EP3007775B1 - Equipement de protection respiratoire - Google Patents

Equipement de protection respiratoire Download PDF

Info

Publication number
EP3007775B1
EP3007775B1 EP14727879.0A EP14727879A EP3007775B1 EP 3007775 B1 EP3007775 B1 EP 3007775B1 EP 14727879 A EP14727879 A EP 14727879A EP 3007775 B1 EP3007775 B1 EP 3007775B1
Authority
EP
European Patent Office
Prior art keywords
tank
passage
orifice
pressure
needle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14727879.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3007775A1 (fr
Inventor
Rachid Makhlouche
Jean-Michel Cazenave
Freddy DUMONT
Christian Rolland
Vincent PERRARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP3007775A1 publication Critical patent/EP3007775A1/fr
Application granted granted Critical
Publication of EP3007775B1 publication Critical patent/EP3007775B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B17/00Protective clothing affording protection against heat or harmful chemical agents or for use at high altitudes
    • A62B17/04Hoods
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/02Respiratory apparatus with compressed oxygen or air
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/02Valves
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/14Respiratory apparatus for high-altitude aircraft

Definitions

  • the present invention relates to a respiratory protection equipment commonly called a hood.
  • the invention more particularly relates to a respiratory protection hood comprising a flexible envelope intended to be threaded on the head of a user and a pressurized oxygen tank comprising an outlet opening opening into the internal volume of the flexible envelope, the outlet orifice being closed by a removable plug or breakage arranged.
  • hoods must in particular allow the aircrew to fight the damage, rescue passengers and manage a possible evacuation of the aircraft.
  • the device In order to meet the requirements of use, the device must be able to provide enough oxygen to the user.
  • the hood may be designed to both prevent hypoxia at an altitude of 40000 feet two minutes after placement and then, in the final minutes of use, provide enough oxygen to allow evacuation.
  • the first type provides an oxygen flow rate that grows to reach a relatively constant level before decreasing rapidly at the end of combustion.
  • the outer surface temperature of the device can easily exceed 200 ° C and ignite any combustible material in contact (a fatal accident has already occurred following the accidental activation of such a chemical candle in a container transport in the hold of an airplane).
  • This type of device also has the disadvantage of requiring a certain time for the rise in flow of oxygen at startup. This may require the addition of additional oxygen capacity for startup. Finally, these devices require filters to remove impurities generated by the oxygen production reaction.
  • the second type (pressurized oxygen tank associated with a calibrated orifice) provides a flow of oxygen that decreases exponentially, in proportion to the pressure inside the reservoir.
  • the hoods using this second type generally contain a source of oxygen to supply a person with oxygen for 15 min.
  • This equipment also has a means of limiting the pressure inside the hood (for example a pressure relief valve).
  • This technology using compressed oxygen in a sealed capacity associated with a calibrated orifice is safer. Nevertheless, in order to be able to respond to certain use cases (significant consumption of oxygen at the end of use corresponding for example to an emergency evacuation of the apparatus), the capacity must have too much volume for the intended purpose.
  • Another solution may be to provide a high initial pressure (greater than 250 bar). This generates a large initial flow, for example more than ten normoliter per minute (Nl / min) to have a sufficient flow at the end of use (for example more than 2Nl / min at the fifteenth minute of use of the equipment ).
  • An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • An object of the invention may notably be to propose a hood that can supply a relatively large quantity of oxygen at the beginning of use (to prevent hypoxia at high altitude) while allowing the supply of a sufficient quantity of oxygen. at the end of use (after ten or fifteen minutes) to allow evacuation.
  • the hood according to the invention is essentially characterized in that the pressurized oxygen reservoir comprises, upstream of the orifice, a passage for the pressurized gas and a moving needle in a direction of displacement determined in said passage, the needle being subjected to two opposing forces in the direction of displacement and generated respectively on the one hand by the pressure of the gas in the reservoir and on the other hand, by a return member, the needle having a determined profile section variable in the direction of movement to change the degree of closure of the passage according to its position relative to the passage so as to regulate the flow of gas admitted to escape through the passage to the orifice as a function of time and gas pressure in the tank.
  • the invention may also relate to any alternative device or method comprising any combination of the above or below features.
  • the hood illustrated at figure 1 typically comprises a flexible envelope 2 (preferably waterproof) intended to be threaded on the head of a user.
  • a transparent visor 13 is provided on the front face of the casing 2.
  • the hood 1 also comprises a reservoir 3 of oxygen under pressure, arranged for example at the base of the casing 2.
  • the base of the flexible envelope 2 may comprise or form a flexible diaphragm designed to be mounted around the neck of a user to ensure sealing.
  • the hood 1 may comprise a CO2 absorption device (not shown) which communicates with the inside of the casing 2, to remove CO2 from the exhaled air by the user.
  • the envelope 2 may comprise an opening through which the CO2 absorption device is disposed.
  • another opening may be provided for a safety valve 14 provided to prevent overpressure in the casing 2.
  • the oxygen tank 3 may have a generally tubular shape, in particular C-shaped, to allow its arrangement around the neck of a user.
  • the reservoir 3 comprises an outlet orifice 4 opening into the internal volume of the flexible envelope 2, to deliver pure oxygen gas or an oxygen-enriched gas to the user.
  • the reservoir 3 also comprises at least one filling orifice (not shown for the sake of simplification).
  • the outlet orifice 4 is normally closed by a cap 5 removable or breakage arranged and will be open only when used.
  • the orifice 4 communicates the outside with the internal volume of the reservoir 3.
  • the tank 3 of oxygen under pressure (pure or majority) comprises, upstream of the plug 5, a passage 6 for the gas under pressure and a needle 7 movable in a direction A of displacement determined in said passage 6
  • the needle 7 is movable in translation in the direction A of displacement.
  • the passage 6 may be formed in a partition 16 delimiting an intermediate chamber 31 between the outlet orifice 4 and the remainder of the interior volume of the reservoir 3.
  • This partition 16 may be integral with a housing inserted at a level end of the reservoir 3. This housing can integrate the frangible cap 5.
  • the volume of the intermediate chamber 31 corresponds for example to a 10 th to 50 th of the total volume of the reservoir 3.
  • the needle 7 can cooperate with a seal 9 arranged at the passage 6.
  • the needle 7 is subjected to two opposing displacement forces in the direction A and generated respectively on the one hand by the pressure of the gas in the tank 3 and, on the other hand, by a return member 8.
  • the gas pressure in the tank 3 pushes the needle 7 towards the outlet port 4 while the return member 8 (for example a compression spring) pushes the needle 7 in the opposite direction.
  • the needle 7 may thus comprise an end 17 movable in the intermediate chamber 31 on which the spring 8 exerts its force.
  • the needle 7 has a profile section 10 determined variable along the direction A of displacement to change the degree of closure of the passage according to its position relative to the passage 6.
  • This profile 10 which may comprise longitudinal grooves in the direction of movement A, is configured to regulate the flow of admitted gas to escape via the passage 6 to the open outlet port 4 when the plug 5 is removed.
  • the needle 7 has a profile section determined in the direction A of displacement to control the flow of gas admitted to escape via the passage 6 to the orifice 4 calibrated according to a predetermined curve as a function of time and the initial pressure in the tank 3.
  • the reservoir 3 contains gas under pressure including in the intermediate chamber 31 (cf. figure 3 ).
  • the orifice 4 fluidly connects the intermediate chamber 31 with the outside.
  • the intermediate chamber 31 and thus the spring 8 are then found at the external pressure. Gas escapes at a rate controlled by the passage formed between the profile 10 of the needle 7 and the edge of the passage 6.
  • the needle 7 is displaced by the pressure in the reservoir (this force takes over the spring force 8 which is compressed cf. figure 4 ).
  • the spring 8 again moves the needle 7 against the gas pressure (to the left on the figure 4 ).
  • the released flow rate can follow various predetermined changes.
  • This first curve is obtained via a needle 7 having a profiled section determined in the direction A of displacement.
  • This curve provides successive successive stages substantially constant, that is to say that, for a gas initially stored at an initial pressure determined in the tank 3, the flow admitted to escape through the outlet orifice 4 is first substantially constant around a first determined value (for example 3.2 Nl per minute for about 6 minutes). Then this flow then decreases to reach a second substantially constant stage at a determined value around 2Nl / minute (for about 25 minutes).
  • the figure 5 represents in continuous line another more theoretical flow curve that can be approximated by a device according to the invention.
  • This curve comprises a first short step (approximately 1 to 2 minutes) at a relatively high flow rate (approximately 5.2 Nl per minute for example) and then a decrease in flow rate to a second level (for example at approximately 1.8 Nl). per minute for about 35 minutes) before decreasing.
  • the profile of the section of the needle 7 it is possible to determine the general shape of the gas flow curve by the tank 3. This makes it possible to configure the emptying of the gas tank 2 to the user's needs according to the case or the class of use of the hood 1 (high initial flow for an emergency intervention, then stabilization of the flow during the emergency landing and high flow rate during the evacuation phase of the apparatus).
  • the needle 7 may comprise a deformable sealed capsule 27 containing a gas at a predetermined pressure, in particular an altimetric capsule.
  • the altimetric capsule 27 (also called anemometric capsule) may be made of stainless steel, steel or any other suitable material.
  • This capsule 27 constitutes a sealed volume containing a gas at constant pressure (generally at a pressure included near vacuum, for example between 0.1 bar and 1 bar) throughout its lifetime.
  • the gas contained in the capsule 27 is for example air.
  • the change in volume of the capsule 27 moves the needle 7 relative to the body of the tank 1 and varies the distance between the needle 7 and the passage 6 in the direction A of displacement.
  • the flow is thus modified by the modification of the open section at the level of the passage.
  • Such mechanisms are used in pneumatic-mechanical oxygen regulators to provide the altimetric overpressure function. They are also used in the automobile to reduce the intake during braking phases.
  • the figure 7 schematically illustrates a needle 7 whose section is variable and has several bearings 77 of different constant diameter. Such Profile allows to obtain variations of sections at the level of the passage between three constant passage sections.
  • the figure 8 illustrates a needle profile 7 having a section of diameter increasing linearly. This can make it possible to obtain a variable passage section according to the position with respect to the passage 6.
  • the figure 9 illustrates a needle profile 7 comprising a diameter increasing to a constant diameter bearing.
  • a needle profile 7 comprising a diameter increasing to a constant diameter bearing.
  • the embodiments of the figures 2 and 6 may comprise a single filling orifice (preferably distinct and opposite the orifice 4 calibrated output).
  • the movable needle 7 does not require a large stroke in the direction A of displacement, a few millimeters (1 to 4 mm for example) may be sufficient to control flow rates over a period of 15 to 30 minutes for example for all classes ( 1 to 4) uses of the hood 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Pulmonology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Laminated Bodies (AREA)
EP14727879.0A 2013-06-12 2014-05-02 Equipement de protection respiratoire Active EP3007775B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1355432A FR3006900B1 (fr) 2013-06-12 2013-06-12 Equipement de protection respiratoire
PCT/FR2014/051047 WO2014199028A1 (fr) 2013-06-12 2014-05-02 Equipement de protection respiratoire

Publications (2)

Publication Number Publication Date
EP3007775A1 EP3007775A1 (fr) 2016-04-20
EP3007775B1 true EP3007775B1 (fr) 2017-12-27

Family

ID=49322501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14727879.0A Active EP3007775B1 (fr) 2013-06-12 2014-05-02 Equipement de protection respiratoire

Country Status (8)

Country Link
US (1) US10335617B2 (zh)
EP (1) EP3007775B1 (zh)
JP (1) JP6612218B2 (zh)
CN (1) CN105263586B (zh)
CA (1) CA2912326C (zh)
FR (1) FR3006900B1 (zh)
RU (1) RU2655237C2 (zh)
WO (1) WO2014199028A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006899B1 (fr) * 2013-06-12 2015-05-29 Air Liquide Cagoule de protection respiratoire
CN110576976A (zh) * 2019-09-09 2019-12-17 合肥江航飞机装备股份有限公司 基于弹簧蓄能的爆破片刺穿装置及供氧方法
CN114344749B (zh) * 2021-12-17 2022-09-06 中国人民解放军总医院第二医学中心 一种智能感应式高原车载供氧装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762407A (en) * 1972-04-24 1973-10-02 Lear Siegler Inc Survival support device
US3976063A (en) * 1974-09-16 1976-08-24 The Bendix Corporation Escape breathing apparatus
CH654179A5 (de) * 1982-05-12 1986-02-14 Maag Gummi Schutzhuelle aus einem flexiblen material mit einem kopfteil und einem koerperteil.
FR2582524B1 (fr) * 1985-05-31 1989-01-13 Air Liquide Cagoule de protection contre les fumees et l'hypoxie
GB2193644A (en) * 1986-08-13 1988-02-17 Sabre Safety Ltd Device for controlling the release of breathable gas from a storage means
GB2201096B (en) * 1987-02-13 1990-09-19 Sabre Safety Ltd Emergency escape breathing apparatus
CN2271378Y (zh) * 1996-12-06 1997-12-31 重庆煤矿安全仪器配件厂 隔绝式压缩氧自救器
US6247471B1 (en) * 1999-07-08 2001-06-19 Essex Pb&R Corporation Smoke hood with oxygen supply device and method of use
US20020179153A1 (en) * 2001-06-01 2002-12-05 Taylor Shane S. Fluid flow control valve
CN2566881Y (zh) * 2002-04-19 2003-08-20 钮静江 空气呼吸器稳流减压阀
AU2002950938A0 (en) * 2002-08-22 2002-09-12 Oxy-Gene.Com Pty Ltd A dispensing bottle
JP2004082134A (ja) * 2002-08-23 2004-03-18 Nippon Metal Ind Co Ltd 錫−亜鉛系鉛フリーはんだ合金及びその混合物
RU2262965C1 (ru) * 2004-04-28 2005-10-27 Федеральное государственное унитарное предприятие "Исследовательский центр прикладной ядерной физики" Газообменное устройство диффузионного респиратора
WO2007121770A1 (en) * 2006-04-20 2007-11-01 Intertechnique Breathing apparatus for an aircrew member
KR100835753B1 (ko) * 2007-03-21 2008-06-05 피엔케이산업(주) 휴대용 기체 공급기
CN101647613A (zh) * 2008-08-13 2010-02-17 禹长春 能供氧和过滤有害空气的多功能救援安全帽
RU124159U1 (ru) * 2012-10-23 2013-01-20 Сергей Викторович Гвоздев Средство индивидуальной защиты органов дыхания человека
FR3006899B1 (fr) * 2013-06-12 2015-05-29 Air Liquide Cagoule de protection respiratoire
FR3024370B1 (fr) * 2014-08-01 2016-07-22 Air Liquide Cagoule de protection respiratoire

Also Published As

Publication number Publication date
CN105263586B (zh) 2021-07-23
JP6612218B2 (ja) 2019-11-27
RU2016100183A (ru) 2017-07-17
CN105263586A (zh) 2016-01-20
RU2655237C2 (ru) 2018-05-24
JP2016520406A (ja) 2016-07-14
FR3006900B1 (fr) 2015-05-29
WO2014199028A1 (fr) 2014-12-18
CA2912326A1 (fr) 2014-12-18
FR3006900A1 (fr) 2014-12-19
EP3007775A1 (fr) 2016-04-20
US10335617B2 (en) 2019-07-02
US20160151649A1 (en) 2016-06-02
CA2912326C (fr) 2020-08-04

Similar Documents

Publication Publication Date Title
CA2703853C (fr) Dispositif d'ejection d'un fluide a etancheite renforcee
EP3007775B1 (fr) Equipement de protection respiratoire
EP2247889A1 (fr) Dispositif de remplissage et de distribution de gaz, récipient pourvu d'un tel dispositif et circuit d'utilisation
EP0010465B1 (fr) Vanne à ouverture automatique, notamment pour des installations de protection contre l'incendie
FR2902060A1 (fr) "generateur pyrotechnique de gaz utilise en securite automobile"
CA2108453A1 (fr) Recipient distributeur de fluide
EP3007776B1 (fr) Cagoule de protection respiratoire
EP2486312B1 (fr) Dispositif de sécurité et récipient pourvu d'un tel dispositif
EP2435750B1 (fr) Dispositif de securite pour gaz sous pression
FR2644869A1 (fr) Dispositif d'ouverture pour reservoir sous pression
EP0884521B1 (fr) Ensemble d'alimentation de gaz destiné à être raccordé à un réservoir contenant un gaz sous haute pression
EP0211703B1 (fr) Dispositif de fermeture temporaire d'un orifice interne d'un propulseur
EP3974700A1 (fr) Robinet pour récipient de gaz à détendeur intégré équipé d'une soupape de sécurité
FR3092765A1 (fr) Extincteur d’incendie ou douche portative de sécurité toutes positions
FR3133320A1 (fr) Robinet pour récipient de gaz à détendeur intégré amélioré
FR2913745A1 (fr) Valve de limitation de pression de gaz, notamment pour systeme de climatisation de vehicules a moteur
FR2761609A1 (fr) Appareil respiratoire de secours
BE560999A (zh)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014019086

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A62B0007020000

Ipc: A62B0017040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62B 17/04 20060101AFI20170123BHEP

Ipc: A62B 9/02 20060101ALI20170123BHEP

INTG Intention to grant announced

Effective date: 20170301

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUMONT, FREDDY

Inventor name: MAKHLOUCHE, RACHID

Inventor name: CAZENAVE, JEAN-MICHEL

Inventor name: ROLLAND, CHRISTIAN

Inventor name: PERRARD, VINCENT

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170714

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 957808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014019086

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 957808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180427

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014019086

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

26N No opposition filed

Effective date: 20180928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 10

Ref country code: DE

Payment date: 20230519

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 10