EP3034711B1 - Ceilings edge formwork element - Google Patents

Ceilings edge formwork element Download PDF

Info

Publication number
EP3034711B1
EP3034711B1 EP15200570.8A EP15200570A EP3034711B1 EP 3034711 B1 EP3034711 B1 EP 3034711B1 EP 15200570 A EP15200570 A EP 15200570A EP 3034711 B1 EP3034711 B1 EP 3034711B1
Authority
EP
European Patent Office
Prior art keywords
ceiling
insulating body
concrete
marge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15200570.8A
Other languages
German (de)
French (fr)
Other versions
EP3034711A1 (en
Inventor
Andreas Dr. Huther
Alois BÄRTLE
Maximilian Ernst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puren GmbH
Original Assignee
Puren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puren GmbH filed Critical Puren GmbH
Publication of EP3034711A1 publication Critical patent/EP3034711A1/en
Application granted granted Critical
Publication of EP3034711B1 publication Critical patent/EP3034711B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B2005/322Floor structures wholly cast in situ with or without form units or reinforcements with permanent forms for the floor edges

Definitions

  • the invention relates to a slab edge formwork element with an insulating body made of PUR and/or PIR rigid foam, which is intended to insulate the edge of a concrete slab, and with a separating layer, which is intended to decouple the insulating body from the concrete slab.
  • a slab edge formwork element with an insulating body made of polystyrene foam, which is intended to insulate the edge of a concrete slab, has already been proposed, the insulating body being connected to the concrete slab while the concrete slab is being poured.
  • a ceiling edge formwork element which is provided with an insulating body made of PUR rigid foam and a separating layer for separating the insulating body from the concrete ceiling.
  • the object of the present invention is in particular to provide a generic device with improved thermal insulation and reduced costs.
  • the object is achieved according to the invention by the features of patent claim 1, while advantageous configurations and developments of the invention can be found in the dependent claims.
  • the invention is based on a slab edge formwork element with an insulating body made of PUR and/or PIR rigid foam, which is intended to insulate the edge of a concrete slab, and with a separating layer, which is intended to mechanically decouple the insulating body from the concrete slab .
  • Tensile loading of the insulating body due to shrinkage of the concrete cover while the concrete cover is curing can be prevented.
  • displacement of the insulating body due to tension from a shrinking concrete cover is reduced and the insulating body can be designed with a smaller component depth with the same stability in relation to the tension of the shrinking concrete cover.
  • the insulating body made of PUR and/or PIR rigid foam has better fire behavior, in particular compared to insulating bodies made of polystyrene, as a result of which advantageous fire protection can be achieved.
  • PUR rigid foam is to be understood as meaning a foam material made from polyurethane.
  • PIR rigid foam is to be understood as meaning a foam material made from polyisocyanurate (trimerized polyurethane).
  • an “insulating body made of PUR and/or PIR rigid foam” should be understood to mean an insulating body which consists at least essentially of PUR and/or PIR rigid foam.
  • a body that "consists at least essentially of PUR and/or PIR rigid foam" is to be understood in this context as meaning a body whose material is at least ninety percent of the volume of the body, without a volume of enclosed cavities in the body air and/or without the volume of cell gas trapped in body cavities, is formed from PUR and/or PIR.
  • further materials can be incorporated into the material of the body, which take up a maximum of ten percent of the volume of the body, without the volume of air trapped in cavities of the body and/or without the volume of cell gas trapped in cavities of the body.
  • a separating layer is provided to decouple the insulating body from the concrete ceiling
  • the separating layer is connected to poured concrete when the concrete ceiling is poured, separates the insulating body from the concrete and is intended for this purpose
  • Tensile stress exerted on the interface by shrinkage of the concrete pavement during hardening of the concrete, by elastic expansion and/or by tearing away from the concrete pavement or insulation body, which may create an air gap between the interface and the concrete pavement or insulation body, a transfer to prevent the tensile load on the insulating body.
  • an elastic material applied to the insulating body is proposed, which forms the separating layer.
  • a continuous layer of material can be achieved between the insulating body and the concrete cover.
  • high thermal insulation can be achieved.
  • An “elastic material” is to be understood in particular as a material that can be repeatedly deformed without mechanically damaging or destroying an element made of the material and that, in particular after deformation, automatically returns to a basic shape.
  • the elastic material is preferably formed from an elastic plastic.
  • the separating layer can be stretched or stretched elastically by at least two millimeters.
  • shrinkage of the concrete during setting and curing can be compensated.
  • an advantageous adaptation to shrinking concrete is achieved.
  • the separating layer preferably has a longitudinal extension along the component depth of the insulating body, which is a maximum of ten millimeters, particularly preferably a maximum of five millimeters.
  • the separating layer consists of a PE foam.
  • a PE foam is to be understood as meaning a foam material which essentially consists of polyethylene.
  • the insulating body has an inside with a coating that forms the separating layer.
  • a separating layer that can be produced with little effort can be achieved.
  • An "inside" of the insulating body is to be understood as meaning a side of the insulating body that is intended to be arranged facing the concrete ceiling and which faces away from a side of the insulating body that is intended to be provided with plaster.
  • a “coating” is to be understood as meaning a film or paint layer applied to the inside.
  • a layer thickness of the separating layer in an uncompressed state is at most one tenth of a component depth of the insulating body amounts to.
  • a slab edge formwork element with a reduced component depth can be achieved.
  • the wall thickness of the wall on which the ceiling edge formwork element and the concrete ceiling rest can thus be reduced.
  • the insulating body has a nominal value of thermal conductivity ⁇ D of less than 0.035 W/(m K), preferably less than 0.030 W/(m K) and particularly preferably less than 0.026 W/(m K) .
  • ⁇ D the nominal value of thermal conductivity
  • ⁇ D the nominal value of thermal conductivity
  • the insulating body has an upper side with a UV protection layer which is intended to shield the insulating body from UV radiation.
  • the PUR and/or PIR rigid foam of the insulating body can thus be protected from damage and the associated reduction in thermal insulation caused by UV light striking the ceiling edge formwork element while the concrete ceiling is curing.
  • an interruption of several days or several weeks to erecting a building in which the ceiling edge formwork element is used can be made possible without the ceiling edge formwork element subsequently having to be replaced in order to ensure thermal insulation.
  • additional costs arising from interruptions in construction can be avoided.
  • other sides of the insulating body can also have a UV protective layer.
  • the UV protection layer consists of a material that absorbs UV radiation, for example a UV-resistant elastomer.
  • the UV protective layer is preferably sprayed or otherwise applied to the insulating body after it has been produced, with a material of the UV protective layer penetrating into cavities in the insulating body on the upper side and is thus partially arranged within the insulating body.
  • the UV protection layer can also be arranged only on one surface of the insulating body, without penetrating cavities in the insulating body.
  • the UV protection layer can consist of a quartz base, which is applied to the insulating body as a pasty mass and forms a layer with a layer thickness of approximately half a millimeter to two millimeters.
  • the UV protection layer can also be arranged entirely on the upper side.
  • the insulating body has an outside with a plaster base layer which is intended to accommodate an external plaster of a building.
  • a plaster base layer which is intended to accommodate an external plaster of a building.
  • an additional cover layer can be dispensed with.
  • a wall thickness can be reduced.
  • An "outside” is to be understood in this context as meaning a side of the insulating body which is located on an outside in a fully built state of a building and which is opposite a side on which the separating layer is arranged.
  • a "plaster base layer” is to be understood in this context as a layer which is intended to form a basis for applying a plaster system for an external plaster of a building wall.
  • the plaster base layer has a layer thickness of several millimeters and is therefore significantly thicker than other layers such as the UV protection layer.
  • a “plaster system” is to be understood in particular as a layered structure with at least one plaster layer.
  • the plaster system preferably comprises three plaster layers, a base coat, a carrier layer and a top coat.
  • the outside of the insulating body can also be provided for connecting the external plaster without an intermediate support.
  • the outside of the insulating body is preferably designed to be open-pored in order to form a positive and/or material connection with the plaster system.
  • the insulating body preferably also has a UV protection layer on the outside.
  • a slab edge formwork with a large number of slab edge formwork elements is proposed.
  • a tensile load on the insulating body due to shrinkage of the concrete cover during hardening of the concrete cover can be reduced.
  • a relative expansion of the insulating body due to the train of a shrinking concrete cover can thus be reduced and the insulating body can be the same stability against the pull of the shrinking concrete cover can be designed with a lower longitudinal extension.
  • the wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced without reducing the stability of the support due to the design with a smaller longitudinal extension. As a result, wall material can be saved and production costs for a structure can be reduced.
  • a method for producing a structure in particular a building with at least one concrete ceiling, is proposed, in which at least one ceiling edge formwork element according to the invention is used.
  • a wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced while maintaining a support stability.
  • wall material can be saved and costs can be reduced.
  • the ceiling edge formwork element is glued to a wall on its underside.
  • the slab edge formwork element can be securely fastened and the position of the concrete slab secured during casting.
  • a concrete slab is cast, with the slab edge formwork element forming part of a slab edge formwork of the concrete slab.
  • a slab edge formwork with a lower component depth than with insulating bodies can be achieved.
  • a wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced without reducing support stability.
  • wall material can be saved and production costs for the structure can be reduced.
  • a structure produced by the method according to the invention is proposed.
  • a building with reduced wall thicknesses of a wall on which the slab edge formwork and the concrete slab rest can be achieved. This can Wall material is saved and manufacturing costs for the building can be reduced.
  • the figures 1 and 2 show a ceiling edge formwork element 10a with an insulating body 11a made of PUR and PIR rigid foam, which insulates a ceiling edge of a concrete ceiling 21a, and with a separating layer 12a, which decouples the insulating body 11a from the concrete ceiling 21a.
  • an insulating body 11a made of PUR and PIR rigid foam, which insulates a ceiling edge of a concrete ceiling 21a, and with a separating layer 12a, which decouples the insulating body 11a from the concrete ceiling 21a.
  • Ninety percent of the volume of the insulating body 11a without a volume of air in cavities, consists of a mixture of rigid PUR foam and rigid PIR foam in the same proportions by volume.
  • the insulating body 11a can also be made entirely of rigid PUR foam or rigid PIR foam or of a mixture with unequal proportions of rigid PUR foam and PIR rigid foam.
  • figure 1 shows a detail of a building 20a, in which
  • the insulating body 11a has an inner side 14a which faces the edge of the concrete slab 21a, an outer side 15a which is arranged opposite the inner side 14a, an underside 16a with which the insulating body 11a rests on a lower wall 22a and an upper side 17a , which is opposite the underside 16a and on which an upper wall 23a rests in a illustrated finished state of construction.
  • the insulating body 11a is glued to the wall 22a on the underside 16a.
  • the walls 22a, 23a are intended to be plastered without an additional thermal insulation composite system.
  • the walls 22a, 23a can be designed, for example, as brick masonry or as masonry made of aerated concrete blocks.
  • a U-value of the walls 22a, 23a is less than 0.15 W/(m 2 K).
  • a component depth 25a of the insulating body 11a parallel to a wall thickness 27a of the lower wall 22a is at least 80 millimeters; in this exemplary embodiment, the component depth 25a is 120 millimeters.
  • a height extension 26a of the insulating body 11a is 200 millimeters and corresponds to a ceiling thickness 28a of the concrete ceiling 21a. The insulating body 11a is cut to size in order to adapt its height extension 26a to the ceiling thickness 28a of the concrete ceiling 21a.
  • the separating layer 12a is connected to the concrete of the concrete cover 21a.
  • concrete cover 21a When the concrete cover 21a is poured, concrete is bonded to the separating layer 12a.
  • the concrete shrinks and exerts a tensile force on the release liner 12a.
  • the separating layer 12a absorbs this tensile force and reduces the exertion of the tensile force on the insulating body 11a.
  • An elastic material applied to the insulating body 11a forms the separating layer 12a.
  • the elastic material is applied to the inside 14a of the insulating body 11a and is fastened to the insulating body 11a by means of adhesive beads 13a.
  • the elastic material can have adhesive properties and can stick to the inside 14a of the insulating body 11a or be connected to the inside 14a of the insulating body 11a over a large area by means of a continuous adhesive layer.
  • the elastic material of the separating layer 12a is stretched by the tensile force of the shrinking concrete and the tensile force is converted into a stretching of the elastic material implemented so that a transmission of the tensile force is prevented on the insulating body 11a.
  • the separating layer 12a consists of a PE foam.
  • the PE foam has a nominal value of thermal conductivity ⁇ D measured according to European DIN EN 13165 of 0.040 W/(m ⁇ K).
  • the separating layer 12a In an uncompressed state, the separating layer 12a has a layer thickness 24a of five millimeters.
  • the elastic material can be elastically stretched by at least two millimeters. An expansion of two millimeters can be done non-destructively from the uncompressed state. The elastic material can thus be stretched non-destructively by forty percent of a layer thickness 24a in the uncompressed state. A shrinkage of the concrete of the concrete cover 21a by two millimeters during setting and hardening is thus completely converted into an expansion of the elastic material without a tensile load being exerted on the insulating body 11a.
  • the layer thickness 24a of the separating layer 12a in the uncompressed state is one twenty-fourth of the component depth 25a of the insulating body 11a.
  • the layer thickness 24a of the separating layer 12a in the uncompressed state can be up to a tenth of the component depth 25a of the insulating body 11a.
  • the insulating body 11a has a nominal value of thermal conductivity ⁇ D measured according to European DIN EN 13165, which is 0.027 W/(m ⁇ K) or less. In alternative embodiments, the insulating body 11a can have different nominal values for a thermal conductivity ⁇ D that are less than 0.035 W/(m ⁇ K).
  • the nominal value of a thermal conductivity ⁇ D of the insulating body 11a is therefore approximately one hundredth or a few hundredths of the nominal value of a thermal conductivity ⁇ of concrete, which is approximately 2.1 W/(m*K). The insulating body 11a thus achieves high thermal insulation in the contact area of the lower wall 22a, the concrete cover 21a and the upper wall 23a.
  • the insulating body 11a has a UV protection layer 18a on its upper side 17a, which is intended to shield the insulating body 11a from UV radiation.
  • the UV protection layer 18a is designed as a layer made of UV-resistant polymers, in which UV radiation is absorbed.
  • the insulating body 11a is provided by means of the UV protection layer 18a protected against decomposition of the PUR rigid foam and the PIR rigid foam, even if the ceiling edge formwork element 10a is exposed to the influence of light over a long period of time due to construction interruptions.
  • the UV protective layer 18a has been applied to the insulating body 11a after it has been produced, with the UV protective layer 18a partially penetrating the surface into cavities of the insulating body 11a.
  • the UV protection layer 18a has a layer thickness of half a millimeter.
  • the UV protection layer 18a can have a smaller layer thickness, for example a layer thickness of a tenth of a millimeter.
  • the UV protective layer 18a can also consist of a quartz base, which is applied to the insulating body as a pasty mass and forms a UV protective layer 18a with a layer thickness of between half a millimeter and two millimeters.
  • the insulating body 11a also has a plaster base layer 19a on its outer side 15a, which is intended to accommodate an external plaster of a building 20a.
  • the exterior plaster is designed as a layered structure with three plaster layers, a base coat, a carrier layer and a top coat.
  • the plaster base layer 19a has a thickness of several millimeters and is significantly thicker than the UV protection layer 18a.
  • a material of the plaster base layer 19a has been sprayed onto the insulating body 11a after it has been produced and has penetrated into cavities in the PUR rigid foam and PIR rigid foam of the insulating body 11a.
  • a multiplicity of slab edge formwork elements 10a which are placed together, form a slab edge formwork which surrounds the concrete slab 21a at one edge during casting.
  • Ceiling edge formwork elements 10a which are arranged in a finished state of the structure 20a at building corners, are covered by plaster base layers 19a on all outer sides that are not covered by the upper wall 23a in the finished state.
  • the plaster base layers 19a also protect the insulating body 11a from UV radiation, which is absorbed in the plaster base layer 19a.
  • a structure 20a which is designed, for example, as a building with at least one concrete ceiling 21a and in which the ceiling edge formwork elements 10a according to the invention are used
  • the ceiling edge formwork element 10a is attached to its underside 16a glued to a wall 22a.
  • Gluing takes place with a customary adhesive for attaching foam elements to a material of the wall 22a.
  • the underside 16a of the ceiling edge formwork element 10a is formed by the insulating body 11a.
  • the insulating body 11a is provided on the underside 16a to be connected to the wall 22a, 23a by gluing.
  • the slab edge formwork element 10a is free of additional fastening elements, such as in particular an additional leg which is intended to be covered by the concrete slab.
  • the separating layer 12a forms a flat surface which is intended for contact with the concrete cover 21a. Of the top wheel formwork element 10a, only the separating layer 12a is provided for contact with the concrete top 21a.
  • the concrete slab 21a is poured, with the slab edge formwork element 10a forming part of a slab edge formwork for the wall 22a.
  • a tensile force during the setting and hardening of the concrete is converted into an expansion of the elastic material that forms the separating layers 12a of the slab edge formwork elements 10a, so that a tensile force on the insulating body 11a of the slab edge formwork elements 10a is avoided.
  • FIG 3 shows a structure 20a that was produced with the method described above.
  • Structure 20a is designed as a building.
  • the building has building exteriors with the lower wall 22a and the upper wall 23a, between which ceiling edge formwork with ceiling edge formwork elements 10a is arranged, as well as building openings 29a, 30a and 31a, which are designed as windows or doors.
  • Figures 1 to 3 is referenced. To distinguish between the exemplary embodiments, the letter a is the reference number of the exemplary embodiment in FIGS Figures 1 to 3 adjusted. In the embodiment of figure 4 the letter a is replaced by the letter b.
  • figure 4 shows a second embodiment of the ceiling edge formwork element 10b with an insulating body 11b made of PUR and PIR rigid foam, which insulates a ceiling edge of a concrete ceiling, and with a separating layer 12b, which decouples the insulating body 11b from the concrete ceiling (not shown).
  • the insulating body 11b has an inner side 14b with a coating that forms the separating layer 12b.
  • the coating is in the form of a lacquer which is applied to the inside 14b.
  • the coating contacts poured concrete of the concrete pavement.
  • the concrete of the concrete cover sets and hardens, the concrete exerts a tensile force on the coating as it shrinks and the coating tears away from the insulating body 11b, as a result of which an air gap is formed between the insulating body 11b and the concrete cover.
  • the tensile force is thus only transmitted to the separating layer 12b and the insulating body 11b is decoupled from the tensile force.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Deckenrandschalungselement mit einem Dämmkörper aus PUR- und/oder PIR-Hartschaum, der dazu vorgesehen ist, einen Deckenrand einer Betondecke zu dämmen, und mit einer Trennschicht, die dazu vorgesehen ist, den Dämmkörper von der Betondecke zu entkoppeln.The invention relates to a slab edge formwork element with an insulating body made of PUR and/or PIR rigid foam, which is intended to insulate the edge of a concrete slab, and with a separating layer, which is intended to decouple the insulating body from the concrete slab.

Es ist bereits ein Deckenrandschalungselement mit einem Dämmkörper aus einem Polystyrol-Schaum, der dazu vorgesehen ist, einen Deckenrand einer Betondecke zu dämmen, vorgeschlagen worden, wobei der Dämmkörper während eines Gusses der Betondecke mit der Betondecke verbunden ist.A slab edge formwork element with an insulating body made of polystyrene foam, which is intended to insulate the edge of a concrete slab, has already been proposed, the insulating body being connected to the concrete slab while the concrete slab is being poured.

Aus dem Stand der Technik DE202013000496U1 ist ein Deckenrandschalungselement bekannt, das mit einem Dämmkörper aus PUR-Hartschaum und einer Trennschicht zur Trennung des Dämmkörpers von der Betondecke, vorgesehen ist.State of the art DE202013000496U1 a ceiling edge formwork element is known, which is provided with an insulating body made of PUR rigid foam and a separating layer for separating the insulating body from the concrete ceiling.

Die Aufgabe der vorliegenden Erfindung besteht insbesondere darin, eine gattungsgemäße Vorrichtung mit einer verbesserten Wärmedämmung und verringerten Kosten bereitzustellen. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.The object of the present invention is in particular to provide a generic device with improved thermal insulation and reduced costs. The object is achieved according to the invention by the features of patent claim 1, while advantageous configurations and developments of the invention can be found in the dependent claims.

Vorteile der ErfindungAdvantages of the Invention

Die Erfindung geht aus von einem Deckenrandschalungselement mit einem Dämmkörper aus PUR- und/oder PIR-Hartschaum, der dazu vorgesehen ist, einen Deckenrand einer Betondecke zu dämmen, und mit einer Trennschicht, die dazu vorgesehen ist, den Dämmkörper von der Betondecke mechanisch zu entkoppeln. Es kann eine Zugbelastung des Dämmkörpers durch ein Schrumpfen der Betondecke während eines Aushärtens der Betondecke verhindert werden. Dadurch wird eine Verschiebung des Dämmkörpers durch Zug einer schrumpfenden Betondecke vermindert und der Dämmkörper kann bei gleicher Stabilität gegenüber dem Zug der schrumpfenden Betondecke mit einer geringeren Bauteiltiefe ausgeführt werden. Durch die Ausführung mit geringerer Bauteiltiefe kann eine Wandstärke einer Wand, auf der das Deckenrandschalungselement und die Betondecke aufliegen, verringert werden, ohne eine Auflagestabilität zu verringern. Dadurch kann Wandmaterial eingespart und es können Herstellungskosten für ein Bauwerk reduziert werden. Ferner weist der Dämmkörper aus PUR- und/oder PIR-Hartschaum insbesondere gegenüber Dämmkörpern aus Polystyrol ein besseres Brandverhalten auf, wodurch ein vorteilhafter Brandschutz erreicht werden kann.The invention is based on a slab edge formwork element with an insulating body made of PUR and/or PIR rigid foam, which is intended to insulate the edge of a concrete slab, and with a separating layer, which is intended to mechanically decouple the insulating body from the concrete slab . Tensile loading of the insulating body due to shrinkage of the concrete cover while the concrete cover is curing can be prevented. As a result, displacement of the insulating body due to tension from a shrinking concrete cover is reduced and the insulating body can be designed with a smaller component depth with the same stability in relation to the tension of the shrinking concrete cover. Due to the design with a lower component depth a wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced without reducing support stability. As a result, wall material can be saved and production costs for a structure can be reduced. Furthermore, the insulating body made of PUR and/or PIR rigid foam has better fire behavior, in particular compared to insulating bodies made of polystyrene, as a result of which advantageous fire protection can be achieved.

Unter "vorgesehen" soll insbesondere speziell programmiert, ausgelegt und/oder ausgestattet verstanden werden. Darunter, dass ein Objekt zu einer bestimmten Funktion vorgesehen ist, soll insbesondere verstanden werden, dass das Objekt diese bestimmte Funktion in zumindest einem Anwendungs- und/oder Betriebszustand erfüllt und/oder ausführt. Unter einem "PUR-Hartschaum" soll ein Schaummaterial aus Polyurethan verstanden werden. Unter einem "PIR-Hartschaum" soll ein Schaummaterial aus Polyisocyanurat (trimerisierter Polyurethan) verstanden werden. Unter einem "Dämmkörper aus PUR- und/oder PIR-Hartschaum" soll in diesem Zusammenhang ein Dämmkörper verstanden werden, der zumindest im Wesentlichen aus PUR- und/oder PIR-Hartschaum besteht. Unter einem Körper, der "zumindest im Wesentlichen aus PUR- und/oder PIR-Hartschaum besteht", soll in diesem Zusammenhang ein Körper verstanden werden, dessen Material zumindest zu neunzig Prozent eines Volumens des Körpers, ohne ein Volumen von in Hohlräumen des Körpers eingeschlossener Luft und/oder ohne das Volumen von in Hohlräumen des Körpers eingeschlossenem Zellgas, aus PUR und/oder PIR gebildet ist. Grundsätzlich können weitere Materialien in das Material des Körpers eingearbeitet sein, welche maximal zehn Prozent des Volumens des Körpers, ohne das Volumen von in Hohlräumen des Körpers eingeschlossener Luft und/oder ohne das Volumen von in Hohlräumen des Körpers eingeschlossenem Zellgas, einnehmen. Darunter, dass "eine Trennschicht dazu vorgesehen ist, den Dämmkörper von der Betondecke zu entkoppeln" soll in diesem Zusammenhang verstanden werden, dass die Trennschicht bei Guss der Betondecke mit gegossenem Beton verbunden wird, den Dämmkörper von dem Beton trennt und dazu vorgesehen ist, bei Zugbelastung, die durch Schrumpfung der Betondecke während des Aushärtens des Betons auf die Trennschicht ausgeübt wird, durch elastische Ausdehnung und/oder durch Abreißen von der Betondecke oder dem Dämmkörper, wobei ein Luftspalt zwischen der Trennschicht und der Betondecke oder dem Dämmkörper entstehen kann, eine Übertragung der Zugbelastung auf den Dämmkörper zu verhindern.“Provided” should be understood to mean, in particular, specially programmed, designed and/or equipped. The fact that an object is provided for a specific function is to be understood in particular to mean that the object fulfills and/or executes this specific function in at least one application and/or operating state. A "PUR rigid foam" is to be understood as meaning a foam material made from polyurethane. A "PIR rigid foam" is to be understood as meaning a foam material made from polyisocyanurate (trimerized polyurethane). In this context, an “insulating body made of PUR and/or PIR rigid foam” should be understood to mean an insulating body which consists at least essentially of PUR and/or PIR rigid foam. A body that "consists at least essentially of PUR and/or PIR rigid foam" is to be understood in this context as meaning a body whose material is at least ninety percent of the volume of the body, without a volume of enclosed cavities in the body air and/or without the volume of cell gas trapped in body cavities, is formed from PUR and/or PIR. In principle, further materials can be incorporated into the material of the body, which take up a maximum of ten percent of the volume of the body, without the volume of air trapped in cavities of the body and/or without the volume of cell gas trapped in cavities of the body. The fact that "a separating layer is provided to decouple the insulating body from the concrete ceiling" should be understood in this context to mean that the separating layer is connected to poured concrete when the concrete ceiling is poured, separates the insulating body from the concrete and is intended for this purpose Tensile stress exerted on the interface by shrinkage of the concrete pavement during hardening of the concrete, by elastic expansion and/or by tearing away from the concrete pavement or insulation body, which may create an air gap between the interface and the concrete pavement or insulation body, a transfer to prevent the tensile load on the insulating body.

In der Erfindung wird ein auf den Dämmkörper aufgebrachtes elastisches Material vorgeschlagen, welches die Trennschicht ausbildet. Dadurch kann nach Schrumpfung der Betondecke eine durchgehende Materialschicht zwischen Dämmkörper und Betondecke erreicht werden. Dadurch kann eine hohe Wärmedämmung erreicht werden. Unter einem "elastischen Material" soll insbesondere ein Material verstanden werden, das wiederholt verformbar ist, ohne dass dadurch ein aus dem Material bestehendes Element mechanisch beschädigt oder zerstört wird, und das insbesondere nach einer Verformung selbstständig wieder einer Grundform zustrebt. Das elastische Material ist bevorzugt von einem elastischen Kunststoff gebildet.In the invention, an elastic material applied to the insulating body is proposed, which forms the separating layer. As a result, after the concrete cover has shrunk, a continuous layer of material can be achieved between the insulating body and the concrete cover. As a result, high thermal insulation can be achieved. An “elastic material” is to be understood in particular as a material that can be repeatedly deformed without mechanically damaging or destroying an element made of the material and that, in particular after deformation, automatically returns to a basic shape. The elastic material is preferably formed from an elastic plastic.

In einer Weiterbildung der Erfindung wird vorgeschlagen, dass die Trennschicht elastisch um mindestens zwei Millimeter gestreckt oder gedehnt werden kann. Dadurch kann eine Schrumpfung des Betons während eines Abbindens und Aushärtens ausgeglichen werden. Insbesondere wird eine vorteilhafte Anpassung an schrumpfenden Beton erzielt. Bevorzugt weist die Trennschicht eine Längsausdehnung entlang der Bauteiltiefe des Dämmkörpers auf, die maximal zehn Millimeter, besonders bevorzugt maximal fünf Millimeter beträgt.In a development of the invention, it is proposed that the separating layer can be stretched or stretched elastically by at least two millimeters. As a result, shrinkage of the concrete during setting and curing can be compensated. In particular, an advantageous adaptation to shrinking concrete is achieved. The separating layer preferably has a longitudinal extension along the component depth of the insulating body, which is a maximum of ten millimeters, particularly preferably a maximum of five millimeters.

Des Weiteren wird vorgeschlagen, dass die Trennschicht aus einem PE-Schaum besteht. Dadurch kann eine kostengünstige Trennschicht mit einer geringen Wärmeleitfähigkeit erreicht werden. Unter einem "PE-Schaum" soll in diesem Zusammenhang ein Schaummaterial verstanden werden, das im Wesentlichen aus Polyethylen besteht.Furthermore, it is proposed that the separating layer consists of a PE foam. As a result, a cost-effective separating layer with low thermal conductivity can be achieved. In this context, a “PE foam” is to be understood as meaning a foam material which essentially consists of polyethylene.

In einer zweiten Ausführungsform der Erfindung wird vorgeschlagen, dass der Dämmkörper eine Innenseite mit einer Beschichtung aufweist, die die Trennschicht ausbildet. Es kann dadurch eine mit einem geringen Aufwand herstellbare Trennschicht erreicht werden. Unter einer "Innenseite" des Dämmkörpers soll eine Seite des Dämmkörpers verstanden werden, die dazu vorgesehen ist, der Betondecke zugewandt angeordnet zu werden und die von einer Seite des Dämmkörpers, die dazu vorgesehen ist, mit einem Putz versehen zu werden, abgewandt ist. Unter einer "Beschichtung" soll in diesem Zusammenhang eine auf die Innenseite aufgebrachte Folie oder Lackschicht verstanden werden.In a second embodiment of the invention, it is proposed that the insulating body has an inside with a coating that forms the separating layer. As a result, a separating layer that can be produced with little effort can be achieved. An "inside" of the insulating body is to be understood as meaning a side of the insulating body that is intended to be arranged facing the concrete ceiling and which faces away from a side of the insulating body that is intended to be provided with plaster. In this context, a “coating” is to be understood as meaning a film or paint layer applied to the inside.

Ferner wird vorgeschlagen, dass eine Schichtdicke der Trennschicht in einem unkomprimierten Zustand maximal ein Zehntel einer Bauteiltiefe des Dämmkörpers beträgt. Dadurch kann ein Deckenrandschalungselement mit einer verringerten Bauteiltiefe erreicht werden. Somit kann die Wandstärke der Wand, auf der das Deckenrandschalungselement und die Betondecke aufliegen, verringert werden. Durch eine verringerte Wandstärke kann Wandmaterial eingespart und Herstellungskosten können reduziert werden.Furthermore, it is proposed that a layer thickness of the separating layer in an uncompressed state is at most one tenth of a component depth of the insulating body amounts to. As a result, a slab edge formwork element with a reduced component depth can be achieved. The wall thickness of the wall on which the ceiling edge formwork element and the concrete ceiling rest can thus be reduced. By reducing the wall thickness, wall material can be saved and production costs can be reduced.

Des Weiteren wird vorgeschlagen, dass der Dämmkörper einen Nennwert einer Wärmeleitfähigkeit λD kleiner als 0,035 W/(m·K) aufweist, bevorzugt kleiner als 0,030 W/(m·K) und besonders bevorzugt kleiner als 0,026 W/(m·K). Dadurch kann ein Deckenrandschalungselement mit einer hohen Wärmedämmungswirkung bereitgestellt werden. Durch die hohe Wärmedämmungswirkung kann eine Bauteiltiefe des Dämmkörpers verringert werden. Somit kann die Wandstärke der Wand, auf der das Deckenrandschalungselement und die Betondecke aufliegen, verringert werden. Durch eine verringerte Wandstärke kann Wandmaterial eingespart werden und es können Herstellungskosten eines Bauwerks verringert werden. Unter einem "Nennwert einer Wärmeleitfähigkeit" soll dabei hier und im Folgenden insbesondere ein nach DIN EN 13165 ermittelter Nennwert einer Wärmeleitfähigkeit verstanden werden.Furthermore, it is proposed that the insulating body has a nominal value of thermal conductivity λ D of less than 0.035 W/(m K), preferably less than 0.030 W/(m K) and particularly preferably less than 0.026 W/(m K) . As a result, a slab edge formwork element with a high thermal insulation effect can be provided. Due to the high thermal insulation effect, a component depth of the insulating body can be reduced. The wall thickness of the wall on which the ceiling edge formwork element and the concrete ceiling rest can thus be reduced. Wall material can be saved as a result of a reduced wall thickness and the production costs of a building can be reduced. A “nominal value of a thermal conductivity” is to be understood here and in the following in particular as a nominal value of a thermal conductivity determined according to DIN EN 13165.

Weiterhin wird vorgeschlagen, dass der Dämmkörper eine Oberseite mit einer UV-Schutzschicht aufweist, die dazu vorgesehen ist, den Dämmkörper vor UV-Strahlung abzuschirmen. Der PUR- und/oder PIR-Hartschaum des Dämmkörpers kann dadurch vor einer Beschädigung und damit einhergehender Verminderung der Wärmedämmung durch während eines Aushärtens der Betondecke auf das Deckenrandschalungselement auftreffendes UV-Licht geschützt werden. Es kann dadurch auch eine mehrtägige oder mehrwöchige Unterbrechung einer Errichtung eines Bauwerks, bei dem das Deckenrandschalungselement verwendet wird, ermöglicht werden, ohne dass anschließend das Deckenrandschalungselement ausgetauscht werden muss, um die Wärmedämmung sicherzustellen. Somit können durch Bauunterbrechungen entstehende Zusatzkosten vermieden werden. Grundsätzlich können auch weitere Seiten des Dämmkörpers eine UV-Schutzschicht aufweisen. Die UV-Schutzschicht besteht aus einem Material, das UV-Strahlung absorbiert, beispielsweise einem UV-beständigen Elastomer. Bevorzugt wird die UV-Schutzschicht nach einer Herstellung des Dämmkörpers auf diesen aufgespritzt oder anderweitig aufgetragen, wobei ein Material der UV-Schutzschicht in Hohlräume des Dämmkörpers an der Oberseite eindringt und somit teilweise innerhalb des Dämmkörpers angeordnet ist. Grundsätzlich kann die UV-Schutzschicht auch nur auf einer Oberfläche des Dämmkörpers angeordnet sein, ohne in Hohlräume des Dämmkörpers einzudringen. In einer alternativen Ausgestaltung kann die UV-Schutzschicht aus einem Quarzgrund bestehen, der als pastöse Masse auf dem Dämmkörper aufgetragen wird und eine Schicht mit einer Schichtdicke von etwa einem halben Millimeter bis zu zwei Millimetern bildet. In alternativen Ausführungen kann die UV-Schutzschicht auch vollständig auf der Oberseite angeordnet sein.Furthermore, it is proposed that the insulating body has an upper side with a UV protection layer which is intended to shield the insulating body from UV radiation. The PUR and/or PIR rigid foam of the insulating body can thus be protected from damage and the associated reduction in thermal insulation caused by UV light striking the ceiling edge formwork element while the concrete ceiling is curing. In this way, an interruption of several days or several weeks to erecting a building in which the ceiling edge formwork element is used can be made possible without the ceiling edge formwork element subsequently having to be replaced in order to ensure thermal insulation. In this way, additional costs arising from interruptions in construction can be avoided. In principle, other sides of the insulating body can also have a UV protective layer. The UV protection layer consists of a material that absorbs UV radiation, for example a UV-resistant elastomer. The UV protective layer is preferably sprayed or otherwise applied to the insulating body after it has been produced, with a material of the UV protective layer penetrating into cavities in the insulating body on the upper side and is thus partially arranged within the insulating body. In principle, the UV protection layer can also be arranged only on one surface of the insulating body, without penetrating cavities in the insulating body. In an alternative embodiment, the UV protection layer can consist of a quartz base, which is applied to the insulating body as a pasty mass and forms a layer with a layer thickness of approximately half a millimeter to two millimeters. In alternative versions, the UV protection layer can also be arranged entirely on the upper side.

Ferner wird vorgeschlagen, dass der Dämmkörper eine Außenseite mit einer Putzträgerschicht aufweist, die dazu vorgesehen ist, einen Außenputz eines Bauwerks aufzunehmen. Es kann dadurch auf eine zusätzliche Abdeckungsschicht verzichtet werden. Dadurch kann eine Wanddicke verringert werden. Unter einer "Außenseite" soll in diesem Zusammenhang eine Seite des Dämmkörpers verstanden werden, die in einem fertig gebauten Zustand eines Bauwerks an einer Außenseite gelegen ist und die einer Seite, an der die Trennschicht angeordnet ist, gegenüberliegt. Unter einer "Putzträgerschicht" soll in diesem Zusammenhang eine Schicht verstanden werden, die dazu vorgesehen ist, eine Grundlage für einen Auftrag eines Putzsystems für einen Außenputz einer Bauwerkwand zu bilden. Insbesondere weist die Putzträgerschicht eine Schichtdicke von mehreren Millimetern auf und ist somit deutlich dicker als andere Schichten wie beispielsweise die UV-Schutzschicht. Unter einem "Putzsystem" soll insbesondere eine Schichtstruktur mit zumindest einer Putzschicht verstanden werden. Bevorzugt umfasst das Putzsystem drei Putzschichten, einen Unterputz, eine Trägerschicht und einen Oberputz. Alternativ kann die Außenseite des Dämmkörpers auch für eine zwischenträgerfreie Anbindung des Außenputzes vorgesehen sein. Vorzugsweise ist bei einer solchen Ausgestaltung die Außenseite des Dämmkörpers offenporig ausgebildet, um eine form- und/oder stoffschlüssige Verbindung mit dem Putzsystem auszubilden. Vorzugsweise weist in einer solchen Ausgestaltung der Dämmkörper auch an der Außenseite eine UV-Schutzschicht auf.Furthermore, it is proposed that the insulating body has an outside with a plaster base layer which is intended to accommodate an external plaster of a building. As a result, an additional cover layer can be dispensed with. As a result, a wall thickness can be reduced. An "outside" is to be understood in this context as meaning a side of the insulating body which is located on an outside in a fully built state of a building and which is opposite a side on which the separating layer is arranged. A "plaster base layer" is to be understood in this context as a layer which is intended to form a basis for applying a plaster system for an external plaster of a building wall. In particular, the plaster base layer has a layer thickness of several millimeters and is therefore significantly thicker than other layers such as the UV protection layer. A “plaster system” is to be understood in particular as a layered structure with at least one plaster layer. The plaster system preferably comprises three plaster layers, a base coat, a carrier layer and a top coat. Alternatively, the outside of the insulating body can also be provided for connecting the external plaster without an intermediate support. In such a configuration, the outside of the insulating body is preferably designed to be open-pored in order to form a positive and/or material connection with the plaster system. In such a configuration, the insulating body preferably also has a UV protection layer on the outside.

Des Weiteren wird eine Deckenrandschalung mit einer Vielzahl von erfindungsgemäßen Deckenrandschalungselementen vorgeschlagen. Dadurch kann eine Zugbelastung des Dämmkörpers durch ein Schrumpfen der Betondecke während eines Aushärtens der Betondecke vermindert werden. Eine relative Ausdehnung des Dämmkörpers durch Zug einer schrumpfenden Betondecke kann somit vermindert und der Dämmkörper kann bei gleicher Stabilität gegenüber dem Zug der schrumpfenden Betondecke mit einer geringeren Längsausdehnung ausgeführt werden. Durch die Ausführung mit geringerer Längsausdehnung kann eine Wandstärke einer Wand, auf der das Deckenrandschalungselement und die Betondecke aufliegen, verringert werden, ohne dass eine Auflagestabilität verringert wird. Dadurch kann Wandmaterial eingespart und können Herstellungskosten für ein Bauwerk können reduziert werden.Furthermore, a slab edge formwork with a large number of slab edge formwork elements according to the invention is proposed. As a result, a tensile load on the insulating body due to shrinkage of the concrete cover during hardening of the concrete cover can be reduced. A relative expansion of the insulating body due to the train of a shrinking concrete cover can thus be reduced and the insulating body can be the same stability against the pull of the shrinking concrete cover can be designed with a lower longitudinal extension. The wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced without reducing the stability of the support due to the design with a smaller longitudinal extension. As a result, wall material can be saved and production costs for a structure can be reduced.

Zudem wird ein Verfahren zur Herstellung eines Bauwerks, insbesondere eines Gebäudes mit zumindest einer Betondecke, vorgeschlagen, bei dem zumindest ein erfindungsgemäßes Deckenrandschalungselement verwendet wird. Es kann eine Wandstärke einer Wand, auf der das Deckenrandschalungselement und die Betondecke aufliegen, bei Beibehaltung einer Auflagestabilität verringert werden. Dadurch kann Wandmaterial eingespart und Kosten können reduziert werden.In addition, a method for producing a structure, in particular a building with at least one concrete ceiling, is proposed, in which at least one ceiling edge formwork element according to the invention is used. A wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced while maintaining a support stability. As a result, wall material can be saved and costs can be reduced.

Weiterhin wird vorgeschlagen, dass das Deckenrandschalungselement an seiner Unterseite mit einer Wand verklebt wird. Dadurch kann eine sichere Befestigung des Deckenrandschalungselements und eine Positionssicherung der Betondecke während des Gusses erreicht werden.Furthermore, it is proposed that the ceiling edge formwork element is glued to a wall on its underside. As a result, the slab edge formwork element can be securely fastened and the position of the concrete slab secured during casting.

Ferner wird vorgeschlagen, dass nach Verklebung des Deckenrandschalungselements mit der Wand eine Betondecke gegossen wird, wobei das Deckenrandschalungselement einen Teil einer Deckenrandschalung der Betondecke bildet. Es kann eine Deckenrandschalung mit einer geringeren Bauteiltiefe als von Dämmkörpern erreicht werden. Dadurch kann eine Wandstärke einer Wand, auf der das Deckenrandschalungselement und die Betondecke aufliegen, verringert werden, ohne dass eine Auflagestabilität vermindert wird. Dadurch kann Wandmaterial eingespart und es können Herstellungskosten für das Bauwerk reduziert werden.It is also proposed that after the slab edge formwork element has been glued to the wall, a concrete slab is cast, with the slab edge formwork element forming part of a slab edge formwork of the concrete slab. A slab edge formwork with a lower component depth than with insulating bodies can be achieved. As a result, a wall thickness of a wall on which the slab edge formwork element and the concrete slab rest can be reduced without reducing support stability. As a result, wall material can be saved and production costs for the structure can be reduced.

Des Weiteren wird vorgeschlagen, dass nach einem Guss der Betondecke eine weitere Wand auf das Deckenrandschalungselement und die Betondecke aufgesetzt wird. Es kann dadurch eine weitere Wand mit verringerter Wandstärke errichtet werden und es können Herstellungskosten für das Bauwerk reduziert werden.Furthermore, it is proposed that after pouring the concrete ceiling, another wall is placed on the ceiling edge formwork element and the concrete ceiling. As a result, another wall with a reduced wall thickness can be erected, and production costs for the structure can be reduced.

Ferner wird ein Bauwerk, hergestellt nach dem erfindungsgemäßen Verfahren, vorgeschlagen. Es kann ein Bauwerk mit verringerten Wandstärken einer Wand, auf der die Deckenrandschalung und die Betondecke aufliegen, erreicht werden. Dadurch kann Wandmaterial eingespart und es können Herstellungskosten für das Bauwerk reduziert werden.Furthermore, a structure produced by the method according to the invention is proposed. A building with reduced wall thicknesses of a wall on which the slab edge formwork and the concrete slab rest can be achieved. This can Wall material is saved and manufacturing costs for the building can be reduced.

Zeichnungendrawings

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen sind zwei Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages result from the following description of the drawings. Two exemplary embodiments of the invention are shown in the drawings. The drawings, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into further meaningful combinations.

Es zeigen:

Fig. 1
eine erste Ausführung eines erfindungsgemäßen Deckenrandschalungselements mit einem Dämmkörper, der dazu vorgesehen ist, einen Deckenrand einer Betondecke zu dämmen, und mit einer Beschichtung, die dazu vorgesehen ist, den Dämmkörper von der Betondecke zu entkoppeln,
Fig. 2
eine Detailansicht des Deckenrandschalungselements,
Fig. 3
eine Darstellung eines Bauwerks, das unter Verwendung der erfindungsgemäßen Deckenrandschalungselemente errichtet wurde, und
Fig. 4
eine zweite Ausführung eines erfindungsgemäßen Deckenrandschalungselements.
Show it:
1
a first embodiment of a slab edge formwork element according to the invention with an insulating body which is intended to insulate a slab edge of a concrete slab, and with a coating which is intended to decouple the insulating body from the concrete slab,
2
a detailed view of the slab edge formwork element,
3
a representation of a structure that was erected using the slab edge formwork elements according to the invention, and
4
a second embodiment of a slab edge formwork element according to the invention.

Beschreibung der AusführungsbeispieleDescription of the exemplary embodiments

Die Figuren 1 und 2 zeigen ein Deckenrandschalungselement 10a mit einem Dämmkörper 11a aus PUR- und PIR-Hartschaum, der einen Deckenrand einer Betondecke 21a dämmt, und mit einer Trennschicht 12a, die den Dämmkörper 11a von der Betondecke 21a entkoppelt. Der Dämmkörper 11a besteht zu neunzig Prozent eines Volumens ohne ein Volumen von Luft in Hohlräumen aus einer Mischung von PUR-Hartschaum und PIR-Hartschaum zu gleichen Volumenanteilen. In alternativen Ausführungen kann der Dämmkörper 11a auch vollständig aus PUR-Hartschaum oder PIR-Hartschaum oder aus einer Mischung mit ungleichen Anteilen von PUR-Hartschaum und PIR-Hartschaum bestehen. Figur 1 zeigt einen Ausschnitt eines Bauwerks 20a, in dem das Deckenrandschalungselement 10a eingesetzt ist.the figures 1 and 2 show a ceiling edge formwork element 10a with an insulating body 11a made of PUR and PIR rigid foam, which insulates a ceiling edge of a concrete ceiling 21a, and with a separating layer 12a, which decouples the insulating body 11a from the concrete ceiling 21a. Ninety percent of the volume of the insulating body 11a, without a volume of air in cavities, consists of a mixture of rigid PUR foam and rigid PIR foam in the same proportions by volume. In alternative versions, the insulating body 11a can also be made entirely of rigid PUR foam or rigid PIR foam or of a mixture with unequal proportions of rigid PUR foam and PIR rigid foam. figure 1 shows a detail of a building 20a, in which the ceiling edge formwork element 10a is used.

Der Dämmkörper 11a weist eine Innenseite 14a auf, die dem Deckenrand der Betondecke 21a zugewandt ist, eine Außenseite 15a, die der Innenseite 14a gegenüberliegend angeordnet ist, eine Unterseite 16a, mit der der Dämmkörper 11a auf einer unteren Wand 22a aufliegt und mit einer Oberseite 17a, die der Unterseite 16a gegenüberliegt und auf der in einem dargestellten fertigen Bauzustand eine obere Wand 23a aufliegt. Auf der Unterseite 16a ist der Dämmkörper 11a mit der Wand 22a verklebt. Die Wände 22a, 23a sind dazu vorgesehen, ohne zusätzliches Wärmedämmverbundsystem verputzt zu werden. Die Wände 22a, 23a können beispielsweise als Ziegelmauerwerk oder als Mauerwerk aus Porenbetonblöcken ausgeführt sein. Ein U-Wert der Wände 22a, 23a beträgt weniger als 0,15 W/(m2K).The insulating body 11a has an inner side 14a which faces the edge of the concrete slab 21a, an outer side 15a which is arranged opposite the inner side 14a, an underside 16a with which the insulating body 11a rests on a lower wall 22a and an upper side 17a , which is opposite the underside 16a and on which an upper wall 23a rests in a illustrated finished state of construction. The insulating body 11a is glued to the wall 22a on the underside 16a. The walls 22a, 23a are intended to be plastered without an additional thermal insulation composite system. The walls 22a, 23a can be designed, for example, as brick masonry or as masonry made of aerated concrete blocks. A U-value of the walls 22a, 23a is less than 0.15 W/(m 2 K).

Eine Bauteiltiefe 25a des Dämmkörpers 11a parallel zu einer Wandstärke 27a der unteren Wand 22a beträgt mindestens 80 Millimeter, in diesem Ausführungsbeispiel beträgt die Bauteiltiefe 25a 120 Millimeter. Eine Höhenerstreckung 26a des Dämmkörpers 11a beträgt 200 Millimeter und entspricht einer Deckendicke 28a der Betondecke 21a. Der Dämmkörper 11a ist passend zurechtgeschnitten, um seine Höhenerstreckung 26a an die Deckendicke 28a der Betondecke 21a anzupassen.A component depth 25a of the insulating body 11a parallel to a wall thickness 27a of the lower wall 22a is at least 80 millimeters; in this exemplary embodiment, the component depth 25a is 120 millimeters. A height extension 26a of the insulating body 11a is 200 millimeters and corresponds to a ceiling thickness 28a of the concrete ceiling 21a. The insulating body 11a is cut to size in order to adapt its height extension 26a to the ceiling thickness 28a of the concrete ceiling 21a.

Die Trennschicht 12a ist mit Beton der Betondecke 21a verbunden. Bei einem Guss der Betondecke 21a verbindet sich Beton mit der Trennschicht 12a. Während eines Abbindens und Aushärtens des Betons schrumpft der Beton zusammen und übt eine Zugkraft auf die Trennschicht 12a aus. Die Trennschicht 12a nimmt diese Zugkraft auf und vermindert eine Ausübung der Zugkraft auf den Dämmkörper 11a.The separating layer 12a is connected to the concrete of the concrete cover 21a. When the concrete cover 21a is poured, concrete is bonded to the separating layer 12a. During setting and hardening of the concrete, the concrete shrinks and exerts a tensile force on the release liner 12a. The separating layer 12a absorbs this tensile force and reduces the exertion of the tensile force on the insulating body 11a.

Ein auf den Dämmkörper 11a aufgebrachtes elastisches Material bildet die Trennschicht 12a aus. Das elastische Material ist auf der Innenseite 14a des Dämmkörpers 11a aufgebracht und mittels Kleberaupen 13a an dem Dämmkörper 11a befestigt. In alternativen Ausführungen kann das elastische Material Klebeeigenschaften aufweisen und an der Innenseite 14a des Dämmkörpers 11a kleben oder mittels einer durchgehenden Klebeschicht flächig mit der Innenseite 14a des Dämmkörpers 11a verbunden sein. Durch die Zugkraft des schrumpfenden Betons wird das elastische Material der Trennschicht 12a gedehnt und die Zugkraft wird in eine Dehnung des elastischen Materials umgesetzt, so dass eine Übertragung der Zugkraft auf den Dämmkörper 11a verhindert wird.An elastic material applied to the insulating body 11a forms the separating layer 12a. The elastic material is applied to the inside 14a of the insulating body 11a and is fastened to the insulating body 11a by means of adhesive beads 13a. In alternative embodiments, the elastic material can have adhesive properties and can stick to the inside 14a of the insulating body 11a or be connected to the inside 14a of the insulating body 11a over a large area by means of a continuous adhesive layer. The elastic material of the separating layer 12a is stretched by the tensile force of the shrinking concrete and the tensile force is converted into a stretching of the elastic material implemented so that a transmission of the tensile force is prevented on the insulating body 11a.

Die Trennschicht 12a besteht aus einem PE-Schaum. Der PE-Schaum weist einen nach der europäischen DIN EN 13165 gemessenen Nennwert einer Wärmeleitfähigkeit λD von 0,040 W/(m·K) auf. Die Trennschicht 12a weist in einem unkomprimierten Zustand eine Schichtdicke 24a von fünf Millimetern auf.The separating layer 12a consists of a PE foam. The PE foam has a nominal value of thermal conductivity λ D measured according to European DIN EN 13165 of 0.040 W/(m·K). In an uncompressed state, the separating layer 12a has a layer thickness 24a of five millimeters.

Das elastische Material kann elastisch um mindestens zwei Millimeter gedehnt werden. Eine Dehnung um zwei Millimeter kann zerstörungsfrei aus dem unkomprimierten Zustand erfolgen. Das elastische Material kann somit zerstörungsfrei um vierzig Prozent einer Schichtdicke 24a in dem unkomprimierten Zustand gedehnt werden. Eine Schrumpfung des Betons der Betondecke 21a um zwei Millimeter während des Abbindens und Aushärtens wird somit vollständig in eine Dehnung des elastischen Materials umgesetzt, ohne dass eine Zugbelastung auf den Dämmkörper 11a ausgeübt wird.The elastic material can be elastically stretched by at least two millimeters. An expansion of two millimeters can be done non-destructively from the uncompressed state. The elastic material can thus be stretched non-destructively by forty percent of a layer thickness 24a in the uncompressed state. A shrinkage of the concrete of the concrete cover 21a by two millimeters during setting and hardening is thus completely converted into an expansion of the elastic material without a tensile load being exerted on the insulating body 11a.

Die Schichtdicke 24a der Trennschicht 12a in dem unkomprimierten Zustand beträgt ein Vierundzwanzigstel der Bauteiltiefe 25a des Dämmkörpers 11a. In alternativen Ausführungen kann die Schichtdicke 24a der Trennschicht 12a in dem unkomprimierten Zustand bis zu einem Zehntel der Bauteiltiefe 25a des Dämmkörpers 11a betragen.The layer thickness 24a of the separating layer 12a in the uncompressed state is one twenty-fourth of the component depth 25a of the insulating body 11a. In alternative embodiments, the layer thickness 24a of the separating layer 12a in the uncompressed state can be up to a tenth of the component depth 25a of the insulating body 11a.

Der Dämmkörper 11a weist einen nach der europäischen DIN EN 13165 gemessenen Nennwert einer Wärmeleitfähigkeit λD auf, der 0,027 W/(m·K) oder weniger beträgt. In alternativen Ausführungen kann der Dämmkörper 11a davon abweichende Nennwerte einer Wärmeleitfähigkeite λD aufweisen, die kleiner als 0,035 W/(m·K) sind. Der Nennwert einer Wärmeleitfähigkeit λD des Dämmkörpers 11a beträgt somit etwa ein Hundertstel oder wenige Hundertstel des Nennwerts einer Wärmeleitfähigkeit λ von Beton, welcher etwa 2,1 W/(m·K) beträgt. Durch den Dämmkörper 11a wird somit eine hohe Wärmedämmung in dem Kontaktbereich von der unteren Wand 22a, der Betondecke 21a und der oberen Wand 23a erreicht.The insulating body 11a has a nominal value of thermal conductivity λ D measured according to European DIN EN 13165, which is 0.027 W/(m·K) or less. In alternative embodiments, the insulating body 11a can have different nominal values for a thermal conductivity λ D that are less than 0.035 W/(m·K). The nominal value of a thermal conductivity λ D of the insulating body 11a is therefore approximately one hundredth or a few hundredths of the nominal value of a thermal conductivity λ of concrete, which is approximately 2.1 W/(m*K). The insulating body 11a thus achieves high thermal insulation in the contact area of the lower wall 22a, the concrete cover 21a and the upper wall 23a.

Der Dämmkörper 11a weist an seiner Oberseite 17a eine UV-Schutzschicht 18a auf, die dazu vorgesehen ist, den Dämmkörper 11a vor UV-Strahlung abzuschirmen. Die UV-Schutzschicht 18a ist als Schicht aus UV-beständigen Polymeren ausgeführt, in der UV-Strahlung absorbiert wird. Mittels der UV-Schutzschicht 18a ist der Dämmkörper 11a vor einer Zersetzung des PUR-Hartschaums und des PIR-Hartschaums geschützt, auch wenn aufgrund von Bauunterbrechungen das Deckenrandschalungselement 10a über längere Zeit einem Lichteinfluss ausgesetzt ist. Die UV-Schutzschicht 18a ist nach Herstellung des Dämmkörpers 11a auf diesen aufgebracht worden, wobei die UV-Schutzschicht 18a teilweise an der Oberfläche in Hohlräume des Dämmkörpers 11a eingedrungen ist. Die UV-Schutzschicht 18a weist in diesem Ausführungsbeispiel eine Schichtdicke von einem halben Millimeter auf. In alternativen Ausgestaltungen kann die UV-Schutzschicht 18a eine geringere Schichtdicke aufweisen, beispielsweise eine Schichtdicke von einem Zehntel Millimeter. Auch kann die UV-Schutzschicht 18a in einer alternativen Ausführung aus einem Quarzgrund bestehen, der als pastöse Masse auf dem Dämmkörper aufgetragen wird und eine UV-Schutzschicht 18a mit einer Schichtdicke zwischen einem halben Millimeter und zwei Millimetern bildet.The insulating body 11a has a UV protection layer 18a on its upper side 17a, which is intended to shield the insulating body 11a from UV radiation. The UV protection layer 18a is designed as a layer made of UV-resistant polymers, in which UV radiation is absorbed. The insulating body 11a is provided by means of the UV protection layer 18a protected against decomposition of the PUR rigid foam and the PIR rigid foam, even if the ceiling edge formwork element 10a is exposed to the influence of light over a long period of time due to construction interruptions. The UV protective layer 18a has been applied to the insulating body 11a after it has been produced, with the UV protective layer 18a partially penetrating the surface into cavities of the insulating body 11a. In this exemplary embodiment, the UV protection layer 18a has a layer thickness of half a millimeter. In alternative configurations, the UV protection layer 18a can have a smaller layer thickness, for example a layer thickness of a tenth of a millimeter. In an alternative embodiment, the UV protective layer 18a can also consist of a quartz base, which is applied to the insulating body as a pasty mass and forms a UV protective layer 18a with a layer thickness of between half a millimeter and two millimeters.

Der Dämmkörper 11a weist zudem an seiner Außenseite 15a eine Putzträgerschicht 19a auf, die dazu vorgesehen ist, einen Außenputz eines Bauwerks 20a aufzunehmen. Der Außenputz ist als Schichtstruktur mit drei Putzschichten, einem Unterputz, einer Trägerschicht und einem Oberputz, ausgeführt. Die Putzträgerschicht 19a weist eine Dicke von mehreren Millimetern auf und ist deutlich dicker als die UV-Schutzschicht 18a. Ein Material der Putzträgerschicht 19a ist nach Herstellung des Dämmkörpers 11a auf diesen aufgesprüht worden und in Hohlräume des PUR-Hartschaums und PIR-Hartschaums des Dämmkörpers 11a eingedrungen.The insulating body 11a also has a plaster base layer 19a on its outer side 15a, which is intended to accommodate an external plaster of a building 20a. The exterior plaster is designed as a layered structure with three plaster layers, a base coat, a carrier layer and a top coat. The plaster base layer 19a has a thickness of several millimeters and is significantly thicker than the UV protection layer 18a. A material of the plaster base layer 19a has been sprayed onto the insulating body 11a after it has been produced and has penetrated into cavities in the PUR rigid foam and PIR rigid foam of the insulating body 11a.

Eine Vielzahl von Deckenrandschalungselementen 10a, die aneinandergesetzt werden, bildet eine Deckenrandschalung, die die Betondecke 21a während eines Gusses an einem Rand umgibt. Deckenrandschalungselemente 10a, die in einem fertigen Zustand des Bauwerks 20a an Bauwerksecken angeordnet sind, sind an allen außenliegenden Seiten, die in dem fertigen Zustand nicht durch die obere Wand 23a abgedeckt sind, durch Putzträgerschichten 19a bedeckt. Die Putzträgerschichten 19a schützen zudem den Dämmkörper 11a vor UV-Strahlung, die in der Putzträgerschicht 19a absorbiert wird.A multiplicity of slab edge formwork elements 10a, which are placed together, form a slab edge formwork which surrounds the concrete slab 21a at one edge during casting. Ceiling edge formwork elements 10a, which are arranged in a finished state of the structure 20a at building corners, are covered by plaster base layers 19a on all outer sides that are not covered by the upper wall 23a in the finished state. The plaster base layers 19a also protect the insulating body 11a from UV radiation, which is absorbed in the plaster base layer 19a.

In einem Verfahren zur Herstellung eines Bauwerks 20a, das beispielsweise als Gebäude mit zumindest einer Betondecke 21a ausgeführt ist und in dem die erfindungsgemäßen Deckenrandschalungselemente 10a verwendet werden, wird in einem ersten Verfahrensschritt das Deckenrandschalungselement 10a an seiner Unterseite 16a mit einer Wand 22a verklebt. Eine Verklebung erfolgt dabei mit einer gebräuchlichen Klebmasse zur Befestigung von Schaumelementen auf einem Material der Wand 22a.In a method for producing a structure 20a, which is designed, for example, as a building with at least one concrete ceiling 21a and in which the ceiling edge formwork elements 10a according to the invention are used, in a first step, the ceiling edge formwork element 10a is attached to its underside 16a glued to a wall 22a. Gluing takes place with a customary adhesive for attaching foam elements to a material of the wall 22a.

Die Unterseite 16a des Deckenrandschalungselements 10a wird durch den Dämmkörper 11a ausgebildet. Der Dämmkörper 11a ist an der Unterseite 16a dazu vorgesehen, durch eine Verklebung mit der Wand 22a, 23a verbunden zu werden. Das Deckenrandschalungselement 10a ist frei von zusätzlichen Befestigungselementen, wie insbesondere einem zusätzlichen Schenkel, der dazu vorgesehen ist, von der Betondecke überdeckt zu werden. Die Trennschicht 12a bildet eine ebene Fläche aus, welche für einen Kontakt mit der Betondecke 21a vorgesehen ist. Von dem Deckenradschalungselement 10a ist lediglich die Trennschicht 12a für einen Kontakt mit der Betondecke 21a vorgesehen.The underside 16a of the ceiling edge formwork element 10a is formed by the insulating body 11a. The insulating body 11a is provided on the underside 16a to be connected to the wall 22a, 23a by gluing. The slab edge formwork element 10a is free of additional fastening elements, such as in particular an additional leg which is intended to be covered by the concrete slab. The separating layer 12a forms a flat surface which is intended for contact with the concrete cover 21a. Of the top wheel formwork element 10a, only the separating layer 12a is provided for contact with the concrete top 21a.

Nach Verklebung des Deckenrandschalungselements 10a mit der Wand 22a wird die Betondecke 21a gegossen, wobei das Deckenrandschalungselement 10a einen Teil einer Deckenrandschalung der Wand 22a bildet. Auf bereits beschriebene Weise wird eine Zugkraft beim Abbinden und Aushärten des Betons in eine Dehnung des elastischen Materials, das die Trennschichten 12a der Deckenrandschalungselemente 10a ausbildet, umgesetzt, so dass eine Zugkraft auf die Dämmkörper 11a der Deckenrandschalungselemente 10a vermieden wird.After the slab edge formwork element 10a has been bonded to the wall 22a, the concrete slab 21a is poured, with the slab edge formwork element 10a forming part of a slab edge formwork for the wall 22a. In the manner already described, a tensile force during the setting and hardening of the concrete is converted into an expansion of the elastic material that forms the separating layers 12a of the slab edge formwork elements 10a, so that a tensile force on the insulating body 11a of the slab edge formwork elements 10a is avoided.

Nach einem Guss der Betondecke 21a und einem abgeschlossenen Abbinden und Aushärten des Betons der Betondecke 21a wird eine weitere Wand 23a auf das Deckenrandschalungselement 10a und die Betondecke 21a aufgesetzt.After the concrete cover 21a has been poured and the concrete of the concrete cover 21a has set and hardened, another wall 23a is placed on the cover edge formwork element 10a and the concrete cover 21a.

Figur 3 zeigt ein Bauwerk 20a, das mit dem oben beschriebenen Verfahren hergestellt wurde. Das Bauwerk 20a ist als Gebäude ausgeführt. Das Gebäude weist Gebäudeaußenseiten mit der unteren Wand 22a und der oberen Wand 23a auf, zwischen denen eine Deckenrandschalung mit Deckenrandschalungselementen 10a angeordnet ist, sowie Gebäudeöffnungen 29a, 30a und 31a, die als Fenster oder Tür ausgeführt sind. figure 3 shows a structure 20a that was produced with the method described above. Structure 20a is designed as a building. The building has building exteriors with the lower wall 22a and the upper wall 23a, between which ceiling edge formwork with ceiling edge formwork elements 10a is arranged, as well as building openings 29a, 30a and 31a, which are designed as windows or doors.

In Figur 4 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Die nachfolgende Beschreibung und die Zeichnung beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, grundsätzlich auch auf die Zeichnungen und/oder die Beschreibung des anderen Ausführungsbeispiels derIn figure 4 another embodiment of the invention is shown. The following description and the drawing are essentially limited to the differences between the exemplary embodiments, whereby with regard to identically designated components, in particular with regard to components with the same reference symbols, the drawings and/or the description of the other exemplary embodiment of

Figuren 1 bis 3 verwiesen wird. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a den Bezugszeichen des Ausführungsbeispiels in den Figuren 1 bis 3 nachgestellt. In dem Ausführungsbeispiel der Figur 4 ist der Buchstabe a durch den Buchstaben b ersetzt. Figures 1 to 3 is referenced. To distinguish between the exemplary embodiments, the letter a is the reference number of the exemplary embodiment in FIGS Figures 1 to 3 adjusted. In the embodiment of figure 4 the letter a is replaced by the letter b.

Figur 4 zeigt ein zweites Ausführungsbeispiel des Deckenrandschalungselements 10b mit einem Dämmkörper 11b aus PUR- und PIR-Hartschaum, der einen Deckenrand einer Betondecke dämmt, und mit einer Trennschicht 12b, die den Dämmkörper 11b von der Betondecke (nicht dargestellt) entkoppelt. Der Dämmkörper 11b weist eine Innenseite 14b mit einer Beschichtung auf, die die Trennschicht 12b ausbildet. Die Beschichtung ist als ein Lack ausgeführt, der auf der Innenseite 14b aufgebracht ist. figure 4 shows a second embodiment of the ceiling edge formwork element 10b with an insulating body 11b made of PUR and PIR rigid foam, which insulates a ceiling edge of a concrete ceiling, and with a separating layer 12b, which decouples the insulating body 11b from the concrete ceiling (not shown). The insulating body 11b has an inner side 14b with a coating that forms the separating layer 12b. The coating is in the form of a lacquer which is applied to the inside 14b.

Die Beschichtung kontaktiert gegossenen Beton der Betondecke. Bei einem Abbinden und Aushärten des Betons der Betondecke übt der Beton beim Schrumpfen eine Zugkraft auf die Beschichtung aus und die Beschichtung reißt von dem Dämmkörper 11b ab, wodurch sich ein Luftspalt zwischen dem Dämmkörper 11b und der Betondecke ausbildet. Die Zugkraft wird somit lediglich auf die Trennschicht 12b übertragen und der Dämmkörper 11b ist von der Zugkraft entkoppelt.The coating contacts poured concrete of the concrete pavement. When the concrete of the concrete cover sets and hardens, the concrete exerts a tensile force on the coating as it shrinks and the coating tears away from the insulating body 11b, as a result of which an air gap is formed between the insulating body 11b and the concrete cover. The tensile force is thus only transmitted to the separating layer 12b and the insulating body 11b is decoupled from the tensile force.

BezugszeichenReference sign

1010
DeckenrandschalungselementSlab edge formwork element
1111
Dämmkörperinsulating body
1212
Trennschichtrelease layer
1313
Kleberaupeglue bead
1414
Innenseiteinside
1515
Außenseiteoutside
1616
Unterseitebottom
1717
Oberseitetop
1818
UV-SchutzschichtUV protection layer
1919
Putzträgerschichtplaster base layer
2020
Bauwerkstructure
2121
Betondeckeconcrete ceiling
2222
WandWall
2323
WandWall
2424
Schichtdickelayer thickness
2525
Bauteiltiefecomponent depth
2626
Höhenerstreckungelevation
2727
WandstärkeWall thickness
2828
Deckendickeceiling thickness
2929
Gebäudeöffnungbuilding opening
3030
Gebäudeöffnungbuilding opening
3131
Gebäudeöffnungbuilding opening

Claims (14)

  1. Ceiling marge sheathing element with an insulating body (11a; 11b) of PUR rigid foam and/or PIR rigid foam that is configured for an insulation of a ceiling marge of a concrete ceiling (21a), and with a separating layer (12a; 12b) that is configured for a decoupling of the insulating body (11a; 11b) from the concrete ceiling (21a),
    characterised by an elastic material which is applied on the insulating body (11a) and which forms the separating layer (12a),
    wherein concrete combines with the separating layer (12a) when the concrete ceiling (21a) is poured.
  2. Ceiling marge sheathing element according to claim 1,
    characterised in that the separating layer (12a) is extendable or expandable elastically by at least two millimetres.
  3. Ceiling marge sheathing element according to claim 1 or 2,
    characterised in that the separating layer (12a) consists of a PE foam.
  4. Ceiling marge sheathing element according to one of the preceding claims, characterised in that the insulating body (11b) comprises an inner side (14b) with a coating that forms the separating layer (12b).
  5. Ceiling marge sheathing element according to one of the preceding claims, characterised in that a layer thickness of the separating layer (12a) is in a non-compressed state no more than a tenth of a component depth (25a) of the insulating body (11a).
  6. Ceiling marge sheathing element according to one of the preceding claims, characterised in that the insulating body (11a; 11b) has a nominal value of a thermal conductivity λD that is smaller than 0.035 W/(m*K).
  7. Ceiling marge sheathing element according to one of the preceding claims, characterised in that the insulating body (11a; 11b) has an upper side (17a, 17b) with a UV-protection layer (18a; 18b) that is configured to shield the insulating body (11a; 11b) from UV radiation.
  8. Ceiling marge sheathing element according to one of the preceding claims, characterised in that the insulating body (11a; 11b) has an outer side (15a; 15b) with a plaster base layer (19a; 19b) that is configured to receive an exterior plaster of a construction (20a).
  9. Ceiling marge sheathing with a plurality of ceiling marge sheathing elements (10a; 10b) according to one of the preceding claims.
  10. Method for creating a construction (20a), in particular a building, with at least one concrete ceiling (21a),
    characterised in that at least one ceiling marge sheathing element (10a; 10b) according to one of claims 1 to 8 is utilized.
  11. Method according to claim 10,
    characterised in that the ceiling marge sheathing element (10a; 10b) is glued on an underside (16a; 16b) with a wall (22a; 22b).
  12. Method according to claim 11,
    characterised in that after a gluing of the ceiling marge sheathing element (10a; 10b) with the wall (22a), a concrete ceiling (21a) is poured,
    wherein the ceiling marge sheathing element (10a; 10b) forms part of a ceiling marge sheathing of the concrete ceiling (21a).
  13. Method according to claim 12,
    characterised in that after a pouring of the concrete ceiling (21a) a further wall (23a) is put upon the ceiling marge sheathing element (10a; 10b) and the concrete ceiling (21a).
  14. Construction, created with a method according to one of claims 10 to 13.
EP15200570.8A 2014-12-17 2015-12-16 Ceilings edge formwork element Active EP3034711B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014118875.6A DE102014118875A1 (en) 2014-12-17 2014-12-17 Slab edge formwork element

Publications (2)

Publication Number Publication Date
EP3034711A1 EP3034711A1 (en) 2016-06-22
EP3034711B1 true EP3034711B1 (en) 2022-01-19

Family

ID=55027329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15200570.8A Active EP3034711B1 (en) 2014-12-17 2015-12-16 Ceilings edge formwork element

Country Status (2)

Country Link
EP (1) EP3034711B1 (en)
DE (1) DE102014118875A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8122237U1 (en) * 1981-07-29 1982-12-02 V.I.L.-Bauelemente GmbH & Co KG, 7128 Lauffen PARKING ANGLE FOR THE FRONT SIDES OF CONCRETE CEILINGS
DE9400637U1 (en) * 1994-01-15 1994-03-17 Koenig Siegfried Ceiling shut-off block with integrated thermal insulation
ES2197451T3 (en) * 1998-11-10 2004-01-01 THE PROCTER & GAMBLE COMPANY FILM WITH UV BARRIER PROPERTIES.
DE10018979A1 (en) * 2000-04-17 2001-10-31 Bisotherm Gmbh Wall element
DE202004005929U1 (en) * 2004-04-15 2004-07-15 Maier, Robert Damming method for edge of ceiling and permanent formwork block, involves providing base with elevated portion to serve as ceiling edge formwork and insulation, and with non-elevated portion to support floor structure
DE202013000496U1 (en) * 2013-01-17 2013-02-07 Max Frank Gmbh & Co Kg slab edges

Also Published As

Publication number Publication date
EP3034711A1 (en) 2016-06-22
DE102014118875A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
EP0019892B1 (en) Insulated exterior cladding for the walls of buildings
AT512918B1 (en) Fixing structure for a building with an attic
EP3202567B1 (en) Method for producing a wood-concrete composite as building element
EP1818467A2 (en) Insulating element and heat insulation system
DE10262101B4 (en) insulating board
EP1566264B1 (en) Heat insulating panel
DE202006008435U1 (en) Formwork construction unit for forming cover edge formwork has external facing and internal isolation component comprised of materials that are adapted for brickwork
DE102007054369B4 (en) Frame for the installation of a window or a door
EP3034711B1 (en) Ceilings edge formwork element
EP2708674B1 (en) Plastering strip and plaster chamfer
EP1669511B1 (en) Lightweight construction element and manufacturing method
DE102015003338A1 (en) Wood-concrete composite construction and method for its production
EP1431468A1 (en) Section of a building comprising prefinished double walled elements and construction method
EP3279403B1 (en) Method of manufacturing a floor slab and floor slab
DE102019003036B4 (en) Thermal insulation assembly
DE10219504B4 (en) insulating board
DE102015213968A1 (en) Wall-ceiling arrangement for a building and method for its creation
DE10232446A1 (en) Compound walling brick has two brick layers with a central insulating layer held together by bands or clips
EP2227380B1 (en) Planar façade system
DE102010029040A1 (en) mounting rail
WO2016066628A1 (en) Insulating layer for a composite heat insulation system, and composite heat insulation system
EP3118388A1 (en) Plastic plaster strip and cavity termination plastic base strip and method for producing the strip
EP1369540B1 (en) Building panel and use thereof
DE102007023861B4 (en) Ceiling construction in the area of a staircase exit
EP3024992B1 (en) Fastening system for insulating elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210719

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015586

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1463879

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015586

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

26N No opposition filed

Effective date: 20221020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 9

Ref country code: DE

Payment date: 20231214

Year of fee payment: 9

Ref country code: AT

Payment date: 20231214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231218

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151216