WO2014202747A1 - Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique - Google Patents

Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique Download PDF

Info

Publication number
WO2014202747A1
WO2014202747A1 PCT/EP2014/062999 EP2014062999W WO2014202747A1 WO 2014202747 A1 WO2014202747 A1 WO 2014202747A1 EP 2014062999 W EP2014062999 W EP 2014062999W WO 2014202747 A1 WO2014202747 A1 WO 2014202747A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring system
magnetic field
sensitive element
measuring
tire
Prior art date
Application number
PCT/EP2014/062999
Other languages
English (en)
Inventor
Thomas Ledoux
Denis Martin
Original Assignee
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CN201480034804.1A priority Critical patent/CN105393078B/zh
Priority to EP14731640.0A priority patent/EP3011263A1/fr
Priority to US14/899,848 priority patent/US10113855B2/en
Priority to BR112015031550-0A priority patent/BR112015031550B1/pt
Publication of WO2014202747A1 publication Critical patent/WO2014202747A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/26Measuring arrangements characterised by the use of electric or magnetic techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present invention relates to a system for measuring the thickness of a rubber layer and more particularly to the measurement of the remaining rubber thickness of a tread of a tire. pneumatic.
  • the tread of a tire or more simply pneumatic is provided with a sculpture including sculpture elements or elementary blocks delimited by various main grooves, longitudinal, transverse or oblique, the elementary blocks may further comprise various incisions or slices finer.
  • the grooves are channels for evacuating water during a wet run and define the leading edges of the carving elements.
  • the tread When a tire is new, the tread has its maximum height. This initial height may vary depending on the type of tire considered and the purpose for which it is intended; for example, "winter” tires generally have a greater tread depth than that of "summer” tires.
  • the height of the elementary blocks of the sculpture decreases and the stiffness of these elementary blocks increases. Increasing the stiffness of the elementary blocks of sculpture results in a decrease in certain tire performance, such as wet grip.
  • the water evacuation capacities decrease sharply when the depth of the channels of the sculptures decreases.
  • Such monitoring is usually done by visual observation of the tread by the user or a garage with or without an effective measurement with a depth gauge. But this observation is not very easy to achieve especially on the rear tires of access more difficult and is also not very accurate.
  • Many proposals have been made to automate the measurement of the depth of tire tread patterns.
  • Such devices can be arranged on the running floor of the vehicles. These devices usually operate according to two techniques, either based on optical systems with cameras or lasers, or based on eddy currents. Systems based on optical systems are expensive, must be embedded in the taxiway and require regular maintenance. The measurements are further disturbed by dirt and the presence or splashing of water, mud, snow, etc.
  • a system for measuring the thickness of a layer of rubbery material of a tire comprising a face bonded to an adjacent reinforcement made with at least one material of superior magnetic permeability.
  • the magnetic permeability of the air and a free face in contact with the air comprising a sensor capable of measuring the distance d between the bonded face and the free face of the layer of rubbery material.
  • the sensor comprises a static magnetic field source and a sensitive element whose output signal is a function of the level of the local magnetic field, arranged so that the intensity of the magnetic field measured by the sensitive element varies as the distance d decreases.
  • the static magnetic field source consists of at least one coil supplied with a direct electric current.
  • the coil surrounds, or is surrounded by, a material of high magnetic permeability and low electrical conductivity, such as a ferrite.
  • a material of high magnetic permeability and low electrical conductivity such as a ferrite.
  • the presence of ferrite also makes it possible to measure a stronger magnetic field and thus improves the sensitivity of the sensor for the same supply current.
  • the static magnetic field source consists of at least one permanent magnet.
  • the permanent magnet may be such that it has an axial magnetic field.
  • Such a permanent magnet may have a geometric shape in the form of a ring.
  • This axisymmetric embodiment has the advantage of being insensitive to the orientation of the metal cables constituting the adjacent armature.
  • the sensor is therefore insensitive to the anisotropy of this adjacent layer.
  • Such a permanent magnet may also be a straight magnetic bar or U-shaped.
  • the senor comprises a sensitive element and a plurality of magnets with uniaxial magnetization arranged radially and with the same polar orientation relative to the sensitive element.
  • the measurement system comprises a source consisting of a plurality of permanent magnets arranged in line.
  • each permanent magnet having a north pole and a south pole, the permanent magnets are arranged so that the poles are aligned in the same alignment as that of the magnets of the source and any pair of two permanent magnets adjacent to its inverted polarities.
  • the senor comprises a plurality of sensitive elements each disposed between two permanent magnets. This allows you to define a measurement line.
  • the source of the measurement system consisting of a plurality of permanent magnets with axial magnetic field and in the form of rings placed in line, the axes of the ring-shaped permanent magnets. are arranged in the same plane passing through the line of the source and oriented normally to this line.
  • each ring-shaped permanent magnet comprises a sensitive element disposed at its axis.
  • the sensitive element can be selected from the group of Hall effect sensors, magneto-resistive, magneto-strict.
  • the sensor of the measuring system according to an object of the invention has the advantage of operating in reluctant mode.
  • the measurement in reluctant mode takes advantage of the magnetic permeability of the adjacent armature and it is found that this offers a high sensitivity of the measurements to any variation in the distance d.
  • the measuring system is advantageously arranged in a non-conductive electrical housing and whose magnetic properties are similar to those of air.
  • the housing can be a portable housing.
  • the measuring system according to an object of the invention can be applied to the measurement of the thickness of rubbery material of a sidewall or an inner liner of a tire. This measurement can be made during the manufacture of the tire or after the end of it.
  • the housing can also be adapted to be placed on or embedded in a driving floor.
  • the measuring system is preferably applied to the measurement of the remaining rubber material thickness of a tread of a tire.
  • the invention is particularly applicable to tires having metal reinforcements in their top and / or their carcass plies such as those intended to equip motor vehicles tourism type, SUV ("Sport Utility Vehicles"), such as vehicles.
  • industrial vehicles selected from vans, "heavy goods vehicles” - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as civil engineering vehicles -, other transport or handling vehicles.
  • FIG. 1 is a perspective view of a vehicle having a tire passes over a housing comprising a measuring system according to an object of the invention
  • FIG. 2 shows a housing with a measuring system
  • FIG. 3 shows the principle of operation of a measuring system in the case of an air coil, in the absence (a) and in the presence (b) of a metal reinforcement;
  • - Figure 4 shows a section of a tire in contact with the housing of the measuring system
  • - Figure 5 shows a first embodiment of a sensor of the measuring system
  • FIG. 6 presents a second exemplary embodiment of a sensor of the measurement system
  • FIG. 7 shows an example of measurements made with the sensor of FIG. 6
  • FIG. 8 shows a third exemplary embodiment of a sensor of the measurement system
  • FIG. 9 shows a fourth exemplary embodiment of a sensor of the measurement system
  • FIG. 10 shows an example of measurements made with the sensor of FIG. 9
  • FIG. 11 shows a fifth exemplary embodiment of a sensor of the measurement system.
  • FIG. 12 shows schematically the structure of the electronics of a measurement system. Detailed description of the invention
  • Figure 1 shows a vehicle 5 whose tire 8 rolls on a housing 6 having a wear measuring system.
  • the figure shows a passenger vehicle but the measurement system can also be used for any other vehicle, such as a truck or bus.
  • the measurement of the remaining thickness of rubber material of the tread of the tire 8 is made when the tire rolls over the casing 6 without it being necessary to stop the vehicle or disassemble the tire of the vehicle.
  • FIG. 2 illustrates a housing 12 according to one of the objects of the invention. It is presented as a portable unit that can be placed on a taxiway. It has a substantially trapezoidal cross section.
  • the housing comprises two inclined portions, an access ramp 14 and an outlet ramp 16. Between the two is a substantially horizontal portion 18, the application face of the housing.
  • the portion 18 of the housing 12 protects one or a row of sensors 50 for performing distance measurements.
  • the base 20 of the housing or bearing face is placed against the running ground and provides the housing with the necessary stability during operation of the system.
  • the housing 12 also includes an electronics 40 with a power source. Measurements are made when the area of tire contact rests on the horizontal portion 18. This horizontal portion is the application face of the housing against the surface of the tread of the tire.
  • the housing 12 is made of a non-conductive material whose magnetic properties are similar to those of air so as not to disturb the measurements. According to other embodiments, the housing can be embedded in a rolling floor or of suitable size and weight to be applied against a sidewall or an inner liner of a tire.
  • FIG. 3 illustrates the operating principle of the sensor of a measuring system according to an object of the invention.
  • an air coil 10 with an axis of symmetry and sensitivity A.
  • the magnetic field lines 54 emitted by this device extend in the air all around the coil as shown schematically in FIG. 3 (a).
  • the operating mode of the system according to an object of the invention uses this physical principle and is a reluctant mode therefore related to the magnetic permeability of the different parts of the magnetic circuit constituted by the source and the object whose distance is measured. with the sensor.
  • FIG. 4 illustrates the conditions under which the remaining thickness measurement of a tire tread can be carried out.
  • This is a sectional view of a tire on a housing of the measuring system.
  • the housing 12 protects a sensor 50 for performing the distance measurements.
  • the sensor 50 consists of a source 52 and a sensitive element 51.
  • the source 52 is a parallelepiped permanent magnet and the sensitive element is a Hall effect sensor (see Fig. 5).
  • the sensing element and the source are placed in the same plane 54.
  • the base 20 of the housing is placed against the running floor and provides it with the necessary stability during operation of the system.
  • the housing 12 also contains the electronics necessary for the measurements to be made by the sensor 50.
  • the measurements are made when the contact area of the tire 8 rests on the application face 18 of the housing 12.
  • the tire 8 comprises in particular a tread 80 with treads 82, a crown reinforcement 84 consisting of two or more plies of metal reinforcements (not shown), and flanks 86.
  • the rolling surface 88 of the tread 80 is in abutment against the application face 18 of the housing 12.
  • the distance D2 can be known from the identification of the type of tire measured. This identification can be manual or automatic, for example by retrieving identification data entered in a transponder such as an RFID incorporated in the tire structure.
  • FIG. 6 illustrates an alternative embodiment of the sensor 60 in which the magnetic field source is an assembly of two parallelepiped-shaped permanent magnets 62, the identical poles of which face each other, the south poles, the two magnets 62 being arranged on the same plane 64.
  • the sensitive element 61 can be positioned in the gap between the two magnets 62.
  • Tests with this sensor configuration were carried out with permanent magnets Neodymium-Iron-Boron, sintered compounds of neodymium powder, iron and boron. Their geometry was: length 19.05 mm, width 12.7 mm and height 6.35 mm. The spacing between the two permanent magnets was 19 mm.
  • the Hall effect sensor used was Honeywell brand reference SS39E.
  • a radial tire cut for heavy vehicle was used for these tests after planing the rubber of the tread. The zero of the measurements was made when the crown reinforcement was in contact with the application face of the casing 12, then the section of the application face of the casing was gradually removed.
  • Figure 7 shows the results obtained. A very appreciable variation of the intensity a of the local magnetic field is observed up to about a spacing of 25 to 30 mm.
  • the first curve (1) was made with a spacing between the two permanent magnets of 19 mm, the second (2) with a double spacing of 38 mm.
  • FIG. 8 shows another embodiment of the sensor 70 which is an advantageous repetition of the embodiment of FIG. 6.
  • a source of static magnetic field is produced which produces a repetition of intervals 73 between the parallelepiped magnets 72.
  • These intervals 73 are as many magnetic equivalent zones along the line 75.
  • a sensitive element 71 capable of measuring the evolution of the local magnetic field.
  • This embodiment of the sensor 70 makes it possible to measure the tire rubber layer thickness at several points simultaneously along a line.
  • FIG. 9 shows a fourth embodiment of the sensor 90 in which the magnetic field source consists of a magnet 92 of annular shape and whose magnetization is axial.
  • the sensitive element 91 is advantageously placed on the axis of symmetry of the ring, at a point where the magnetic field is zero in the absence of metal tire armature.
  • the output signal of the sensitive element 91 is zero when the sensor 90 is kept away from any metal tire armature.
  • This has the advantage of avoiding the measurement offset present in the embodiments described above.
  • Tests with this sensor configuration were made with two permanent magnets Neodymium-Iron-Boron. Their geometry was: outer diameter 26.75 mm, internal diameter 16 mm and height 5 mm for the first and outside diameter 19.1 mm, internal diameter 9.5 mm and height 6.4 mm for the second.
  • the Hall effect sensor used was Honeywell brand reference SS39E. The procedure for this test was identical to that described above.
  • the graph of Figure 10 shows the results obtained. There is again a very significant variation in the intensity a of the local magnetic field during the variation of the spacing between the measuring system and the metal reinforcement of the crown of the tire, from about 5 mm to 25 to 30 mm.
  • This graph shows that the dynamic variation of the signal measured by the sensitive element 91 is all the more important that the diameter of the annular magnet 92 is low (curve 2).
  • the greater the diameter of the magnet 92 the greater the linearity of the signal measured by the sensitive element 91 is strong (curve 1).
  • This axisymmetric embodiment has the advantage of being insensitive to the orientation of the metal cables constituting the adjacent armature.
  • the sensor is therefore insensitive to the anisotropy of this adjacent layer.
  • FIG. 11 illustrates an alternative embodiment of the sensor 95 in which the magnetic field source is an assembly of four parallelepiped-shaped magnets 97, the identical poles of which face each other, the four magnets 97 being arranged on the same plan 98.
  • the magnets are arranged in pairs along two perpendicular lines, so that all four magnets 97 makes a cross device.
  • the sensitive element 96 can be positioned in the center of the cross thus produced.
  • the dynamics of the output signal of the sensitive element 96, as well as the range of the sensor 95 is stronger than what is obtained with the structure described in FIG. 6.
  • FIG. 13 illustrates another embodiment in which there are two rows of parallelepiped magnets 272. The north poles of these magnets are arranged face to face in pairs as shown in the figure. Between the two rows of magnets 272, there is a row of sensitive elements 271. These sensitive elements are, for example, Hall effect type sensors. This configuration advantageously makes it possible to eliminate the edge effects of the web that can be seen with some of the other configurations.
  • Figure 12 shows the structure of the electronics 40 for measuring the thickness of a tire rubber layer at several points simultaneously.
  • the electronics 40 uses a multiplexer (MUX) 106 to which is connected a succession of sensitive elements 100, provided with a signal conditioning stage 102 and an analog-digital converter 104.
  • MUX multiplexer
  • This multiplexer 106 is connected to a motherboard 108, the functions of which are:
  • this motherboard 108 is managed by a microprocessor 110 and is equipped with a power supply stage 112 on battery 118.
  • the assembly having the ability to perform many tire measurements, without changing batteries, which gives the system an autonomy of several years without human intervention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Système de mesure de l'épaisseur d'une couche de matériau caoutchouteux d'un pneumatique, ladite couche comportant une face liée à une armature adjacente métallique et une face libre en contact avec l'air, le système comprenant un capteur capable de mesurer la distance d entre la face liée et la face libre de la couche de matériau caoutchouteux, tel que le capteur comporte une source de champ magnétique statique et un élément sensible dont le signal de sortie est fonction du niveau du champ magnétique local, disposé de telle sorte que l'intensité du champ magnétique mesuré par l'élément sensible varie lorsque la distance d diminue.

Description

SYSTEME DE MESURE DE L'EPAISSEUR
D'UNE COUCHE DE GOMME D'UN PNEUMATIQUE
Domaine de l'invention [0001] La présente invention est relative à un système de mesure de l'épaisseur d'une couche de gomme et plus particulièrement à la mesure de l'épaisseur de gomme restante d'une bande de roulement d'un pneumatique.
État de la technique
[0002] De manière connue, la bande de roulement d'un bandage pneumatique ou plus simplement pneumatique, qu'il soit destiné à équiper un véhicule de tourisme ou un véhicule poids lourd, est pourvue d'une sculpture comprenant notamment des éléments de sculpture ou blocs élémentaires délimités par diverses rainures principales, longitudinales, transversales ou encore obliques, les blocs élémentaires pouvant en outre comporter diverses incisions ou lamelles plus fines. Les rainures constituent des canaux destinés à évacuer l'eau lors d'un roulage sur sol mouillé et définissent les bords d'attaque des éléments de sculpture.
[0003] Quand un pneumatique est neuf, la bande de roulement a sa hauteur maximale. Cette hauteur initiale peut varier en fonction du type de pneumatique considéré ainsi que de l'usage auquel il est destiné ; à titre d'exemple, les pneumatiques « hiver » ont généralement une profondeur de sculpture supérieure à celle de pneumatiques « été ». Lorsque le pneumatique s'use, la hauteur des blocs élémentaires de la sculpture diminue et la raideur de ces blocs élémentaires augmente. L'augmentation de raideur des blocs élémentaires de sculpture entraîne une diminution de certaines performances du pneumatique, telle l'adhérence sur sol mouillé. De plus, les capacités d'évacuation d'eau diminuent fortement lorsque la profondeur des canaux des sculptures diminue.
[0004] Il est donc souhaitable de pouvoir suivre l'évolution de l'usure de la bande de roulement d'un pneumatique. [0005] Un tel suivi est usuellement réalisé par observation visuelle de la bande de roulement par l'usager ou un garagiste avec ou sans une mesure effective avec une jauge de profondeur. Mais cette observation n'est pas très aisée à réaliser notamment sur les pneumatiques arrière d'accès plus difficile et n'est pas non plus très précise. [0006] De nombreuses propositions ont été faites pour automatiser la mesure de la profondeur de sculptures de pneumatiques. De tels dispositifs peuvent être disposés sur le sol de roulage des véhicules. Ces dispositifs fonctionnent usuellement selon deux techniques, soit à base de systèmes optiques avec des caméras ou des lasers, soit à base de courants de Foucault. [0007] Les systèmes à base de systèmes optiques sont coûteux, doivent être encastrés dans le sol de roulage et nécessitent une maintenance régulière. Les mesures sont de plus perturbées par des salissures et la présence ou des projections d'eau, de boue, de neige, etc.
[0008] Les documents US 7,578,180 B2 et WO 2008/059283 proposent des systèmes de mesure de l'épaisseur de la bande de roulement d'un pneumatique, comportant des capteurs sensibles aux courants de Foucault générés par un champ magnétique d'excitation dans l'armature de sommet du pneumatique. Ces systèmes sont disposés sur un sol de roulage.
[0009] Or, on a constaté que ces systèmes de mesures n'étaient pas totalement satisfaisants dans certains cas. En effet, l'armature de certains pneumatiques est telle que le sommet du pneumatique n'est pas suffisamment conducteur pour permettre l'établissement de courants de Foucault. Par conséquent, ces systèmes de mesure sont inadaptés à la mesure d'épaisseur de la bande de roulement de ces pneumatiques.
Description brève de l'invention
[0010] L'invention a selon un objet un système de mesure de l'épaisseur d'une couche de matériau caoutchouteux d'un pneumatique, la couche comportant une face liée à une armature adjacente réalisée avec au moins un matériau de perméabilité magnétique supérieure à la perméabilité magnétique de l'air et une face libre en contact avec l'air, le système comprenant un capteur capable de mesurer la distance d entre la face liée et la face libre de la couche de matériau caoutchouteux. Ce système est caractérisé en ce que le capteur comporte une source de champ magnétique statique et un élément sensible dont le signal de sortie est fonction du niveau du champ magnétique local, disposé de telle sorte que l'intensité du champ magnétique mesurée par l'élément sensible varie lorsque la distance d diminue. [0011] Selon un premier mode de réalisation, la source de champ magnétique statique est constituée d'au moins une bobine alimentée par un courant électrique continu.
[0012] Avantageusement, la bobine entoure, ou est entourée par, un matériau de haute perméabilité magnétique et faible conductivité électrique, tel une ferrite. La présence de la ferrite permet de localiser les lignes de champ magnétique et ainsi de réaliser une mesure d'épaisseur de couche plus localisée.
[0013] La présence de la ferrite permet également de mesurer un plus fort champ magnétique et améliore ainsi la sensibilité du capteur pour un même courant d'alimentation.
[0014] Selon un deuxième mode de réalisation, la source de champ magnétique statique est constituée d'au moins un aimant permanent.
[0015] L'utilisation d'un aimant permanent permet de réaliser une mesure avec une puissance électrique consommée très faible, puisque seul l'élément sensible nécessite une alimentation électrique.
[0016] L'aimant permanent peut être tel qu'il a un champ magnétique axial. [0017] Un tel aimant permanent peut avoir une forme géométrique en forme d'anneau.
[0018] Ce mode de réalisation axisymétrique présente l'avantage d'être insensible à l'orientation des câbles métalliques constituant l'armature adjacente. Le capteur est donc insensible à l'anisotropie de cette couche adjacente.
[0019] Un tel aimant permanent peut également être un barreau magnétique droit ou en forme de U.
[0020] Avantageusement, le capteur comprend un élément sensible et une pluralité d'aimants à aimantation uniaxiale disposés radialement et avec la même orientation polaire relativement à l'élément sensible. [0021] Selon un mode de réalisation avantageux, le système de mesure comporte une source constituée par une pluralité d'aimants permanents disposés en ligne.
[0022] Selon un exemple de réalisation, chaque aimant permanent ayant un pôle nord et un pôle sud, les aimants permanents sont disposés de telle sorte que les pôles sont alignés selon le même alignement que celui des aimants de la source et tout couple de deux aimants permanents adjacents a ses polarités inversées.
[0023] Avantageusement, le capteur comporte plusieurs éléments sensibles disposés chacun entre deux aimants permanents. Cela permet de définir une ligne de mesure.
[0024] Selon un autre exemple de réalisation, la source du système de mesure étant constituée d'une pluralité d'aimants permanents à champ magnétique axial et en forme d'anneaux placés en ligne, les axes des aimants permanents en forme d'anneau sont disposés dans un même plan passant par la ligne de la source et orientés normalement à cette ligne.
[0025] Selon un mode de réalisation avantageux, chaque aimant permanent en forme d'anneau comporte un élément sensible disposé au niveau de son axe.
[0026] On peut placer l'élément sensible en un point de l'axe où le champ magnétique est nul en l'absence de couche.
[0027] Ce positionnement a l'avantage de donner une référence pour les mesures pour laquelle la sortie de l'élément sensible est nulle. [0028] L'élément sensible peut être choisi dans le groupe des capteurs à effet Hall, magnéto résistif, magnéto strictif.
[0029] Le capteur du système de mesure selon un objet de l'invention a l'avantage de fonctionner en mode reluctant.
[0030] La mesure en mode reluctant met à profit la perméabilité magnétique de l'armature adjacente et on constate que cela offre une grande sensibilité des mesures à toute variation de la distance d.
[0031] Le système de mesure est avantageusement disposé dans un boîtier non conducteur électrique et dont les propriétés magnétiques sont assimilables à celles de l'air. [0032] Le boîtier peut être un boîtier portatif.
[0033] Dans ce cas, le système de mesure selon un objet de l'invention peut être appliqué à la mesure de l'épaisseur de matériau caoutchouteux d'un flanc ou d'une gomme intérieure d'un pneumatique. Cette mesure peut être réalisée lors de la fabrication du pneumatique ou après la fin de celle-ci.
[0034] Le boîtier peut aussi être apte à être disposé sur ou encastré dans un sol de roulage.
[0035] Dans ce cas, le système de mesure est de préférence appliqué à la mesure de l'épaisseur de matériau caoutchouteux restante d'une bande de roulement d'un pneumatique.
[0036] L'invention s'applique particulièrement aux pneumatiques comportant des renforts métalliques dans leur sommet et/ou leurs nappes carcasses tels ceux destinés à équiper des véhicules à moteur de type tourisme, SUV {"Sport Utility Vehicles"), comme des véhicules industriels choisis parmi camionnettes, « Poids-lourd » - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins de génie civil -, autres véhicules de transport ou de manutention.
Description des Figures
[0037] Les figures annexées illustrent plusieurs modes de réalisation d'un système de mesure, selon un objet de l'invention, en prenant comme exemple principal son application à la mesure de l'épaisseur de bandes de roulement de pneumatiques :
- la figure 1 est une vue en perspective d'un véhicule dont un pneumatique passe au- dessus d'un boîtier comportant un système de mesure selon un objet de l'invention ;
- la figure 2 présente un boîtier avec un système de mesure ;
- la figure 3 présente le principe de fonctionnement d'un système de mesure dans le cas d'une bobine à air, en l'absence (a) et en présence (b) d'une armature métallique ;
- la figure 4 présente une coupe d'un pneumatique en contact avec le boîtier du système de mesure ; - la figure 5 présente un premier exemple de réalisation d'un capteur du système de mesure ;
- la figure 6 présente un deuxième exemple de réalisation d'un capteur du système de mesure ;
- la figure 7 présente un exemple de mesures réalisées avec le capteur de la figure 6 ;
- la figure 8 montre un troisième exemple de réalisation d'un capteur du système de mesure ;
- la figure 9 présente un quatrième exemple de réalisation d'un capteur du système de mesure ;
- la figure 10 présente un exemple de mesures réalisées avec le capteur de la figure 9 ;
- la figure 11 présente un cinquième exemple de réalisation d'un capteur du système de mesure ; et
- la figure 12 montre schématiquement la structure de l'électronique d'un système de mesure. Description détaillée de l'invention
[0038] La figure 1 présente un véhicule 5 dont le pneumatique 8 roule sur un boîtier 6 comportant un système de mesure de l'usure. La figure montre un véhicule de tourisme mais le système de mesure est aussi utilisable pour tout autre véhicule, tel un poids-lourd ou un car. La mesure de l'épaisseur restante de matériau caoutchouteux de la bande de roulement du pneumatique 8 est faite lorsque le pneumatique roule au-dessus du boîtier 6 sans qu'il soit nécessaire d'arrêter le véhicule ou de démonter le pneumatique du véhicule.
[0039] La figure 2 illustre un boîtier 12 selon l'un des objets de l'invention. Celui-ci se présente comme un ensemble portatif qui peut être déposé sur un sol de roulage. Il a une section droite sensiblement trapézoïdale. Le boîtier comprend deux portions inclinées, une rampe d'accès 14 et une rampe de sortie 16. Entre les deux se trouve une portion 18 sensiblement horizontale, la face d'application du boîtier. La portion 18 du boîtier 12 protège un ou une rangée de capteurs 50 destinés à réaliser les mesures de distance. La base 20 du boîtier ou face d'appui est placée contre le sol de roulage et procure au boîtier la stabilité nécessaire pendant le fonctionnement du système. Le boîtier 12 comporte aussi une électronique 40 avec une source d'énergie. Les mesures sont faites lorsque l'aire de contact du pneumatique repose sur la portion horizontale 18. Cette portion horizontale est la face d'application du boîtier contre la surface de la bande de roulement du pneumatique. Le boîtier 12 est réalisé en un matériau non conducteur dont les propriétés magnétiques sont assimilables à celles de l'air pour ne pas perturber les mesures. [0040] Selon d'autres modes de réalisation, le boîtier peut être encastré dans un sol de roulage ou de dimensions et de poids approprié pour pouvoir être appliqué contre un flanc ou une gomme intérieure d'un pneumatique.
[0041] La figure 3 illustre le principe de fonctionnement du capteur d'un système de mesure selon un objet de l'invention. [0042] A la figure 3(a) est représenté une bobine à air 10 avec un axe de symétrie et de sensibilité A. Lorsque les bornes de la bobine sont alimentées par un courant continu, les lignes de champ magnétique 54 émises par ce dispositif s'étendent dans l'air tout autour de la bobine tel que schématisé à la fig. 3(a).
[0043] Si on approche de ce dispositif une armature métallique 14, bonne conductrice de champ magnétique et mauvaise conductrice électrique, telle une nappe sommet d'un pneumatique constituée de renforts métalliques parallèles noyés dans deux couches de matériau caoutchouteux peu conducteur, les lignes de champ vont naturellement chercher à passer par cette armature métallique plutôt que dans l'air, car l'air a une reluctance supérieure à celle de l'armature métallique. On observe une localisation des lignes de champ magnétique 54 à travers l'armature métallique 14.
[0044] Il en résulte que dans la zone située entre la bobine 10 et l'armature métallique, la densité de flux magnétique va augmenter.
[0045] Le mode de fonctionnement du système selon un objet de l'invention utilise ce principe physique et est un mode reluctant donc lié à la perméabilité magnétique des différentes parties du circuit magnétique constitué par la source et l'objet dont on mesure la distance avec le capteur.
[0046] La figure 4 illustre les conditions dans lesquelles la mesure d'épaisseur restante d'une bande de roulement de pneumatique peut se réaliser. C'est une vue en coupe d'un pneumatique sur un boîtier du système de mesure. [0047] Le boîtier 12 protège un capteur 50 destiné à réaliser les mesures de distance. Le capteur 50 est constitué d'une source 52 et d'un élément sensible 51. Dans ce mode de réalisation, la source 52 est un aimant permanent parallélépipédique et l'élément sensible est un capteur à effet Hall (voir Fig. 5). L'élément sensible et la source sont placés dans le même plan 54.
[0048] La base 20 du boîtier est placée contre le sol de roulage et procure à celui-ci la stabilité nécessaire pendant le fonctionnement du système. Le boîtier 12 contient également l'électronique nécessaire à la réalisation des mesures par le capteur 50.
[0049] Les mesures sont faites lorsque l'aire de contact du pneumatique 8 repose sur la face d'application 18 du boîtier 12.
[0050] Le pneumatique 8 comprend notamment une bande de roulement 80 avec des sculptures 82, une armature de sommet 84 constituée de deux ou plus nappes de renforts métalliques (non représentées), et de flancs 86. La surface de roulage 88 de la bande de roulement 80 est en appui contre la face d'application 18 du boîtier 12. [0051] Le capteur 50 mesure, comme il a été expliqué ci-dessus, la distance Dl qui le sépare de l'armature métallique 84 du sommet du pneumatique 8. Dl a trois composantes. Deux de ces composantes sont fixes, la distance D2 qui sépare le fond des sculptures 82 de l'armature 84, et la distance D3 qui sépare le capteur 50 de la face d'application 18 du boîtier 12. Une composante est variable avec le degré d'usure de la bande de roulement, c'est d qui correspond à l'épaisseur restante de la bande de roulement. On a : d = Dl - D2 - D3
[0052] La distance D2 peut être connue à partir de l'identification du type de pneumatique mesuré. Cette identification peut être manuelle ou automatique, par exemple en récupérant des données d'identification inscrites dans un transpondeur tel un RFID incorporé dans la structure du pneumatique.
[0053] La figure 6 illustre un mode de réalisation alternatif du capteur 60 dans lequel la source de champ magnétique est un assemblage de deux aimants permanents de forme parallélépipédique 62, dont les pôles identiques se font face, les pôles sud, les deux aimants 62 étant disposés sur le même plan 64. [0054] Dans cette configuration, l'élément sensible 61 peut être positionné dans l'intervalle existant entre les deux aimants 62.
[0055] Des essais avec cette configuration de capteur ont été réalisés avec des aimants permanents Néodyme-Fer-Bore, frittés composés de poudre de Néodyme, de Fer et de Bore. Leur géométrie était : longueur 19,05 mm, largeur 12,7 mm et hauteur 6,35 mm. L'écartement entre les deux aimants permanents était de 19 mm. Le capteur à effet Hall utilisé était de marque Honeywell référence SS39E.
[0056] Une coupe de pneumatique radial pour véhicule Poids-lourd a été utilisée pour ces essais après avoir raboté le caoutchouc de la bande de roulement. Le zéro des mesures a été fait lorsque l'armature de sommet était en contact avec la face d'application du boîtier 12, puis on a écarté progressivement la coupe de la face d'application du boîtier.
[0057] La figure 7 présente les résultats obtenus. On observe une variation très sensible de l'intensité a du champ magnétique local jusqu'à environ un écartement de 25 à 30 mm.
[0058] La première courbe (1) a été réalisée avec un espacement entre les deux aimants permanents de 19 mm, la seconde (2) avec un espacement double, de 38 mm.
[0059] Ces résultats montrent que la dynamique de variation du signal mesuré par l'élément sensible 61 est d'autant plus importante que l'intervalle entre les deux aimants 62 est faible (courbe 1).
[0060] En revanche, plus l'intervalle entre les deux aimants 62 est fort, plus la linéarité du signal mesuré par l'élément sensible 61 est forte (courbe 2).
[0061] La figure 8 montre un autre mode de réalisation du capteur 70 qui est une répétition avantageuse du mode de réalisation de la figure 6.
[0062] Dans ce mode de réalisation, on dispose une succession de six aimants parallélépipédiques 72 le long d'une ligne de mesure 75, l'ensemble étant placé dans un même plan 74.
[0063] Ce faisant on réalise une source de champ magnétique statique qui produit une répétition d'intervalles 73 entre les aimants parallélépipédique 72. Ces intervalles 73 sont autant de zones équivalentes du point de vue magnétique, le long de la ligne 75. [0064] Dans chacun des intervalles on dispose un élément sensible 71, capable de mesurer l'évolution du champ magnétique local.
[0065] Ce mode de réalisation du capteur 70 permet de réaliser une mesure d'épaisseur de couche de gomme de pneumatique en plusieurs points, simultanément, le long d'une ligne.
[0066] La figure 9 montre un quatrième mode de réalisation du capteur 90 dans lequel la source de champ magnétique est constituée d'un aimant 92 de forme annulaire et dont l'aimantation est axiale.
[0067] Dans ce mode de réalisation, l'élément sensible 91 est avantageusement placé sur l'axe de symétrie de l'anneau, en un point ou le champ magnétique est nul en l'absence d'armature métallique de pneumatique.
[0068] Ce faisant, le signal de sortie de l'élément sensible 91 est nul lorsque le capteur 90 est tenu éloigné de toute armature métallique de pneumatique. Cela a pour avantage d'éviter l'offset de mesure présent dans les modes de réalisation décrits précédemment. [0069] Des essais avec cette configuration de capteur ont été réalisés avec deux aimants permanents Néodyme-Fer-Bore. Leur géométrie était : diamètre extérieur 26,75 mm, diamètre intérieur 16 mm et hauteur 5 mm pour le premier et diamètre extérieur 19,1 mm, diamètre intérieur 9,5 mm et hauteur 6,4 mm pour le second. Le capteur à effet Hall utilisé était de marque Honeywell référence SS39E. [0070] Le mode opératoire pour cet essai a été identique à celui décrit précédemment.
[0071] Le graphique de la figure 10 montre les résultats obtenus. On observe à nouveau une variation très sensible de l'intensité a du champ magnétique local lors de la variation de l'écartement entre le système de mesure et l'armature métallique du sommet du pneumatique, de 5 mm environ jusqu'à 25 à 30 mm. [0072] Ce graphique montre que la dynamique de variation du signal mesuré par l'élément sensible 91 est d'autant plus importante que le diamètre de l'aimant annulaire 92 est faible (courbe 2). [0073] En revanche, plus le diamètre de l'aimant 92 est fort, plus la linéarité du signal mesuré par l'élément sensible 91 est forte (courbe 1).
[0074] Ce mode de réalisation axisymétrique présente l'avantage d'être insensible à l'orientation des câbles métalliques constituant l'armature adjacente. Le capteur est donc insensible à l'anisotropie de cette couche adjacente.
[0075] La figure 11 illustre un mode de réalisation alternatif du capteur 95 dans lequel la source de champ magnétique est un assemblage de quatre aimants de forme parallélépipédique 97, dont les pôles identiques se font face, les quatre aimants 97 étant disposés sur le même plan 98. [0076] Dans ce mode de réalisation, les aimants sont disposés deux à deux le long de deux lignes perpendiculaires, de sorte que l'ensemble des quatre aimants 97 réalise un dispositif en croix.
[0077] Dans cette configuration, l'élément sensible 96 peut être positionné au centre de la croix ainsi réalisée. [0078] Dans ce mode de réalisation, la dynamique du signal de sortie de l'élément sensible 96, ainsi que la portée du capteur 95 est plus forte que ce qui est obtenu avec la structure décrite dans la figure 6.
[0079] La linéarité du signal de sortie de l'élément sensible 96 est, quant à elle, d'autant plus forte que les 4 aimants sont plus éloignés les uns des autres. [0080] La figure 13 illustre un autre mode de réalisation dans lequel on dispose deux rangées d'aimants paralléllépipédiques 272. Les pôles nord de ces aimants sont disposés face à face deux à deux comme montré sur la figure. Entre les deux rangées d'aimants 272, on dispose une rangée d'éléments sensibles 271. Ces éléments sensibles sont, par exemple, des capteurs de type à Effet Hall. Cette configuration permet avantageusement de supprimer les effets de bord de nappe que l'on constate avec certaines des autres configurations.
[0081] La figure 12 montre la structure de l'électronique 40 permettant la mesure d'épaisseur d'une couche de gomme de pneumatique en plusieurs points simultanément. [0082] Dans cet exemple, l'électronique 40 utilise un multiplexeur (MUX) 106 auquel est relié une succession d'éléments sensibles 100, munis d'un étage de conditionnement du signal 102 et d'un convertisseur analogique-digital 104.
[0083] Ce multiplexeur 106 est relié à une carte mère 108, dont les fonctions sont :
• l'enregistrement des mesures réalisées par les capteurs 100 dans une mémoire
124 ;
• l'identification de pneumatique lorsque cela peut se faire en mettant à profit la présence de RFID incorporé dans la structure du pneumatique ; la carte mère utilise alors un étage dédié à la lecture de RFID 120 avec une antenne 122 ;
• l'envoi des résultats de mesure vers un serveur distant, au moyen d'un étage de communication sans fil 114 avec une antenne 116.
[0084] Enfin, cette carte mère 108 est gérée par un micropricesseur 110 et est équipée d'un étage d'alimentation 112 sur batterie 118.
[0085] L'ensemble ayant la capacité à réaliser des mesures nombreuses de pneumatiques, sans changement de batteries, ce qui confère au système une autonomie de plusieurs années sans intervention humaine.

Claims

REVENDICATIONS
1. Système de mesure de l'épaisseur d'une couche de matériau caoutchouteux d'un pneumatique, ladite couche comportant une face liée à une armature adjacente réalisée avec au moins un matériau de perméabilité magnétique supérieure à la perméabilité magnétique de l'air et une face libre en contact avec l'air, ledit système comprenant un capteur capable de mesurer la distance d entre la face liée et la face libre de ladite couche de matériau caoutchouteux, caractérisé en ce que le capteur comporte une source de champ magnétique statique et un élément sensible dont le signal de sortie est fonction du niveau du champ magnétique local, disposé de telle sorte que l'intensité du champ magnétique mesuré par l'élément sensible varie lorsque la distance d diminue.
2. Système de mesure selon la revendication 1, dans lequel la source de champ magnétique statique est constituée d'au moins une bobine alimentée par un courant électrique continu.
3. Système de mesure selon la revendication 2, dans lequel la bobine entoure, ou est entourée par, un matériau de haute perméabilité magnétique et faible conductivité électrique tel une ferrite.
4. Système de mesure selon la revendication 1, dans lequel la source de champ magnétique statique est constituée d'au moins un aimant permanent.
5. Système de mesure selon la revendication 4, dans lequel ledit aimant permanent a un champ magnétique axial.
6. Système de mesure selon la revendication 5, dans lequel l'aimant permanent a une forme géométrique en forme d'anneau.
7. Système de mesure selon la revendication 5, dans lequel ledit aimant permanent est un barreau magnétique droit ou en forme de U.
8. Système de mesure selon les revendications 4 et 7, dans lequel le capteur comporte un élément sensible et une pluralité d'aimants à aimantation uniaxiale disposés radialement et avec la même orientation polaire relativement à l'élément sensible.
9. Système de mesure selon l'une quelconque des revendications 4 à 8, dans lequel la source est constituée par une pluralité d'aimants permanents disposés en ligne.
10. Système de mesure selon les revendications 7 et 9, dans lequel, chaque aimant permanent ayant un pôle nord et un pôle sud, les aimants permanents sont disposés de telle sorte que les pôles sont alignés avec ladite ligne de la source et dans lequel tout couple de deux aimants permanents adjacents a ses polarités inversées.
11. Système de mesure selon la revendication 10, dans lequel le capteur comporte plusieurs éléments sensibles disposés chacun entre deux aimants permanents adjacents.
12. Système de mesure selon les revendications 6 et 9, dans lequel, les axes des aimants permanents en forme d'anneau sont dans un même plan passant par ladite ligne de la source et orientés normalement à ladite ligne.
13. Système de mesure selon la revendication 12, dans lequel à chaque aimant permanent en forme d'anneau est associé un élément sensible disposé au niveau de l'axe dudit aimant permanent en forme d'anneau.
14. Système de mesure selon la revendication 13, dans lequel chaque élément sensible est disposé en un point de l'axe dudit aimant permanent en forme d'anneau où le champ magnétique est nul en l'absence de couche.
15. Système de mesure selon l'une quelconque des revendications précédentes, dans lequel l'élément sensible est choisi dans le groupe des capteurs à effet Hall, magnéto résistif, magnéto strictif.
16. Système de mesure selon l'une quelconque des revendications précédentes, tel qu'il est disposé à l'intérieur d'un boîtier non conducteur électrique et dont les matériaux ont une susceptibilité magnétique nulle ou suffïsament faible pour être assimilable à de l'air ou du vide.
17. Système de mesure selon la revendication 16, tel que ledit boîtier est un boîtier portatif.
18. Système de mesure selon la revendication 16, tel que ledit boîtier est apte à être disposé sur ou encastré dans un sol de roulage.
19. Application du système de mesure selon l'une quelconque des revendications précédentes à la mesure de l'épaisseur de matériau caoutchouteux restante d'une bande de roulement dudit pneumatique.
20. Application du système de mesure selon l'une quelconque des revendications 1 à 17 à la mesure de l'épaisseur de matériau caoutchouteux d'un flanc ou d'une gomme intérieure dudit pneumatique.
PCT/EP2014/062999 2013-06-20 2014-06-20 Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique WO2014202747A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480034804.1A CN105393078B (zh) 2013-06-20 2014-06-20 用于测量轮胎的橡胶层的厚度的系统
EP14731640.0A EP3011263A1 (fr) 2013-06-20 2014-06-20 Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique
US14/899,848 US10113855B2 (en) 2013-06-20 2014-06-20 System for determining the thickness of a layer of rubber for a tire
BR112015031550-0A BR112015031550B1 (pt) 2013-06-20 2014-06-20 Sistema de medição da espessura de uma camada de goma de um pneumático

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1355857 2013-06-20
FR1355857A FR3007517B1 (fr) 2013-06-20 2013-06-20 Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique

Publications (1)

Publication Number Publication Date
WO2014202747A1 true WO2014202747A1 (fr) 2014-12-24

Family

ID=49510249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/062999 WO2014202747A1 (fr) 2013-06-20 2014-06-20 Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique

Country Status (6)

Country Link
US (1) US10113855B2 (fr)
EP (1) EP3011263A1 (fr)
CN (1) CN105393078B (fr)
BR (1) BR112015031550B1 (fr)
FR (1) FR3007517B1 (fr)
WO (1) WO2014202747A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034968A1 (fr) 2017-08-14 2019-02-21 Compagnie Générale Des Établissements Michelin Système de fixation au sol pour boitier de détection
WO2019186409A1 (fr) 2018-03-30 2019-10-03 Compagnie Générale Des Établissements Michelin Système de fixation pour boitier de mesure de caractéristiques de pneumatique
WO2020115581A1 (fr) 2018-12-07 2020-06-11 Compagnie Générale Des Établissements Michelin Système de fixation pour boitier de mesure de caractéristiques de pneumatique
US11199402B2 (en) * 2017-10-10 2021-12-14 Continental Automotive Gmbh Method for determining the thickness of a motor vehicle tire
WO2022123137A1 (fr) 2020-12-10 2022-06-16 Compagnie Generale Des Etablissements Michelin Dispositif de mesure comprenant un système de découplage mécanique d'un capteur à effet hall

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009076B1 (fr) 2013-07-26 2017-03-31 Michelin & Cie Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
FR3020680B1 (fr) 2014-05-02 2017-11-24 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
FR3030717B1 (fr) 2014-12-17 2017-01-13 Michelin & Cie Procede de mesure de l'epaisseur d'une couche de materiau caoutchouteux
FR3030374B1 (fr) 2014-12-17 2017-01-13 Michelin & Cie Procede de detection et d'alerte de l'etat de sous-gonflage d'un pneumatique
FR3030744A1 (fr) 2014-12-17 2016-06-24 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
FR3039459B1 (fr) 2015-07-30 2017-08-11 Michelin & Cie Systeme d'evaluation de l'etat d'un pneumatique
DE112018005736T5 (de) * 2017-12-01 2020-07-23 The Yokohama Rubber Co., Ltd. Reifenanordnung und System zur Bestimmung eines Reifenverformungszustands
WO2019241118A1 (fr) * 2018-06-12 2019-12-19 Tyrata, Inc. Procédés de mesure d'épaisseur de bande de roulement à l'aide de capteurs doubles et/ou de mesure différentielle et systèmes de surveillance associés
WO2020005863A1 (fr) 2018-06-29 2020-01-02 Tyrata, Inc. Structures et procédés fournissant une intégration de capteur de bande de roulement
JP7255162B2 (ja) * 2018-12-17 2023-04-11 住友ゴム工業株式会社 タイヤの金属線検出システム及び金属線検出方法
PE20211723A1 (es) 2018-12-26 2021-09-03 Viwek Vaidya Dispositivo y sistema para monitorear desgaste de elevadores montados en una trituradora de minerales
US11614317B2 (en) 2019-06-21 2023-03-28 Tyrata, Inc. Methods providing enhanced material thickness sensing with capacitive sensors using inductance-generated resonance and related devices
EP4042132A4 (fr) * 2019-10-08 2023-10-25 Tyrata, Inc. Système drive-over (dos) magnétique fournissant une mesure d'épaisseur/profondeur de bande de roulement de pneu
EP4107475A4 (fr) * 2020-02-21 2023-12-27 Tyrata, Inc. Système de banc de roulage magnétique permettant la mesure de l'épaisseur/de la profondeur de la bande de roulement d'un pneu
JP2024516636A (ja) * 2021-04-30 2024-04-16 テクスキャン インコーポレイテッド 接触センサ
US20220397486A1 (en) * 2021-06-09 2022-12-15 The Goodyear Tire & Rubber Company Tire with magnetic tread wear sensor and tread wear monitoring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652820A (en) * 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
EP1314580A1 (fr) * 2001-11-22 2003-05-28 Continental Aktiengesellschaft Procédé pour déterminer l'usure d'un pneu et pneu
WO2008059283A1 (fr) 2006-11-17 2008-05-22 Treadcheck Limited Appareil et procédé de contrôle d'usure de pneus
US20090078347A1 (en) * 2007-09-25 2009-03-26 Alfred Niklas Tire tread detection and measurement of physical variables of a tire on a moving vehicle
US7578180B2 (en) 2007-06-29 2009-08-25 The Goodyear Tire & Rubber Company Tread depth sensing device and method for measuring same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572175A1 (fr) 1984-10-24 1986-04-25 Stein Heurtey Procede et dispositif pour mesurer l'epaisseur de couches metalliques minces deposees sur un support conducteur
US4847556A (en) * 1986-09-08 1989-07-11 Langley Lawrence W Eddy current clearance transducing system
US4804912A (en) 1987-05-14 1989-02-14 Kamyr Ab Apparatus for electromagnetically measuring the distance between two opposing grinding surfaces
EP0576714B1 (fr) 1992-07-03 1995-03-15 Norbert Dr. Nix Dispositif pour mesurer une épaisseur de couche
EP0819944A1 (fr) * 1996-07-16 1998-01-21 Lucent Technologies Inc. Capteur à courant de foucault
US6278269B1 (en) * 1999-03-08 2001-08-21 Allegro Microsystems, Inc. Magnet structure
DE10000730C2 (de) 2000-01-11 2003-12-04 Balluff Gmbh Abstandssensor
JP3889229B2 (ja) 2000-04-13 2007-03-07 アルプス電気株式会社 渦電流センサ及びこの渦電流センサを用いたディスク装置
JP4610062B2 (ja) 2000-09-14 2011-01-12 株式会社ブリヂストン バフ方法
US6803757B2 (en) 2001-10-02 2004-10-12 Bentley Nevada, Llc Multi-coil eddy current proximity probe system
ITTO20030776A1 (it) * 2003-10-03 2005-04-04 Fiat Ricerche Sistema per il monitoraggio del consumo di uno pneumatico.
JP2005315732A (ja) 2004-04-28 2005-11-10 Jfe Steel Kk 強磁性体の変位測定装置
DE102008028967A1 (de) * 2007-07-27 2009-02-19 Continental Teves Ag & Co. Ohg Verfahren zur Ermittlung der Profiltiefe eines Reifens und/oder einer Reifeneigenschaft sowie Reifen
US20090102467A1 (en) * 2007-10-22 2009-04-23 Johnson Controls Inc. Method and apparatus for sensing shaft rotation
DE102008006566A1 (de) * 2008-01-29 2009-07-30 Robert Bosch Gmbh Verfahren zur Bestimmung einer Fahrzeugreifenprofiltiefe
FR2953164B1 (fr) * 2009-12-02 2012-01-06 Michelin Soc Tech Procede de detection de l'usure d'un pneumatique
GB201102542D0 (en) * 2011-02-14 2011-03-30 Qinetiq Ltd Proximity sensor
US9023667B2 (en) 2011-04-27 2015-05-05 Applied Materials, Inc. High sensitivity eddy current monitoring system
FR3009075B1 (fr) * 2013-07-26 2016-09-09 Michelin & Cie Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
FR3009076B1 (fr) * 2013-07-26 2017-03-31 Michelin & Cie Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652820A (en) * 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
EP1314580A1 (fr) * 2001-11-22 2003-05-28 Continental Aktiengesellschaft Procédé pour déterminer l'usure d'un pneu et pneu
WO2008059283A1 (fr) 2006-11-17 2008-05-22 Treadcheck Limited Appareil et procédé de contrôle d'usure de pneus
US7578180B2 (en) 2007-06-29 2009-08-25 The Goodyear Tire & Rubber Company Tread depth sensing device and method for measuring same
US20090078347A1 (en) * 2007-09-25 2009-03-26 Alfred Niklas Tire tread detection and measurement of physical variables of a tire on a moving vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598623B2 (en) 2017-08-14 2023-03-07 Compagnie Generale Des Etablissements Michelin Ground-fixing system for a sensor housing
WO2019034968A1 (fr) 2017-08-14 2019-02-21 Compagnie Générale Des Établissements Michelin Système de fixation au sol pour boitier de détection
US11199402B2 (en) * 2017-10-10 2021-12-14 Continental Automotive Gmbh Method for determining the thickness of a motor vehicle tire
WO2019186409A1 (fr) 2018-03-30 2019-10-03 Compagnie Générale Des Établissements Michelin Système de fixation pour boitier de mesure de caractéristiques de pneumatique
FR3079568A1 (fr) * 2018-03-30 2019-10-04 Compagnie Generale Des Etablissements Michelin Systeme de fixation pour boitier de mesure de caracteristiques de pneumatique
CN111919038A (zh) * 2018-03-30 2020-11-10 米其林集团总公司 用于测量轮胎特性的盒子的附接系统
US11703422B2 (en) 2018-03-30 2023-07-18 Compagnie Generale Des Etablissements Michelin Attachment system for box for measuring characteristics of a tire
CN111919038B (zh) * 2018-03-30 2022-06-10 米其林集团总公司 用于测量轮胎特性的盒子的附接系统
WO2020115581A1 (fr) 2018-12-07 2020-06-11 Compagnie Générale Des Établissements Michelin Système de fixation pour boitier de mesure de caractéristiques de pneumatique
CN113167562A (zh) * 2018-12-07 2021-07-23 米其林集团总公司 用于测量轮胎特性的外壳的固定系统
US11921007B2 (en) 2018-12-07 2024-03-05 Compagnie Generale Des Etablissements Michelin Fixing system for housing for measuring characteristics of a tire
CN113167562B (zh) * 2018-12-07 2024-04-12 米其林集团总公司 用于测量轮胎特性的外壳的固定系统
FR3117584A1 (fr) 2020-12-10 2022-06-17 Compagnie Generale Des Etablissements Michelin Dispositif de mesure comprenant un système de découplage mécanique d’un capteur à effet Hall
WO2022123137A1 (fr) 2020-12-10 2022-06-16 Compagnie Generale Des Etablissements Michelin Dispositif de mesure comprenant un système de découplage mécanique d'un capteur à effet hall

Also Published As

Publication number Publication date
US10113855B2 (en) 2018-10-30
CN105393078A (zh) 2016-03-09
CN105393078B (zh) 2019-07-26
FR3007517A1 (fr) 2014-12-26
BR112015031550A2 (pt) 2017-07-25
FR3007517B1 (fr) 2016-08-19
BR112015031550B1 (pt) 2022-05-03
BR112015031550A8 (pt) 2018-01-02
US20160153763A1 (en) 2016-06-02
EP3011263A1 (fr) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2014202747A1 (fr) Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique
EP3025119B1 (fr) Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
WO2015011260A1 (fr) Systeme de mesure de l'epaisseur d'une couche de gomme d'un pneumatique
EP3349996B1 (fr) Pneumatique comprenant un transpondeur passif et procede de lecture des donnees
EP0649553B1 (fr) Dispositif et procede pour detecter une ou plusieurs roues d'un vehicule
EP2874829B1 (fr) Bande de roulement pour pneu d'essieu moteur de poids lourd et pneu
WO2015078911A1 (fr) Système de lecture dynamique de données de transpondeurs
FR2924518A1 (fr) Dispositif de localisation de la position droite et gauche d'un ensemble pneumatique et roue d'un vehicule
WO2015078912A1 (fr) Système de lecture dynamique de données de transpondeurs
WO2015052439A1 (fr) Procédé d'exploitation d'un système de surveillance de la pression et/ou de la température des pneumatiques d'un véhicule et dispositif permettant de le mettre en oeuvre
WO2016096661A1 (fr) Procédé de mesure de l'épaisseur d'une couche de matériau caoutchouteux
EP3011264B1 (fr) Système de mesure de l'épaisseur d'une couche de gomme d'un pneumatique
EP2349749B1 (fr) Procede et dispositif d'identification de la position d'une roue d'un vehicule
WO2020011840A1 (fr) Capteur à émission radioélectrique pour roue de véhicule, comportant un circuit d'antenne à deux modes
EP4260002A1 (fr) Dispositif de mesure comprenant un système de découplage mécanique d'un capteur à effet hall
FR3117407A1 (fr) Pneumatique dont la bande de roulement comporte des fibres orientees

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034804.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14731640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014731640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14899848

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015031550

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015031550

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151216