EP2994521B1 - Lubrifiant pour moteur marin - Google Patents

Lubrifiant pour moteur marin Download PDF

Info

Publication number
EP2994521B1
EP2994521B1 EP14722191.5A EP14722191A EP2994521B1 EP 2994521 B1 EP2994521 B1 EP 2994521B1 EP 14722191 A EP14722191 A EP 14722191A EP 2994521 B1 EP2994521 B1 EP 2994521B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
amine
cylinder
carbon atoms
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14722191.5A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2994521A1 (fr
Inventor
Denis Lancon
Valérie Doyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP2994521A1 publication Critical patent/EP2994521A1/fr
Application granted granted Critical
Publication of EP2994521B1 publication Critical patent/EP2994521B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/06Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • the present invention is applicable to the field of lubricants, and more particularly to the field of lubricants for marine engines, especially for two-stroke marine engines. More particularly, the present invention relates to a marine engine lubricant comprising at least one base oil, at least one overbased detergent, at least one neutral detergent and at least one fatty amine.
  • the lubricant according to the invention can be used with both high-sulfur fuel oils and low sulfur fuel oils.
  • the lubricant according to the invention has a sufficient neutralization capacity with respect to the sulfuric acid formed during the combustion of high-sulfur fuel oils, while limiting the formation of deposits during the use of fuel oils. low sulfur content.
  • the lubricant according to the invention more particularly makes it possible to prevent corrosion and / or to reduce the formation of deposits of insoluble metal salts in two-stroke marine engines during the combustion of any type of fuel oil, ie at high and at low fuel content. sulfur.
  • the lubricant according to the invention also has good properties of thermal resistance and cleanliness of the cylinder piston assembly.
  • the present invention also relates to a method for lubricating a marine engine, and more particularly to a two-stroke marine engine that can be used with both high-sulfur fuel oils and low-sulfur fuel oils using this lubricant. .
  • the present invention also relates to a concentrated type composition of additives comprising at least one fatty amine.
  • the marine oils used in two-stroke slow-cycle engines are of two types: the cylinder oils on the one hand, ensuring the lubrication of the cylinder piston assembly, and the system oils on the other hand, ensuring the lubrication of all the moving parts other than those of the cylinder piston assembly.
  • the combustion residues containing acid gases are in contact with the lubricating oil.
  • Acid gases are formed during the combustion of fuel oils; they are in particular sulfur oxides (SO 2 , SO 3 ), which are then hydrolysed when in contact with the moisture present in the combustion gases and / or in the oil. This hydrolysis generates sulfurous acid (HSO 3 ) or sulfuric acid (H 2 SO 4 ).
  • the capacity of neutralization of an oil is measured by its BN or Base Number in English, characterizing its basicity. It is measured according to the standard ASTM D-2896 and is expressed in equivalent weight of potash per gram of oil or mg of KOH / g of oil.
  • the BN is a standard criterion for adjusting the basicity of cylinder oils to the sulfur content of the fuel used, in order to neutralize all the sulfur contained in the fuel, and likely to be converted into sulfuric acid by combustion and hydrolysis.
  • the higher the sulfur content of a fuel oil the higher the BN of a marine oil.
  • BN marine oils ranging from 5 to 100 mg KOH / g oil are available on the market.
  • This basicity is provided by detergents which are overbased by insoluble metal salts, especially metal carbonates.
  • the detergents mainly of the anionic type, are, for example, metal salicylate, phenate, sulphonate or carboxylate soaps which form micelles in which the insoluble metal salt particles are kept in suspension.
  • the usual overbased detergents intrinsically have a BN conventionally comprised between 150 and 700 mg of potash per gram of detergent. Their mass content in the lubricant is determined according to the BN level to be reached.
  • Part of the BN can also be provided by non-overbased or "neutral" detergents of BN typically less than 150 mg of potash per gram of detergent.
  • non-overbased or "neutral" detergents of BN typically less than 150 mg of potash per gram of detergent.
  • the insoluble metal salts of the overbased detergents for example calcium carbonate, thus contribute significantly to the BN of the usual lubricants. It can be considered that at least 50%, typically 75%, of the BN of the cylinder lubricants is thus provided by these insoluble salts.
  • the detergent part itself, or metal soaps, found in both neutral and overbased detergents typically provides the bulk of the BN complement. Environmental concerns have led, in some areas and particularly in coastal areas, to limit the sulfur content in fuel oils used on ships.
  • the MARPOL Annex 6 (Regulations for the Prevention of Air Pollution Ships) regulations of the IMO (International Maritime Organization) entered into force in May 2005. It sets a maximum sulfur content of 4.5% by weight in relation to total weight of fuel oil for heavy fuel oils as well as the creation of sulfur oxide controlled emission zones, called SECAs (SOx Emission Control Areas). Heavy fuel oils are high viscosity fuels mainly used by large diesel engines installed on board ships. For example, vessels entering these zones must use fuel with a maximum sulfur content of 1.5% by weight relative to the total weight of the fuel oil or any other alternative treatment aimed at limiting SOx emissions to meet the specified values. More recently, amendments to MARPOL Annex 6 have been made. These amendments are summarized in the table below.
  • SECAs Sulfur Emission Control Areas
  • marine lubricants having a BN in the order of 70 mg KOH / mg of lubricant are mainly used.
  • marine lubricants having a BN of the order of 40 mg KOH / mg of lubricant are mainly recommended. In these two cases, then a sufficient neutralization capacity is reached because the concentration required in basic sites provided by the overbased detergents of the marine lubricant is reached, but it is necessary to change the lubricant at each change of type of fuel oil.
  • each of these lubricants has limitations of use for the following reasons: the use of a BN cylinder lubricant 70 mg KOH / g lubricant in the presence of a low sulfur fuel oil (1% by weight relative to the total weight of the fuel oil and less) and fixed lubrication rate, creates a large excess of basic sites and a risk of destabilization micelles of unused overbased detergents, which contain insoluble metal salts. This destabilization can result in the formation of insoluble metal salt deposits (eg calcium carbonate) and having a high hardness, mainly on the piston ring, and eventually can lead to a risk of excessive wear of polishing shirt. As for the use of a cylinder lubricant of BN 40 mg KOH / g of lubricant, such a BN does not provide sufficient neutralizing capacity to the lubricant and thus can cause a significant risk of corrosion.
  • a cylinder lubricant of BN 40 mg KOH / g of lubricant such a BN
  • the optimization of the cylinder lubrication of a two-stroke engine then requires the selection of a lubricant whose BN is adapted to the sulfur content of the fuel used and the operating conditions of the engine.
  • This optimization reduces the operating flexibility of the engine and requires a significant technical crew in the definition of the conditions in which the change of one type of lubricant to another must be achieved.
  • the mass percentage of overbased detergents relative to the total weight of the lubricant is chosen so that the BN supplied by the carbonate metal salts represents a contribution of at most 20 milligrams of potash per gram of lubricant at the total BN of the lubricant.
  • the fatty amines exemplified in this document and making it possible to improve the neutralization efficiency correspond to mono- or fatty diamines.
  • the document WO 2012/140215 discloses a two-cycle marine engine cylinder lubricant usable with both high sulfur and low sulfur fuel oils and comprising at least one overbased detergent, at least one neutral detergent and at least one alkoxylated fatty amine.
  • the alkoxylated fatty amines exemplified in this document and making it possible to improve the neutralization efficiency correspond to alkoxylated fatty monoamines.
  • the BN of the lubricant described in this document can not be too high, and in particular can not be greater than 55 mg KOH / mg of lubricant.
  • a cylinder lubricant for a marine engine especially for a two-stroke marine engine, which can be used both with high-sulfur fuel oils and with low-sulfur fuel oils and which makes it possible at the same time to have a high BN, especially at least 50 mg KOH / g of cylinder lubricant, and a good capacity for neutralization, while having a good thermal resistance and thus a good engine cleanliness, including the cylinder piston assembly.
  • the present invention relates to a cylinder lubricant having a BN sufficiently high to effectively neutralize the sulfuric acid formed in the use of high sulfur fuel oils, a significant portion of said BN being provided by oil soluble species. which do not give rise to metal deposits when they are partly consumed when using low sulfur fuel oils.
  • the Applicant has found that it is possible to formulate cylinder lubricants where a significant part of the BN is provided by soluble fatty amines in the lubricating base oil, while maintaining the level of performance compared with conventional formulations of BN. equivalent or higher.
  • the performances in question here are in particular the ability to neutralize sulfuric acid, measured using the enthalpy test described below, as well as the thermal resistance, measured using the ECBT test also described below. after.
  • the cylinder lubricant according to the invention thus has such performance, while maintaining a viscosity that makes it suitable for use.
  • the insoluble metallic particles of the overbased detergents constitute indeed the "ultimate reserve" of essential basicity when operating with high sulfur fuel oils, by example greater than 3% by weight relative to the total weight of the fuel oil.
  • These insoluble metal salts also have a favorable antiwear effect provided that they are kept dispersed in the lubricant in the form of stable micelles.
  • the Applicant has also found, surprisingly, that in the presence of a significant supply of BN by said fatty amines, and despite a significant contribution, ie at least 20 mg of potash per gram of lubricant, of BN by Insoluble metal salts of overbased detergents, typically metal carbonates, the cylinder lubricant retains good neutralizing capacity and good thermal resistance.
  • the present invention makes it possible to formulate cylinder lubricants for a marine engine, especially for a two-stroke marine engine, which makes it possible both to be used with high-sulfur fuel oils and low-sulfur fuel oils and to enable the times to have a high BN while maintaining other lubricant performance.
  • the cylinder lubricants according to the invention have a good ability to neutralize sulfuric acid.
  • the cylinder lubricants according to the invention have a good thermal resistance.
  • the cylinder lubricants according to the invention retain a good stability of the viscosity over time.
  • the cylinder lubricants according to the invention have no or very little risk of thickening depending on the conditions of use.
  • the cylinder lubricant according to the invention does not comprise fatty amines other than fatty amines corresponding to formula (I).
  • the cylinder lubricant according to the invention may comprise one or more fatty amines of formula (I) but does not include fatty amines other than amine or fatty amines of formula (I).
  • the invention also relates to the use of a cylinder lubricant as defined above for lubricating a two-stroke marine engine.
  • the invention also relates to the use of a cylinder lubricant as defined above as a single cylinder lubricant usable both with fuel oil with a sulfur content of less than 1% by weight relative to the total weight of the fuel oil, with fuel oil with a sulfur content ranging from 1 to 3.5% by weight relative to the total weight of the fuel oil and with fuel oils with a sulfur content of greater than 3.5% by weight relative to the total weight of the fuel oil.
  • the cylinder lubricant as defined above is used as a single cylinder lubricant usable both with fuel oils with a sulfur content of less than 1% by weight relative to the total weight of the fuel oil and with fuel oils. sulfur content ranging from 1 to 3.5% by weight relative to the total weight of the fuel oil.
  • the invention also relates to the use of a cylinder lubricant as defined above for preventing corrosion and / or reducing the formation of deposits of insoluble metal salts in two-stroke marine engines during the combustion of any type of fuel oil. whose sulfur content is less than 3.5% by weight relative to the total weight of the fuel oil.
  • the invention also relates to a method of lubricating a two-stroke marine engine comprising at least one step of contacting the engine with a cylinder lubricant as defined above or obtained from the additive concentrate as described above. .
  • the invention also relates to a method for preventing corrosion and / or reducing the formation of deposits of insoluble metal salts in two-stroke marine engines during the combustion of any type of fuel oil with a sulfur content of less than 3.5% by weight relative to the total weight of the fuel oil, comprising at least one step of contacting the engine with a cylinder lubricant as defined above or obtained from the additive concentrate as described above.
  • Fatty amine means the fatty amine of formula (I).
  • a mixture of fatty amines means a mixture of fatty amines at least one fatty amine is a fatty amine of formula (I).
  • the BN of the fatty amine determined according to ASTM D-2896 can range from 250 to 600 milligrams of potassium hydroxide per gram of amine, preferably from 300 to 500 milligrams of potassium hydroxide per gram of amine. In another embodiment, the BN of the amine mixture determined according to ASTM D-2896 can range from 250 to 600 milligrams of potash per gram of amine, preferably from 300 to 500 milligrams of potash per gram of amines.
  • Fatty amines are mainly obtained from carboxylic acids.
  • the starting fatty acids for obtaining fatty amines according to the invention may be chosen from myristic, pentadecyl, palmitic, margaric, stearic, nonadecylic, arachidic, henicosanoic, behenic, tricosanoic, lignoceric, pentacosanoic, cerotic, heptacosanoic and montanic acids.
  • nonacosanoic melissic, hentriacontanoic, laceroic or unsaturated fatty acids such as palmitoleic acid, oleic, erucic, nervonic, linoleic, a-linolenic, gamma-linolenic, di-homo-gamma-linolenic, arachidonic, eicosapentaenoic, docosahexaenoic.
  • unsaturated fatty acids such as palmitoleic acid, oleic, erucic, nervonic, linoleic, a-linolenic, gamma-linolenic, di-homo-gamma-linolenic, arachidonic, eicosapentaenoic, docosahexaenoic.
  • the preferred fatty acids may be derived from the hydrolysis of triglycerides present in vegetable and animal oils, such as coconut oil, palm oil, olive oil, peanut oil, rapeseed oil, sunflower oil, soybean oil, cotton, flax, beef tallow, .... Natural oils may have been genetically modified to enrich their content of certain fatty acids.
  • vegetable and animal oils such as coconut oil, palm oil, olive oil, peanut oil, rapeseed oil, sunflower oil, soybean oil, cotton, flax, beef tallow, ....
  • Natural oils may have been genetically modified to enrich their content of certain fatty acids.
  • rapeseed oil or oleic sunflower oil By way of example, mention may be made of rapeseed oil or oleic sunflower oil.
  • the fatty amines used in the lubricants according to the invention can be obtained from natural, vegetable or animal resources.
  • the fatty amine mixture comprises at least one fatty amine of formula (I) in which R 1 represents a linear or branched, saturated or unsaturated, alkyl group comprising from 14 to 22 carbon atoms. carbon, preferably from 16 to 20 carbon atoms.
  • the fatty amine mixture comprises at least one fatty amine of formula (I) in which R 2 represents a hydrogen atom.
  • mixtures of fatty amines according to the invention include the Tetrameen OV and Tetrameen T products marketed by Akzo Nobel.
  • the mass percentage of fatty amine relative to the total weight of the cylinder lubricant according to the invention is chosen so that the BN supplied by this compound represents a contribution of at least 10 milligrams of potash per gram of lubricant to the total BN. said cylinder lubricant
  • the mass percentage of fatty amine relative to the total weight of the cylinder lubricant is chosen so that the BN supplied by this compound represents a contribution of 10 to 60 milligrams of potash per gram.
  • lubricant more preferably 10 to 30 milligrams of potash per gram of lubricant to the total BN of said cylinder lubricant.
  • the mass percentage of fatty amine relative to the total weight of the cylinder lubricant is chosen so that the BN supplied by this compound represents at least 10%, preferably 10 to 50% by weight. %, more preferably 10 to 30% of the total BN of said cylinder lubricant.
  • the mass percentage of the mixture of fatty amines relative to the total weight of cylinder lubricant ranges from 2 to 10%. In another embodiment of the invention, the mass percentage of the mixture of fatty amines relative to the total weight of cylinder lubricant ranges from 2 to 6%.
  • the cylinder lubricant according to the invention does not comprise fatty amines other than fatty amines corresponding to formula (I).
  • the cylinder lubricant may comprise at least one other additional fatty amine other than the fatty amines of formula (I).
  • the additional fatty amine may be chosen from monoamines, diamines, fatty triamines, non-alkoxylated or alkoxylated.
  • the weight content of fatty amine of formula (I) is strictly less than 100% relative to the total weight of the fatty amine mixture.
  • the weight content of fatty amine of formula (I) ranges from 90 to 99.9% relative to the total weight of the mixture of fatty amines.
  • the cylinder lubricant according to the invention comprises at least one detergent based on alkali or alkaline earth metals, overbased with carbonate metal salts and at least one neutral detergent, the weight percentage of the overbased detergent relative to the total weight of the lubricant being chosen so that the BN supplied by the carbonate metal salts represents a contribution of at least 20 milligrams of potash per gram of lubricant to the total BN of said cylinder lubricant.
  • the detergents used in the cylinder lubricants according to the present invention are well known to those skilled in the art.
  • the detergents commonly used in the formulation of lubricants are typically anionic compounds having a long lipophilic hydrocarbon chain and a hydrophilic head.
  • the associated cation is typically a metal cation of an alkali or alkaline earth metal.
  • the detergents are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulphonates, salicylates and naphthenates, as well as the salts of phenates.
  • the alkali and alkaline earth metals are preferably calcium, magnesium, sodium or barium.
  • These metal salts may contain the metal in an approximately stoichiometric amount relative to the anionic group (s) of the detergent.
  • s anionic group
  • these "neutral" detergents typically have a BN, measured according to ASTM D2896, less than 150 mg KOH / g, or less than 100 mg KOH / g, or even less than 80 mg KOH / g detergent. This type of so-called neutral detergents can contribute in part to the BN cylinder lubricants according to the present invention.
  • neutral detergents of carboxylates, sulphonates, salicylates, phenates, alkali metal and alkaline earth metal naphthenates, for example calcium, sodium, magnesium or barium will be used.
  • the metal is in excess (in an amount greater than the stoichiometric amount relative to the (s) anionic groups (s) of the detergent), it is said detergents said overbased.
  • Their BN is high, greater than 150 mg KOH / g of detergent, typically ranging from 200 to 700 mg KOH / g of detergent, preferably from 250 to 450 mg KOH / g of detergent.
  • the excess metal providing the overbased detergent character is in the form of oil insoluble metal salts, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate.
  • the metals of these insoluble salts may be the same as those of the oil-soluble detergents or may be different. They are preferably selected from calcium, magnesium, sodium or barium.
  • the overbased detergents are thus in the form of micelles composed of insoluble metal salts held in suspension in the cylinder lubricant by the detergents in the form of oil-soluble metal salts. These micelles may contain one or more types of insoluble metal salts, stabilized by one or more detergent types.
  • Overbased detergents with a single type of detergent soluble metal salt will generally be named after the nature of the hydrophobic chain of the latter detergent. Thus, they will be said phenate, salicylate, sulfonate, naphthenate depending on whether this detergent is respectively a phenate, salicylate, sulfonate, or naphthenate.
  • the overbased detergents will be said to be of mixed type if the micelles comprise several types of detergents, different from each other by the nature of their hydrophobic chain.
  • the overbased detergent and the neutral detergent may be selected from carboxylates, sulfonates, salicylates, naphthenates, phenates, and mixed detergents associating at least two of these types of detergents.
  • the overbased detergent and the neutral detergent are compounds based on metals chosen from calcium, magnesium, sodium or barium, preferentially calcium or magnesium.
  • the overbased detergent is overbased by metal insoluble salts selected from the group of alkali and alkaline earth metal carbonates, preferentially calcium carbonate.
  • the overbased detergent is chosen from phenates, sulphonates, salicylates and mixed detergents phenates - sulphonates - salicylates, overbased with calcium carbonate, more preferentially sulphonates and phenates overbased by calcium carbonate.
  • part of the BN is provided by the insoluble metal salts of the overbased detergent, in particular the metal carbonates.
  • the BN supplied by the carbonate metal salts (or BN carbonate or BN CaCO3 ) is measured on the overbased detergent alone and / or on the final lubricant according to the method described below.
  • the BN provided by the carbonate metal salts accounts for 50 to 95% of the total BN of the overbased detergent alone. It should be noted that some neutral detergents also include some content (much less important than overbased detergents) in insoluble metal salts (calcium carbonate), and can themselves contribute to the BN carbonate.
  • the weight percentage of the overbased detergent relative to the total weight of the cylinder lubricant is chosen so that the BN supplied by the carbonate metal salts represents a contribution ranging from 20 to 90 milligrams of potash per gram of lubricant, preferably from 30 to 70 milligrams of potash per gram of lubricant to the total BN of said lubricant cylinder.
  • the mass percentage of the overbased detergent relative to the total weight of the cylinder lubricant is chosen so that the BN supplied by the carbonate metal salts represents a contribution strictly greater than 20 milligrams of potash per gram of lubricant to the total BN of said cylinder lubricant.
  • the weight percentage of the overbased detergent relative to the total weight of the cylinder lubricant is chosen so that the BN supplied by the carbonate metal salts represents a contribution greater than 20 milligrams of potassium hydroxide.
  • insoluble metal salts have a favorable antiwear effect provided that they are kept dispersed in the lubricant in the form of stable micelles.
  • the detergents themselves, which may be detergent soaps of the essentially phenate, sulphonate or salicylate type, also contribute to the BN of the cylinder lubricants according to the invention.
  • the mass percentage of the overbased detergent and the neutral detergent relative to the total weight of the cylinder lubricant is chosen so that the organic BN, provided by the detergent soaps, can represent a contribution of 'at least 10 milligrams of potash per gram lubricant, preferably ranging from 10 to 60 milligrams of potash per gram of lubricant, more preferably from 10 to 40 milligrams of potash per gram of lubricant to the total BN of said lubricant cylinder.
  • the weight percentage of the overbased detergent relative to the total weight of the cylinder lubricant can range from 8 to 30%, preferably from 10 to 30%.
  • the weight percentage of the neutral detergent relative to the total weight of cylinder lubricant can range from 5 to 15%, preferably from 5 to 10%.
  • the BN of the cylinder lubricants according to the present invention is provided by at least one overbased detergent based on alkali or alkaline earth metals, at least one neutral detergent and at least one fatty amine of formula (I).
  • the value of this BN measured according to ASTM D-2896, is greater than or equal to 50 milligrams of potash per gram of lubricant.
  • the BN of a marine engine cylinder lubricant will be chosen according to the conditions of use of said lubricants and in particular according to the sulfur content of the fuel oil used in combination with said cylinder lubricants.
  • the BN of the cylinder lubricant can range from 50 to 100 milligrams of potash per gram of lubricant, preferably 60 to 90 milligrams of potash per gram of lubricant.
  • the BN of the cylinder lubricant ranges from 65 to 80 milligrams of potash per gram of lubricant, preferably from 65 to 75 milligrams of potash per gram of lubricant.
  • the lubricating base oils used for the formulation of cylinder lubricants according to the present invention can be oils of mineral, synthetic or vegetable origin as well as their mixtures.
  • the mineral or synthetic oils generally used in the application belong to one of the groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) such that summarized below.
  • the lubricating base oil (s) used in the cylinder lubricants according to the invention may be chosen from the oils of synthetic origin of group VI according to the ATIEL classification.
  • the API classification is defined in American Petroleum Institute 1509 "Engine Oil Licensing and Certification System" 17th Edition, September 2012 .
  • the ATIEL classification is defined in " The ATIEL Code of Practice ", Issue 18, November 2012 .
  • Group IV PAO Poly alpha olefins
  • the Group I mineral oils can be obtained by distillation of selected naphthenic or paraffinic crudes and then purification of these distillates by processes such as solvent extraction, solvent or catalytic dewaxing, hydrotreating or hydrogenation.
  • the oils of Groups II and III are obtained by more severe purification methods, for example a combination among hydrotreatment, hydrocracking, hydrogenation and catalytic dewaxing.
  • Examples of Group IV and V synthetic bases include polyisobutenes, alkylbenzenes and poly-alpha olefins such as polybutenes These lubricating base oils may be used alone or in admixture.
  • a mineral oil can be combined with a synthetic oil.
  • Two-stroke marine engine cylinder oils have a viscosity grade SAE-40 to SAE-60, typically SAE-50 equivalent to a kinematic viscosity at 100 ° C of between 16.3 and 21.9 mm 2 / s measured according to standard ASTM D445.
  • SAE-40 grade oils have a kinematic viscosity at 100 ° C of between 12.5 and 16.3 cSt measured according to ASTM D445.
  • SAE-50 grade oils have a kinematic viscosity at 100 ° C between 16.3 and 21.9 cSt measured according to ASTM D445.
  • SAE-60 grade oils have a kinematic viscosity at 100 ° C between 21.9 and 26.1 cSt measured according to ASTM D445.
  • the cylinder lubricants have a kinematic viscosity measured according to ASTM D445 at 100 ° C ranging from 12.5 to 26.1 cSt, preferably from 16.3 to 21.9 cSt.
  • This viscosity can be obtained by mixing additives and base oils, for example containing Group I mineral bases such as Neutral Solvent (for example 500NS or 600 NS) and Brightstock bases. Any other combination of mineral, synthetic or vegetable bases having, in admixture with the additives, a viscosity compatible with the grade SAE-50 may be used.
  • a conventional two-stroke marine engine cylinder lubricant formulation is SAE-40 to SAE-60, preferably SAE-50 (SA37 J300) and includes at least 40% by weight of lubricating base oil. mineral or synthetic origin or mixtures thereof, suitable for use with a marine engine.
  • a Group I lubricating base oil according to the API classification that is to say obtained by the following operations: distillation of selected crudes and purification of these distillates by processes such as solvent extraction, dewaxing with solvent or catalytic, hydrotreatment or hydrogenation, can be used for the formulation of a cylinder lubricant.
  • Group I lubricating base oils have a Viscosity Index (VI) ranging from 80 to 120; their sulfur content is greater than 0.03% and their content of saturated hydrocarbon compounds is less than 90%.
  • VI Viscosity Index
  • a conventional two-cycle marine engine cylinder lubricant formulation contains from 18 to 25% by weight, based on the total weight of lubricant, of a BSS type I group base oil (distillation residue, kinematic viscosity).
  • the cylinder lubricant further comprises an additional compound chosen from primary, secondary or tertiary fatty monoalcohols, the alkyl chain of which is saturated or unsaturated, linear or branched and comprising from 16 to 18 atoms. carbon, advantageously the primary monohydric alcohols saturated linear alkyl chain.
  • the additional compound content as defined above ranges from 0.01 to 10%, preferably from 0.1 to 2% by weight relative to the total weight of the cylinder lubricant.
  • the cylinder lubricant may also comprise at least one additional additive selected from dispersants, anti-wear additives or any other functional additive.
  • Dispersants are well known additives used in the formulation of lubricating composition, especially for application in the marine field. Their primary role is to maintain in suspension the particles present initially or appearing in the lubricant during its use in the engine. They prevent their agglomeration by playing on steric hindrance. They can also have a synergistic effect on the neutralization.
  • the dispersants used as lubricant additives typically contain a polar group, associated with a relatively long hydrocarbon chain, generally containing from 50 to 400 carbon atoms.
  • the polar group typically contains at least one nitrogen, oxygen or phosphorus element.
  • the compounds derived from succinic acid are dispersants particularly used as lubrication additives.
  • succinimides obtained by condensation of succinic anhydrides and amines
  • succinic esters obtained by condensation of succinic anhydrides and alcohols or polyols.
  • These compounds can then be treated with various compounds including sulfur, oxygen, formaldehyde, carboxylic acids and compounds containing boron or zinc to produce, for example, borated succinimides or zinc-blocked succinimides.
  • Mannich bases obtained by polycondensation of phenols substituted with alkyl groups, formaldehyde and primary or secondary amines, are also compounds used as dispersants in lubricants.
  • the dispersant content may be greater than or equal to 0.1%, preferably 0.5 to 2%, advantageously 1 to 1.5% by weight relative to the total weight. of the cylinder lubricant.
  • the anti-wear additives protect the friction surfaces by forming a protective film adsorbed on these surfaces.
  • the most commonly used is zinc di thiophosphate or DTPZn.
  • This category also contains various phosphorus, sulfur, nitrogen, chlorine and boron compounds.
  • phospho-sulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or DTPZn.
  • the preferred compounds have the formula Zn ((SP (S) (OR 3 ) (OR 4 )) 2, or R 3 and R 4 are alkyl groups, preferably containing from 1 to 18 carbon atoms.
  • the anti-wear additive content ranges from 0.01 to 6%, preferably from 0.1 to 4% by weight relative to the total weight of the cylinder lubricant.
  • the other functional additives may be chosen from thickeners, anti-foam additives to counteract the effect of detergents, which may be, for example, polar polymers such as polymethylsiloxanes, polyacrylates, antioxidant and / or anti-rust additives, for example detergents. organo-metallic or thiadiazoles. These are known to those skilled in the art. These additives are generally present at a content by weight of 0.1 to 5% relative to the total weight of the cylinder lubricant.
  • the set of characteristics and preferences presented for the base oil, fatty amine, overbased detergent and neutral detergent, the contribution of the fatty amine of formula (I) and the contribution of the overbased detergent to the total BN of the Lubricant also apply to cylinder lubricants above.
  • the set of characteristics and preferences presented for the base oil, the fatty amine, the overbased detergent, the neutral detergent and the additional compound, the contribution of the fatty amine of formula (I) and the contribution of the overbased detergent to the total lubricant BN also apply to the above cylinder lubricants.
  • the invention also relates to the use of a cylinder lubricant as defined above for lubricating a two-stroke marine engine. All of the features and preferences presented for the cylinder lubricant also apply to the above use.
  • the subject of the invention is also the use of a cylinder lubricant as defined above as a single cylinder lubricant which can be used both with fuel oils with a sulfur content of less than 1% by weight relative to the total weight of the fuel oil. with fuel oils with a sulfur content ranging from 1 to 3.5% by weight relative to the total weight of the fuel oil and with fuel oils with a sulfur content of greater than 3.5% by weight relative to the total weight of the fuel oil.
  • the subject of the invention is the use of a cylinder lubricant as defined above as a single cylinder lubricant usable both with fuel oils with a sulfur content of less than 1% by weight with respect to total weight of the fuel oil and with fuel containing sulfur content ranging from 1 to 3.5% by weight relative to the total weight of the fuel oil.
  • the invention also relates to the use of a cylinder lubricant as defined above to prevent corrosion and / or reduce the formation of deposit insoluble metal salts in marine engines two-stroke during combustion of any type of fuel whose sulfur content is less than or equal to 3.5% by weight relative to the total weight of the fuel oil. All of the features and preferences presented for the cylinder lubricant also apply to the above use.
  • the compounds as defined above and contained in the lubricant cylinder according to the invention, and more particularly the fatty amine of formula (I), the detergent based on alkaline or alkaline earth metals, overbased by metal salts of carbonate and neutral detergent, can be incorporated in the cylinder lubricant as separate additives, especially by separate addition of these in the base oils. However, they can also be integrated into a concentrate of additives for cylinder lubricant.
  • the additive concentrate according to the invention can be added at least one base oil to obtain a cylinder lubricant according to the invention.
  • Another object of the invention relates to a method for lubricating a two-cycle marine engine, said method comprising at least one step of contacting the engine with a cylinder lubricant as described above or obtained from a concentrate of additives as described above. All of the features and preferences presented for the cylinder lubricant or for the additive concentrate also apply to the above lubrication process.
  • Another object of the invention relates to a method for preventing corrosion and / or reducing the formation of deposits of insoluble metal salts in two-stroke marine engines during the combustion of any type of fuel oil whose sulfur content is less than 3 , 5% relative to the total weight of the fuel oil, comprising at least one step of contacting the engine with a cylinder lubricant as defined above or obtained from the additive concentrate as described above. All the characteristics and preferences presented for the cylinder lubricant or for the additive concentrate also apply to the above process.
  • BN CaCO3 The BN carbonate, hereinafter referred to as BN CaCO3, is measured on the cylinder lubricant or the overbased detergents alone, according to the following procedure. This one has the principle of attacking the overbasing, carbonate (of calcium), of the sample by sulfuric acid. This carbonate is transformed into calcium sulphate with evolution of carbon dioxide according to the reaction;
  • the volume of the reactor being constant, the pressure increases proportionally with the release of CO 2 .
  • the quantity is determined from the graph of the figure 2 , indicating for each mass of product (1 to 10 grams) the pressure measured on the differential pressure gauge (which corresponds to the pressure increase due to the release of CO 2 ) as a function of the part of the BN CaCO3 of the sample. If the result of BN CaCO3 is unknown, an average product amount of about 4 g is weighed. In all cases, the sample mass (m) is recorded.
  • the reaction vessel may be pyrex, glass, polycarbonate, ... or any other material that promotes heat exchange with the surrounding environment, so that the internal temperature of the vessel equilibrates rapidly with that of the ambient environment.
  • a small amount of 600 NS type fluid base oil is introduced into the reaction vessel containing a small magnet bar.
  • the cap and pressure gauge assembly is screwed onto the reaction vessel.
  • the threads can be greased. We tighten to have a perfect seal.
  • the whole is cleaned with a solvent of the heptane type.
  • the result obtained is the BN CaCO3 expressed in mgKOH / g.
  • the BN supplied by the metallic soaps of detergents, also designated by "organic BN", is obtained by difference between the total BN according to ASTM D2896 and the BN CaCO3 thus measured.
  • the enthalpy test for measuring the neutralization efficiency of lubricants against sulfuric acid is defined as follows.
  • the acid-base neutralization reactions are generally exothermic and it is therefore possible to measure the heat release obtained by reaction of sulfuric acid with the lubricants to be tested. This evolution is followed by the evolution of the temperature over time in an adiabatic reactor of the DEWAR type.
  • the duration S is equal to the difference t f - t i between the time at the end of reaction temperature and the time at the reaction start temperature.
  • the time t i at the reaction start temperature corresponds to the first rise in temperature after stirring is started.
  • the time t f at the final reaction temperature is that from which the temperature signal remains stable for a duration greater than or equal to the half-duration of reaction.
  • the lubricant is all the more effective as it leads to short periods of neutralization and therefore to a high index.
  • the reactor and agitator geometries as well as the operating conditions were chosen so as to be in a chemical regime, where the effect of the diffusional stresses in the oil phase is negligible.
  • the fluid height must be equal to the inside diameter of the reactor, and the stirring propeller must be positioned at about 1/3 of the height of the fluid.
  • the apparatus consists of a cylindrical adiabatic reactor of 300 ml, the inner diameter of which is 52 mm and the internal height 185 mm, of a stirring rod provided with a propeller with inclined blades, 22 mm in diameter; the diameter of the blades is between 0.3 and 0.5 times the diameter of the DEWAR, that is to say from 15.6 to 26 mm.
  • the position of the propeller is set at a distance of about 15 mm from the bottom of the reactor.
  • the stirring system is driven by a variable speed motor of 10 to 5000 rpm and a temperature acquisition system as a function of time.
  • This system is suitable for measuring reaction times of the order of 5 to 20 seconds and the temperature rise measurement of a few tens of degrees from a temperature of about 20 ° C to 35 ° C preferably about 30 ° C.
  • the position of the temperature acquisition system in the DEWAR is fixed.
  • the stirring system will be adjusted so that the reaction proceeds in a chemical regime: in the configuration of the present experiment, the speed of rotation is set at 2000 rpm, and the position of the system is fixed.
  • the chemical regime of the reaction is also dependent on the oil height introduced into the DEWAR, which must be equal to the diameter of the latter, and which corresponds in this experiment to a mass of about 86. g of the lubricant tested.
  • the amount of acid corresponding to the neutralization of 70 BN points is introduced into the reactor.
  • the reactor is charged with 7.01 g of 75% concentrated sulfuric acid and 86 g of test lubricant for a BN 70 lubricant.
  • stirring is started to follow the reaction in chemical regime .
  • the acquisition system is permanent.
  • This lubricant cylinder is obtained from a mineral lubricating base oil obtained by mixing a distillate of density at 15 ° C of between 880 and 900 Kg / m 3 with a distillation residue of density between 895 and 915 Kg / m 3 (Brightstock) in a distillate / residue ratio of 3.
  • a concentrate in which a BN overbased calcium sulfonate equal to 400 mg KOH / g, a dispersant, a BN overbased calcium phenoxide equal to 250 mg KOH / g.
  • This lubricant cylinder is formulated specifically to have a neutralization capacity sufficient for use with high sulfur content fuels, namely sulfur contents greater than 3% or even 3.5% relative to the total weight of the fuel oil.
  • This reference lubricant contains 25.50% by weight of this concentrate. Its BN of 70 mg KOH / g of lubricant is exclusively provided by the overbased detergents (phenates and overbased sulfonates) contained in said concentrate.
  • This reference lubricant has a viscosity at 100 ° C of between 18 and 21.5 mm 2 / s measured according to ASTM D445.
  • the neutralization reaction time of this oil (hereinafter referred to as Href) is 75 seconds and its neutralization efficiency index is set at 100.
  • the cylinder lubricants L 1 and L 2 are described in Table I; the percentages given correspond to mass percentages. ⁇ u> Table I ⁇ / u> compositions L 1 (invention) L 2 (comparative) Base oil 1 27 27 Base oil 2 49 49 Detergent package 20.6 20.6 Fatty amine 1 3.4 Fatty amine 2 3.4
  • the thermal behavior of the lubricants L 1 and L 2 was therefore evaluated by means of the continuous ECBT test, by which the mass of deposits (in mg) generated under specified conditions is measured. The lower the mass, the better the thermal resistance and therefore the better the engine cleanliness.
  • This test simulates a high temperature engine piston on which the lubricant from the crankcase is sprayed.
  • the test uses aluminum beakers that simulate the shape of pistons. These beakers were placed in a glass container, maintained at a controlled temperature of the order of 60 ° C. The lubricant was placed in these containers, themselves equipped with a wire brush, partially immersed in the lubricant.
  • This brush was rotated at a speed of 1000 revolutions per minute, which created a projection of lubricant on the bottom surface of the beaker.
  • the beaker was maintained at a temperature of 310 ° C by an electric heating resistor controlled by a thermocouple.
  • the test lasted 12 hours and the lubricant spray was continuous for the duration of the test. This procedure simulates the formation of deposits in the piston-segment assembly. The result is the weight of deposits measured on the beaker.
  • Table III The results are summarized in Table III below. In Table III was added the result obtained for the reference cylinder lubricant L ref described above. Table III compositions L 1 L 2 L ref (invention) (comparative) Continuous ECBT (mg) 220 250 230
  • the cylinder lubricant according to the invention has a slightly improved thermal resistance with respect to the reference cylinder oil.
  • the cylinder lubricants L 3 and L 4 are described in Table IV; the percentages given correspond to mass percentages.
  • Table VI was added the result obtained for the reference cylinder lubricant L ref described above.
  • the cylinder lubricant according to the invention has a slightly improved thermal resistance compared to the reference cylinder oil.
  • Examples 1, 2 and 3 demonstrate the advantage of the specific choice of a fatty amine of formula (I) with respect to other fatty polyamines, making it possible to obtain both a very good neutralization efficiency and improved thermal resistance properties, and therefore cleaner the improved cylinder piston assembly.
  • the cylinder lubricants L 5 and L 6 are described in Table VIII; the percentages given correspond to mass percentages.
  • the cylinder lubricants L 1 and L 7 are described in Table XI; the percentages indicated correspond to mass percentages.
  • the thermal resistance of the lubricants L 1 and L 7 was therefore evaluated by means of the continuous ECBT test, as described in Example 1.
  • Table XIII was added the result obtained for the reference cylinder lubricant L ref described above.
  • Examples 1, 2, 3, 4 and 5 demonstrate the advantage of the specific choice of a mixture of fatty amines having a fat amine content by weight of formula (I) of at least 90% and preferentially strictly less than 100% relative to the total weight of the mixture of fatty amines relative to mixtures of fatty amines having a weight content of fatty amine of formula (I) less than 90% relative to the total weight of the mixture , relative to other fatty polyamines or with respect to alkoxylated amines, making it possible to obtain both a very good neutralization efficiency and improved thermal resistance properties, while maintaining satisfactory viscosity stability over time .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
EP14722191.5A 2013-05-07 2014-05-06 Lubrifiant pour moteur marin Active EP2994521B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354182A FR3005474B1 (fr) 2013-05-07 2013-05-07 Lubrifiant pour moteur marin
PCT/EP2014/059232 WO2014180843A1 (fr) 2013-05-07 2014-05-06 Lubrifiant pour moteur marin

Publications (2)

Publication Number Publication Date
EP2994521A1 EP2994521A1 (fr) 2016-03-16
EP2994521B1 true EP2994521B1 (fr) 2019-08-07

Family

ID=48856884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14722191.5A Active EP2994521B1 (fr) 2013-05-07 2014-05-06 Lubrifiant pour moteur marin

Country Status (12)

Country Link
US (1) US9896639B2 (zh)
EP (1) EP2994521B1 (zh)
JP (1) JP6324492B2 (zh)
KR (1) KR20160006736A (zh)
CN (1) CN105189721B (zh)
AR (1) AR096204A1 (zh)
BR (1) BR112015028034A2 (zh)
ES (1) ES2751683T3 (zh)
FR (1) FR3005474B1 (zh)
HK (1) HK1217509A1 (zh)
RU (1) RU2667063C2 (zh)
WO (1) WO2014180843A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017876B1 (fr) 2014-02-24 2016-03-11 Total Marketing Services Composition d'additifs et carburant de performance comprenant une telle composition
FR3017875B1 (fr) 2014-02-24 2016-03-11 Total Marketing Services Composition d'additifs et carburant de performance comprenant une telle composition
FR3018079B1 (fr) 2014-02-28 2017-06-23 Total Marketing Services Composition lubrifiante a base de nanoparticules metalliques
FR3039835B1 (fr) 2015-08-03 2019-07-05 Total Marketing Services Utilisation d'une amine grasse pour prevenir et/ou reduire les pertes metalliques des pieces dans un moteur
FR3043691A1 (fr) * 2015-11-12 2017-05-19 Total Marketing Services Compositions lubrifiantes pour prevenir ou diminuer la combustion anormale dans un moteur de vehicule automobile
EP3211062B1 (en) 2016-02-29 2022-07-27 TotalEnergies OneTech Lubricant for a two-stroke marine engine
EP3423430B1 (en) * 2016-02-29 2020-04-08 Nouryon Chemicals International B.V. Dialkyl-polyalkylamine compositions, process for their preparation and their use
FR3053049A1 (fr) * 2016-06-28 2017-12-29 Total Marketing Services Reduction des oxydes d'azote
US10577571B2 (en) 2016-11-08 2020-03-03 Ecolab Usa Inc. Non-aqueous cleaner for vegetable oil soils
FR3065964B1 (fr) 2017-05-04 2020-03-13 Total Marketing Services Utilisation d'une amine grasse pour reduire et/ou controler la combustion anormale du gaz dans un moteur marin
FR3071252B1 (fr) 2017-09-19 2020-04-03 Total Marketing Services Utilisation d'ester dans une composition lubrifiante pour ameliorer la proprete moteur
US11845905B2 (en) 2019-11-07 2023-12-19 Totalenergies Onetech Lubricant for a marine engine
FR3127955A1 (fr) 2021-10-07 2023-04-14 Totalenergies Marketing Services Composé spiro comme additif détergent dans des lubrifiants pour moteurs marins

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242394B1 (en) 1991-05-30 2001-06-05 The Lubrizol Corporation Two-stroke cycle lubricant and method of using same
US6004910A (en) 1994-04-28 1999-12-21 Exxon Chemical Patents Inc. Crankcase lubricant for modern heavy duty diesel and gasoline fueled engines
US5900392A (en) * 1998-07-24 1999-05-04 Loeffler Chemical Corporation Aqueous belt lubricant composition based on fatty alkyl propylene tettramines and fatty alcohol polyglycol ethers and method for lubricating belt conveyor systems
FR2808534B1 (fr) 2000-05-03 2002-08-02 Total Raffinage Distribution Composition lubrifiante biodegradable et ses utilisations, notamment dans un fluide de forage
FR2879621B1 (fr) 2004-12-16 2007-04-06 Total France Sa Huile pour moteur marin 4-temps
WO2007096361A1 (en) * 2006-02-21 2007-08-30 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
PL1914295T3 (pl) 2006-10-11 2014-05-30 Total Marketing Services Środek smarujący okrętowy do oleju napędowego z niską lub wysoką zawartością siarki
US8114822B2 (en) * 2006-10-24 2012-02-14 Chemtura Corporation Soluble oil containing overbased sulfonate additives
EP2045314B1 (en) * 2007-10-04 2017-11-08 Infineum International Limited An overbased metal sulphonate detergent
FR2924439B1 (fr) 2007-12-03 2010-10-22 Total France Composition lubrifiante pour moteur quatre temps a bas taux de cendres
FR2928934B1 (fr) * 2008-03-20 2011-08-05 Total France Lubrifiant marin
FR2932813B1 (fr) * 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
FR2943678B1 (fr) 2009-03-25 2011-06-03 Total Raffinage Marketing Polymeres (meth)acryliques de bas poids moleculaire, exempts de composes soufres,metalliques et halogenes et de taux de monomeres residuels faible,leur procede de preparation et leurs utilisations
FR2945754A1 (fr) 2009-05-20 2010-11-26 Total Raffinage Marketing Nouveaux additifs pour huiles transmission
FR2953853B1 (fr) 2009-12-15 2013-02-08 Total Raffinage Marketing Composition lubrifiante biodegradable et son utilisation dans un fluide de forage notamment pour reservoirs tres enfouis
FR2968011B1 (fr) 2010-11-26 2014-02-21 Total Raffinage Marketing Composition lubrifiante pour moteur
FR2974111B1 (fr) 2011-04-14 2013-05-10 Total Raffinage Marketing Lubrifiant cylindre pour moteur marin deux temps
FR2980799B1 (fr) 2011-09-29 2013-10-04 Total Raffinage Marketing Composition lubrifiante pour moteur marin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112015028034A2 (pt) 2017-09-12
AR096204A1 (es) 2015-12-16
RU2015152024A3 (zh) 2018-03-29
WO2014180843A1 (fr) 2014-11-13
ES2751683T3 (es) 2020-04-01
RU2015152024A (ru) 2017-06-14
CN105189721B (zh) 2018-10-16
JP6324492B2 (ja) 2018-05-16
FR3005474B1 (fr) 2016-09-09
JP2016521308A (ja) 2016-07-21
US20160177216A1 (en) 2016-06-23
FR3005474A1 (fr) 2014-11-14
HK1217509A1 (zh) 2017-01-13
CN105189721A (zh) 2015-12-23
KR20160006736A (ko) 2016-01-19
US9896639B2 (en) 2018-02-20
RU2667063C2 (ru) 2018-09-14
EP2994521A1 (fr) 2016-03-16

Similar Documents

Publication Publication Date Title
EP2994521B1 (fr) Lubrifiant pour moteur marin
EP2304006B1 (fr) Lubrifiant cylindre pour moteur marin deux temps
EP2697344B1 (fr) Lubrifiant cylindre pour moteur marin deux temps
EP2271731B1 (fr) Lubrifiant marin
EP1914295B1 (fr) Lubrifiant marin pour fioul à basse et haute teneur en soufre
EP3212745B1 (fr) Lubrifiant pour moteur marin
EP2760982B1 (fr) Composition lubrifiante pour moteur marin
WO2009101276A1 (fr) Composition lubrifiante pour moteur quatre temps a bas taux de cendres
EP3523407B1 (fr) Composition lubrifiante pour moteur marin ou moteur stationnaire
EP2935542A1 (fr) Composition lubrifiante a base d'ether de polyglycerol
EP2964736A1 (fr) Composition lubrifiante pour moteur marin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1163870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014051252

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1163870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2751683

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014051252

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200423

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220519

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220524

Year of fee payment: 9

Ref country code: GB

Payment date: 20220520

Year of fee payment: 9

Ref country code: FR

Payment date: 20220524

Year of fee payment: 9

Ref country code: DE

Payment date: 20220519

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220725

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014051252

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230506

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240628