EP3058412A1 - Modulare laservorrichtung - Google Patents

Modulare laservorrichtung

Info

Publication number
EP3058412A1
EP3058412A1 EP14796810.1A EP14796810A EP3058412A1 EP 3058412 A1 EP3058412 A1 EP 3058412A1 EP 14796810 A EP14796810 A EP 14796810A EP 3058412 A1 EP3058412 A1 EP 3058412A1
Authority
EP
European Patent Office
Prior art keywords
laser
beams
line
modules
laser beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14796810.1A
Other languages
English (en)
French (fr)
Inventor
Brice DUBOST
Emmanuel Mimoun
Jean-Philippe Schweitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3058412A1 publication Critical patent/EP3058412A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/38Heating by cathodic discharges
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/20Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers

Definitions

  • the present invention relates to an apparatus for laser annealing of substrates of large width formed of a plurality of juxtaposable laser modules without particular limitation.
  • Laser annealing is used to heat thin coatings at high temperatures, on the order of several hundred degrees, while preserving the underlying substrate.
  • the scroll speeds are of course preferably the highest possible, preferably at least several meters per minute.
  • the present invention is particularly concerned with lasers using laser diodes. These are currently the most interesting laser sources in terms of price and power.
  • each individual laser module must have side dimensions less than or equal to the length of the elementary line that it generates. If these lateral dimensions were larger, the juxtaposition of the modules would result in a discontinuous final line.
  • the present invention provides laser modules using, as a light source, laser diode arrays for generating laser lines having a length greater than or equal to the module dimension in the direction parallel to the laser line generated by said module. Furthermore, the proposed laser modules do not have the drawbacks of the lasers with vertical stack of diodes of the state of the art and form laser lines having a satisfactory quality and a depth of field sufficiently high to withstand the defects of common flatness of the glass substrates, the effects of conveying, the vibrations of the system etc., which are generally of the order of a millimeter.
  • a plurality of laser modules are aligned next to each other so that the elementary laser lines they generate combine into a single laser line of homogeneous power density over a large area. length.
  • the spatial space of the laser apparatus in the direction parallel to the main axis of the laser line is not substantially greater than the length of the line.
  • the idea underlying the present invention was to superpose two rows of diode strips, preferably substantially parallel to one another, and then to join the two parallel sets of laser beams into a laser line. unique by means of a set of mirrors described in more detail below.
  • the clever system of mirrors used to gather the beams emitted by the two rows of superimposed bars makes it possible to avoid the known drawbacks resulting from the vertical stack of laser diodes of the state of the art, that is to say the loss of quality of the laser line obtained.
  • the present invention relates to a laser apparatus comprising a plurality of laser modules each generating a laser line at a work plane, said laser modules being juxtaposed and aligned along their length so that the laser lines generated by the modules are combine in a single laser line, each of the laser modules comprising at least one means for generating a laser line,
  • said laser apparatus being characterized in that the or each means for generating a laser line comprises two alignments of laser diode arrays, wherein the arrays are aligned along their length, each emitting a focused laser beam, the two alignments being arranged parallel to each other so that the bars are staggered, the two sets of parallel laser beams generated respectively by the two rows of bars being united into a single laser line by means of a set of mirrors, the alignments of laser diode bars and the mirrors being arranged so that all the laser beams, ie the two sets of laser beams, traverse an optical path of the same length before being united into a single laser line.
  • the two superimposed diode array alignments in each laser line generation means may be perfectly identical to each other, i.e., have the same number of arrays or one of the two alignments may have one more than the other.
  • the bars of the two alignments are advantageously all identical (power, wavelength, size, etc.). In each alignment, they are preferably juxtaposed with a minimum of space between them.
  • Each array of diode arrays therefore has a periodicity with a period that is greater than or equal to the size of a bar.
  • the two alignments are arranged parallel to each other so that the bars are arranged in staggered rows, in other words the two alignments are offset by half a period so as to that each bar of an alignment is exactly equidistant from the bars closest to the other alignment.
  • Each bar array emits as many beams as the array has bars.
  • the two sets of beams emitted respectively by the two alignments are parallel to each other and reproduce the lateral offset in staggered bars.
  • the two sets of laser beams emitted by the two array alignments have traveled an optical path of the same length before being joined into a single monochromatic laser line. If this were not the case, the two sets of beams would not have the same size and / or divergence and the quality of the laser line resulting from their unification would be unsatisfactory.
  • the "first set of laser beams” will be called the set of laser beams reflected by a segmented mirror and will be called “second set of laser beams" or "Other set of laser beams” means the set whose beams pass through the gaps between segments of the segmented mirror. This second / other set of beams is not reflected by any mirror (first embodiment, shown in FIG. 1) or is reflected by a mirror which can be continuous (second embodiment, represented in FIG. 2), but also segmented.
  • first set of laser beams only one of the two sets of laser beams - hereinafter referred to as "first set of laser beams" - is redirected and brought by a set of mirrors in the plane of the second set of beams. laser beams.
  • the optical path of this first set of laser beams is then lengthened because of this change of direction.
  • the laser diode array alignment that emits the first set of laser beams is shifted - in the propagation direction of the second laser beam - a distance equal to the elongation of the optical path that entails its redirection by the set of mirrors.
  • this double reflection resulting in the union of the two sets of beams is shown in FIG.
  • these two successive reflections are at right angles, that is to say the first set of laser beams undergoes two orthogonal reflections.
  • the optical path of the first set of laser beams is then extended by the initial distance between the two propagation planes.
  • the alignment of laser diode arrays emitting the first set of laser beams is advanced - i.e. shifted in the direction of propagation of the second set of beams - by a distance equal to the distance between the two propagation planes of the two sets of beams.
  • the orthogonal double reflection is only a particular embodiment and it is quite possible to position the mirrors so as to perform two non-orthogonal reflections.
  • Those skilled in the art are able, by a simple trigonometric calculation, to calculate the offset of the first alignment of diode bars necessary to compensate for the elongation of the corresponding optical path.
  • the first reflection of the first set of laser beams towards the plane of the second set of laser beams is by means of a single mirror, hereinafter referred to as a continuous mirror.
  • a single mirror hereinafter referred to as a continuous mirror.
  • this single continuous mirror could be replaced by several mirrors placed in the same plane, this would render this part of the apparatus unnecessarily complex and the use of a segmented mirror is therefore not desirable to perform the first reflection of the first mirror. set of beams.
  • a segmented mirror consisting of at least as many mirror segments as the first set of laser beams has laser beams is therefore used for the second reflection, each beam of the first set of laser beams being reflected by a mirror segment.
  • the use of a segmented mirror takes advantage of the half-period lateral shift of two rows of diode strips. Indeed, thanks to this shift, the beams of the first set of beams are alternating with those of the second set of beams and a mirror segment of appropriate size can reflect the beams of the first set without intercepting those of the second set.
  • the first set of laser beams propagates in the plane of propagation of the second set of laser beams, the two sets forming a single monochromatic laser line.
  • the set of mirrors used in the present invention therefore preferably comprises
  • a second segmented mirror consisting of at least as many mirror segments as the first set of laser beams comprises laser beams, each beam of the first set of laser beams being reflected by a mirror segment.
  • the first and second sets of beams each undergo mirror reflection.
  • the two sets of beams are reflected at the same angle so that after this reflection, the two propagation planes of the two sets of laser beams coincide and form a single laser line.
  • the first set of laser beams is reflected by a segmented mirror that allows both to reflect the beams of the first set and to let the beams of the other set at the intervals between the mirror segments.
  • the other set of beams is preferably reflected by a continuous mirror.
  • the laser beams generated by each of the laser diode arrays are focussed beams thanks to a focusing lens at the output of the bar.
  • segments of the segmented mirror are positioned to reflect the laser beams of the first set at their focus point. This positioning of the mirror segments at the focal point of the first beams is advantageous because it makes it possible to limit as much as possible the surface of these mirror segments and thus to prevent them blocking the passage of the beams of the second set of beams. .
  • Each means of generating a laser line as described above results in the formation of a monochromatic laser line having a given linear polarization state. Indeed, all the laser diodes of the two rows of diode arrays produce laser radiation of the same wavelength and the same state of polarization. Double reflection does not change the linear polarization state of the laser radiation.
  • the laser apparatus of the present invention thus comprises at least two means for generating a laser line, each means generating a monochromatic laser line which differs from the other one or more monochromatic laser lines by its wavelength and / or its state of polarization. It comprises for example four pairs of means for generating a laser line, each pair generating two monochromatic laser lines of the same wavelength and which differ from each other by their polarization state.
  • the various laser lines thus generated, eight in number in the aforementioned example, are then combined in a known manner by means of combining laser lines into a single polychromatic laser line and / or double polarization.
  • double polarization here describes a line or a mixture of laser beams polarized in two planes perpendicular to each other.
  • the modular laser apparatus of the present invention preferably comprises at least 5 modules, in particular at least 10 modules.
  • a plurality of laser modules are aligned next to each other so that the elementary laser lines they generate combine into a single laser line of homogeneous power density over a large area. length.
  • the laser modules are juxtaposed so that the laser lines generated by the modules combine in a single laser line with a total length preferably greater than 1.2 m, in particular greater than 2 m, and ideally greater than 3 m.
  • the central part of the laser line where the power density is substantially constant preferably has a length of between 3.20 and 3. , 22 m.
  • the laser modules are assembled and mounted on the laser apparatus so that the generated laser lines cut the substrate, or working plane, preferably at a small angle, typically less than 20 °, preferably less than 10 ° by compared to normal to the substrate.
  • the apparatus may be designed so that the laser modules are stationary, the substrate to be treated moving below or above the array of modules, generally in a direction perpendicular to the main axis of the laser line .
  • the apparatus may be designed so that the substrate is fixed and the alignment of laser modules scrolls above or below the substrate by projecting the laser line preferably at right angles.
  • Figure 1 is a perspective view of a first embodiment of a means for generating a laser line.
  • Figure 2 is a perspective view of a second embodiment of a means for generating a laser line.
  • each of the alignments 1 a, 1 b here comprises only two bars.
  • the alignments comprise more than two bars, they are spaced regularly, each row of bars thus emitting a set of regularly spaced laser beams.
  • the first set of beams 3a generated by the bars 2 of the lower alignment 1a undergoes two orthogonal successive reflections: a first upward reflection provided by a continuous mirror 4, then a second reflection provided by a series of mirror segments 5 , also called segmented mirror.
  • the beams 3b of the upper laser diode array alignment 1b are not reflected.
  • the segments of the segmented mirror 5 intersect the propagation plane of the second set of beams 3b and are positioned in the intervals between the beams of the second set of beams 3b, more particularly in the vicinity of the focusing points 6 thereof where the intervals between beams are maximal.
  • the staggered arrangement of the bars 2 of the two alignments 1 a, 1 b means that, in this position, the mirrors 5 intercept and reflect the beams of the first set of beams 3a emitted by the lower alignment of diode bars 1 a. These beams are focused so as to be reflected by the mirror segments 5 at their focus point.
  • the focusing of the two sets of beams 3a, 3b is thus adjusted so that all the focusing points are aligned on the same line, which is essentially superimposed on the line defined by the second orthogonal reflection of the first set of laser beams 3a. .
  • the two sets of beams propagate in the same plane, thus forming a single laser line 8.
  • the two sets of laser beams 3a, 3b traverse an optical path of the same length before being united in a single propagation plane.
  • the two sets of beams 3a, 3b generated by the two rows of bars 1a, 1b are each reflected once.
  • the first set of beams 3a generated by the first alignment 1a is reflected at right angles by a segmented mirror 5 positioned at focus point of the beams, each mirror segment 5 reflecting a beam 3a.
  • the second set of beams 3b emitted by the second alignment of bars 1b propagates first parallel to the first set of beams 3a, then, when its plane of propagation intersects the second propagation plane of the first set of beams 1a, the second set of beams undergoes a reflection identical to that of the first set of beams which results in a superposition of the propagation planes of the two sets of beams.
  • the focal points of the first and second sets of beams are identical and the second alignment 1b of bars is positioned in such a way that the focusing points of all the beams 3a, 3b are aligned at the level of the segmented mirror 5.
  • the reflecting mirror 4 the second beam assembly 3b is a continuous mirror.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)
EP14796810.1A 2013-10-18 2014-10-13 Modulare laservorrichtung Withdrawn EP3058412A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1360143A FR3012226B1 (fr) 2013-10-18 2013-10-18 Appareil laser modulaire
PCT/FR2014/052600 WO2015055932A1 (fr) 2013-10-18 2014-10-13 Appareil laser modulaire

Publications (1)

Publication Number Publication Date
EP3058412A1 true EP3058412A1 (de) 2016-08-24

Family

ID=50101948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14796810.1A Withdrawn EP3058412A1 (de) 2013-10-18 2014-10-13 Modulare laservorrichtung

Country Status (9)

Country Link
US (1) US9742155B2 (de)
EP (1) EP3058412A1 (de)
JP (1) JP6542764B2 (de)
KR (1) KR102257001B1 (de)
CN (1) CN105659451B (de)
EA (1) EA030114B1 (de)
FR (1) FR3012226B1 (de)
TW (1) TWI643690B (de)
WO (1) WO2015055932A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758517B1 (ko) * 2015-12-23 2017-07-14 주식회사 포스코 강판 열처리 장치 및 방법
WO2017110121A1 (ja) * 2015-12-25 2017-06-29 鴻海精密工業股▲ふん▼有限公司 ラインビーム光源およびラインビーム照射装置ならびにレーザリフトオフ方法
PL3491450T3 (pl) 2016-07-27 2024-06-24 Trumpf Laser Gmbh Naświetlanie linią laserową
CN106253048B (zh) * 2016-08-30 2022-03-22 西安炬光科技股份有限公司 一种实现均匀光斑的高功率半导体激光系统
CN106229808B (zh) * 2016-09-20 2023-08-29 中国电子科技集团公司第十三研究所 脉冲激光器
CN106707503B (zh) * 2016-12-08 2017-12-12 中国人民解放军国防科学技术大学 大功率半导体堆栈笑脸校正及线宽压窄装置及方法
CN107370230A (zh) * 2017-08-29 2017-11-21 北方民族大学 一种定向激光充电系统及激光充电方法
FR3072895B1 (fr) * 2017-10-31 2019-10-18 Saint-Gobain Glass France Procede d'alignement d'une pluralite de lignes lasers
FR3073839B1 (fr) * 2017-11-23 2019-11-15 Saint-Gobain Glass France Systeme d’alignement d’un dispositif de traitement thermique et son fonctionnement
WO2019149352A1 (en) * 2018-01-31 2019-08-08 Trumpf Laser Gmbh Laser diode based line illumination source and laser line illumination
JP7021833B2 (ja) * 2018-05-17 2022-02-17 三菱電機株式会社 レーザ装置
US10822270B2 (en) 2018-08-01 2020-11-03 Guardian Glass, LLC Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same
CN109916279B (zh) * 2019-03-04 2020-09-22 Oppo广东移动通信有限公司 终端盖板的平整度检测方法、装置、测试机台及存储介质
FR3095605A1 (fr) * 2019-04-30 2020-11-06 Saint-Gobain Glass France Systeme d’alignement d’un dispositif de traitement thermique et son fonctionnement
FR3105044B1 (fr) * 2019-12-20 2022-08-12 Saint Gobain Dispositif de traitement d’un substrat
US12017298B2 (en) 2021-08-20 2024-06-25 General Electric Company Irradiation devices with optical modulators for additively manufacturing three-dimensional objects
US12030251B2 (en) 2021-08-20 2024-07-09 General Electric Company Irradiation devices with optical modulators for additively manufacturing three-dimensional objects
CN113664391B (zh) * 2021-09-03 2024-06-07 上海百琪迈科技(集团)有限公司 一种高效薄质材料组合式激光快速切割设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111702A1 (en) * 2003-06-11 2004-12-23 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1318162C (en) * 1988-09-23 1993-05-25 David Andrew Barclay Miller Arrangement for imaging multiple arrays of light beams
US5155623A (en) * 1988-09-23 1992-10-13 At&T Bell Laboratories Arrangement for imaging multiple arrays of light beams
JP3017277B2 (ja) * 1989-12-07 2000-03-06 株式会社リコー 光アニール装置
JPH05226790A (ja) * 1992-02-18 1993-09-03 Hitachi Ltd レーザアニール装置
US6356577B1 (en) * 1999-07-15 2002-03-12 Silicon Light Machines Method and apparatus for combining light output from multiple laser diode bars
US20030174405A1 (en) * 2001-08-10 2003-09-18 Hamamatsu Photonics K.K. Laser light source and an optical system for shaping light from a laser-bar-stack
JP2003103389A (ja) * 2001-09-27 2003-04-08 Toyoda Mach Works Ltd 半導体レーザ集光装置
TWI289896B (en) * 2001-11-09 2007-11-11 Semiconductor Energy Lab Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
US7010194B2 (en) * 2002-10-07 2006-03-07 Coherent, Inc. Method and apparatus for coupling radiation from a stack of diode-laser bars into a single-core optical fiber
US7768708B1 (en) * 2006-02-03 2010-08-03 Raytheon Company Light source having spatially interleaved light beams
DE102007034261B4 (de) 2007-07-20 2010-02-18 Lasos Lasertechnik Gmbh Vorrichtung zum Vereinigen einzelner Lichtstrahlen verschiedener Wellenlängen zu einem koaxialen Lichtbündel
DE102008063006A1 (de) * 2008-12-23 2010-06-24 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Erzeugung einer linienförmigen Intensitätsverteilung in einem Arbeitsbereich
US8215776B2 (en) * 2009-01-07 2012-07-10 Eastman Kodak Company Line illumination apparatus using laser arrays
CN101854031A (zh) * 2010-05-04 2010-10-06 长春德信光电技术有限公司 平行平板棱镜组实现半导体激光束耦合的激光装置
DE102010044875A1 (de) * 2010-09-09 2012-03-15 Limo Patentverwaltung Gmbh & Co. Kg Beleuchtungsvorrichtung zur Erzeugung einer linienförmigen Intensitätsverteilung in einer Arbeitsebene
US8432945B2 (en) * 2010-09-30 2013-04-30 Victor Faybishenko Laser diode combiner modules
JP2012216733A (ja) * 2011-04-01 2012-11-08 Japan Steel Works Ltd:The レーザ処理プロセスの温度測定装置および温度測定方法
US8842369B2 (en) * 2012-11-19 2014-09-23 Corning Incorporated Method and apparatus for combining light sources

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111702A1 (en) * 2003-06-11 2004-12-23 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars

Also Published As

Publication number Publication date
WO2015055932A1 (fr) 2015-04-23
CN105659451A (zh) 2016-06-08
JP6542764B2 (ja) 2019-07-10
FR3012226B1 (fr) 2015-10-30
TWI643690B (zh) 2018-12-11
KR20160074480A (ko) 2016-06-28
KR102257001B1 (ko) 2021-05-27
EA201690770A1 (ru) 2016-08-31
US20160241001A1 (en) 2016-08-18
FR3012226A1 (fr) 2015-04-24
TW201527022A (zh) 2015-07-16
EA030114B1 (ru) 2018-06-29
US9742155B2 (en) 2017-08-22
JP2016541108A (ja) 2016-12-28
CN105659451B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
EP3058412A1 (de) Modulare laservorrichtung
EP3060957B1 (de) Modulares lasergerät
US9691923B2 (en) Apparatus for and method of forming plural groups of laser beams using two rotating diffractive optical elements
US20140009829A1 (en) Method for partitioning and incoherently summing a coherent beam
KR101582632B1 (ko) 프레넬 영역 소자를 이용한 기판 절단 방법
EP2809476A2 (de) Lasersystem mit mehreren laserpulsen zur herstellung von solarzellen
WO2017032947A1 (fr) Appareil laser comprenant plusieurs modules laser generant chacun une ligne, les lignes se recouvrant avec un decalage dans le sens de la largeur
EP3826798A1 (de) Optische vorrichtung und verfahren zur bereitstellung von zwei versetzten laserstrahlen
BE1027700B1 (fr) Dispositif pour un système optique d’usinage laser
WO2015181137A1 (fr) Systeme de recombinaison spatiale d'impulsions laser ultra-breves par un element diffractif
CA3202454A1 (fr) Dispositif d'amplification d'un faisceau laser
CA3132943A1 (fr) Procede de realisation d'un effet d'irisation sur la surface d'un materiau, et dispositifs pour sa mise en oeuvre
WO2007026084A1 (fr) Dispositif de pompage optique
EP4327140A1 (de) Vorrichtung zur erzeugung eines polychromatischen lichtstrahls durch kombination mehrerer einzelner lichtstrahlen
WO2024002600A1 (fr) Dispositif optique de balayage d'un faisceau lumineux sur une pièce à usiner
FR2924039A1 (fr) Systeme de marquage de pieces comportant plusieurs lasers et procede de marquage utilisant un tel systeme
TWI557802B (zh) 用於在半導體基板上形成直線投射之方法及裝置
FR3146518A1 (fr) Dispositif de mesure optique multipoints, utilisation et procédé associés
FR3048137A1 (fr) Systeme d'amplification laser et procede de correction d'un profil transversal asymetrique de pression de radiation dans un milieu a activite laser d'un corps solide
EP1617471A1 (de) Halbleiterlaservorrichtung
FR2878387A1 (fr) Dispositif et procede de compression temporelle d'une impulsion electromagnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/38 20060101ALI20220503BHEP

Ipc: C21D 9/50 20060101ALI20220503BHEP

Ipc: B23K 26/073 20060101ALI20220503BHEP

Ipc: B23K 26/06 20140101ALI20220503BHEP

Ipc: H01S 5/40 20060101ALI20220503BHEP

Ipc: G02B 27/14 20060101ALI20220503BHEP

Ipc: B23K 26/00 20140101ALI20220503BHEP

Ipc: G02B 19/00 20060101AFI20220503BHEP

INTG Intention to grant announced

Effective date: 20220524

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221005