (25).
  2. Cuve selon la revendication 1, caractérisée en ce que les pièces de remplissage (8, 9, 10; 27) sont constituées de la même matière que celle de la paroi (1).
  3. Cuve selon la revendication 1 ou 2, caractérisée en ce que les rainures (2, 3, 4 ; 28) présentent une section transversale au moins essentiellement trapézoïdale.
  4. Cuve selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les pièces de remplissage (8, 9, 10 ; 27) possèdent une section transversale adaptée à celle des rainures (2, 3, 4 ; 28), en particulier une section transversale également trapézoïdale.
  5. Cuve selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les pièces de remplissage (8, 9, 10 ; 27) présentent, par rapport aux rainures (2, 3, 4 ; 28), une sous-dimension minime, en particulier dans la zone qui se raccorde à la surface des zones voisines de la paroi.
  6. Cuve selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les pièces de remplissage (8, 9, 10 ; 27) possèdent une largeur de 1 à 2 mm.
  7. Cuve selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la paroi comprenant les pièces de remplissage (8, 9, 10; 27) est enduite du côté chaud d'une couche de nickel ou de chrome.
  8. Cuve selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les câbles à fibres optiques (5, 6, 7) sont incorporés dans les rainures dans des tubes d'enveloppement, en particulier en métal.
  9. Cuve selon la revendication 8, caractérisée en ce que les tubes d'enveloppement (26) possèdent un diamètre d'environ 0,5 à 1 mm.
  10. Cuve selon l'une quelconque des revendications 1 à 9, caractérisée en ce que les câbles à fibres optiques (5, 6, 7) possèdent un diamètre d'environ 0,15 mm.
  11. Cuve selon l'une quelconque des revendications 8 à 10, caractérisée en ce que les câbles à fibres optiques (5, 6, 7) sont posés, pour la mesure de la température, à l'état lâche dans les rainures (2, 3, 4 ; 28), dans des alésages ou dans des tubes d'enveloppement, ou bien sont reliés à demeure, pour l'enregistrement des dilatations de la cuve métallurgique, de manière ponctuelle ou sur toute la longueur de cette dernière, à la matière de la paroi qui l'entoure, des pièces de remplissage et ou des tubes d'enveloppement, les tubes d'enveloppement pour la mesure de la dilatation étant pour leur part reliés à la paroi.
  12. Utilisation d'un câble à fibres optiques dans la paroi d'une cuve métallurgique selon l'une quelconque des revendications 1 à 11, caractérisée en ce que on utilise le câble à fibres optiques (5, 6, 7) pour mesurer la température de la paroi de la cuve ou bien la température de la masse fondue du premier métal dans la cuve ou encore des dilatations de la cuve, dans laquelle on enregistre comme données les allures temporelles de la température de la paroi de la cuve ou du métal liquide ou des dilatations de la cuve et on les utilise pour l'optimisation/l'augmentation de la performance des électrodes, sans pour cela endommager les parois de la cuve, ou bien en ce qu'on limite la performance des électrodes peu de temps avant d'atteindre la limite de défaillance sur base des valeurs de mesure du câble à fibres optiques.
  13. Utilisation selon la revendication 12, caractérisée en ce que l'allure temporelle des dilatations mesurées de la cuve représente le comportement d'oscillation de la cuve.
  14. Procédé pour la fabrication d'une paroi d'une cuve métallurgique dans lequel la paroi (1) présente un côté chaud et un côté froid, dans lequel on incorpore des câbles à fibres optiques (5, 6, 7) pour l'enregistrement de données dans des rainures (2, 3, 4 ; 28) pratiquées dans la paroi, l'incorporation des câbles à fibres optiques comprenant les étapes suivantes consistant à :
    former les rainures (2, 3, 4 ; 28) dans la paroi (1) par retrait de matière, en particulier par fraisage ; et
    incorporer les fibres optiques (5, 6, 7) dans les rainures (2, 3, 4 ; 28), caractérisé en ce qu'on ferme les rainures (2, 3, 4 ; 28) du côté chaud via des pièces de remplissage (8, 9, 10; 27), les pièces de remplissage (8, 9, 10 ; 27) étant reliées à la matière de la paroi via un soudage par friction, en particulier via un soudage par friction sous agitation.
EP11701474.6A 2010-02-09 2011-01-11 Recipient metallurgique et procede de fabrication d´une parois du recipient Active EP2533920B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010007221 2010-02-09
DE102010034729A DE102010034729A1 (de) 2010-02-09 2010-08-18 Metallurgisches Gefäß und Verfahren zur Herstellung einer Wandung des Gefäßes
PCT/EP2011/050254 WO2011098309A1 (fr) 2010-02-09 2011-01-11 Récipient métallurgique et procédé de fabrication d'une paroi du récipient

Publications (2)

Publication Number Publication Date
EP2533920A1 EP2533920A1 (fr) 2012-12-19
EP2533920B1 true EP2533920B1 (fr) 2014-10-22

Family

ID=44316767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11701474.6A Active EP2533920B1 (fr) 2010-02-09 2011-01-11 Recipient metallurgique et procede de fabrication d´une parois du recipient

Country Status (5)

Country Link
EP (1) EP2533920B1 (fr)
CN (1) CN102740995B (fr)
DE (1) DE102010034729A1 (fr)
ES (1) ES2523772T3 (fr)
WO (1) WO2011098309A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013224977A1 (de) * 2013-10-23 2015-04-23 Siemens Vai Metals Technologies Gmbh Stranggießkokille mit einem Temperatursensor und Herstellungsverfahren für die Stranggießkokille mit dem Temperatursensor
AT518569A1 (de) * 2016-04-27 2017-11-15 Primetals Technologies Austria GmbH Instrumentierung einer Seitenwand einer Stranggießkokille mit Lichtwellenleitern
BE1026975B1 (fr) * 2019-06-21 2020-08-12 Ebds Eng Sprl Lingotière de coulée continue de métaux, système de mesure de la température et système et procédé de détection de percée dans une installation de coulée continue de métaux
CN110578026B (zh) * 2019-09-29 2023-09-05 北京华创智芯科技有限公司 测量高炉的冷却壁温度的方法和高炉

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436331A1 (de) * 1984-10-04 1986-04-17 Mannesmann AG, 4000 Düsseldorf Einrichtung zur temperaturmessung in wassergekuehlten metallwaenden von metallurgischen gefaessen, insbesondere von stranggiesskokillen
JPH04351254A (ja) * 1991-05-24 1992-12-07 Sumitomo Metal Ind Ltd 連続鋳造におけるモールドレベル測定装置
JPH06294685A (ja) * 1993-04-08 1994-10-21 Sumitomo Metal Ind Ltd 溶湯レベル検出装置
JP3031176B2 (ja) * 1993-10-26 2000-04-10 住友金属鉱山株式会社 光ファイバ案内構造物及びその製造方法
JP3408901B2 (ja) * 1995-08-02 2003-05-19 新日本製鐵株式会社 連続鋳造におけるブレークアウト予知方法
DE10236033A1 (de) * 2002-08-06 2004-02-19 Lios Technology Gmbh Verfahren und Anordnung zum Überwachen des Erhaltungszustands der feuerfesten Auskleidung von Schmelzöfen
DE102008006965A1 (de) 2008-01-31 2009-08-06 Siemens Aktiengesellschaft Verfahren zur Ermittlung eines Strahlungsmaßes für eine thermische Strahlung, Lichtbogenofen, eine Signalverarbeitungseinrichtung sowie Programmcode und ein Speichermedium zur Durchführung des Verfahrens
DE102008029742A1 (de) * 2008-06-25 2009-12-31 Sms Siemag Aktiengesellschaft Kokille zum Gießen von Metall
DE102008060507A1 (de) 2008-07-10 2010-01-14 Sms Siemag Aktiengesellschaft Temperaturmessung in einer Kokille durch ein faseroptisches Messverfahren
DE102008060032A1 (de) * 2008-07-31 2010-02-04 Sms Siemag Aktiengesellschaft Gießspiegelmessung in einer Kokille durch ein faseroptisches Messverfahren

Also Published As

Publication number Publication date
EP2533920A1 (fr) 2012-12-19
CN102740995A (zh) 2012-10-17
WO2011098309A1 (fr) 2011-08-18
CN102740995B (zh) 2015-04-22
DE102010034729A1 (de) 2011-08-11
ES2523772T3 (es) 2014-12-01

Similar Documents

Publication Publication Date Title
EP2310155B1 (fr) Mesure de la température dans une lingotière à l'aide d'un procédé de mesure à fibre optique
EP2440883B1 (fr) Intégration d'un guide d'ondes optiques d'un capteur de mesure dans un composant
EP2533920B1 (fr) Recipient metallurgique et procede de fabrication d´une parois du recipient
EP2318162B2 (fr) Mesure du niveau du bain de coulée dans un moule par procédé de mesure à fibre optique
EP2312250B1 (fr) Récipient métallurgique
EP2483650B1 (fr) Elément capteur servant à mesurer un gradient de température
EP2145501B1 (fr) Composant à base d'une matière céramique
EP3060364B1 (fr) Lingotière de coulée continue équipée d'un capteur de température et procédé de fabrication de la lingotière de coulée continue équipée du capteur de température
DE2701130A1 (de) Ofenwandkonstruktion fuer einen hochleistungs-lichtbogenofen
WO2011144297A1 (fr) Procédé pour surveiller l'étanchéité d'un creuset de cristallisation, en particulier d'un creuset de cristallisation du silicium
EP2483013B1 (fr) Lingotière de traitement de matière métallique liquide
EP3307021B1 (fr) Procédé de détermination de la position de l'extrémité d'une électrode de four électrique, en particulier d'une électrode de type söderberg
EP2536988A1 (fr) Bras de support d'électrode d'un four de fusion métallurgique
EP2539660B1 (fr) Poche de coulée ou récipient intermédiaire servant à recevoir un métal liquide et muni d'un élément de mesure intégré permettant de détecter la température et/ou la contrainte mécanique
DE102010034315A1 (de) Verfahren zur Überwachung einer metallurgischen Anlage und metallurgische Anlage
EP2536987A1 (fr) Bloc de refroidissement d'injecteur servant de support à au moins un injecteur
EP3546906B1 (fr) Agencement de capteur de température, composant de capteur de température pour une installation métallurgique et procédé de fabrication d'un tel composant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 692364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2523772

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004748

Country of ref document: DE

Effective date: 20141204

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141022

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004748

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS GROUP GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011004748

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011004748

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150111

26N No opposition filed

Effective date: 20150723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210326

Year of fee payment: 11

Ref country code: BE

Payment date: 20210120

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220112

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 14

Ref country code: GB

Payment date: 20240119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240110

Year of fee payment: 14

Ref country code: IT

Payment date: 20240129

Year of fee payment: 14