EP3025120A1 - Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique - Google Patents

Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique

Info

Publication number
EP3025120A1
EP3025120A1 EP14744818.7A EP14744818A EP3025120A1 EP 3025120 A1 EP3025120 A1 EP 3025120A1 EP 14744818 A EP14744818 A EP 14744818A EP 3025120 A1 EP3025120 A1 EP 3025120A1
Authority
EP
European Patent Office
Prior art keywords
measuring system
housing
sensor
magnetic permeability
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14744818.7A
Other languages
German (de)
English (en)
Inventor
Thomas Ledoux
Denis Martin
Patrick Meneroud
Grégory MICHAUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA, Michelin Recherche et Technique SA France filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP3025120A1 publication Critical patent/EP3025120A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/26Measuring arrangements characterised by the use of electric or magnetic techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids

Definitions

  • the present invention relates to a system for measuring the thickness of a rubber layer and more particularly to the measurement of the remaining rubber thickness of a tread of a tire. pneumatic tire.
  • the tread of a tire is provided with a sculpture including elements of sculpture or elementary blocks delimited by various main grooves, longitudinal, transverse or oblique, the elementary blocks may further comprise various incisions or slices finer.
  • the grooves are channels for evacuating water during a wet run and define the leading edges of the carving elements.
  • the tread When a tire is new, the tread has its maximum height. This initial height may vary depending on the type of tire considered and the purpose for which it is intended; for example, "winter" tires generally have a greater tread depth than "summer” tires.
  • the height of the elementary blocks of the sculpture decreases and the stiffness of these elementary blocks increases. Increasing the stiffness of the elementary blocks of sculpture results in a decrease in certain performances of the tire, such as wet grip.
  • the water evacuation capacities decrease sharply when the depth of the channels of the sculptures decreases.
  • Such monitoring is usually done by visual observation of the tread by the user or a garage with or without an effective measurement with a gauge. depth. But this observation is not very easy to achieve especially on the rear tires of access more difficult and is also not very accurate.
  • the invention relates to a system for measuring the thickness of a layer of rubbery material of a tire, the layer having a face bonded to an adjacent reinforcement made with at least one magnetic permeability material greater than the magnetic permeability of the air and a free face in contact with the air, and the system comprising a housing with an application face intended to be in contact with the free face of the layer and a sensor placed in the housing capable of measuring the distance d between the bonded face and the free face of the layer of rubbery material.
  • the sensor comprising an alternating magnetic field source and an adjacent sensitive element
  • the source is a coil
  • the sensitive element is a sensor whose output signal is a function of the level of the induction field magnetic local and in that the frequency and the excitation power of the source coil are such that the magnetic induction field increases between the adjacent armature and the source coil, when the distance d decreases.
  • the sensor of the measuring system has the advantage of operating in reluctant mode, so with, given power, a coil excitation frequency lower than in the case of a similar sensor operating in an eddy current sensitive mode. It should be noted that in the case of conventional tire crown reinforcement, consisting of metal reinforcements embedded in a low-conductive rubber material, no or only weak eddy currents are detected under these operating conditions.
  • the measurement in reluctant mode takes advantage of the magnetic permeability of the adjacent armature and it is found that this offers a high sensitivity of the measurements to any variation in the distance d.
  • the sensitive element is a sensor selected from the group of Hall effect sensors, magneto-resistive.
  • Hall effect sensors take advantage of a property of semiconductors which, when traversed by a current and applied to them a magnetic field perpendicular to the direction of movement of said current, see a voltage proportional to the magnetic field applied, measurable in the direction of this field. The measurement of this voltage then makes it possible to estimate the intensity of the magnetic field in which the semiconductor is immersed.
  • Magneto resistive sensors take advantage of the property that semiconductors have a resistance that evolves when they are subject to a magnetic field. By subjecting such a material to a known electric current and by measuring the voltage across this material, it is then possible to estimate the intensity of the magnetic field in which the magneto-resistive material is immersed.
  • the sensitive element is disposed between the source coil and the application face of the housing.
  • the magnetic induction field measured by the sensitive element increases when the distance d decreases.
  • the source coil is positioned between the sensitive element and the application face.
  • the magnetic induction field measured by the sensitive element decreases when the distance d decreases.
  • the sensitive element and the source coil can also be arranged adjacent and substantially at the same distance from the application face of the housing.
  • the magnetic induction field measured by the sensitive element also decreases when the distance d decreases.
  • the source coil is disposed around, or is surrounded by, a high electrical resistivity material and high magnetic permeability.
  • this material with high electrical resistivity and high magnetic permeability such as a ferrite
  • the sensor of the sensitive element is placed at the end of one of the branches of high electrical resistivity material and high magnetic permeability.
  • the ferrite may be of various shape, in particular U-shaped.
  • the excitation coil or source coil is then preferably arranged around one of the lateral branches of the U.
  • the source coil can be arranged around the bottom of the U of the ferrite.
  • the range of the sensor can be improved simply by increasing the distance between the two ends of the U.
  • the source coil is disposed around a high electrical resistivity material and high magnetic permeability in the form of E.
  • the source coil is advantageously arranged around the central bar of the E.
  • the range of the sensor can be improved simply by increasing the distance between the central bar of the E and the two outer bars of it.
  • This range can also be increased by increasing the section of the poles constituted by the three parallel bars of the E-shaped ferrite.
  • the source coil is arranged around a material with high electrical resistivity and high magnetic permeability, the material having an axis of symmetry and in any axial section a shape of E.
  • the source coil is advantageously arranged around the central axis of the high electrical resistivity material and high magnetic permeability, and the sensitive element is disposed at the end of the central axis of the pot.
  • the range of the sensor can be improved simply by increasing the outer diameter of the potted structure, so that the distance between the central pole and the outer pole is greater.
  • This range can also be increased by increasing the section of the two poles of the potted structure.
  • This axisymmetric embodiment has the advantage of being insensitive to the orientation of the metal cables constituting the adjacent armature.
  • the sensor is therefore insensitive to the anisotropy of this adjacent layer.
  • This embodiment has the advantage of improving the sensitivity of the sensor, to simplify the control electronics and associated measurement and to reduce the cost.
  • the material with high electrical resistivity and high magnetic permeability has an H-shaped shape.
  • the H is disposed in the case with the normal lateral branches at the application face. of the case.
  • the range of the sensor can be increased by increasing the distance between the two lateral bars of the H or by increasing the section of the poles constituted by these two lateral bars.
  • the source may be a coil arranged around the central bar of the H.
  • the source may also comprise two coils each arranged around a lateral branch of the H, preferably on either side of the central branch of the H.
  • the source may also comprise four coils each disposed around a half-lateral branch of the H.
  • the sensor of the sensitive element may comprise two sensors arranged each at one end of the same side branch of the H.
  • the sensor of the sensitive element may also comprise two sensors each arranged on a separate lateral branch of the H, on either side of the central branch. It is also possible to use four sensors each disposed at each end of each half-side branch of the H.
  • the local magnetic induction field measured on the one hand by the sensor (s) positioned at the upper ends of the H is equal to the measured local magnetic induction field, on the other hand, by the sensor or sensors positioned at the lower ends of the poles of H.
  • the difference in output signal between these sensors is therefore low or zero.
  • the two branches of the H are preferably placed in the direction of travel and each branch vertically, the measurement is then an average measurement of the distance between the sensor and the armature of the adjacent layer, related to the distance between the two arms of the H.
  • the source may comprise one or more coils.
  • the source coil is powered by an AC power source, preferably with a frequency of less than 500 kHz, then very strongly limits the generation of eddy currents in the adjacent frame of the layer. In addition, exceeding a frequency of 10 kHz, it eliminates conventional noise measured by a near-field antenna.
  • the increase in frequency reduces the measurement time which has a favorable impact on the power consumption of the whole.
  • the measuring system comprises a device for measuring the amplitude of the signal across the sensor or sensors of the sensitive element.
  • the source coil can be powered by means of a known stationary sinusoidal current, which makes it possible to fix the measurable magnetic induction field in the vicinity of the sensor in a repeatable manner, and it is possible to use a measuring the amplitude of the voltage across the sensor or sensors constituting the sensitive element.
  • This device for measuring the amplitude of the voltage across the sensitive element can continuously measure the voltage or use an amplitude demodulation system.
  • the measuring system is advantageously arranged in a non-conductive electrical housing and whose materials have a magnetic susceptibility zero or low enough to be comparable to air or vacuum.
  • the source coil having a sensitivity axis and the housing having an application face against the free face of the layer whose thickness is to be measured, the application face of the housing is normal or parallel to the sensitivity axis of the source coil according to the embodiment.
  • the housing can be a portable housing.
  • the measurement system according to an object of the invention can be applied to the measurement of the thickness of rubbery material of a sidewall or an inner liner of a tire. This measurement can be made during the manufacture of the tire or after the end of it.
  • the housing can also be adapted to be disposed on or embedded in a driving floor.
  • the measuring system is preferably applied to the measurement of the remaining rubber material thickness of a tread of a tire.
  • each source coil of the measurement system may consist of a plurality of coils connected in series or in parallel.
  • each of the source coils can be made in the form of conductive tracks wound spirally on a PCB or plastronic support.
  • a plastronic support refers to a technology that allows the printing of conductive tracks and the attachment of electronic components directly to plastic parts obtained by injection.
  • the invention is particularly applicable to tires having metal reinforcements in their apex and / or their carcass plies such as those intended to equip motor vehicles of tourism type, SUV ("Sport Utility Vehicles"), like vehicles.
  • industrial vehicles selected from vans, "heavy goods vehicles” - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as civil engineering vehicles -, other transport or handling vehicles.
  • FIG. 1 is a perspective view of a vehicle having a tire passes over a housing comprising a measuring system according to an object of the invention
  • FIG. 2 shows a housing with a measuring system
  • FIG. 3 shows a section of a tire in contact with the housing of the measuring system
  • FIG. 4 shows the principle of operation of a measuring system in the case of an air coil, in the absence (a) and in the presence (b) of a metal plate;
  • FIG. 5 shows schematically an example of operation of the measuring system in the case of an excitation coil with a U-shaped ferrite
  • FIG. 6 shows an alternative embodiment of the system of FIG. 5
  • FIG. 7 shows a second embodiment with an E-shaped ferrite
  • FIG. 8 shows a third embodiment with a ferrite-shaped pot
  • - Figure 9 shows an embodiment with an H-shaped ferrite; and - Figure 10 schematically shows a structure of the electronics of a measuring system.
  • Figure 1 shows a vehicle 5 whose tire 8 rolls on a housing 6 having a wear measurement system.
  • the figure shows a passenger vehicle but such a measurement system is also usable for any other vehicle, such as a truck or a bus.
  • the measurement of the remaining thickness of rubber material of the tread of the tire 8 is made when the tire rolls over the casing 6 without it being necessary to stop the vehicle or disassemble the tire of the vehicle.
  • FIG. 2 illustrates a housing 12 according to one of the objects of the invention. It is presented as a portable unit that can be placed on a taxiway. It has a substantially trapezoidal cross section.
  • the housing comprises two inclined portions, an access ramp 15 and an outlet ramp 16. Between the two is a substantially horizontal portion 18.
  • the portion 18 of the housing 12 protects a sensor or a row of sensors 50 for performing distance measurements.
  • the base 20 of the casing is placed against the running ground and provides it with the necessary stability during operation of the system.
  • the housing 12 also comprises an electronics 40 with a power source which supplies the sensors 50 with AC power. The measurements are made when the contact area of the tire rests on the horizontal portion 18. This horizontal portion is the face of the tire. applying the casing against the surface of the tread of the tire.
  • the housing 12 is made of a non-conductive material whose magnetic properties are similar to those of air so as not to disturb the measurements.
  • the housing can be embedded in a rolling floor or of suitable size and weight to be applied against a sidewall or an inner liner of a tire.
  • FIG. 3 shows a partial section of a tire 8 resting on the application face 18. of a housing 12.
  • the tire 8 comprises in particular a tread 80 with sculptures 82, a crown reinforcement 84 consisting of two or more plies of metal reinforcements (not shown), and flanks 86.
  • the housing 12 comprises an application face 18, a base 20 and a row of sensors 50.
  • the rolling surface 88 of the tread 80 bears against the application face 18 of the housing 12.
  • the sensors 50 measure, as will be explained below, the distance D1 which separates them from the metal reinforcement 84 of the top of the tire 8.
  • Dl has three components.
  • the distance D2 can be known from the identification of the type of tire measured. This identification can be manual or automatic, for example by retrieving identification data entered in a transponder such as an RFID incorporated in the tire structure.
  • FIG. 4 illustrates the operating principle of the sensor of a measurement system according to an object of the invention.
  • FIG. 4 (a) shows an air coil 10 with an axis of symmetry and sensitivity A.
  • the magnetic field lines 54 emitted by this device extend in the air all around the coil as shown schematically in FIG. 4 (a).
  • FIG. 5 shows a schematic example of the operation of an embodiment of a measurement system in the case of an excitation coil and a U-shaped ferrite.
  • the layer 21 whose thickness d is to be measured comprises a layer of rubber material 24 adjacent to a reinforcement 22 made up of reinforcements whose magnetic permeability is greater than the magnetic permeability of the air, such as those conventionally used for carcass plies or crown plies. of tires, in particular heavy goods vehicles.
  • the housing 12 of the measuring system comprises a sensor 50 which comprises an excitation coil 10 arranged around one of the lateral branches 36 of a U-shaped ferrite 30 and a Hall effect sensor 56.
  • the sensor 56 is placed at the end of the lateral branch 36 of the ferrite 30.
  • the presence of the ferrite 30 makes it possible to locate the circulation of the magnetic field lines through it and thus to locate the measuring zone.
  • the two bars of the U are distant from a distance 11.
  • the housing 12 has its application face 18 bearing against the free face 26 of the layer 21.
  • the frequency and the excitation power of the excitation coil 10 are such that the magnetic induction field between the ends of the poles of the ferrite 30 and the adjacent armature 22 increases as the distance d decreases.
  • the mode of operation of the sensor is thus a reluctant mode thus related to the magnetic permeability of the different parts of the magnetic circuit.
  • the magnetic permeability of the rubbery material is much lower than that of the adjacent reinforcement which is itself smaller than that of the ferrite.
  • the reluctance of the layer 24 of rubbery material is much greater than that of the adjacent armature 22 which is itself greater than that of the ferrite 30.
  • the magnetic induction field variation. measured at the ends of the ferrite 30 is mainly related to the variation of the thickness distance of the layer of rubbery material because any variation in the reluctance of the adjacent armature linked for example to the number of reinforcements or their construction does not. only a minor influence on the accuracy of the measurement. The accuracy and sensitivity of such a sensor reluctant mode are good.
  • the range of the sensor is related to the distance 11, distance between the two bars of the U, and to the section of the poles constituted by these two parallel bars.
  • FIGS 6 to 9 show alternative embodiments of sensors.
  • the senor 60 comprises a U-shaped ferrite 64, an excitation coil 62 arranged around the central bar of the U and a Hall effect sensor 56 placed at the end of the one side branches of the U ..
  • the sensor 70 comprises a ferrite 74 in the shape of an E, a coil 72 arranged around the central bar of the E and a Hall effect sensor 56 placed at the end of one of the lateral branches.
  • the sensor 90 comprises a pot-shaped ferrite 94 with an axis of symmetry and a central bar disposed substantially along this axis of symmetry and an excitation coil 92 arranged around the bar. central of the pot. It also comprises a Hall effect sensor 56 disposed near the end of the central bar of the ferrite 94.
  • FIG. 8 (a) shows a perspective view of the sensor and FIG. 8 (b) a section according to FIG. axis of symmetry.
  • FIG. 9 shows another embodiment of a sensor 95.
  • This sensor comprises an excitation coil 96 arranged around the central bar of a ferrite 97 in the shape of H. It also comprises two effect sensors. Halls 56 and 57 are each disposed at one end of the lateral bar 98 of the ferrite 97. The two sensors have the same measurement signal under free conditions. The difference of the two signals is therefore zero under these conditions. This makes it possible to totally or almost completely cancel the common mode and to improve the sensitivity of the sensor. The distance to be measured is then connected to this difference by a nonlinear law.
  • FIG. 10 shows an example of the structure of the electronics for measuring the thickness of a rubber tire layer, in the case of a sensor consisting of a source coil 102 and an element.
  • sensitive sensor 103 consisting of a single sensor for measuring the local magnetic field, or several sensors connected to each other.
  • This electronics consists of a “sensor module” 100 and a “motherboard” 120. It therefore allows a layer thickness measurement at a single point.
  • the "sensor module” 100 consists, among other things, of a current amplifier 104, driven by an oscillator 106 whose frequency is imposed by a time base. 107. Amplifiers, oscillator and timebase are part of the "sensor module".
  • the voltage U, of phase ⁇ nonzero relative to the current I, taken at the terminals of the sensitive element 103, is first amplified by the amplifier 108 and then injected into a double demodulator 110, as well as the output signal of the oscillator 106.
  • K is a factor related to the amplification present along the electronic chain.
  • the two signals X and Y are then filtered by the filters 112 and digitized by means of analog / digital converters (ADC) 114 and then injected into the microcontroller 122 of the "motherboard" 120.
  • ADC analog / digital converters
  • the microcontroller 122 deduces from X and Y the value of the voltage U across the sensitive element 103 using the formula above.
  • the motherboard is also provided with several additional functional blocks: a memory 124 to allow the recording of the measurements made by the sensor consisting of the source coil 102 and the sensitive element 103;
  • An RFID decoder 126 which makes it possible to identify the tire, by means of an antenna 128, when this can be done by taking advantage of the presence of RFID incorporated in the structure of the tire;
  • a wireless communication module 130 which makes it possible to send the information remotely via an additional antenna 132;
  • a power supply 134 distributing the current required for the entire system, from a battery 136.
  • the set has the ability to perform many measurements on tires, without changing batteries, which gives the system autonomy for several years without human intervention.

Abstract

Système de mesure de l'épaisseur d'une couche de matériau caoutchouteux d'un pneumatique comportant une face liée à une armature métallique adjacente et une face libre en contact avec l'air, le système comprenant un boitier avec une face d'application destinée à être en contact avec la face libre de la couche et un capteur placé dans le boitier capable de mesurer la distance d entre la face liée et la face libre de la couche de matériau caoutchouteux, tel que, le capteur comportant une source de champ magnétique alternatif et un élément sensible adjacent, la source est une bobine et l'élément sensible est un capteur dont le signal de sortie est fonction du champ d'induction magnétique local, et tel que la fréquence et la puissance d'excitation de la bobine source sont telles que le champ d'induction magnétique augmente entre l'armature adjacente et la bobine source, lorsque la distance d diminue.

Description

SYSTEME DE MESURE DE L'EPAISSEUR D'UNE COUCHE DE GOMME
D'UN PNEUMATIQUE
Domaine de l'invention [0001] La présente invention est relative à un système de mesure de l'épaisseur d'une couche de gomme et plus particulièrement à la mesure de l'épaisseur de gomme restante d'une bande de roulement d'un bandage pneumatique.
État de la technique
[0002] De manière connue, la bande de roulement d'un bandage pneumatique, qu'il soit destiné à équiper un véhicule de tourisme, poids lourd, Génie Civil ou autre..., est pourvue d'une sculpture comprenant notamment des éléments de sculpture ou blocs élémentaires délimités par diverses rainures principales, longitudinales, transversales ou encore obliques, les blocs élémentaires pouvant en outre comporter diverses incisions ou lamelles plus fines. Les rainures constituent des canaux destinés à évacuer l'eau lors d'un roulage sur sol mouillé et définissent les bords d'attaque des éléments de sculpture.
[0003] Quand un bandage pneumatique est neuf, la bande de roulement a sa hauteur maximale. Cette hauteur initiale peut varier en fonction du type de bandage pneumatique considéré ainsi que de l'usage auquel il est destiné ; à titre d'exemple, les bandages pneumatiques « hiver » ont généralement une profondeur de sculpture supérieure à celle de bandages pneumatiques « été ». Lorsque le bandage pneumatique s'use, la hauteur des blocs élémentaires de la sculpture diminue et la raideur de ces blocs élémentaires augmente. L'augmentation de raideur des blocs élémentaires de sculpture entraîne une diminution de certaines performances du bandage pneumatique, telle l'adhérence sur sol mouillé. De plus, les capacités d'évacuation d'eau diminuent fortement lorsque la profondeur des canaux des sculptures diminue.
[0004] Il est donc souhaitable de pouvoir suivre l'évolution de l'usure de la bande de roulement d'un bandage pneumatique.
[0005] Un tel suivi est usuellement réalisé par observation visuelle de la bande de roulement par l'usager ou un garagiste avec ou sans une mesure effective avec une jauge de profondeur. Mais cette observation n'est pas très aisée à réaliser notamment sur les pneumatiques arrière d'accès plus difficile et n'est pas non plus très précise.
[0006] De nombreuses propositions ont été faites pour automatiser la mesure de la profondeur de sculptures de pneumatiques. De tels dispositifs peuvent être disposés sur le sol de roulage des véhicules. Ces dispositifs fonctionnent usuellement selon deux techniques, soit à base de systèmes optiques avec des caméras ou des lasers, soit à base de courants de Foucault.
[0007] Les systèmes à base de systèmes optiques sont coûteux, doivent être encastrés dans le sol de roulage et nécessitent une maintenance régulière. Les mesures sont de plus perturbées par des salissures et la présence ou des projections d'eau, de boue, de neige, etc.
[0008] Les documents US 7,578,180 B2 et WO 2008/059283 proposent des systèmes de mesure de l'épaisseur de la bande de roulement d'un pneumatique, comportant des capteurs sensibles aux courants de Foucault générés par un champ magnétique d'excitation dans l'armature de sommet du pneumatique. Ces systèmes sont disposés sur un sol de roulage.
[0009] Ces systèmes de mesures ne sont cependant pas totalement satisfaisants parce qu'ils sont sensibles à la conductivité électrique du sommet des bandages pneumatiques et que celle-ci évolue d'un bandage pneumatique à l'autre mais aussi en fonction de l'usage de ceux-ci. On constate une précision et une sensibilité des mesures insuffisantes. Description brève de l'invention
[0010] L'invention a pour objet un système de mesure de l'épaisseur d'une couche de matériau caoutchouteux d'un pneumatique, la couche comportant une face liée à une armature adjacente réalisée avec au moins un matériau de perméabilité magnétique supérieure à la perméabilité magnétique de l'air et une face libre en contact avec l'air, et le système comprenant un boîtier avec une face d'application destinée à être en contact avec la face libre de la couche et un capteur placé dans le boîtier capable de mesurer la distance d entre la face liée et la face libre de la couche de matériau caoutchouteux. Ce système est caractérisé en ce que, le capteur comportant une source de champ magnétique alternatif et un élément sensible adjacent, la source est une bobine et l'élément sensible est un capteur dont le signal de sortie est fonction du niveau du champ d'induction magnétique local et en ce que la fréquence et la puissance d'excitation de la bobine source sont telles que le champ d'induction magnétique augmente entre l'armature adjacente et la bobine source, lorsque la distance d diminue.
[0011] Le capteur du système de mesure selon un objet de l'invention a l'avantage de fonctionner en mode reluctant, donc avec, à puissance donnée, une fréquence d'excitation de la bobine plus faible que dans le cas d'un capteur similaire fonctionnant dans un mode sensible aux courants de Foucault. Il est à noter que dans le cas des armatures usuelles de sommet de pneumatiques, constitué de renforts métalliques noyés dans un matériau caoutchouteux peu conducteur, on ne détecte pas ou seulement de faibles courants de Foucault dans ces conditions opératoires.
[0012] Par ailleurs, la mesure en mode reluctant met à profit la perméabilité magnétique de l'armature adjacente et on constate que cela offre une grande sensibilité des mesures à toute variation de la distance d.
[0013] De préférence, l'élément sensible est un capteur choisi dans le groupe des capteurs à effet Hall, magnéto résistif.
[0014] Les capteurs à effet Hall mettent à profit une propriété des semi-conducteurs qui, lorsqu'ils sont traversés par un courant et qu'on leur applique un champ magnétique perpendiculaire au sens de déplacement dudit courant, voient apparaître une tension proportionnelle au champ magnétique appliqué, mesurable dans le sens de ce champ. La mesure de cette tension, permet alors d'estimer l'intensité du champ magnétique dans lequel baigne le semi-conducteur.
[0015] Les capteurs magnéto résistifs mettent à profit la propriété qu'ont les semiconducteurs de présenter une résistance qui évolue lorsqu'ils sont soumis à un champ magnétique. En soumettant un tel matériau à un courant électrique connu et en mesurant la tension aux bornes de ce matériau, il est alors possible d'estimer l'intensité du champ magnétique dans lequel baigne le matériau magnéto résistif.
[0016] Selon un mode de réalisation préférentiel, l'élément sensible est disposé entre la bobine source et la face d'application du boîtier.
[0017] Dans ce mode de réalisation, le champ d'induction magnétique mesuré par l'élément sensible augmente lorsque la distance d diminue. [0018] Dans un autre mode de réalisation, la bobine source est positionnée entre l'élément sensible et la face d'application.
[0019] Dans ce mode de réalisation, le champ d'induction magnétique mesuré par l'élément sensible diminue lorsque la distance d diminue. [0020] L'élément sensible et la bobine source peuvent aussi être disposées de façon adjacente et sensiblement à la même distance de la face d'application du boîtier.
[0021] Dans ce mode de réalisation, le champ d'induction magnétique mesuré par l'élément sensible diminue aussi lorsque la distance d diminue.
[0022] Selon un mode de réalisation avantageux, la bobine source est disposée autour, ou est entourée par, un matériau à haute résistivité électrique et haute perméabilité magnétique.
[0023] La présence de ce matériau à haute résistivité électrique et haute perméabilité magnétique, tel une ferrite, a l'avantage de localiser les lignes de champ magnétique et ainsi de réaliser une mesure d'épaisseur de couche plus localisée. [0024] Préférentiellement, pour tous les modes de réalisation avec un matériau à haute résistivité électrique et haute perméabilité magnétique, le capteur de l'élément sensible est placé à l'extrémité de l'une des branches du matériau à haute résistivité électrique et haute perméabilité magnétique.
[0025] La ferrite peut être de forme variée, notamment en forme de U. Dans ce cas, la bobine d'excitation ou bobine source est alors préférentiellement disposée autour de l'une des branches latérales du U.
[0026] Alternativement, la bobine source peut être disposée autour du fond du U de la ferrite.
[0027] Dans ce mode de réalisation, la portée du capteur peut être améliorée simplement en augmentant la distance entre les deux extrémités du U.
[0028] On peut également augmenter cette portée en augmentant la section des pôles constitués par les deux barres parallèles de la ferrite en forme de U. [0029] Selon un autre mode de réalisation, la bobine source est disposée autour d'un matériau à haute résistivité électrique et haute perméabilité magnétique en forme de E.
[0030] Dans ce mode de réalisation, la bobine source est avantageusement disposée autour de la barre centrale du E. [0031] Dans ce mode de réalisation, la portée du capteur peut être améliorée simplement en augmentant la distance entre la barre centrale du E et les deux barres externes de celui- ci.
[0032] On peut également augmenter cette portée en augmentant la section des pôles constitués par les trois barres parallèles de la ferrite en forme de E. [0033] Dans ce mode de réalisation utilisant une ferrite en forme de E, il est également possible de disposer un élément sensible à l'extrémité de chaque pôle extérieur faisant face à l'armature adjacente. De cette façon on peut réaliser des mesures en deux points, à l'aide d'une unique source de champ magnétique.
[0034] Selon un troisième mode de réalisation, la bobine source est disposée autour d'un matériau à haute résistivité électrique et haute perméabilité magnétique, le matériau présentant un axe de symétrie et selon toute coupe axiale une forme de E.
[0035] Dans ce mode de réalisation dit « en pot », la bobine source est avantageusement disposée autour de l'axe central du matériau à haute résistivité électrique et haute perméabilité magnétique, et l'élément sensible est disposé à l'extrémité de l'axe central du pot.
[0036] Dans ce mode de réalisation, la portée du capteur peut être améliorée simplement en augmentant le diamètre externe de la structure en pot, de sorte que la distance entre le pôle central et le pôle externe soit plus important.
[0037] On peut également augmenter cette portée en augmentant la section des deux pôles de la structure en pot.
[0038] Ce mode de réalisation axisymétrique présente l'avantage d'être insensible à l'orientation des câbles métalliques constituant l'armature adjacente. Le capteur est donc insensible à l'anisotropie de cette couche adjacente. [0039] Selon des modes de réalisations très préférentiels, on peut utiliser plusieurs éléments sensibles adjacents à la bobine source, connectés les uns aux autres, de sorte que la différence de champ d'induction magnétique captée par l'association des différents éléments sensibles est faible ou nulle en l'absence d'armature adjacente, et non nulle en présence d'une armature adjacente.
[0040] Ce mode de réalisation a l'avantage d'améliorer la sensibilité du capteur, de simplifier l'électronique de pilotage et de mesure associée et d'en diminuer le coût.
[0041] Selon un mode de réalisation particulier, le matériau à haute résistivité électrique et haute perméabilité magnétique a une forme de H. [0042] De préférence, le H est disposé dans le boîtier avec les branches latérales normales à la face d'application du boîtier.
[0043] Comme précédemment, on peut augmenter la portée du capteur en augmentant la distance entre les deux barres latérales du H ou en augmentant la section des pôles constitués par ces deux barres latérales. [0044] Alors la source peut être une bobine disposée autour de la barre centrale du H.
[0045] La source peut aussi comporter deux bobines disposées chacune autour d'une branche latérale du H, de préférence de part et d'autre de la branche centrale du H.
[0046] La source peut aussi comporter quatre bobines disposées chacune autour d'une demi branche latérale du H. [0047] Dans ce cas particulier d'une ferrite en forme de H, le capteur de l'élément sensible peut comporter deux capteurs disposés chacun à une extrémité d'une même branche latérale du H. Le capteur de l'élément sensible peut aussi comporter deux capteurs disposés chacun sur une branche latérale distincte du H, de part et d'autre de la branche centrale. Il est aussi possible d'utiliser quatre capteurs disposés chacun à chaque extrémité de chaque demi-branche latérale du H.
[0048] En l'absence de couche adjacente, i.e. en conditions libres, le champ d'induction magnétique local mesuré d'une part par le ou les capteurs positionnés aux extrémités supérieures du H est égal au champ d'induction magnétique local mesuré, d'autre part, par le ou les capteurs positionnés aux extrémités inférieurs des pôles du H. La différence de signal de sortie entre ces capteurs est donc faible ou nulle.
[0049] En connectant avantageusement ces différents capteurs de l'élément sensible les uns aux autres, on peut donc fonctionner en mode différentiel, avec un mode commun faible ou nul. Cela offre l'avantage d'améliorer la sensibilité de la mesure, de simplifier l'électronique de pilotage et de mesure associée et d'en diminuer le coût.
[0050] Dans le cas de mesures effectuées sur une bande de roulement de bandage pneumatique, les deux branches du H (ou pôles) sont de préférence placées selon la direction de roulage et chaque branche verticalement, la mesure est alors une mesure moyenne de la distance entre le capteur et l'armature de la couche adjacente, liée à la distance entre les deux branches du H.
[0051] Dans tous les modes de réalisation, la source peut comporter une ou plusieurs bobines.
[0052] La bobine source est alimentée par une source électrique alternative, avantageusement de fréquence inférieure à 500 kHz, on limite alors très fortement la génération de courants de Foucault dans l'armature adjacente de la couche. Par ailleurs, en dépassant une fréquence de 10 kHz, on s'affranchit des bruits classiques mesurés par une antenne en champ proche.
[0053] D'autre part, plus on augmente la fréquence d'alimentation pour un courant donné, plus on améliore la résolution temporelle de la mesure.
[0054] Par ailleurs, l'augmentation de la fréquence permet de diminuer le temps de mesure ce qui a un impact favorable sur la consommation électrique de l'ensemble.
[0055] On a constaté qu'il est avantageux d'utiliser une fréquence d'alimentation comprise entre 40 et 150 kHz. [0056] Ces limitations de fréquence permettent de limiter les courants de Foucault susceptibles de prendre naissance dans les renforts métalliques de l'armature du pneumatique.
[0057] De préférence, le système de mesure comporte un dispositif de mesure de l'amplitude du signal aux bornes du ou des capteurs de l'élément sensible. [0058] Pour ce faire on peut alimenter la bobine source au moyen d'un courant sinusoïdal stationnaire connu, ce qui permet de fixer de façon répétable le champ d'induction magnétique mesurable dans le voisinage du capteur, et on peut utiliser un dispositif de mesure de l'amplitude de la tension aux bornes du ou des capteurs constituant l'élément sensible.
[0059] Ce dispositif de mesure d'amplitude de la tension aux bornes de l'élément sensible peut mesurer en continu la tension ou utiliser un système de démodulation d'amplitude.
[0060] Le système de mesure est avantageusement disposé dans un boîtier non conducteur électrique et dont les matériaux ont une susceptibilité magnétique nulle ou suffisamment faible pour être assimilable à l'air ou le vide.
[0061] De préférence, la bobine source ayant un axe de sensibilité et le boîtier ayant une face d'application contre la face libre de la couche dont l'épaisseur est à mesurer, la face d'application du boîtier est normale ou parallèle à l'axe de sensibilité de la bobine source selon le mode de réalisation.
[0062] Le boîtier peut être un boîtier portatif.
[0063] Dans ce cas, le système de mesure selon un objet de l'invention peut être appliqué à la mesure de l'épaisseur de matériau caoutchouteux d'un flanc ou d'une gomme intérieure d'un pneumatique. Cette mesure peut être réalisée lors de la fabrication du pneumatique ou après la fin de celle-ci.
[0064] Le boîtier peut aussi être apte à être disposé sur ou encastré dans un sol de roulage.
[0065] Dans ce cas, le système de mesure est de préférence appliqué à la mesure de l'épaisseur de matériau caoutchouteux restante d'une bande de roulement d'un pneumatique.
[0066] Bien entendu, chaque bobine source du système de mesure selon un objet de l'invention peut être constituée d'une pluralité de bobines connectées en série ou en parallèle. [0067] De préférence, lorsque les bobines utilisées sont des bobines plates, chacune des bobines source peut être réalisée sous forme de pistes conductrices enroulées en forme de spirales sur un support PCB ou plastronique.
[0068] Un support plastronique fait référence à une technologie qui permet l'impression de pistes conductrices et la fixation de composants électroniques directement sur des pièces plastiques obtenues par injection.
[0069] L'invention s'applique particulièrement aux pneumatiques comportant des renforts métalliques dans leur sommet et/ou leurs nappes carcasses tels ceux destinés à équiper des véhicules à moteur de type tourisme, SUV {"Sport Utility Vehicles"), comme des véhicules industriels choisis parmi camionnettes, « Poids-lourd » - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins de génie civil -, autres véhicules de transport ou de manutention.
Description des Figures
[0070] Les figures annexées illustrent plusieurs modes de réalisation d'un système de mesure selon un objet de l'invention en prenant comme exemple principal son application à la mesure de l'épaisseur de bandes de roulement de pneumatiques :
- la figure 1 est une vue en perspective d'un véhicule dont un pneumatique passe au- dessus d'un boîtier comportant un système de mesure selon un objet de l'invention ;
- la figure 2 présente un boîtier avec un système de mesure ;
- la figure 3 présente une coupe d'un bandage pneumatique en contact avec le boîtier du système de mesure ;
- la figure 4 présente le principe de fonctionnement d'un système de mesure dans le cas d'une bobine à air, en l'absence (a) et en présence (b) d'une plaque métallique ;
- la figure 5 présente de façon schématique un exemple de fonctionnement du système de mesure dans le cas d'une bobine d'excitation avec une ferrite en forme de U ;
- la figure 6 présente un mode de réalisation alternatif du système de la figure 5 ;
- la figure 7 présente un deuxième mode de réalisation avec une ferrite en forme de E ;
- la figure 8 présente un troisième mode de réalisation avec une ferrite en forme de pot ;
- la figure 9 présente un mode de réalisation avec une ferrite en forme de H ; et - la figure 10 présente schématiquement une structure de l'électronique d'un système de mesure.
Description détaillée de l'invention
[0071] La figure 1 présente un véhicule 5 dont le pneumatique 8 roule sur un boîtier 6 comportant un système de mesure de l'usure. La figure montre un véhicule de tourisme mais un tel système de mesure est aussi utilisable pour tout autre véhicule, tel un poids- lourd ou un car. La mesure de l'épaisseur restante de matériau caoutchouteux de la bande de roulement du pneumatique 8 est faite lorsque le pneumatique roule au-dessus du boîtier 6 sans qu'il soit nécessaire d'arrêter le véhicule ou de démonter le pneumatique du véhicule.
[0072] La figure 2 illustre un boîtier 12 selon l'un des objets de l'invention. Celui-ci se présente comme un ensemble portatif qui peut être déposé sur un sol de roulage. Il a une section droite sensiblement trapézoïdale. Le boîtier comprend deux portions inclinées, une rampe d'accès 15 et une rampe de sortie 16. Entre les deux se trouve une portion 18 sensiblement horizontale. La portion 18 du boîtier 12 protège un capteur ou une rangée de capteurs 50 destinés à réaliser les mesures de distance. La base 20 du boîtier est placée contre le sol de roulage et procure à celui-ci la stabilité nécessaire pendant le fonctionnement du système. Le boîtier 12 comporte aussi une électronique 40 avec une source d'énergie qui alimente en courant alternatif les capteurs 50. Les mesures sont faites lorsque l'aire de contact du pneumatique repose sur la portion horizontale 18. Cette portion horizontale est la face d'application du boîtier contre la surface de la bande de roulement du pneumatique. Le boîtier 12 est réalisé en un matériau non conducteur dont les propriétés magnétiques sont assimilables à celles de l'air pour ne pas perturber les mesures.
[0073] Selon d'autres modes de réalisation, le boîtier peut être encastré dans un sol de roulage ou de dimensions et de poids approprié pour pouvoir être appliqué contre un flanc ou une gomme intérieure d'un pneumatique.
[0074] La mesure de l'épaisseur restante de matériau caoutchouteux d'une bande de roulement d'un pneumatique est illustrée à la figure 3. Cette figure présente une coupe partielle d'un pneumatique 8 en appui sur la face d'application 18 d'un boîtier 12. Le pneumatique 8 comprend notamment une bande de roulement 80 avec des sculptures 82, une armature de sommet 84 constituée de deux ou plus nappes de renforts métalliques (non représentées), et de flancs 86. Le boîtier 12 comprend une face d'application 18, une base 20 et une rangée de capteurs 50. La surface de roulage 88 de la bande de roulement 80 est en appui contre la face d'application 18 du boîtier 12. [0075] Les capteurs 50 mesurent, comme il sera expliqué ci-dessous, la distance Dl qui les sépare de l'armature métallique 84 du sommet du pneumatique 8. Dl a trois composantes. Deux de ces composantes sont fixes, la distance D2 qui sépare le fond des sculptures 82 de l'armature 84, et la distance D3 qui sépare les capteurs 50 de la face d'application 18 du boîtier 12. Une composante est variable avec le degré d'usure de la bande de roulement, c'est d qui correspond à l'épaisseur restante de la bande de roulement. On a : d = D\ - D2 - D2>
[0076] La distance D2 peut être connue à partir de l'identification du type de pneumatique mesuré. Cette identification peut être manuelle ou automatique, par exemple en récupérant des données d'identification inscrites dans un transpondeur tel un RFID incorporé dans la structure du pneumatique.
[0077] La figure 4 illustre le principe de fonctionnement du capteur d'un système de mesure selon un objet de l'invention.
[0078] A la figure 4(a) est représenté une bobine à air 10 avec un axe de symétrie et de sensibilité A. Lorsque les bornes de la bobine sont alimentées par un courant alternatif, les lignes de champ magnétique 54 émises par ce dispositif s'étendent dans l'air tout autour de la bobine tel que schématisé à la fig. 4 (a).
[0079] Si on approche de ce dispositif une armature métallique 14, bonne conductrice de champ magnétique et mauvaise conductrice électrique, telle une nappe sommet d'un pneumatique constituée de renforts métalliques parallèles noyés dans deux couches de matériau caoutchouteux peu conducteur, les lignes de champ vont naturellement chercher à passer par cette armature métallique plutôt que dans l'air, car l'air a une reluctance supérieure à celle de l'armature métallique. On observe une localisation des lignes de champ magnétique 54 à travers l'armature métallique 14. [0080] Il en résulte que dans la zone située entre la bobine 10 et l'armature métallique, le champ d'induction magnétique va augmenter.
[0081] On peut ainsi obtenir une mesure de la variation de position de l'armature métallique 14 relativement à la bobine 10 par une mesure du champ d'induction local entre la bobine 10 et l'armature métallique 14. Ceci peut se faire au moyen d'un capteur sensible au champ d'induction magnétique local 53, tel un capteur à effet Hall, magnéto résistif.
[0082] La figure 5 présente un exemple schématique de fonctionnement d'un mode de réalisation d'un système de mesure dans le cas d'une bobine d'excitation et d'une ferrite en forme de U. [0083] La couche 21 dont on veut mesurer l'épaisseur d comporte une couche de matériau caoutchouteux 24 adjacente à une armature 22 constituée de renforts dont la perméabilité magnétique est supérieure à la perméabilité magnétique de l'air tels que ceux usuellement utilisés pour des nappes carcasses ou des nappes sommet de pneumatiques, notamment poids-lourd. [0084] Le boîtier 12 du système de mesure comporte un capteur 50 qui comporte une bobine d'excitation 10 disposée autour de l'une des branches latérales 36 d'une ferrite 30 en forme de U et un capteur à effet Hall 56. Le capteur 56 est placé à l'extrémité de la branche latérale 36 de la ferrite 30. La présence de la ferrite 30 permet de localiser la circulation des lignes de champ magnétique à travers elle et ainsi de localiser la zone de mesure. Les deux barres du U sont éloignées d'une distance 11.
[0085] Le boîtier 12 a sa face d'application 18 en appui contre la face libre 26 de la couche 21.
[0086] Selon une caractéristique essentielle du système de mesure, la fréquence et la puissance d'excitation de la bobine d'excitation 10 sont telles que le champ d'induction magnétique entre les extrémités des pôles de la ferrite 30 et l'armature adjacente 22 augmente lorsque la distance d diminue.
[0087] Le mode de fonctionnement du capteur est ainsi un mode reluctant donc lié à la perméabilité magnétique des différentes parties du circuit magnétique. [0088] La perméabilité magnétique du matériau caoutchouteux est très inférieure à celle de l'armature adjacente qui est elle-même inférieure à celle de la ferrite.
[0089] En conséquence, la reluctance de la couche 24 de matériau caoutchouteux est très supérieure à celle de l'armature adjacente 22 qui est elle-même supérieure à celle de la ferrite 30. Cela implique que la variation de champ d'induction magnétique mesurée aux extrémités de la ferrite 30 est principalement liée à la variation de la distance d, épaisseur de la couche de matériau caoutchouteux parce que toute variation de la reluctance de l'armature adjacente liée par exemple au nombre de renforts ou à leur construction n'a qu'une influence mineure sur la précision de la mesure. La précision et la sensibilité d'un tel capteur en mode reluctant sont donc bonnes. La portée du capteur est liée à la distance 11, distance entre les deux barres du U, et à la section des pôles constitués par ces deux barres parallèles.
[0090] Les figures 6 à 9 présentent des modes de réalisation alternatifs de capteurs.
[0091] A la figure 6, le capteur 60 comprend une ferrite 64 en forme de U, une bobine d'excitation 62 disposée autour de la barre centrale du U et un capteur à effet Hall 56 placé à l'extrémité de l'une des branches latérales du U..
[0092] A la figure 7, le capteur 70 comprend une ferrite 74 en forme de E, une bobine 72 disposée autour de la barre centrale du E et un capteur à effet Hall 56 placé à l'extrémité de l'une des branches latérales du E. [0093] A la figure 8, le capteur 90 comporte une ferrite 94 en forme de pot avec un axe de symétrie et une barre centrale disposée sensiblement selon cet axe de symétrie et une bobine d'excitation 92 disposée autour de la barre centrale du pot. Il comporte aussi un capteur à effet Hall 56 disposé à proximité de l'extrémité de la barre centrale de la ferrite 94. La figure 8(a) présente une vue en perspective du capteur et la figure 8(b) une coupe selon l'axe de symétrie.
[0094] Cette structure en pot présente l'avantage d'être insensible à l'anisotropie de l'architecture métallique interne au pneumatique. Ceci est vrai car le capteur à effet Hall est positionné à l'extrémité de la barre centrale du pot et que selon toute coupe axiale, le système de mesure est axisymétrique. [0095] La figure 9 présente un autre mode de réalisation d'un capteur 95. Ce capteur comprend une bobine d'excitation 96 disposée autour de la barre centrale d'une ferrite 97 en forme de H. Il comprend aussi deux capteurs à effet Hall 56 et 57 disposés chacun à une extrémité de la barre latérale 98 de la ferrite 97. Les deux capteurs ont le même signal de mesure en conditions libres. La différence des deux signaux est donc nulle dans ces conditions. Cela permet d'annuler totalement ou presque totalement le mode commun et d'améliorer la sensibilité du capteur. La distance à mesurer est alors reliée à cette différence par une loi non linéaire.
[0096] La figure 10 montre un exemple de la structure de l'électronique permettant la mesure d'épaisseur d'une couche de gomme de pneumatique, dans le cas d'un capteur constitué d'une bobine source 102 et d'un élément sensible 103 constitué d'un unique capteur de mesure du champ d'induction magnétique local, ou de plusieurs capteurs connectés entre eux.
[0097] Cette électronique est constituée d'un « module capteur » 100 et d'une « carte mère » 120. Elle permet donc de réaliser une mesure d'épaisseur de couche en un unique point.
[0098] Pour étendre le principe de ce schéma à un système constitué d'une multiplicité de capteurs, il suffit d'utiliser plusieurs « modules capteurs » tous reliés à la même « carte mère ». [0099] En mode reluctant, le champ d'induction magnétique mesuré par l'élément sensible 103, placé entre l'armature d'une couche adjacente et la bobine source, augmente lorsque la distance d entre le capteur et l'armature adjacente, constituée de câbles métalliques de pneumatique, diminue. Cette électronique a donc pour but de mesurer la valeur de cette tension U, aux bornes de l'élément sensible, afin de pouvoir déduire cette distance entre le capteur et l'armature de la couche adjacente.
[00100] Outre la bobine source 102 et l'élément sensible 103, le « module capteur » 100 est constitué, entre autre, d'un amplificateur en courant 104, piloté par un oscillateur 106 dont la fréquence est imposée par une base de temps 107. Les amplificateur, oscillateur et base de temps font partie du « module capteur ». Le courant généré par l'amplificateur 104 injecté dans la bobine source 102 est pris comme référence de phase (φ=0). [00101] La tension U, de phase φ non nulle par rapport au courant I, prélevée aux bornes de l'élément sensible 103, est d'abord amplifiée par l'amplificateur 108 puis injectée dans un double démodulateur 110, de même que le signal de sortie de l'oscillateur 106.
[00102] En sortie du démodulateur 110, on trouve les signaux X et Y qui représentent les deux composantes complexes décrivant la tension aux bornes de l'élément sensible, telles que :
dans laquelle K est un facteur lié à l'amplification présente le long de la chaîne électronique.
[00103] Les deux signaux X et Y sont ensuite filtrés par les filtres 112 et numérisés au moyen de convertisseurs analogique/numérique (ADC) 114, puis injectés dans le microcontrôleur 122 de la « carte mère » 120.
[00104] Le microcontrôleur 122 déduit de X et Y la valeur de la tension U aux bornes de l'élément sensible 103 en utilisant la formule ci-dessus.
[00105] La carte mère est également munie de plusieurs blocs fonctionnels additionnels : · une mémoire 124 afin de permettre l'enregistrement des mesures réalisées par le capteur constitué de la bobine source 102 et de l'élément sensible 103 ;
• un décodeur RFID 126 qui permet l'identification du pneumatique, au moyen d'une antenne 128, lorsque cela peut se faire en mettant à profit la présence de RFID incorporé dans la structure du pneumatique ;
· un module de communication sans fil 130 qui permet l'envoi des informations à distance, via une antenne supplémentaire 132 ; et
• une alimentation 134 distribuant le courant nécessaire à l'ensemble du système, à partir d'une batterie 136.
[00106] L'ensemble a la capacité à réaliser des mesures nombreuses sur des pneumatiques, sans changement de batteries, ce qui confère au système une autonomie de plusieurs années sans intervention humaine.

Claims

REVENDICATIONS
1. Système de mesure de l'épaisseur d'une couche de matériau caoutchouteux d'un pneumatique, ladite couche comportant une face liée à une armature adjacente réalisée avec au moins un matériau de perméabilité magnétique supérieure à la perméabilité magnétique de l'air et une face libre en contact avec l'air, et le système comprenant un boîtier avec une face d'application destinée à être en contact avec la face libre de la couche et un capteur placé dans le boîtier capable de mesurer la distance d entre la face liée et la face libre de ladite couche de matériau caoutchouteux, caractérisé en ce que, le capteur comportant une source de champ magnétique alternatif et un élément sensible adjacent, la source est une bobine et l'élément sensible est un capteur dont le signal de sortie est fonction du niveau du champ d'induction magnétique local et en ce que la fréquence et la puissance d'excitation de la bobine source sont telles que le champ d'induction magnétique augmente entre l'armature adjacente et la bobine source, lorsque la distance d diminue.
2. Système de mesure selon la revendication 1, dans lequel le capteur de l'élément sensible est choisi dans le groupe des capteurs à effet Hall, magnéto résistif.
3. Système de mesure selon l'une des revendications 1 et 2, dans lequel l'élément sensible est positionné entre la bobine source et ladite face d'application dudit boîtier.
4. Système de mesure selon l'une des revendications 1 et 2, dans lequel la bobine source est positionnée entre l'élément sensible et ladite face d'application dudit boîtier.
5. Système de mesure selon l'une des revendications 1 et 2, dans lequel l'élément sensible et la bobine source sont positionnés de façon adjacente et sensiblement à la même distance de ladite face d'application.
6. Système de mesure selon l'une quelconque des revendications 1 à 5, dans lequel la bobine source est disposée autour, ou est entourée par, un matériau à haute résistivité électrique et haute perméabilité magnétique, tel une ferrite.
7. Système de mesure selon la revendication 6, dans lequel le capteur de l'élément sensible est placé à l'extrémité de l'une des branches dudit matériau à haute résistivité électrique et haute perméabilité magnétique.
8. Système de mesure selon l'une des revendications 6 et 7, dans lequel ledit matériau à haute résistivité électrique et haute perméabilité magnétique a une forme de U.
9. Système de mesure selon l'une des revendications 6 et 7, dans lequel ledit matériau à haute résistivité électrique et haute perméabilité magnétique a une forme de E.
10. Système de mesure selon la revendication 9, dans lequel l'élément sensible comporte deux capteurs disposés chacun à l'extrémité d'un pôle extérieur du matériau à haute résistivité électrique et haute perméabilité magnétique.
11. Système de mesure selon l'une des revendications 6 et 7, dans lequel ledit matériau à haute résistivité électrique et haute perméabilité magnétique a un axe de symétrie et présente selon toute coupe axiale une forme de E.
12. Système de mesure selon la revendication 11, dans lequel l'élément sensible est disposé à l'extrémité de l'axe central du matériau à haute résistivité électrique et haute perméabilité magnétique.
13. Système de mesure selon l'une des revendications 9 à 12, dans lequel la bobine source est disposée autour de la barre centrale du matériau à haute résistivité électrique et haute perméabilité magnétique.
14. Système de mesure selon l'une des revendications 6 et 7, dans lequel ledit matériau à haute résistivité électrique et haute perméabilité magnétique a une forme de H.
15. Système de mesure selon la revendication 14, dans lequel la bobine source est disposée autour de la barre centrale du H.
16. Système de mesure selon la revendication 14, dans lequel la source comporte deux bobines d'excitation disposées chacune autour d'une branche latérale du H, de préférence de part et d'autre de la branche centrale du H.
17. Système de mesure selon la revendication 14, dans lequel la source comporte quatre bobines d'excitation disposées chacune autour d'une demi branche latérale du H.
18. Système de mesure selon l'une des revendications 14 à 17, dans lequel l'élément sensible comporte deux capteurs disposés autour d'une même branche latérale du H, de part et d'autre de la branche centrale.
19. Système de mesure selon l'une des revendications 14 à 17, dans lequel l'élément sensible comporte deux capteurs disposés chacun sur une branche latérale distincte du H, de part et d'autre de la branche centrale.
20. Système de mesure selon l'une des revendications 14 à 17, dans lequel l'élément sensible comporte quatre capteurs disposée chacun sur une ½ branche latérale du H.
21. Système de mesure selon l'une quelconque des revendications précédentes, dans lequel la bobine source est alimentée par une tension ou un courant électrique alternatif de fréquence inférieure à 500 kHz.
22. Système de mesure selon la revendication 21, dans lequel la bobine source est alimentée par une tension ou un courant électrique alternatif de fréquence supérieure à 10 kHz.
23. Système de mesure selon la revendication 22, dans lequel ladite bobine source est alimentée par une tension ou un courant électrique alternatif de fréquence comprise entre 40 et 80 kHz.
24. Système de mesure selon l'une quelconque des revendications précédentes, tel qu'il est disposé à l'intérieur d'un boîtier non conducteur électrique et dont les propriétés magnétiques sont assimilables à celles de l'air et tel que le boîtier a une face d'application qui est parallèle ou normale à l'axe de sensibilité de la bobine source.
25. Système de mesure selon la revendication 0, tel que ledit boîtier est un boîtier portatif.
26. Système de mesure selon la revendication 0, tel que ledit boîtier est apte à être disposé sur ou encastré dans un sol de roulage.
27. Application du système de mesure selon l'une quelconque des revendications précédentes à la mesure de l'épaisseur de matériau caoutchouteux restante d'une bande de roulement dudit pneumatique.
28. Application du système de mesure selon l'une quelconque des revendications 1 à 25 à la mesure de l'épaisseur de matériau caoutchouteux d'un flanc ou d'une gomme intérieure dudit pneumatique.
EP14744818.7A 2013-07-26 2014-07-25 Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique Withdrawn EP3025120A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1357411A FR3009076B1 (fr) 2013-07-26 2013-07-26 Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
PCT/EP2014/066019 WO2015011260A1 (fr) 2013-07-26 2014-07-25 Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique

Publications (1)

Publication Number Publication Date
EP3025120A1 true EP3025120A1 (fr) 2016-06-01

Family

ID=49111492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14744818.7A Withdrawn EP3025120A1 (fr) 2013-07-26 2014-07-25 Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique

Country Status (6)

Country Link
US (1) US10876826B2 (fr)
EP (1) EP3025120A1 (fr)
JP (1) JP2016529494A (fr)
CN (1) CN105431706A (fr)
FR (1) FR3009076B1 (fr)
WO (1) WO2015011260A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007517B1 (fr) * 2013-06-20 2016-08-19 Michelin & Cie Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
FR3020680B1 (fr) 2014-05-02 2017-11-24 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
FR3030717B1 (fr) 2014-12-17 2017-01-13 Michelin & Cie Procede de mesure de l'epaisseur d'une couche de materiau caoutchouteux
FR3030744A1 (fr) 2014-12-17 2016-06-24 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
FR3030374B1 (fr) 2014-12-17 2017-01-13 Michelin & Cie Procede de detection et d'alerte de l'etat de sous-gonflage d'un pneumatique
FR3039459B1 (fr) 2015-07-30 2017-08-11 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
JP6739750B2 (ja) * 2016-07-19 2020-08-12 住友ゴム工業株式会社 インナーゲージ測定装置および測定方法
DE102017207265A1 (de) * 2017-04-28 2018-10-31 Schunk Carbon Technology Gmbh Messvorrichtung und Verfahren zur Messung eines Verschleißzustandes
EP3424753B1 (fr) * 2017-07-03 2019-06-26 Nokian Renkaat Oyj Un pneu avec un indicateur sans fil
FR3070088A1 (fr) * 2017-08-14 2019-02-15 Compagnie Generale Des Etablissements Michelin Systeme de fixation au sol pour boitier de detection
FR3072165B1 (fr) * 2017-10-10 2019-10-04 Continental Automotive France Procede de determination de l'epaisseur d'un pneumatique de vehicule automobile
JP6677347B2 (ja) * 2017-11-28 2020-04-08 横浜ゴム株式会社 空気入りタイヤ、タイヤ摩耗情報取得システム、及び空気入りタイヤの摩耗情報取得方法
WO2019241368A1 (fr) * 2018-06-14 2019-12-19 Tyrata, Inc. Procédés de mesure et/ou de mappage d'épaisseur de bande de roulement de pneu à partir de l'extérieur du pneu et dispositifs/systèmes associés
EP3814152A4 (fr) 2018-06-29 2021-10-20 Tyrata, Inc. Structures et procédés fournissant une intégration de capteur de bande de roulement
TW202010657A (zh) * 2018-08-31 2020-03-16 點晶科技股份有限公司 胎紋偵測裝置
EP3894847B1 (fr) * 2018-12-11 2024-02-14 Pirelli Tyre S.P.A. Procede et dispositif de controle de la conductibilite electrique d'un pneu en usinage
US11333232B2 (en) * 2019-03-14 2022-05-17 Dana Automotive Systems Group, Llc Eddy current sensor assembly
CN110057906A (zh) * 2019-05-23 2019-07-26 南京师范大学泰州学院 一种金属管道工件裂纹快速检测装置
US11614317B2 (en) 2019-06-21 2023-03-28 Tyrata, Inc. Methods providing enhanced material thickness sensing with capacitive sensors using inductance-generated resonance and related devices
WO2021071899A1 (fr) * 2019-10-08 2021-04-15 Tyrata, Inc. Système drive-over (dos) magnétique fournissant une mesure d'épaisseur/profondeur de bande de roulement de pneu
CN115397678B (zh) * 2020-04-10 2024-03-08 阿尔卑斯阿尔派株式会社 轮胎的磨损测定装置以及磨损测定方法
US20220397486A1 (en) * 2021-06-09 2022-12-15 The Goodyear Tire & Rubber Company Tire with magnetic tread wear sensor and tread wear monitoring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104593A (en) * 1996-09-27 2000-08-15 Canon Denshi Kabushiki Kaisha Tire magnetization method, tire magnetized by the tire magnetization method, tire magnetic field detection method, tire revolution detection signal processing method, and tire revolution detection apparatus
US20090078347A1 (en) * 2007-09-25 2009-03-26 Alfred Niklas Tire tread detection and measurement of physical variables of a tire on a moving vehicle
US20100276044A1 (en) * 2007-07-27 2010-11-04 Andreas Heise Method for determining the profile depth of a tire and/or a tire characteristic, and a tire

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228293A (en) * 1938-03-14 1941-01-14 Hugh E Wurzbach Magnetic material detector
US3535625A (en) * 1968-04-22 1970-10-20 Garrett Corp Strain and flaw detector
US3611120A (en) * 1970-02-24 1971-10-05 Forster F M O Eddy current testing systems with means to compensate for probe to workpiece spacing
JPS5051754A (fr) * 1973-09-06 1975-05-08
DE2345848C3 (de) * 1973-09-12 1986-06-19 ELEKTRO-PHYSIK Hans Nix & Dr.-Ing. E. Steingroever GmbH & Co KG, 5000 Köln Elektromagnetischer Schichtdickenmesser
CA1038037A (fr) * 1976-05-06 1978-09-05 Noranda Mines Limited Dispositif d'essai magnetique pour detecter des defauts dans des objets de forme allongee
JPS5316113U (fr) * 1976-07-23 1978-02-10
SE416844B (sv) * 1979-06-05 1981-02-09 Sunds Defibrator Sett och anordning for avstandsmetning mellan tva motstaende ytor av magnetiskt ledande material
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
US4829251A (en) * 1983-08-31 1989-05-09 Helmut Fischer Electromagnetic probe for measuring the thickness of thin coatings on magnetic substrates
FR2552540B1 (fr) * 1983-09-27 1987-03-20 Commissariat Energie Atomique Dispositif pour mesurer la proximite d'une surface metallique conductrice
FR2572175A1 (fr) 1984-10-24 1986-04-25 Stein Heurtey Procede et dispositif pour mesurer l'epaisseur de couches metalliques minces deposees sur un support conducteur
US4847556A (en) 1986-09-08 1989-07-11 Langley Lawrence W Eddy current clearance transducing system
US4804912A (en) * 1987-05-14 1989-02-14 Kamyr Ab Apparatus for electromagnetically measuring the distance between two opposing grinding surfaces
EP0576714B1 (fr) * 1992-07-03 1995-03-15 Norbert Dr. Nix Dispositif pour mesurer une épaisseur de couche
US5394290A (en) * 1993-07-06 1995-02-28 Alliedsignal Inc. Active tuned magnetic flux rate feedback sensing arrangement
GB9520515D0 (en) * 1995-10-05 1995-12-13 Elcometer Instr Ltd A thickness coating measuring instrument
US5682097A (en) * 1996-01-31 1997-10-28 Eastman Kodak Company Electromagnetic actuator with movable coil and position sensor for drive coil
EP0819944A1 (fr) 1996-07-16 1998-01-21 Lucent Technologies Inc. Capteur à courant de foucault
JP2000146510A (ja) * 1998-11-10 2000-05-26 Hosiden Corp 厚み検知装置及び同装置を用いた画像記録装置
US6456069B1 (en) * 1999-03-05 2002-09-24 The United States Of America As Represented By The Secretary Of The Navy Fluxgate magnetic field sensor incorporating ferromagnetic test material into its magnetic circuitry
US7267148B2 (en) * 1999-08-10 2007-09-11 Michelin Recherche Et Technique S.A. Measurement of adherence between a vehicle wheel and the roadway
DE10000730C2 (de) * 2000-01-11 2003-12-04 Balluff Gmbh Abstandssensor
JP3889229B2 (ja) * 2000-04-13 2007-03-07 アルプス電気株式会社 渦電流センサ及びこの渦電流センサを用いたディスク装置
US7374477B2 (en) * 2002-02-06 2008-05-20 Applied Materials, Inc. Polishing pads useful for endpoint detection in chemical mechanical polishing
JP4610062B2 (ja) * 2000-09-14 2011-01-12 株式会社ブリヂストン バフ方法
US6803757B2 (en) * 2001-10-02 2004-10-12 Bentley Nevada, Llc Multi-coil eddy current proximity probe system
DE10157263A1 (de) 2001-11-22 2003-05-28 Continental Ag Verfahren zur Ermittlung der Profiltiefe eines Reifens und Reifen
WO2004076205A1 (fr) * 2003-02-17 2004-09-10 Societe De Technologie Michelin Armature de sommet pour pneumatique radial
FR2856145B1 (fr) * 2003-06-16 2005-09-02 Michelin Soc Tech Detection des revolutions d'un ensemble pneumatique et roue, a l'aide du champ magnetique terrestre.
US7112960B2 (en) * 2003-07-31 2006-09-26 Applied Materials, Inc. Eddy current system for in-situ profile measurement
JP2005315732A (ja) * 2004-04-28 2005-11-10 Jfe Steel Kk 強磁性体の変位測定装置
JP2007212278A (ja) * 2006-02-09 2007-08-23 Bridgestone Corp 旧ゴムゲージ測定機
EP2091761A1 (fr) 2006-11-17 2009-08-26 Treadcheck Limited Appareil et procédé de contrôle d'usure de pneus
US7578180B2 (en) * 2007-06-29 2009-08-25 The Goodyear Tire & Rubber Company Tread depth sensing device and method for measuring same
US20090102467A1 (en) 2007-10-22 2009-04-23 Johnson Controls Inc. Method and apparatus for sensing shaft rotation
GB201102542D0 (en) 2011-02-14 2011-03-30 Qinetiq Ltd Proximity sensor
US9023667B2 (en) * 2011-04-27 2015-05-05 Applied Materials, Inc. High sensitivity eddy current monitoring system
DE102011081869A1 (de) * 2011-08-31 2013-02-28 Siemens Aktiengesellschaft Messkopf für einen magnetoelastischen Sensor
FR3007517B1 (fr) 2013-06-20 2016-08-19 Michelin & Cie Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
FR3009075B1 (fr) 2013-07-26 2016-09-09 Michelin & Cie Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104593A (en) * 1996-09-27 2000-08-15 Canon Denshi Kabushiki Kaisha Tire magnetization method, tire magnetized by the tire magnetization method, tire magnetic field detection method, tire revolution detection signal processing method, and tire revolution detection apparatus
US20100276044A1 (en) * 2007-07-27 2010-11-04 Andreas Heise Method for determining the profile depth of a tire and/or a tire characteristic, and a tire
US20090078347A1 (en) * 2007-09-25 2009-03-26 Alfred Niklas Tire tread detection and measurement of physical variables of a tire on a moving vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015011260A1 *

Also Published As

Publication number Publication date
US20160161243A1 (en) 2016-06-09
WO2015011260A1 (fr) 2015-01-29
CN105431706A (zh) 2016-03-23
FR3009076B1 (fr) 2017-03-31
US10876826B2 (en) 2020-12-29
JP2016529494A (ja) 2016-09-23
FR3009076A1 (fr) 2015-01-30

Similar Documents

Publication Publication Date Title
EP3025120A1 (fr) Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
EP3025119B1 (fr) Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
WO2014202747A1 (fr) Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique
CA2139577C (fr) Dispositif pour detecter notamment une ou plusiers roues d'un vehicule ou d'un engin mobile roulant et procede pour la mise en oeuvre de ce dispositif
EP3234540B1 (fr) Procédé de mesure de l'épaisseur d'une couche de matériau caoutchouteux
EP1446296B1 (fr) Procede de mesure en continu de l'usure d'une enveloppe de pneumatique
EP3233540B1 (fr) Procédé de détection et d'alerte de l'état de sous-gonflage d'un pneumatique
FR2896070A1 (fr) Systeme magnetique de controle de trafic
EP3011264B1 (fr) Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique
FR2968616A1 (fr) Vehicule automobile comportant une batterie electrique rechargeable par induction, station de chargement et procede de charge
EP3025123A1 (fr) Procede de caracterisation de parametres mecaniques d'une chaussee
CA2971599A1 (fr) Procede de mesure de la pression de gonflage des pneumatiques equipant un vehicule en deplacement sur une voie de circulation
WO2022123137A1 (fr) Dispositif de mesure comprenant un système de découplage mécanique d'un capteur à effet hall
WO2023110894A1 (fr) Procede de determination de la propriete mecanique d'un sol agraire
FR3015028A1 (fr) Dispositif pour la mesure et l'indication du chargement d'un vehicule et procede de fabrication d'un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

17Q First examination report despatched

Effective date: 20180118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200220