EP2697344B1 - Lubrifiant cylindre pour moteur marin deux temps - Google Patents

Lubrifiant cylindre pour moteur marin deux temps Download PDF

Info

Publication number
EP2697344B1
EP2697344B1 EP12714700.7A EP12714700A EP2697344B1 EP 2697344 B1 EP2697344 B1 EP 2697344B1 EP 12714700 A EP12714700 A EP 12714700A EP 2697344 B1 EP2697344 B1 EP 2697344B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
cylinder
milligrams
detergents
per gram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12714700.7A
Other languages
German (de)
English (en)
Other versions
EP2697344A1 (fr
Inventor
Denis Lancon
Valérie Doyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Priority to PL12714700T priority Critical patent/PL2697344T3/pl
Publication of EP2697344A1 publication Critical patent/EP2697344A1/fr
Application granted granted Critical
Publication of EP2697344B1 publication Critical patent/EP2697344B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M7/00Lubrication means specially adapted for machine or engine running-in
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • the present invention relates to a two-cycle marine engine cylinder lubricant for use with both high sulfur and low sulfur fuel oils. It relates more particularly to a lubricant having sufficient neutralization capacity vis-à-vis the sulfuric acid formed during the combustion of high-sulfur fuel oil, while limiting the formation of deposits during the use of fuel oils. low sulfur content.
  • the marine oils used in slow-moving 2-stroke engines are of two types.
  • the cylinder oils on the one hand, ensuring the lubrication of the cylinder piston assembly, and the system oils on the other hand, ensuring the lubrication of all moving parts out of the cylinder piston assembly.
  • the combustion residues containing acid gases are in contact with the lubricating oil.
  • Acid gases are formed from the combustion of fuel oils; they are in particular sulfur oxides (SO 2 , SO 3 ), which are then hydrolysed when in contact with the moisture present in the combustion gases and / or in the oil. This hydrolysis generates sulfurous acid (HSO 3 ) or sulfuric acid (H 2 SO 4 ).
  • these acids must be neutralized, which is usually done by reaction with the basic sites included in the lubricant.
  • the capacity of neutralization of an oil is measured by its BN or Base Number in English, characterizing its basicity. It is measured according to ASTM D-2896 and is expressed in milligram equivalent of potash per gram of oil (also referred to as "mg of KOH / g" or "BN point").
  • the BN is a standard criterion for adjusting the basicity of cylinder oils to the sulfur content of the fuel used, in order to neutralize all the sulfur contained in the fuel, and likely to be converted into sulfuric acid by combustion and hydrolysis.
  • BN ranging from 5 to 100 mg KOH / g.
  • the detergents mainly of the anionic type, are, for example, metal salicylate, phenate, sulphonate or carboxylate soaps which form micelles in which the insoluble metal salt particles are kept in suspension.
  • the usual overbased detergents intrinsically have a BN conventionally between 150 and 700 mg KOH per gram of detergent. Their mass percentage is fixed in the lubricant as a function of the level of BN that one wishes to achieve.
  • a part of the BN can also be provided by non-overbased or "neutral” detergents with a NO 2 typically of less than 150.
  • neutral detergents with a NO 2 typically of less than 150.
  • the insoluble metal salts of the overbased detergents for example calcium carbonate, thus contribute significantly to the BN of the usual lubricants. It can be considered that at least 50%, typically 75%, of the BN of the cylinder lubricants is thus provided by these insoluble salts.
  • the detergent part itself, or metal soaps, found in both neutral and overbased detergents typically provides the bulk of the BN complement.
  • MARPOL Annex 6 (Regulations for the Prevention of Air Pollution from Ships) of IMO (International Maritime Organization) entered into force in May 2005. It sets a maximum sulfur content of 4.5% w / w heavy fuel oils and the creation of Sulfur Emission Control Areas (Sulfur Emission Control Areas). Vessels entering these areas must use fuel with a maximum sulfur content of 1.5% m / m or other alternative treatment to limit SOx emissions to meet the values. specified.
  • the notation% m / m denotes the weight percentage of a compound relative to the total weight of fuel oil or lubricating composition in which it is included.
  • the switching between these two categories of fuel oil may require adaptation of the operating conditions of the engine, in particular the use of appropriate cylinder lubricants.
  • marine lubricants with a BN of about 70 are used.
  • marine lubricants with a BN of about 40 are used (this value will in the future be reduced).
  • each of these lubricants has limitations of use resulting from the following observations: the use of a BN 70 cylinder lubricant in the presence of a low sulfur fuel oil (1.5% w / w and less) ) and fixed lubrication rate, creates a large excess of basic sites (strong BN) and a risk of destabilization of micelles of unused overbased detergents, which contain insoluble metal salts. This destabilization results in the formation of insoluble metal salt deposits and having a high hardness (for example calcium carbonate), mainly on the piston ring, and eventually can lead to a risk of excessive wear polishing shirt.
  • a BN 70 cylinder lubricant in the presence of a low sulfur fuel oil (1.5% w / w and less)
  • fixed lubrication rate creates a large excess of basic sites (strong BN) and a risk of destabilization of micelles of unused overbased detergents, which contain insoluble metal salts.
  • This destabilization results in the formation of insoluble metal
  • the optimization of the cylinder lubrication of a slow 2-stroke engine then requires the selection of the lubricant with the BN adapted to the fuel oil and to the operating conditions of the engine. This optimization reduces the operating flexibility of the engine and requires a high degree of technical skill of the crew in defining the conditions under which the changeover from one type of lubricant to the other must be achieved.
  • the demand WO 2009/153453 discloses two-cycle marine engine cylinder lubricants for use with both high and low sulfur fuels.
  • the said lubricating compositions have a BN greater than or equal to 15, and comprise one or more lubricating base oils for a marine engine, at least one overbased detergent, optionally in combination with a neutral detergent, one or more oil-soluble fatty amines. .
  • Fatty amines bring at least 10 points of BN, and detergents overbased at most 20 points of BN, to the lubricant.
  • These lubricating compositions can have a BN of the order of 50 and are as effective from the point of view of acid neutralization kinetics as much higher (typically 70) BN cylinder lubricants, specifically designed for high solids content fuels. sulfur; their reduced rate of overbased detergents also allows them to be adapted to low sulfur content.
  • the demand FR 2094182 discloses a lubricating composition
  • a lubricating composition comprising from 0.01 to 5% of an acid neutralization accelerator which may be an ethoxylated fatty diamine, and sufficient alkaline earth metal carbonate to impart a BN of 0.5 to 100 mg KOH / g to the composition.
  • an acid neutralization accelerator which may be an ethoxylated fatty diamine
  • alkaline earth metal carbonate to impart a BN of 0.5 to 100 mg KOH / g to the composition.
  • These carbonates can be dispersed in the lubricant by phenates or sulfonates.
  • compositions have a thermal resistance (measured in particular by their ability to form deposits in the ECBT test) mediocre.
  • the present invention relates to a lubricant composition that can be used as cylinder lubricants for two-stroke marine engines, which can be used with both high and low sulfur fuels, and which makes it possible to overcome the disadvantages mentioned above.
  • Lubricating compositions according to the invention comprise alkoxylated fatty amines in limited amounts, combined with neutral detergents and overbased detergents in specific proportions.
  • compositions according to the invention have very good antiwear properties, and a heat resistance superior to the compositions of the prior art. They are more resistant to aging and retain these properties throughout their residence time in the cylinder of the marine engine.
  • the BN of the alkoxylated fatty amines determined according to ASTM D-2896 is between 120 and 500, preferably between 150 and 400, preferably between 200 and 300 milligrams of potash per gram.
  • the weight percentage of alkoxylated fatty amines relative to the total weight of lubricant is chosen so that the BN supplied by these compounds represents a contribution of between 3 and 7 milligrams of potassium hydroxide. per gram of lubricant, preferably between 3.5 and 5 milligrams of potash per gram of total BN lubricant of said cylinder lubricant, determined according to ASTM D-2896.
  • the cylinder lubricants according to the invention have a BN, determined according to ASTM D-2896, greater than or equal to 20, preferably greater than 30, advantageously greater than 40 milligrams of potash per gram of lubricant.
  • the cylinder lubricants according to the invention have a BN, determined according to ASTM D-2896, less than 55 milligrams of potash per gram of lubricant.
  • the cylinder lubricants according to the invention have a BN, determined according to ASTM D-2896, of between 40 and 50 milligrams of potash per gram of lubricant, preferably between 42 and 45 milligrams of potash per gram of lubricant.
  • the cylinder lubricants according to the invention have a BN, determined according to the ASTM D-2896 standard, between 50 and 55 milligrams of potash per gram of lubricant, preferably between 51 and 53 milligrams of potash per gram of lubricant.
  • the BN supplied by the metal salts of carbonates represents a contribution of between 10% and 60%, preferably between 20% and 55%, preferably between 30% and 50%, of the total BN. said cylinder lubricant.
  • the oil-soluble alkoxylated fatty amine or amines are obtained from palm, olive, peanut, conventional or oleic rapeseed oil, Classic or oleic sunflower, soya, cotton, from beef tallow, or palmitic, stearic, oleic, linoleic acid.
  • the oil-soluble alkoxylated fatty amine or amines are obtained from fatty acids comprising between 16 and 18 carbon atoms.
  • the overbased detergents (b) and the neutral detergents (c) are chosen from carboxylates, sulphonates, salicylates, naphthenates, phenates, and mixed detergents combining at least two of these types of detergents.
  • At least one overbased detergent (b) is a sulphonate.
  • At least one neutral detergent (c) is a phenate or a sulphonate, preferably a phenate.
  • the cylinder lubricants according to the invention have a kinematic viscosity measured according to ASTM D445 at 100 ° C between 12.5 and 26.1 cSt, preferably between 16.3 and 21.9 cSt.
  • the present invention also relates to the use of a lubricant as described above as a single cylinder lubricant usable both with fuel oils with a sulfur content of less than 1.5% m / m and with fuel oil content in sulfur greater than 3.5% m / m in two-stroke marine engines.
  • the present invention also relates to the use of a lubricant as described above as a single cylinder lubricant usable with both fuel oils with a sulfur content of less than 1% w / w and with sulfur-containing fuel oils. greater than 3% m / m in two-stroke marine engines.
  • the present invention also relates to the use of a lubricant as described above as a cylinder lubricant usable with all fuel with a sulfur content of between 0.1% w / w and 3.5% w / w in two-stroke marine engines.
  • the present invention also relates to the use of a lubricant as described above for preventing corrosion and / or reducing the formation of deposits of insoluble metal salts in the cylinders of two-stroke marine engines during the combustion of any type of fuel oil with a sulfur content of less than 4.5% m / m.
  • Alkoxylated fatty amines and other accelerators of neutralization speed Alkoxylated fatty amines and other accelerators of neutralization speed:
  • the fatty amines used in the lubricants according to the present invention are alkoxylated fatty amines, preferably monoamines, or diamines containing one or more aliphatic chains.
  • the intrinsic BN of the alkoxylated fatty amines used in the present invention is typically comprised between 100 and 600 milligrams of potash per gram, preferably between 120 and 500 milligrams of potash per gram, preferably between 150 and 400 milligrams of potash per gram, preferably between 200 and 300 milligrams of potash per gram.
  • This polar head is constituted by the nitrogen atom and by the oxygen atom (s) provided by the alkoxylation, and the lipophilic part by the fatty aliphatic chain (s).
  • this polar head it is preferable, in order to obtain a surfactant character, for this polar head to consist of amine functions which are not very distant from one another (typically separated by 2 to 3 carbon atoms), and preferably in a restricted number (typically one or two functions).
  • alkoxylated with a limited number of alkylene oxide functions typically between 1 and 15, preferably between 2 and 10, preferentially between 3 and 7, preferentially between 3 and 4, and preferably with alkylene oxides comprising from 2 to 4 carbon atoms.
  • the alkoxylated fatty amines are obtained by known alkoxylation processes, for example described in the application FR 2 094 182 , by bringing together the fatty amines and the alkylene oxides, at temperatures for example between 100 and 200 ° C, in the presence of a basic catalyst which may be NaOH, KOH, NaOCH 3 .
  • the starting fatty amines are mainly obtained from carboxylic acids. These acids are dehydrated in the presence of ammonia to give nitriles, which then undergo catalytic hydrogenation to lead to primary, secondary or tertiary amines.
  • the starting fatty acids for obtaining fatty amines are, for example, caprylic, pelargonic, capric, undecylenic, lauric, tridecylenic, myristic, pentadecyl, palmitic, margaric, stearic, nonadecylic, arachic, heneicosanoic, behenic, tricosanoic, lignoceric, pentacosanoic acids.
  • the preferred fatty acids are derived from the hydrolysis of triglycerides present in vegetable and animal oils, such as coconut oil, palm oil, olive oil, peanut oil, rapeseed oil, sunflower oil, soy oil and cotton oil.
  • vegetable and animal oils such as coconut oil, palm oil, olive oil, peanut oil, rapeseed oil, sunflower oil, soy oil and cotton oil.
  • the natural oils may have been genetically modified to enrich their content of certain fatty acids, for example rapeseed oil or oleic sunflower oil.
  • the fatty amines used to prepare the alkoxylated fatty amines of the lubricants according to the invention are preferably obtained from natural, vegetable or animal resources. Treatments for producing fatty amines from natural oils can result in mixtures of primary, secondary and tertiary monoamines and polyamines.
  • q is an integer greater than 1, preferably between 1 and 12, or between 1 and 5, or between 1 and 2
  • r is an integer between 2 and 3
  • R and R 1 are fatty chains from or fatty acids present in the starting oil.
  • the same mono or fatty polyamine may contain several fatty chains from different fatty acids.
  • These products can also be used in purified form, mainly containing a single type of amines, for example predominantly monoamines or predominantly diamines.
  • R 1 may represent a plurality of fatty acids derived from a natural resource, for example tallow fat, or soybean oil, or coconut oil, or sunflower oil (oleic).
  • R 1 may represent a plurality of fatty acids from a natural resource, for example tallow fat , or soybean oil, or coconut oil, or sunflower oil (oleic).
  • amines obtained from oleic acid in particular primary monoamines of formula R 1 NH 2 or diamines of formula R 1 - [NH (CH 2 ) 3 ] -NH 2 where R 1 is the fatty chain of oleic acid.
  • the alkoxylated amines of the lubricants according to the present invention must be highly soluble in the oil matrix in order to be able to effectively increase the acid neutralization kinetics.
  • alkoxylated fatty amines The solubility of alkoxylated fatty amines is primarily due to their fatty chain. These amines are also all the more soluble that they comprise a limited number of alkylene oxide functions. The Applicant has also found that the alkoxylated amines where the nitrogen atoms are ternary (where no longer NH bond exist) are easier to solubilize, preferentially monoamines with ternary nitrogen.
  • alkoxylated amines are therefore all the more effective if they are well dispersed - solubilized in the oil matrix.
  • the fatty amines of the lubricants according to the present invention are not in emulsion or microemulsion form, but well dispersed in the oil matrix.
  • the fatty amines according to the present invention are therefore preferably those which comprise at least one aliphatic chain consisting of at least 12 carbon atoms, preferably at least 14 carbon atoms, preferably at least 16 carbon atoms, preferably at least 18 carbon atoms. carbon.
  • These compounds can be used in combination with the alkoxylated amines at contents of between 0.1 and 10% by weight, preferably between 0.1 and 2%, preferably between 0.3 and 1.5%, preferentially between 0.4 and 1.5% by weight. and 1%, preferably between 0.5 and 1%.
  • fatty monoalcohols whose alkyl chain is saturated or unsaturated, linear or branched, and comprise at least 12 carbon atoms, preferably between 12 and 24 carbon atoms, preferably from 16 to 18 atoms. of carbon.
  • these fatty monoalcohols are primary monoalcohols with a linear saturated alkyl chain, preferably containing from 16 to 18 carbon atoms.
  • esters of saturated fatty acids containing at least 14 carbon atoms and alcohols containing at most 6 carbon atoms preferably chosen from mono and diesters, preferably from monoesters of monoalcohol, and diesters. whose ester functions are at most four carbon atoms from the oxygen side of the ester function.
  • the BN of the lubricants according to the present invention is provided by neutral detergents, overbased detergents based on alkali or alkaline earth metals, and with one or more alkoxylated fatty amines.
  • the value of this BN, measured according to ASTM D-2896 can vary for a lubricant of 0.5 to 100 mg KOH / g, or beyond.
  • the BN of a marine engine cylinder lubricant will be chosen according to the conditions of use of said lubricants and in particular according to the sulfur content of the fuel oil used in combination with said cylinder lubricants.
  • the lubricants according to the present invention are suitable for use as a cylinder lubricant, irrespective of the sulfur content of the fuel oil used as fuel in the engine.
  • the two-cycle marine engine cylinder lubricants according to the invention have a BN greater than or equal to 15 milligrams of potash per gram of lubricant, preferably greater than 20, preferably greater than 30, advantageously greater than 40.
  • the cylinder lubricants according to the invention have a BN of less than 55, typically between 40 and 55, preferably between 40 and 50, preferably between 42 and 45, typically of the order of 43 or 44 milligrams of potash per gram of lubricant.
  • BN typically of prior art cylinder lubricant formulations specifically used and only with low sulfur fuel oils where (almost) all BN is provided by overbased detergents.
  • the lubricants according to the invention have a BN between 50 and 55, typically between 51 and 53 milligram of potash per gram of lubricant.
  • the proportion of BN supplied by the alkoxylated fatty amines in the lubricants according to the invention is between 2 and 8, preferably between 3 and 7, preferably between 3.5 and 5 milligrams of potassium per gram of lubricant (or "BN points"). ").
  • the intrinsic BN of the alkoxylated amines of the lubricants according to the invention is between 100 and 600, preferably between 120 and 500, preferably between 150 and 400, preferably between 200 and 300.
  • the alkoxylated fatty amines provide between 0.33% (supply of 2 points of BN with an amine of BN 600) and 8% (supply of 8 points of BN with an amine of BN 100 ) of the total BN, preferably between 0.4% (contribution of 2 points of BN by an amine of BN 500) and 6.7% (contribution of 8 points of BN by an amine of BN 120) of the total BN, preferably between 0.5% (contribution of 2 points of BN by an amine of BN 400) and 5.3% (contribution of 8 points of BN by an amine of BN 150) of the total BN, preferentially between 0.7% (contribution of 2 BN points with an amine of BN 300) and 4% (contribution of 8 BN points with an amine of BN 200) of the total BN.
  • the detergents used in the lubricant compositions according to the present invention are well known to those skilled in the art.
  • the detergents commonly used in the formulation of lubricating compositions are typically anionic compounds having a long lipophilic hydrocarbon chain and a hydrophilic head.
  • the associated cation is typically a metal cation of an alkali or alkaline earth metal.
  • the detergents are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulphonates, salicylates and naphthenates, as well as the salts of phenates.
  • the alkaline and alkaline earth metals are preferably calcium, magnesium, sodium or barium.
  • metal salts may contain the metal in an approximately stoichiometric amount.
  • neutral detergents typically have a BN, measured according to ASTM D2896, less than 150 mg KOH / g, or less than 100, or even less than 80 mg KOH / g.
  • neutral detergents can contribute in part to the BN lubricants according to the present invention.
  • neutral detergents of carboxylates, sulphonates, salicylates, phenates, alkali metal and alkaline earth metal naphthenates, for example calcium, sodium, magnesium or barium will be used.
  • BN is high, greater than 150 mg KOH / g, typically between 200 and 700 mg KOH / g, generally between 250 and 450 mg KOH / g.
  • the excess metal providing the overbased detergent character is in the form of oil insoluble metal salts, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate.
  • the metals of these insoluble salts may be the same as those of the oil-soluble detergents or may be different. They are preferably selected from calcium, magnesium, sodium or barium.
  • the overbased detergents are thus in the form of micelles composed of insoluble metal salts maintained in suspension in the lubricating composition by the detergents in the form of oil-soluble metal salts.
  • These micelles may contain one or more types of insoluble metal salts, stabilized by one or more detergent types.
  • Overbased detergents with a single type of detergent soluble metal salt will generally be named after the nature of the hydrophobic chain of the latter detergent.
  • the overbased detergents will be said to be of mixed type if the micelles comprise several types of detergents, different from each other by the nature of their hydrophobic chain.
  • the oil-soluble metal salts will preferably be phenates and sulphonates, salicylates, and mixed phenate-sulphonate and / or salicylate detergents, preferentially phenates and / or sulphonates. , calcium, magnesium, sodium or barium, preferably calcium phenates and / or sulfonates.
  • the insoluble metal salts providing the overbased character are alkali and alkaline earth metal carbonates, preferentially calcium carbonate.
  • the overbased detergents used in the lubricating compositions according to the present invention will preferably be phenates, sulphonates, salicylates and mixed detergents phenates-sulphonates-salicylates, overbased with calcium carbonate, preferentially sulphonates and phenates overbased with calcium carbonate.
  • part of the BN is provided by the insoluble metal salts of the overbased detergents, in particular the metal carbonates.
  • the BN supplied by the carbonate metal salts (or BN carbonate or BN CaCO3 ) is measured on the overbased detergent alone and / or on the final lubricant according to the method described in Example 1.
  • the BN brought The carbonate metal salts represent from 50 to 95% of the total BN of the overbased detergent alone.
  • neutral detergents also include some content (much less important than overbased detergents) in insoluble metal salts (calcium carbonate), and can themselves contribute to the BN carbonate.
  • the mass percentage of overbased (and neutral) detergents relative to the total weight of lubricant is chosen so that the BN supplied by the carbonate metal salts represents a contribution of at most 65%. preferably at most 60% of the total BN (according to ASTM D-2896) of said cylinder lubricant.
  • insoluble metal salts however, have a favorable anti-wear effect provided that they are kept dispersed in the lubricant in the form of stable micelles (which is not the case when they are in excess of the amount of sulfuric acid to neutralize in service).
  • the BN carbonate provided by the insoluble metal salts represent preferably between 10% and 60%, preferably between 20% and 55%, preferably between 30% and 50% of the total BN (ASTM D-2896) of said lubricant.
  • BN ASTM D-2896
  • ASTM D-2896 BN of the order of 40 to 50
  • the BN contribution provided by the Insoluble metal salts of overbased detergents are in the range of 20 to 25 milligrams of potash per gram of lubricant, typically 22 to 24 milligrams of potash per gram of lubricant or "BN point”.
  • the detergents themselves which are metal soaps of the essentially phenate, or sulfonate, or salicylate type, also contribute to the BN of the lubricants according to the present invention.
  • the base oils used for the formulation of lubricants according to the present invention can be oils of mineral, synthetic or vegetable origin as well as their mixtures.
  • the mineral or synthetic oils generally used in the application belong to one of the classes defined in the API classification as summarized in the table below.
  • Saturated content Sulfur content Viscosity index (VI) Group I Mineral oils ⁇ 90% > 0.03% 80 ⁇ VI ⁇ 120 Group II Hydrocracked oils ⁇ 90% ⁇ 0.03% 80 ⁇ VI ⁇ 120 Group III Hydroisomerized Oils ⁇ 90% ⁇ 0.03% ⁇ 120 Group IV PAO (polyalphaolefins) Group V
  • the Group I mineral oils can be obtained by distillation of selected naphthenic or paraffinic crudes and then purification of these distillates by processes such as solvent extraction, solvent or catalytic dewaxing, hydrotreating or hydrogenation.
  • the oils of Groups II and III are obtained by more severe purification methods, for example a combination among hydrotreatment, hydrocracking, hydrogenation and catalytic dewaxing.
  • Group IV and V synthetic bases include polyalphaolefins (PAOs), polybutenes, polyisobutenes, alkylbenzenes.
  • PAOs polyalphaolefins
  • polybutenes polybutenes
  • polyisobutenes alkylbenzenes.
  • base oils can be used alone or as a mixture.
  • a mineral oil can be combined with a synthetic oil.
  • Cylinders for 2-stroke marine diesel engines have a SAE-40 SAE-40 viscometric grade, typically SAE-50 equivalent to a kinematic viscosity at 100 ° C of 16.3 to 21.9 mm 2 / s.
  • Grade 40 oils have a kinematic viscosity at 100 ° C of between 12.5 and 16.3 cSt.
  • Grade 50 oils have a kinematic viscosity at 100 ° C of 16.3 to 21.9 cSt.
  • Grade 60 oils have a kinematic viscosity at 100 ° C of 21.9 to 26.1 cSt.
  • cylinder oils for 2-stroke marine diesel engines having a kinematic viscosity at 100 ° C. of between 18 and 21.5, preferably between 19 and 21.5 mm 2 / s (cSt). .
  • This viscosity can be obtained by mixing additives and base oils, for example containing Group I mineral bases such as Neutral Solvent (for example 500NS or 600 NS) and Brightstock bases. Any other combination of bases mineral, synthetic or vegetable origin having, in admixture with the additives, a viscosity compatible with the grade SAE-50 may be used.
  • Group I mineral bases such as Neutral Solvent (for example 500NS or 600 NS) and Brightstock bases.
  • a conventional cylinder lubricant formulation for slow 2-cycle marine diesel engines is SAE-40 to SAE-60, preferably SAE-50 (SA37 J300) and includes at least 50% by weight a lubricating base of mineral and / or synthetic origin, suitable for use in a marine engine, for example, API Group I, that is to say obtained by distillation of selected crudes and purification of these distillates by processes such as solvent extraction, solvent or catalytic dewaxing, hydrotreatment or hydrogenation.
  • API Group I suitable for use in a marine engine, for example, API Group I, that is to say obtained by distillation of selected crudes and purification of these distillates by processes such as solvent extraction, solvent or catalytic dewaxing, hydrotreatment or hydrogenation.
  • Their Viscosity Index (VI) is between 80 and 120; their sulfur content is greater than 0.03% and their saturated content is less than 90%.
  • a conventional cylinder lubricant formulation for slow 2-stroke marine diesel engines contains from 18 to 25% by weight, based on the total weight of lubricant, of a BSS type 1 base oil base oil (residue). distillation, kinematic viscosity at 100 ° C close to 30 mm 2 / s, typically between 28 and 32 mm 2 / s, and density at 15 ° C between 895 and 915 kg / m 3 ), and 50 to 60% by weight, based on the total weight of lubricant, of a Group I 600 NS base oil (distillate, density at 15 ° C between 880 and 900 kg / m 3 , viscosity kinematic at 100 ° C close to 12 mm2 / s).
  • Dispersants are well known additives used in the formulation of lubricating composition, especially for application in the marine field. Their primary role is to maintain in suspension the particles present initially or appearing in the lubricant composition during its use in the engine. They prevent their agglomeration by playing on steric hindrance. They can also have a synergistic effect on the neutralization.
  • the dispersants used as lubricant additives typically contain a polar group, associated with a relatively long hydrocarbon chain, generally containing from 50 to 400 carbon atoms.
  • the polar group typically contains at least one nitrogen, oxygen or phosphorus element.
  • the compounds derived from succinic acid are dispersants particularly used as lubrication additives.
  • succinimides obtained by condensation of succinic anhydrides and amines
  • succinic esters obtained by condensation of succinic anhydrides and alcohols or polyols.
  • These compounds can then be treated with various compounds including sulfur, oxygen, formaldehyde, carboxylic acids and compounds containing boron or zinc to produce, for example, borated succinimides or zinc-blocked succinimides.
  • Mannich bases obtained by polycondensation of phenols substituted with alkyl groups, formaldehyde and primary or secondary amines, are also compounds used as dispersants in lubricants.
  • At least 0.1% by weight of a dispersing additive is used, typically between 0.5 and 2%, typically between 1 and 1.5% by weight of dispersant.
  • a dispersant chosen from the family of PIB succinimides, optionally borated or blocked with zinc.
  • the lubricant formulation according to the present invention may also contain any functional additives adapted to their use, for example anti-foam additives to counteract the effect of detergents, which may for example be polar polymers such as polymethylsiloxanes, polyacrylates, antioxidant additives and / or or anti rust, for example organo metal detergents or thiadiazoles. These are known to those skilled in the art. These additives are generally present at a content by weight of 0.1 to 5%.
  • compositions of the lubricants described refer to the compounds taken separately before mixing, it being understood that said compounds may or may not retain the same chemical form before and after mixing.
  • the lubricants according to the present invention obtained by mixing the compounds taken separately are not in the form of emulsion or microemulsion.
  • the alkoxylated fatty amines contained in the lubricants according to the present invention may in particular be incorporated in a lubricant as separate additives. However, they can also be incorporated into a marine lubricant additive concentrate.
  • Conventional marine cylinder lubricant additive concentrates generally consist of a mixture of the constituents described above, detergents, dispersants, other functional additives, pre-dilution base oil, in proportions which make it possible to obtain, after dilution, in a base oil for cylinder lubricants having a BN determined according to ASTM D-2896 greater than or equal to 15, preferably greater than 20, preferably greater than 30, advantageously greater than 40 milligrams of potash per gram of lubricant.
  • This mixture generally contains, relative to the total weight of the concentrate, a detergent content greater than 70%, preferably greater than 80%, preferably greater than 90%, a dispersant additive content of 2 to 15%, preferably at 10%, a content of other functional additives from 0 to 5%, preferably from 0.1 to 1%.
  • the BN of said concentrates measured according to ASTM D 2896, is generally between 250 and 300 milligrams of potash per gram of concentrate, typically of the order of 275 milligrams of potash per gram of concentrate.
  • An additive concentrate for the preparation of cylinder lubricant having a BN determined according to ASTM D-2896 greater than or equal to 15, preferably greater than 20, preferably greater than 30, advantageously greater than 40 milligrams of potash per gram lubricant, is a concentrate having a BN between 180 and 250, and comprising one or more alkoxylated fatty amines of BN between 100 and 600 mg of potash / g of amine according to ASTM D-2896, the mass percentage of said fatty amines alkoxylated in the concentrate being chosen so as to provide said concentrate a BN contribution determined according to ASTM D-2896 between 10 and 40, preferably between 12 and 30, preferably between 15 and 25, typically of the order 20 milligrams of potash per gram of concentrate.
  • alkoxylated fatty amines of the concentrates according to the invention are those described above and in the examples below.
  • the concentrates may also contain base oil in a small amount (typically between 0 and 5% by weight), but sufficient to facilitate the use of said additive concentrates.
  • the concentrates are diluted 4 to 5 times in a base oil or in a base oil mixture in order to obtain the cylinder lubricants according to the invention.
  • a method for preparing the cylinder lubricants according to the invention comprises the step of mixing such a concentrate in one or more base oils, preferably of group 1, so that said concentrate represents between 20 and 30% by weight , typically of the order of 25% by weight, in the cylinder lubricant.
  • This measurement is characterized by a neutralization efficiency index measured according to the enthalpic test method described precisely in the examples and in which the progress of the exothermic neutralization reaction is followed by the rise in temperature observed when said lubricant containing the basic sites is put in the presence of sulfuric acid.
  • Example 1 This example is intended to describe the method for measuring the contribution of the insoluble metal salts present in the BN-based overbased detergents of the lubricant compositions containing said overbased detergents:
  • BN carbonate hereinafter referred to as BN CaCO3
  • BN CaCO3 is measured on the finished oil or the overbased detergents alone, according to the following procedure. It is his principle to attack the overbasing, carbonate (of calcium), of the sample by sulfuric acid. This carbonate is transformed into carbon dioxide according to the reaction;
  • the reaction vessel may be pyrex, glass, polycarbonate, ... or any other material that promotes heat exchange with the surrounding environment, so that the internal temperature of the vessel equilibrates rapidly with that of the ambient environment.
  • a small amount of 600 NS type fluid base oil is introduced into the reaction vessel containing a small magnet bar. About 2 ml of concentrated sulfuric acid is placed in the reaction vessel, being careful not to stir the medium at this stage.
  • the cap and pressure gauge assembly is screwed onto the reaction vessel.
  • the threads can be greased. We tighten to have a perfect seal.
  • the whole is cleaned with a solvent of the heptane type.
  • the result obtained is the BN CaCO3 expressed in mgKOH / g.
  • the BN supplied by the metallic soaps of detergents also designated by "organic BN" is obtained by difference between the total BN according to ASTM D2896 and the BN CaCO3 thus measured.
  • Example 2 This example aims to describe the enthalpic test for measuring the neutralization efficiency of lubricants vis-à-vis sulfuric acid.
  • the acid-base neutralization reactions are generally exothermic and it is therefore possible to measure the heat release obtained by reaction of sulfuric acid with the lubricants to be tested. This release is followed by the evolution of the temperature over time in an adiabatic reactor of the DEWAR type
  • BN of the lubricants to be tested is preferably in excess of the BN required to neutralize the amount of added acid.
  • BN 70 lubricants the following examples thus add an amount of acid corresponding to the neutralization of 55 BN points.
  • the duration S is equal to the difference t f - t i between the time at the end of reaction temperature and the time at the reaction start temperature.
  • the time t i at the reaction start temperature corresponds to the first rise in temperature after stirring is started.
  • the time t f at the final reaction temperature is that from which the temperature signal remains stable for a duration greater than or equal to the half-duration of reaction.
  • the lubricant is all the more effective as it leads to short periods of neutralization and therefore to a high index.
  • the reactor and agitator geometries as well as the operating conditions were chosen so as to be in a chemical regime, where the effect of the diffusional stresses in the oil phase is negligible.
  • the fluid height must be equal to the inside diameter of the reactor, and the stirring propeller must be positioned at about 1/3 of the height of the fluid.
  • the apparatus consists of a cylindrical adiabatic reactor of 300 ml, the inner diameter of which is 52 mm and the internal height 185 mm, of a stirring rod provided with a propeller with inclined blades, 22 mm in diameter; the diameter of the blades is between 0.3 and 0.5 times the diameter of the DEWAR, that is to say from 15.6 to 26 mm.
  • the position of the propeller is set at a distance of about 15 mm from the bottom of the reactor.
  • the stirring system is driven by a variable speed motor of 10 to 5000 rpm and a temperature acquisition system as a function of time.
  • This system is adapted to the measurement of reaction times of the order of 5 to 20 seconds and to the temperature rise measurement of a few tens of degrees to from a temperature of about 20 ° C to 35 ° C, preferably about 30 ° C.
  • the position of the temperature acquisition system in the DEWAR is fixed.
  • the stirring system will be adjusted so that the reaction proceeds in a chemical regime: in the configuration of the present experiment, the speed of rotation is set at 2000 rpm, and the position of the system is fixed.
  • the chemical regime of the reaction is also dependent on the oil height introduced into the DEWAR, which must be equal to the diameter of the latter, and which corresponds in this experiment to a mass of about 86. g of the lubricant tested.
  • the amount of acid corresponding to the neutralization of 55 BN points is introduced into the reactor.
  • stirring is started to follow the reaction in chemical regime .
  • the acquisition system is permanent.
  • This oil is obtained from a mineral base obtained by mixing a distillate of density at 15 ° C of between 880 and 900 Kg / m 3 with a distillation residue having a density of between 895 and 915 Kg / m. 3 (Brightstock) in a distillate / residue ratio of 3.
  • a concentrate in which there is a BN overbased calcium sulfonate equal to 400 mg KOH / g, a dispersant, a BN-based calcium phenate equal to 250 mg KOH / g.
  • This oil is formulated specifically to have sufficient neutralization capacity to be used with high sulfur fuels, namely S contents above 3% or even 3.5%.
  • the reference lubricant contains 25.50% by weight of this concentrate. Its BN of 70 is exclusively provided by the overbased detergents (phenates and overbased sulfonates) contained in said concentrate.
  • This reference lubricant has a viscosity at 100 ° C of between 18 and 21.5 mm 2 / s.
  • the neutralization reaction time of this oil (hereinafter referred to as Href) is 10.59 seconds and its neutralization efficiency index is set to 100.
  • the total BN according to ASTM D-2896, the BN Carbonate, was measured according to the method described in Example 1, the neutralization efficiency index, according to the method described in the example 2.
  • This test uses a Falex brand tribometer with pawn and blocks.
  • the lubricant to be tested is placed in a heated container to the desired temperature.
  • the blocks are placed in the gap of the jaws and the pin fixed on the mandrel.
  • the pion-blocks assembly is immersed in the oil bath.
  • a fixed load (3760 N in our case) is applied on the set pion-blocks through the jaws and a pneumatic cylinder.
  • the pin is rotated at a fixed speed.
  • a distance sensor located on the cylinder permanently measures the gap of the jaws and therefore the wear of the pin and blocks. This wear is recorded and the final wear result reported as a test result.
  • thermal resistance of these compositions was also measured by means of the continuous ECBT test, where the mass of deposits (in mg) generated under given conditions is measured. The lower this mass, the better the thermal resistance.
  • This test simulates both the thermal stability and the detergency of marine lubricants.
  • the test uses aluminum beakers that simulate the shape of pistons. These beakers are placed in a glass container, maintained at a controlled temperature of the order of 60 ° C.
  • the lubricant is placed in these containers, themselves equipped with a wire brush, partially immersed in the lubricant. This brush is rotated at a speed of 1000 rpm, which creates a projection of lubricant on the bottom surface of the beaker.
  • the beaker is maintained at a temperature of 310 ° C by a heating electric resistance, regulated by a thermocouple.
  • compositions B, F, G and H are compositions according to the invention, whose BN is of the order of 43 to 44.
  • compositions according to the invention may for example be used as cylinder oil for marine engine 2 times, with fuels whose content is of the order of 4.5% m / m.
  • the reduction of the overbased detergent content (and therefore insoluble metal salts) thus made possible also allows their use as a cylinder oil for marine engine 2 times, with fuels whose content is low, of the order of 1.5% m / m and less.
  • compositions A and C which do not contain an alkoxylated amine, it is found that the wear properties of the compositions according to the invention are greatly improved.
  • compositions D and E where the contribution of BN by the amines is high (of the order of 10 to 15 points of BN), a deterioration of the thermal resistance is observed with respect to the compositions according to the invention.
  • compositions I, J and K where the percentage of BN provided by the carbonates is high (of the order of 70% and above), there is also a degradation of the thermal resistance compared to the compositions according to the invention. invention.
  • compositions according to the invention have the advantage of a neutralization efficiency enabling them to be used both with high and low sulfur fuels, while having improved anti-wear and thermal resistance properties.
  • Table 1 Lubricating compositions and properties ⁇ / b> AT B C D E F G H I J K Neutral detergents 1.90 1.90 1.90 1.90 7.70 3.85 5.80 0.00 2.80 0.00 Detergents overbased 13.65 13.65 13.65 13.65 9.20 11,10 11.40 10 8.60 12.70 Ethoxylated amine *** - 3.00 6.20 9.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 Diamine grasse **** - 3.15 dispersed 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 Defoamers 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 Fatty alcohol C1618 0.50 Group I bases 80.21 80.06 77.01 74.21 78.86 80.
  • composition L the lubricant compositions L to O according to the invention have a good neutralization efficiency, good anti-wear properties and thermal resistance regardless of the base oil used (composition L), the neutral detergent used (composition M) the overbased detergent used (composition N) or the ethoxylated amine used (composition O).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Description

    Domaine
  • La présente invention concerne un lubrifiant cylindre pour moteur marin deux temps utilisable à la fois avec des fiouls à haute teneur en soufre et des fiouls à basse teneur en soufre. Elle concerne plus particulièrement un lubrifiant présentant un pouvoir de neutralisation suffisant vis-à-vis de l'acide sulfurique formé lors de la combustion de fiouls à haute teneur en soufre, tout en limitant la formation de dépôts lors de l'utilisation de fiouls à basse teneur en soufre.
  • Arrière plan technologique de l'invention.
  • Les huiles marines utilisées dans les moteurs 2-temps lents à crosse, sont de deux types. Les huiles cylindre d'une part, assurant la lubrification de l'ensemble piston cylindre, et les huiles système d'autre part, assurant la lubrification de toutes les parties en mouvement hors l'ensemble piston cylindre. Au sein de l'ensemble piston cylindre, les résidus de combustion contenant des gaz acides sont en contact avec l'huile lubrifiante.
  • Les gaz acides se forment à partir de la combustion des fiouls; ce sont notamment des oxydes de soufre (SO2, SO3), qui sont ensuite hydrolysés lors du contact avec l'humidité présente dans les gaz de combustion et/ou dans l'huile. Cette hydrolyse génère de l'acide sulfureux (HSO3) ou sulfurique (H2SO4).
  • Pour préserver la surface des chemises et éviter une usure corrosive excessive, ces acides doivent être neutralisés, ce qui est généralement effectué par réaction avec les sites basiques inclus dans le lubrifiant.
  • La capacité de neutralisation d'une huile est mesurée par son BN ou Base Number en anglais, caractérisant sa basicité. Il est mesuré selon la norme ASTM D-2896 et est exprimé en équivalent en milligramme de potasse par gramme d'huile (encore désigné par « mg de KOH/g » ou « point de BN »). Le BN est un critère classique permettant d'ajuster la basicité des huiles cylindre à la teneur en soufre du fioul utilisé, afin de pouvoir neutraliser la totalité du soufre contenu dans le carburant, et susceptible de se transformer en acide sulfurique par combustion et hydrolyse.
  • Ainsi, plus la teneur en soufre d'un fioul est élevée, plus le BN d'une huile marine doit être élevé. C'est pourquoi, on trouve sur le marché des huiles marines de BN variant de 5 à 100 mg KOH/g. Cette basicité est apportée par des détergents qui sont surbasés par des sels métalliques insolubles, notamment des carbonates métalliques. Les détergents, principalement de type anionique, sont par exemple des savons métalliques de type salicylate, phénate, sulfonate, carboxylate, ... qui forment des micelles où les particules de sels métalliques insolubles sont maintenues en suspension. Les détergents surbasés usuels ont intrinsèquement un BN classiquement compris entre 150 et 700 mg KOH par gramme de détergent. On fixe leur pourcentage massique dans le lubrifiant en fonction du niveau de BN que l'on souhaite atteindre.
  • Une partie du BN peut également être apportée par des détergents non surbasés ou « neutres » de BN typiquement inférieur à 150. Toutefois, il n'est pas envisageable de réaliser des formules de lubrifiants cylindre pour moteur marin où tout le BN est apporté par des détergents « neutres » : il faudrait en effet les incorporer en quantités trop importantes, ce qui pourrait détériorer d'autres propriétés du lubrifiant et ne serait pas réaliste d'un point de vue économique.
  • Les sels métalliques insolubles des détergents surbasés, par exemple carbonate de calcium, contribuent donc significativement au BN des lubrifiants usuels. On peut considérer qu'environ au moins 50 %, typiquement 75 %, du BN des lubrifiants cylindre est ainsi apporté par ces sels insolubles.
  • La partie détergent proprement dite, ou savons métalliques, que l'on trouve à la fois dans les détergents neutres et surbasés, apporte typiquement l'essentiel du complément de BN.
  • Des préoccupations environnementales ont induit, dans certaines zones et notamment les zones côtières, des exigences en matière de limitation du taux de soufre dans les fiouls utilisés sur les navires.
  • Ainsi, la réglementation MARPOL Annexe 6 (Régulations for the Prevention of air pollution from ships) de l'IMO (International Maritime Organisation) est entrée en vigueur en mai 2005. Elle fixe une teneur maximum en soufre de 4,5 % m/m des fiouls lourds ainsi que la création de zones à émission contrôlée en oxydes de soufre, appelées SECAs (Sulfur Emission Control Areas). Les navires entrant dans ces zones doivent utiliser des fiouls à teneur maximale en soufre de 1,5 % m/m ou tout autre traitement alternatif visant à limiter les émissions en SOx pour respecter les valeurs spécifiées. La notation % m/m désigne le pourcentage massique d'un composé par rapport au poids total de fioul ou composition lubrifiante dans laquelle il est inclus.
  • Plus récemment le Comité MEPC (Marine Environment Protection Committee) s'est réuni en avril 2008 et a approuvé des propositions d'amendements à la réglementation MARPOL Annexe 6. Ces propositions sont résumées dans le tableau ci-dessous. Elles présentent un scénario dans lequel les restrictions de teneur maximum en soufre deviennent plus sévères avec une teneur maximale mondiale limitée de 4,5 % m/m à 3,5 % m/m dès 2012. Les SECAs (Sulfur Emission Control Areas) deviendront des ECAs (Emission Control Areas) avec une baisse complémentaire de la teneur maximum admissible en soufre de 1,5 % m/m à 1,0 % m/m dès 2010 et l'adjonction de nouvelles limites concernant les teneurs en NOx et les particules.
    Réglementation actuelle
    MARPOL Annexe 6
    Teneur maximale en Soufre Limite générale 4,50 % m/m Limite pour les SECA's 1,50 % m/m
    Amendements à MARPOL Annexe 6
    (Réunion MEPC n°57 - avril 2008)
    Teneur maximale en Soufre Limite générale Limite pour les ECA's
    3,5 % m/m au 1/01/2012 1 % m/m au 1/03/2010
    0,5 % m/m au 1/01/2020 0,1 % m/m au 1/01/2015
  • Les navires effectuant des routes trans-continentales utilisent d'ores et déjà plusieurs types de fioul lourd en fonction des contraintes environnementales locales tout en leur permettant d'optimiser leur coût d'opération. Cette situation perdurera quel que soit le niveau final de la teneur maximale en soufre admissible dans les fiouls.
  • Ainsi la plupart des navires porte-containeurs actuellement en construction prévoient la mise en oeuvre de plusieurs bacs de soutage, pour un fioul 'haute mer' à teneur en soufre élevée d'une part et pour un fioul 'SECA' à teneur en soufre inférieure ou égale à 1,5 %m/m d'autre part.
  • Le basculement entre ces deux catégories de fioul peut nécessiter l'adaptation des conditions d'opération du moteur, en particulier la mise en oeuvre de lubrifiants cylindre appropriés.
  • Actuellement, en présence de fioul à haute teneur en soufre (3.5 %m/m et plus), on utilise des lubrifiants marins ayant un BN de l'ordre de 70.
  • En présence d'un fioul à basse teneur en soufre (1,5 % m/m et moins), on utilise des lubrifiants marins ayant un BN de l'ordre de 40 (cette valeur sera dans l'avenir amenée à diminuer).
  • Dans ces deux cas, on atteint alors une capacité de neutralisation suffisante car la concentration nécessaire en sites basiques apportés par les détergents surbasés du lubrifiant marin est atteinte, mais il est nécessaire de changer de lubrifiant à chaque changement de type de fioul.
  • De plus, chacun de ces lubrifiants a des limites d'utilisation découlant des observations suivantes : l'utilisation d'un lubrifiant cylindre de BN 70 en présence d'un fioul de faible teneur en soufre (1,5 %m/m et moins) et à taux de graissage fixe, crée un excès important de sites basiques (BN fort) et un risque de déstabilisation des micelles de détergents surbasés non utilisées, qui contiennent des sels métalliques insolubles. Cette déstabilisation résulte en la formation de dépôts de sels métalliques insolubles et ayant une dureté élevée (par exemple carbonate de calcium), principalement sur la couronne de piston, et à terme peut conduire à un risque d'usure excessive de type polissage chemise.
  • De ce fait, l'optimisation de la lubrification cylindre d'un moteur 2-temps lent requiert alors la sélection du lubrifiant avec le BN adapté au fioul et aux conditions opératoires du moteur. Cette optimisation réduit la flexibilité d'opération du moteur et exige une technicité importante de l'équipage dans la définition des conditions dans lesquelles le basculement d'un type de lubrifiant sur l'autre doit être réalisé.
  • Afin de simplifier les manoeuvres, il serait donc souhaitable de disposer d'un lubrifiant cylindre unique pour moteur marin deux temps qui soit utilisable à la fois avec des fiouls à haute teneur en soufre et avec des fiouls à basse teneur en soufre.
  • En particulier, il existe un besoin pour des formulations où le BN est apporté de manière alternative aux détergents surbasés, par des composés ne donnant pas lieu à des dépôts métalliques lorsqu'ils sont présents en excès par rapport à la quantité d'acide sulfurique à neutraliser.
  • La demande WO 2009/153453 divulgue des lubrifiants cylindres pour moteur marins deux temps utilisable à la fois avec des fuels haute et basse teneur en soufre. Les dites compositions lubrifiantes ont un BN supérieur ou égal à 15, et comprennent une ou plusieurs huiles de base lubrifiantes pour moteur marin, au moins un détergent surbasé, en combinaison éventuelle avec un détergent neutre, une ou plusieurs amines grasses solubles dans l'huile. Les amines grasses apportent au moins 10 points de BN, et les détergents surbasés au plus 20 points de BN, au lubrifiant.
  • Ces compositions lubrifiantes peuvent avoir un BN de l'ordre de 50 et sont aussi efficaces du point de vue de la cinétique de neutralisation des acides que des lubrifiants cylindres de BN beaucoup plus élevé (typiquement 70), spécifiquement conçus pour les fuels haute teneur en soufre ; leur taux réduit de détergents surbasés leur permet également d'être adaptés aux basses teneur en soufre.
  • Toutefois, dans ce type de composition, une part significative du BN (au moins 10 mg de KOH/g), est apporté par les amines grasses. Ce taux élevé d'amine peut, pour certaines d'entre elles, poser des problèmes de toxcicité. Il en résulte par ailleurs une dégradation de la tenue thermique (mesurée en particulier par leur aptitude à former des dépôts dans le test ECBT ou « Elf Cokefaction Bench Test » décrit ci après).
  • Les performances antiusure de ces huiles peuvent par ailleurs être améliorées. Enfin, le maintien des performances de ces huiles tout au long de leur temps de séjour (environ 30 minutes) dans le cylindre pose problème.
  • La demande FR 2094182 divulgue une composition lubrifiante comprenant de 0,01 à 5% d'un accélérateur de neutralisation d'acide qui peut être une diamine grasse ethoxylée, et suffisamment de carbonate de métal alcalino terreux pour conférer un BN de 0,5 à 100 mg KOH/g à la composition. Ces carbonates peuvent être dispersés dans le lubrifiant par des phénates ou des sulfonates.
  • Dans ces compositions, la quasi-totalité du BN est apporté par des carbonates de métal alcalino terreux. Aucune mention n'est faite des parts de BN apportées respectivement par les amines, les détergents, les carbonates métalliques. Aucune mention n'est faite de la présence de détergents neutres dans ces compositions.
  • Ces compositions présentent une tenue thermique (mesurée en particulier par leur aptitude à former des dépôts dans le test ECBT) médiocre.
  • Il existe donc un besoin pour des lubrifiants cylindre pour moteur marin deux temps utilisables à la fois avec des fuels haute et basse teneur en soufre, et dont la tenue thermique et l'effet anti usure est amélioré par rapport aux lubrifiants de l'art antérieur.
  • La présente invention est relative à une composition lubrifiante utilisable comme lubrifiants cylindre pour moteurs marins deux temps, utilisable à la fois avec des fuels haute et basse teneur en soufre, et qui permet de pallier les inconvénients mentionnés ci-dessus.
  • Les compositions lubrifiantes selon l'invention comprennent des amines grasses alkoxylées en quantités limitées, combinées à des détergents neutres et des détergents surbasés dans des proportions spécifiques.
  • Elles sont aussi efficaces du point de vue de la cinétique de neutralisation des acides, que des lubrifiants cylindres de BN beaucoup plus élevé (typiquement 70), spécifiquement conçus pour les fuels haute teneur en soufre ; leur taux réduit de détergents surbasés leur permet également d'être adaptées aux fuels basses teneur en soufre.
  • Les compositions selon l'invention présentent de très bonnes propriétés antiusure, et une tenue thermique supérieures aux compositions de l'art antérieur. Elles résistent mieux au vieillissement et conservent ces propriétés tout au long de leur temps de séjour dans le cylindre du moteur marin.
  • Description de l'invention.
  • La présente invention est relative à un lubrifiant cylindre pour moteur marin deux temps ayant un BN déterminé selon la norme ASTM D-2896 supérieur ou égal à 15 milligrammes de potasse par gramme de lubrifiant, comprenant :
    1. (a) une ou plusieurs huiles de base lubrifiantes pour moteur marin,
    2. (b) au moins un détergent à base de métaux alcalins ou alcalino terreux, surbasé par des sels métalliques de carbonate,
    3. (c) au moins un détergent neutre,
    4. (d) une ou plusieurs amines grasses alkoxylées solubles dans l'huile, et ayant un BN déterminé selon la norme ASTM D-2896 compris entre 100 et 600 milligrammes de potasse par gramme,
    où le pourcentage massique d'amines grasses alkoxylées par rapport au poids total de lubrifiant est choisi de manière à ce que le BN apporté par ces composés représente une contribution comprise entre 2 et 8 milligrammes de potasse par gramme de lubrifiant, et où le BN apporté par les sels métalliques de carbonate représente une contribution d'au plus 65 % du BN total, mesuré selon la norme ASTM D2896, dudit lubrifiant cylindre.
  • Préférentiellement, dans les lubrifiants cylindre selon l'invention, le BN des amines grasses alkoxylées déterminé selon la norme ASTM D-2896 est compris entre 120 et 500, préférentiellement entre 150 et 400, préférentiellement entre 200 et 300 milligrammes de potasse par gramme.
  • Préférentiellement, dans les lubrifiants cylindre selon l'invention, le pourcentage massique d'amines grasses alkoxylées par rapport au poids total de lubrifiant est choisi de manière à ce que le BN apporté par ces composés représente une contribution comprise entre 3 et 7 milligrammes de potasse par gramme de lubrifiant, préférentiellement entre 3,5 et 5 milligrammes de potasse par gramme de lubrifiant au BN total dudit lubrifiant cylindre, déterminé selon la norme ASTM D-2896.
  • Selon un mode de réalisation, les lubrifiants cylindre selon l'invention ont un BN, déterminé selon la norme ASTM D-2896, supérieur ou égal à 20, de préférence supérieur à 30, avantageusement supérieur à 40 milligrammes de potasse par gramme de lubrifiant.
  • Préférentiellement, les lubrifiants cylindre selon l'invention ont un BN, déterminé selon la norme ASTM D-2896, inférieur à 55 milligrammes de potasse par gramme de lubrifiant.
  • Selon un mode de réalisation, les lubrifiants cylindre selon l'invention ont un BN, déterminé selon la norme ASTM D-2896, compris entre 40 et 50 milligrammes de potasse par gramme de lubrifiant, préférentiellement entre 42 et 45 milligrammes de potasse par gramme de lubrifiant.
  • Selon un autre mode de réalisation, les lubrifiants cylindre selon l'invention ont un BN, déterminé selon la norme ASTM D-2896, compris entre 50 et 55 milligrammes de potasse par gramme de lubrifiant, préférentiellement entre 51 et 53 milligrammes de potasse par gramme de lubrifiant.
  • Préférentiellement, dans les lubrifiants cylindre selon l'invention, le BN apporté par les sels métalliques de carbonates représente une contribution comprise entre 10% et 60 %, préférentiellement entre 20% et 55 %, préférentiellement entre 30% et 50%, du BN total dudit lubrifiant cylindre.
  • Selon un mode préféré, dans les lubrifiants cylindre selon l'invention, la ou les amines grasses alkoxylées solubles dans l'huile sont obtenues à partir de l'huile de palme, d'olive, d'arachide, de colza classique ou oléique, de Tournesol classique ou oléique, de soja, de coton, à partir de suif de boeuf, ou d'acide palmitique, stéarique, oléique, linoléique.
  • Préférentiellement, dans les lubrifiants cylindre selon l'invention, la ou les amines grasses alkoxylées solubles dans l'huile sont obtenues à partir d'acides gras comportant entre 16 et 18 atomes de carbone.
  • De façon particulièrement préférée, dans les lubrifiants cylindre selon l'invention, la ou les amines grasses alkoxylées répondent à la formule générale (I) :
    Figure imgb0001
    • R1 est un radical éthylène, propylène, butylène, de préférence éthylène,
    • R2 est une chaîne grasse d'acides gras saturé ou insaturé, comprenant entre 12 et 22 atomes de carbone, préférentiellement entre 16 et 18 atomes de carbone, préférentiellement la chaîne grasse de l'acide oléique,
    • R3 est un radical alkylène comprenant entre 2 et 3 atomes de carbone,
    • q est égal à 0 ou à 1, et lorsque q est égal à zéro, p est égal à zéro
    • n, m et p sont des entiers compris entre 0 et 12, préférentiellement entre 0 et 5, préférentiellement entre 0 et 2
    • et n + m + p est strictement supérieur à zéro, préférentiellement compris entre 1 et 15, préférentiellement entre 2 et 10, préférentiellement entre 3 et 7, préférentiellement entre 3 et 4.
  • Encore plus préférentiellement, dans les lubrifiants cylindre selon l'invention, la ou les amines grasses alkoxylées répondent à la formule générale (I) où :
    • q = p = 0
    • m + n est compris entre 2 et 5, préférentiellement entre 3 et 4
    • m et n sont non nuls
  • Selon un mode de réalisation, dans les lubrifiants cylindre selon l'invention, les détergents surbasés (b) et les détergents neutres (c) sont choisis parmi les carboxylates, sulfonates, salicylates, naphténates, phénates, et les détergents mixtes associant au moins deux de ces types de détergents.
  • Selon un mode préféré, dans les lubrifiants cylindre selon l'invention, au moins un détergent surbasé (b) est un sulfonate.
  • Selon un mode particulièrement préféré, dans les lubrifiants cylindre selon l'invention, au moins un détergent neutre (c) est un phénate ou un sulfonate, préférentiellement un phénate.
  • Selon un mode de réalisation, les lubrifiants cylindre selon l'invention comprennent en outre de 0,1 à 10% en masse, préférentiellement de 0,2 à 2%, préférentiellement de 0,3 à 1,5 %, préférentiellement de 0,4 à 1%, préférentiellement de 0,5 à 1% d'un ou plusieurs composés choisis parmi :
    • les monoalcools gras primaires secondaires ou tertiaires, dont la chaîne alkyl est saturée ou insaturée, linéaire ou ramifiée, et comprennent au moins 12 atomes de carbone, préférentiellement entre 12 et 24 atomes de carbone, préférentiellement entre 16 et 18 atomes de carbone, préférentiellement les monoalcools primaires à chaîne alkyl linéaire saturée,
    • les esters de monoacides gras saturés comportant au moins 14 atomes de carbone et d'alcools comportant au plus 6 atomes de carbone, préférentiellement les mono et diesters, préférentiellement les monoesters de monoalcool, et les diesters dont les fonctions ester sont distantes au plus de quatre atomes de carbone comptés du côté oxygène de la fonction ester.
  • Selon un mode préféré, les lubrifiants cylindre selon l'invention ont une viscosité cinématique mesurée selon la norme ASTM D445 à 100 °C comprise entre 12,5 et 26,1 cSt, préférentiellement comprise entre 16,3 et 21,9 cSt.
  • La présente invention est également relative à l'utilisation d'un lubrifiant tel que décrit ci-dessus comme lubrifiant cylindre unique utilisable à la fois avec des fiouls à teneur en soufre inférieure à 1,5% m/m et avec des fiouls à teneur en soufre supérieure à 3,5% m/m dans des moteurs marins deux temps.
  • La présente invention est également relative à l'utilisation d'un lubrifiant tel que décrit ci-dessus comme lubrifiant cylindre unique utilisable à la fois avec des fiouls à teneur en soufre inférieure à 1% m/m et avec des fiouls à teneur en soufre supérieure à 3% m/m dans des moteurs marins deux temps.
  • La présente invention est également relative à l'utilisation d'un lubrifiant tel que décrit ci-dessus comme lubrifiant cylindre utilisable avec tous les fiouls à teneur en soufre comprise entre 0,1% m/m et 3,5% m/m dans des moteurs marins deux temps.
  • La présente invention est également relative à l'utilisation d'un lubrifiant tel que décrit ci-dessus pour prévenir la corrosion et/ou réduire la formation de dépôt de sels insolubles métalliques dans les cylindres des moteurs marins deux temps lors de la combustion de tout type de fioul dont la teneur en soufre est inférieure à 4,5% m/m.
  • Description détaillée de l'invention. Les amines grasses alkoxylées et autres accélérateurs de vitesse de neutralisation:
  • Les amines grasses utilisées dans les lubrifiants selon la présente invention sont des amines grasses alkoxylées, de préférence des mono amines, ou des diamines comportant une ou plusieurs chaînes aliphatiques.
  • Ces composés ont une basicité intrinsèque et contribuent au BN des lubrifiants selon l'invention. Le BN intrinsèque des amines grasses alkoxylées utilisés dans la présente invention, mesuré selon la norme ASTM D-2896, est typiquement compris entre 100 et 600 milligrammes de potasse par gramme, préférentiellement compris entre 120 et 500 milligrammes de potasse par gramme, préférentiellement compris entre 150 et 400 milligrammes de potasse par gramme, préférentiellement compris entre 200 et 300 milligrammes de potasse par gramme.
  • Ce sont des tensioactifs (faibles) de type cationique dont la tête polaire est constituée par l'atome d'azote et par le ou les atomes d'oxygène apportés par l'alkoxylation., et la partie lipophile par la ou les chaînes aliphatiques grasses. Ainsi, il est préférable, pour obtenir un caractère tensioactif, que cette tête polaire soit constituée de fonctions amines peu distantes les unes des autres (typiquement séparées par 2 à 3 atomes de carbone), et préférentiellement en nombre restreint (typiquement une ou deux fonctions aminé), et préférentiellement alkoxylées avec un nombre limité de fonctions oxyde d'alkylène, typiquement entre 1 et 15, préférentiellement entre 2 et 10, préférentiellement entre 3 et 7, préférentiellement entre 3 et 4, et préférentiellement avec des oxydes d'alkylène comprenant de 2 à 4 atomes de carbone. Ceci permet de constituer une tête polaire « compacte », et donc un caractère tensio actif à ces amines grasses alkoxylées.
  • Du fait de leur caractère tensioactif (faible) et de leur caractère lipophile (fort), ces composés peuvent à la fois être stabilisés en solution dans la matrice huile et déplacer les équilibres chimiques au sein des détergents surbasés présents dans les lubrifiants selon l'invention. De ce fait, les sites basiques (sels métalliques insolubles) apportés par les détergents surbasés sont plus accessibles, ce qui rend plus efficace la réaction de neutralisation de l'acide sulfurique par lesdits sites basiques.
  • Les amines grasses alkoxylées sont obtenues par des procédés d'alkoxylation connus, par exemple décrits dans la demande FR 2 094 182 , en mettant en présence les amines grasses et les oxydes d'alkylène, à des températures par exemple comprises entre 100 et 200 °C, en présence d'un catalyseur basique qui peut être NaOH, KOH, NaOCH3.
  • Les amines grasses de départ sont principalement obtenues à partir d'acides carboxyliques. Ces acides sont déshydratés en présence d'ammoniac pour donner des nitriles, qui subissent ensuite une hydrogénation catalytique pour conduire à des amines primaires, secondaires ou tertiaires.
  • Les acides gras de départ pour obtenir des amines grasses sont par exemple les acides capryliques, pélargonique, caprique, undécylénique, laurique, tridécyléniques, myristiques, pentadécylique, palmitique, margarique, stéarique, nonadécylique, arachique, hénéicosanoïque, béhénique, tricosanoïque, lignocérique, pentacosanoïque, cérotique, heptacosanoïque, montanique, nonacosanoïque, mélissique, hentriacontanoïque, lacéroïque ou des acides gras insaturés tels que l'acide palmitoléique, oléique, érucique, nervonique, linoléique, α-linolénique, c-linolénique, di-homo-c-linolénique, arachidonique, éicosapentaénoïque, docosahexanoique.
  • Les acides gras préférés sont issus de l'hydrolyse des triglycérides présents dans les huiles végétales et animales, telles que l'huile de coprah, de palme, d'olive, d'arachide, de colza, de tournesol, de soja, de coton, de lin, le suif de boeuf, .... Les huiles naturelles peuvent avoir été génétiquement modifiées de façon à enrichir leur teneur en certains acides gras, par exemple l'huile de colza ou de tournesol oléique.
  • Les amines grasses utilisées pour préparer les amines grasses alkoxylées des lubrifiants selon l'invention sont préférentiellement obtenues à partir de ressources naturelles, végétales ou animales. Les traitements permettant d'aboutir à des amines grasses à partir des huiles naturelles peuvent aboutir à des mélanges de monoamines primaires, secondaires et tertiaires et de polyamines.
  • On peut par exemple utiliser, pour préparer les amines alkoxylées des lubrifiants selon la présente invention des produits contenant, en proportions variables, tout ou partie des amines grasses répondant aux formules suivantes :

            R1NH2,

            R1-NH-R

            R1-NHCH2-R

            R1-[NH(CH2)3]2-NH2

            R1-[NH(CH2)r]q-NH2

    où q est un entier supérieur à 1, préférentiellement compris entre 1 et 12, ou entre 1 et 5, ou entre 1 et 2, r est un entier compris entre 2 et 3, et R et R1 sont des chaînes grasses issues du ou des acides gras présents dans l'huile de départ. Une même mono ou polyamine grasse peut contenir plusieurs chaînes grasses issues d'acides gras différents.
  • On peut également utiliser ces produits sous forme purifiée, contenant majoritairement un seul type d'amines, par exemple majoritairement des monoamines ou majoritairement des diamines.
  • On utilisera ainsi avantageusement un produit constitué de monoamines primaires de formule R1NH2, où R1 peut représenter une pluralité d'acides gras issus d'une ressource naturelle, par exemple la graisse de suif, ou l'huile de soja, ou l'huile de coco, ou l'huile de tournesol (oléique).
  • On utilisera aussi avantageusement un produit constitué de diamines de formule R1-[NH(CH2)3]-NH2, où R1 peut représenter une pluralité d'acides gras issus d'une ressource naturelle, par exemple la graisse de suif, ou l'huile de soja, ou l'huile de coco, ou l'huile de tournesol (oléique).
  • On peut également utiliser des produits purifiés. Par exemple, on utilise avantageusement des amines obtenues à partir d'acide oléique, en particulier des monoamines primaires de formule R1NH2 ou des diamines de formule R1-[NH (CH2)3]-NH2 où R1 est la chaîne grasse de l'acide oléique.
  • Les amines alkoxylées des lubrifiants selon la présente invention doivent être fortement solubles dans la matrice huile pour pouvoir augmenter de manière efficace la cinétique de neutralisation des acides.
  • En effet, elles agissent à cet égard de deux façons : soit en neutralisant directement les gouttelettes d'acides dispersées dans la matrice huile, soit en déstabilisant les micelles des détergents surbasés pour augmenter l'efficacité des sites basiques desdits détergents surbasés.
  • La solubilité des amines grasses alkoxylées est d'abord due à leur chaîne grasse. Ces amines sont également d'autant plus solubles qu'elles comportent un nombre limité de fonctions oxyde d'alkylène. La demanderesse a également constaté que les amines alkoxylées où les atomes d'azote sont ternaires (où ne subsistent plus de liaison N-H) sont plus faciles à solubiliser, préférentiellement les monoamines avec azote ternaire.
    Ainsi, on préférera utiliser, dans les compositions selon l'invention, des amines alkoxylées de formule (I) ci dessous :
    Figure imgb0002
    où R1, R2, R3 sont tels que définis ci-dessus, n, m, et p sont des entiers non nuls tels que n + m + p est compris entre 1 et 15,
    Selon un mode préféré, q = p = 0 et m et n sont des entiers non nuls tels que m + n est compris entre 1 et 5, préférentiellement entre 2 et 4.
  • Ces amines alkoxylées sont donc d'autant plus efficaces qu'elles sont bien dispersées - solubilisées dans la matrice huile.
  • Ainsi, les amines grasses des lubrifiants selon la présente invention ne sont pas sous forme d'émulsion ou de microémulsion, mais bien dispersées dans la matrice huile. Les amines grasses selon la présente invention sont donc préférentiellement celles qui comportent au moins une chaîne aliphatique constituée d'au moins 12 atomes de carbone, préférentiellement au moins 14 atomes de carbone, préférentiellement au moins 16 atomes de carbone, préférentiellement au moins 18 atomes de carbone.
  • De façon surprenante, la demanderesse a constaté que ces amines alkoxylées, et principalement les monoamines grasses éthoxylées (préférentiellement de formule (I) ci-dessus où p = q = 0 et m et n sont des entiers non nuls, préférentiellement tels que m + n est compris entre 1 et 5, préférentiellement entre 2 et 4) conféraient des propriétés antiusure remarquables aux lubrifiants cylindre qui les contiennent.
  • Toutefois, lorsqu'elles sont présentes en trop grande quantité, les propriétés de tenue thermique des lubrifiants qui les contiennent sont dégradées.
  • D'autres molécules possédant un caractère tensioactif (faible) et un caractère lipophile (fort) peuvent avantageusement être utilisées en combinaison avec les amines grasses alkoxylées décrites ci-dessus. Ces composés augmentent la vitesse de neutralisation des acides par le lubrifiant.
  • Ils peuvent à la fois être stabilisés en solution dans la matrice huile et déplacer les équilibres chimiques au sein des détergents surbasés présents dans les lubrifiants selon l'invention. De ce fait, les sites basiques (sels métalliques insolubles) apportés par les détergents surbasés sont plus accessibles, ce qui rend plus efficace la réaction de neutralisation de l'acide sulfurique par lesdits sites basiques.
  • Ces composés peuvent être utilisés en combinaison avec les amines alkoxylées à des teneurs comprises entre 0,1 et 10% en masse, préférentiellement entre 0,1 et 2%, préférentiellement entre 0,3 et 1,5 %, préférentiellement entre 0,4 et 1%, préférentiellement entre 0,5 et 1%.
  • Il s'agit notamment de monoalcools gras primaires secondaires ou tertiaires, dont la chaîne alkyl est saturée ou insaturée, linéaire ou ramifiée, et comprennent au moins 12 atomes de carbone, préférentiellement entre 12 et 24 atomes de carbone, préférentiellement de 16 à 18 atomes de carbone. Préférentiellement, ces monoalcools gras sont des monoalcools primaires à chaîne alkyl linéaire saturée, comportant préférentiellement de 16 à 18 atomes de carbone.
  • Il peut également s'agir d'esters de monoacides gras saturés comportant au moins 14 atomes de carbone et d'alcools comportant au plus 6 atomes de carbone, préférentiellement choisis parmi les mono et diesters, préférentiellement parmi les monoesters de monoalcool, et les diesters dont les fonctions ester sont distantes au plus de quatre atomes de carbone comptés du côté oxygène de la fonction ester.
  • BN des lubrifiants selon la présente invention.
  • Le BN des lubrifiants selon la présente invention est apporté par les détergents neutres, les détergents surbasés à base de métaux alcalins ou alcalino terreux, et par une ou plusieurs amines grasses alkoxylées.
  • La valeur de ce BN, mesurée selon la norme ASTM D -2896 peut varier pour un lubrifiant de 0,5 à 100 mg KOH/g, ou au-delà.
  • Le BN d'un lubrifiant cylindre pour moteur marin sera choisi en fonction des conditions d'utilisation desdits lubrifiants et notamment selon la teneur en soufre du fioul utilisé en association avec lesdits lubrifiants cylindre.
  • Les lubrifiants selon la présente invention sont adaptés à une utilisation comme lubrifiant cylindre, quelle que soit la teneur en soufre du fioul utilisé comme combustible dans le moteur.
  • De ce fait, les lubrifiants cylindre pour moteur marin deux temps selon l'invention ont un BN supérieur ou égal à 15 milligrammes de potasse par gramme de lubrifiant, de préférence supérieur à 20, de préférence supérieur à 30, avantageusement supérieur à 40.
  • Selon un mode préféré, les lubrifiants cylindre selon l'invention ont un BN inférieur à 55, typiquement compris entre 40 et 55, préférentiellement entre 40 et 50, préférentiellement entre 42 et 45 typiquement de l'ordre de 43 ou 44 milligrammes de potasse par gramme de lubrifiant. Ceci correspond au BN des formules lubrifiants cylindre de l'art antérieur utilisés spécifiquement et seulement avec des fiouls basse teneur en soufre où la (quasi) totalité du BN est apporté par des détergents surbasés.
  • Selon un autre mode préféré, les lubrifiants selon l'invention ont un BN compris entre 50 et 55, typiquement compris entre 51 et 53 milligramme de potasse par gramme de lubrifiant. Ceci correspond à un BN intermédiaire entre les formules de l'art antérieur pour lesquelles la (quasi) totalité du BN est apportée par des détergents surbasés, spécifiquement utilisées avec les fiouls basse teneur en soufre, et celles spécifiquement utilisées avec les fiouls haute teneur en soufre.
  • La part de BN apportée par les amines grasses alkoxylés dans les lubrifiants selon l'invention est comprise entre 2 et 8, préférentiellement entre 3 et 7, préférentiellement entre 3,5 et 5 milligrammes de potasse par gramme de lubrifiant (ou « points de BN »).
  • La part de BN apportée une amine grasse dans le lubrifiant (en milligramme de potasse par gramme de lubrifiant fini, ou encore « points » de BN) est calculée à partir de son BN intrinsèque mesuré selon la norme ASTM D - 2896 et de son pourcentage massique dans le lubrifiant fini : BN amine lub = x . BN amine / 100
    Figure imgb0003
    • BNamine lub = contribution de l'amine au BN du lubrifiant fini
    • x = % massique de l'amine dans le lubrifiant fini
    • BNamine = BN intrinsèque de l'aminé seule (ASTM D 28-96).
  • Le BN intrinsèque des amines alkoxylées des lubrifiants selon l'invention est compris entre 100 et 600, préférentiellement entre 120 et 500, préférentiellement entre 150 et 400, préférentiellement entre 200 et 300.
  • Ainsi, dans les lubrifiants selon l'invention, les amines grasses alkoxylées apportent entre 0,33% (apport de 2 points de BN par une amine de BN 600) et 8% (apport de 8 points de BN par une amine de BN 100) du BN total, préférentiellement entre 0,4% (apport de 2 points de BN par une amine de BN 500) et 6,7 % (apport de 8 points de BN par une amine de BN 120) du BN total, préférentiellement entre 0,5% (apport de 2 points de BN par une amine de BN 400) et 5,3 % (apport de 8 points de BN par une amine de BN 150) du BN total, préférentiellement entre 0,7% (apport de 2 points de BN par une amine de BN 300) et 4 % (apport de 8 points de BN par une amine de BN 200) du BN total.
  • En dessous d'une certaine teneur en amines grasses alkoxylées, aucune amélioration de la cinétique de neutralisation des acides n'est obtenue.
  • Par ailleurs, l'incorporation d'amines grasses alkoxylées à forte teneur induisait une baisse importante de la viscosité, de telle sorte qu'au-delà d'un pourcentage maximum en amines grasses alkoxylées, il n'est plus possible de formuler des lubrifiants ayant le grade de viscosité requis pour l'application lubrifiant cylindre, sauf à incorporer des quantités extrêmement élevées d'additifs épaississant, ce qui conduirait à des formules irréalistes d'un point de vue économique et détériorerait d'autres propriétés du lubrifiant.
  • L'incorporation d'amines alkoxylées à forte teneur est par ailleurs également susceptible de générer des problèmes de toxicité.
  • Par ailleurs, la demanderesse a constaté que l'incorporation d'amines alkoxylées à forte teneur entraîne une dégradation de la tenue thermique.
  • Les détergents, surbasés ou non.
  • Les détergents utilisés dans les compositions lubrifiantes selon la présente invention sont bien connus de l'homme de métier.
  • Les détergents communément utilisés dans la formulation de compositions lubrifiantes sont typiquement des composés anioniques comportant une longue chaîne hydrocarbonée lipophile et une tête hydrophile. Le cation associé est typiquement un cation métallique d'un métal alcalin ou alcalino-terreux.
  • Les détergents sont préférentiellement choisis parmi les sels de métaux alcalins ou alcalino-terreux d'acides carboxyliques, sulfonates, salicylates, naphténates, ainsi que les sels de phénates.
  • Les métaux alcalins et alcalino terreux sont préférentiellement le calcium, le magnésium, le sodium ou le baryum.
  • Ces sels métalliques peuvent contenir le métal en quantité approximativement stoechiométrique. Dans ce cas, on parle de détergents non surbasés ou « neutres », bien qu'ils apportent également une certaine basicité. Ces détergents « neutres » ont typiquement un BN, mesuré selon ASTM D2896, inférieur à 150 mg KOH/g, ou inférieur à 100, ou encore inférieur à 80 mg KOH/g.
  • Ce type de détergents dits neutres peut contribuer pour partie au BN des lubrifiants selon la présente invention. On emploiera par exemple des détergents neutres de type carboxylates, sulfonates, salicylates, phénates, naphténates de métaux alcalins et alcalino terreux, par exemple de calcium, sodium, magnésium, baryum.
  • Lorsque le métal est en excès (en quantité supérieure à la quantité stoechiométrique), on a affaire à des détergents dits surbasés. Leur BN est élevé, supérieur à 150 mg KOH/g, typiquement compris entre 200 et 700 mg KOH/g, généralement compris entre 250 et 450 mg KOH/g.
  • Le métal en excès apportant le caractère surbasé au détergent se présente sous la forme de sels métalliques insolubles dans l'huile, par exemple carbonate, hydroxyde, oxalate, acétate, glutamate, préférentiellement carbonate.
  • Dans un même détergent surbasé, les métaux de ces sels insolubles peuvent être les mêmes que ceux des détergents solubles dans l'huile ou bien être différents. Ils sont préférentiellement choisis parmi le calcium, le magnésium, le sodium ou le baryum.
  • Les détergents surbasés se présentent ainsi sous forme de micelles composées de sels métalliques insolubles maintenues en suspension dans la composition lubrifiante par les détergents sous forme de sels métalliques solubles dans l'huile.
  • Ces micelles peuvent contenir un ou plusieurs types de sels métalliques insolubles, stabilisés par un ou plusieurs types détergents.
  • Les détergents surbasés comportant un seul type de sel métallique soluble détergent seront généralement nommés d'après la nature de la chaîne hydrophobe de ce dernier détergent.
  • Ainsi, ils seront dits de type phénate, salicylate, sulfonate, naphténate selon que ce détergent est respectivement un phénate, salicylate, sulfonate, ou naphténate.
  • Les détergents surbasés seront dits de type mixte si les micelles comprennent plusieurs types de détergents, différents entre eux par la nature de leur chaîne hydrophobe.
  • Pour une utilisation dans les compositions lubrifiantes selon la présente invention, les sels métalliques solubles dans l'huile seront préférentiellement des phénates et des sulfonates, des salicylates, et des détergents mixtes phénate - sulfonate et /ou salicylates, préférentiellement des phénates et/ou sulfonates, de calcium, magnésium, sodium ou baryum, préférentiellement des phénates et/ou sulfonates de calcium.
  • Les sels de métaux insolubles apportant le caractère surbasé sont des carbonates de métaux alcalins et alcalino terreux, préférentiellement le carbonate de calcium.
  • Les détergents surbasés utilisés dans les compositions lubrifiantes selon la présente invention seront préférentiellement des phénates, des sulfonates, des salicylates et des détergents mixtes phénates - sulfonates - salicylates, surbasés au carbonate de calcium, préférentiellement des sulfonates et phénates surbasés au carbonate de calcium.
  • BN apporté par les détergents dans les lubrifiants selon l'invention :
  • Dans les lubrifiants selon la présente invention, une partie du BN est apportée par les sels métalliques insolubles des détergents surbasés, en particulier les carbonates métalliques.
  • Le BN apporté par les sels métalliques de carbonate (ou BN carbonate ou BNCaCO3) est mesuré sur le détergent surbasé seul et/ou sur le lubrifiant final selon la méthode décrite dans l'exemple 1. Typiquement dans un détergent surbasé, le BN apporté par les sels métalliques de carbonate représente de 50 à 95 % du BN total du détergent surbasé seul.
  • Il est à noter que certains détergents neutres comprennent également une certaine teneur (beaucoup moins importante que les détergents surbasés) en sels métalliques insolubles (carbonate de calcium), et peuvent contribuer eux-mêmes au BN carbonate.
  • Dans les lubrifiants selon l'invention, le pourcentage massique de détergents surbasés (et neutres) par rapport au poids total de lubrifiant est choisi de manière à ce que le BN apporté par les sels métalliques de carbonate représente une contribution d'au plus 65 %, préférentiellement d'au plus 60 % du BN total (selon ASTM D-2896) dudit lubrifiant cylindre.
  • En effet, lorsque la contribution du BN carbonate au BN total du lubrifiant cylindre devient trop importante, on constate une forte dégradation de la tenue thermique du lubrifiant.
  • Ces sels métalliques insolubles ont toutefois un effet anti usure favorable pour peu qu'ils soient maintenus dispersés dans le lubrifiant sous forme de micelles stables (ce qui n'est pas le cas lorsqu'ils se trouvent en excès par rapport à la quantité d'acide sulfurique à neutraliser en service).
  • Ainsi, dans les lubrifiants selon l'invention, le BN carbonate apporté par les sels métalliques insolubles (carbonate de calcium) représentent préférentiellement entre 10% et 60%, préférentiellement entre 20% et 55%, préférentiellement entre 30% et 50 % du BN total (ASTM D-2896) dudit lubrifiant.
  • Ainsi, pour des lubrifiants selon l'invention ayant typiquement un BN (ASTM D-2896) de l'ordre de 40 à 50, typiquement de l'ordre de 45 milligrammes de potasse par gramme de lubrifiant, la contribution de BN apporté par les sels métalliques insolubles de détergents surbasés est de l'ordre de 20 à 25 milligrammes de potasse par gramme de lubrifiant, typiquement de 22 à 24 milligrammes de potasse par gramme de lubrifiant ou « point de BN » .
  • Par ailleurs, les détergents proprement dits, qui sont des savons métalliques du type essentiellement phénate, ou sulfonate, ou salicylate, contribuent également au BN des lubrifiants selon la présente invention.
  • Le BN des lubrifiants selon la présente invention, mesuré selon ASTM D2896 comporte donc plusieurs composantes distinctes, dont au moins :
    1. 1) Le BN apporté par les sels métalliques insolubles des détergents surbasés, appelé par extension « BN carbonate » ou « BN CaCO3 », et mesuré par la méthode décrite dans l'exemple 1 ci après,
    2. 2) Le complément de BN, désigné ci après par « BN organique », qui peut être mesuré par différence entre le BN total ASTM D-2896 du lubrifiant et son BN carbonate, et apporté :
      • o par les savons métalliques des détergents surbasés et éventuellement neutres,
      • o par les amines grasses alkoxylées, (ce BN amine étant déterminé en fonction du BN des amines mesuré par ASTM D-2896 et du pourcentage massique d'amines grasses).
    Les huiles de base.
  • En général, les huiles de base utilisées pour la formulation de lubrifiants selon la présente invention peuvent être des huiles d'origine minérales, synthétiques ou végétales ainsi que leurs mélanges.
  • Les huiles minérales ou synthétiques généralement utilisées dans l'application appartiennent à l'une des classes définies dans la classification API telle que résumée dans le tableau ci-dessous.
    Teneur en saturés Teneur en soufre Indice de viscosité (VI)
    Groupe I Huiles minérales < 90 % > 0,03 % 80 ≤ VI < 120
    Groupe II Huiles hydrocraquées ≥ 90 % ≤ 0,03 % 80 ≤ VI < 120
    Groupe III Huiles hydro-isomérisées ≥ 90 % ≤ 0,03 % ≥ 120
    Groupe IV PAO (polyalphaoléfines)
    Groupe V Autres bases non incluses dans bases groupes I à IV
  • Les huiles minérales de Groupe I peuvent être obtenues par distillation de bruts naphténiques ou paraffiniques sélectionnés puis purification de ces distillats par des procédés tels l'extraction au solvant, le déparaffinage au solvant ou catalytique, l'hydrotraitement ou l'hydrogénation.
  • Les huiles des Groupes II et III sont obtenues par des procédés de purification plus sévères, par exemple une combinaison parmi l'hydrotraitement, l'hydrocraquage, l'hydrogénation et le déparaffinage catalytique.
  • Les exemples de bases synthétiques de Groupe IV et V incluent les polyalphaoléfines (PAO), les polybutènes, les polyisobutènes, les alkylbenzènes.
  • Ces huiles de base peuvent être utilisées seules ou en mélange. Une huile minérale peut être combinée avec une huile synthétique.
  • Les huiles cylindres pour moteurs marins diesel 2-temps ont un grade viscosimétrique SAE-40 à SAE-60, généralement SAE-50 équivalent à une viscosité cinématique à 100°C comprise entre 16,3 et 21,9 mm2/s.
  • Les huiles de grade 40 ont une viscosité cinématique à 100°C comprise entre 12,5 et 16,3 cSt.
  • Les huiles de grade 50 ont une viscosité cinématique à 100°C comprise entre 16,3 et 21,9 cSt.
  • Les huiles de grade 60 ont une viscosité cinématique à 100°C comprise entre 21,9 et 26,1 cSt.
  • Selon les usages de la profession, on préfère formuler des huiles cylindres pour moteurs marins diesel 2-temps ayant une viscosité cinématique à 100°C comprise entre 18 et 21,5, préférentiellement entre 19 et 21,5 mm2/s (cSt).
  • Cette viscosité peut être obtenue par mélange d'additifs et d'huiles de base par exemple contenant des bases minérales de Groupe I telles des bases Neutral Solvant (par exemple 500NS ou 600 NS) et le Brightstock. Toute autre combinaison de bases minérales, synthétiques ou d'origine végétale ayant, en mélange avec les additifs, une viscosité compatible avec le grade SAE-50 peut être utilisée.
  • Typiquement, une formulation classique de lubrifiant cylindre pour moteurs diesels marins 2-temps lents est de grade SAE-40 à SAE-60, préférentiellement SAE-50 (selon la classification SAE J300) et comprend au moins 50 % en poids d'huile de base lubrifiante d'origine minérale et/ou synthétique, adaptée à l'utilisation en moteur marin, par exemple, de classe API Groupe I c'est-à-dire obtenue par distillation de bruts sélectionnés puis purification de ces distillats par des procédés tels l'extraction au solvant, le déparaffinage au solvant ou catalytique, l'hydrotraitement ou l'hydrogénation. Leur Indice de Viscosité (VI) est compris entre 80 et 120; leur teneur en soufre est supérieure à 0,03 % et leur teneur en saturé inférieure à 90 %.
  • Typiquement, une formulation classique de lubrifiant cylindre pour moteurs diesels marins 2-temps lents contient de 18 à 25 % en poids, par rapport au poids total de lubrifiant, d'une huile de base huile de base de groupe 1 de type BSS (résidu de distillation, de viscosité cinématique à 100°C voisine de 30 mm2/s, typiquement comprise entre 28 et 32 mm2/s, et de masse volumique à 15°C comprise entre 895 et 915 kg/m3), et de 50 à 60 % en poids, par rapport au poids total de lubrifiant, d'une huile de base de groupe I de type 600 NS (distillat, de masse volumique à 15°C comprise entre 880 et 900 kg/m3, de viscosité cinématique à 100°C voisine de 12 mm2/s).
  • Les additifs dispersants.
  • Les dispersants sont des additifs bien connus employés dans la formulation de composition lubrifiante, notamment pour application dans le domaine marin. Leur rôle premier est de maintenir en suspension les particules présentes initialement ou apparaissant dans la composition lubrifiante au cours de son utilisation dans le moteur. Ils préviennent leur agglomération en jouant sur l'encombrement stérique. Ils peuvent présenter également un effet synergique sur la neutralisation.
  • Les dispersants utilisés comme additifs pour lubrifiant contiennent typiquement un groupement polaire, associé à une chaîne hydrocarbonée relativement longue, contenant généralement de 50 à 400 atomes de carbone. Le groupement polaire contient typiquement au moins un élément azote, oxygène ou phosphore.
  • Les composés dérivés de l'acide succinique sont des dispersants particulièrement utilisés comme additifs de lubrification. On utilise en particulier les succinimides, obtenus par condensation d'anhydrides succiniques et d'amines, les esters succiniques obtenus par condensation d'anhydrides succiniques et d'alcools ou polyols.
  • Ces composés peuvent être ensuite traités par divers composés notamment soufre, oxygène, formaldéhyde, acides carboxyliques et composés contenant du bore ou du zinc pour produire par exemple des succinimides boratées ou des succinimides bloqués au zinc.
  • Les bases de Mannich, obtenues par polycondensation de phénols substitués par des groupements alkyls, de formaldéhyde et d'amines primaires ou secondaires, sont également des composés utilisés comme dispersants dans les lubrifiants.
  • Selon un mode de réalisation de la présente invention, on utilise au moins 0,1 % en masse d'un additif dispersant, typiquement entre 0,5 et 2%, typiquement entre 1 et 1,5 % en masse de dispersant. On pourra par exemple utiliser un dispersant choisi dans la famille des PIB succinimides, éventuellement boraté ou bloqué au zinc.
  • Autres additifs fonctionnels.
  • La formulation de lubrifiant selon la présente invention peut également contenir tous additifs fonctionnels adaptés à leur utilisation, par exemple additifs anti mousse pour contrer l'effet des détergents, pouvant être par exemple des polymères polaires tels que polyméthylsiloxanes, polyacrylates, additifs anti oxydants et/ou anti rouille, par exemple détergents organo métalliques ou thiadiazoles. Ceux ci sont connus de l'homme du métier. Ces additifs sont généralement présents à une teneur en poids de 0,1 à 5 %.
  • Selon la présente invention, les compositions des lubrifiants décrites se réfèrent aux composés pris séparément avant mélange, étant entendu que lesdits composés peuvent ou non conserver la même forme chimique avant et après mélange. De préférence, les lubrifiants selon la présente invention obtenus par mélange des composés pris séparément ne sont pas sous forme d'émulsion ni de microémulsion.
  • Concentrés d'additifs pour lubrifiants marins :
  • Les amines grasses alkoxylées contenues dans les lubrifiants selon la présente invention peuvent notamment être incorporées dans un lubrifiant en tant qu'additifs distincts. Toutefois, elles peuvent aussi être intégrées dans un concentré d'additif pour lubrifiant marin.
  • Les concentrés classiques d'additifs pour lubrifiant cylindre marin sont généralement constitués d'un mélange des constituants décrits plus haut, détergents, dispersants, autres additifs fonctionnels, huile de base de pré-dilution, dans des proportions permettant d'obtenir après dilution dans une huile de base des lubrifiants cylindres ayant un BN déterminé selon la norme ASTM D-2896 supérieur ou égal à 15, de préférence supérieur à 20, de préférence supérieur à 30, avantageusement supérieur à 40 milligrammes de potasse par gramme de lubrifiant. Ce mélange contient généralement, par rapport au poids total de concentré, une teneur en détergent supérieure à 70 %, de préférence supérieure à 80 %, de préférence supérieure à 90 %, une teneur en additif dispersant de 2 à 15 %, de préférence 5 à 10 %, un teneur en autres additifs fonctionnels de 0 à 5 % de préférence de 0,1 à 1 %. Le BN desdits concentrés, mesuré selon ASTM D 2896 est généralement compris entre 250 et 300 milligrammes de potasse par gramme de concentré, typiquement de l'ordre de 275 milligrammes de potasse par gramme de concentré.
  • Un concentré d'additifs, pour la préparation de lubrifiant cylindre ayant un BN déterminé selon la norme ASTM D-2896 supérieur ou égal à 15, de préférence supérieur à 20, de préférence supérieur à 30, avantageusement supérieur à 40 milligrammes de potasse par gramme de lubrifiant, est un concentré ayant un BN compris entre 180 et 250, et comprenant une ou plusieurs amines grasses alkoxylées de BN compris entre 100 et 600 mg de potasse/g d'amine selon la norme ASTM D-2896, le pourcentage massique desdites amines grasses alkoxylées dans le concentré étant choisi de manière à apporter au dit concentré une contribution de BN déterminé selon la norme ASTM D-2896 compris entre 10 et 40, préférentiellement entre 12 et 30, préférentiellement entre 15 et 25, typiquement de l'ordre de 20 milligrammes de potasse par gramme de concentré.
  • Les amines grasses alkoxylées des concentrés selon l'invention sont celles décrites ci-dessus et dans les exemples ci-après.
  • Les concentrés peuvent contenir également de l'huile de base en faible quantité (typiquement entre 0 et 5% en masse), mais suffisante pour faciliter la mise en oeuvre desdits concentrés d'additifs.
  • Les concentrés sont dilués 4 à 5 fois dans une huile de base ou dans un mélange d'huiles de base afin d'obtenir les lubrifiants cylindre selon l'invention.
  • Un procédé de préparation des lubrifiants cylindre selon l'invention comprend l'étape de mélange d'un tel concentré dans une ou plusieurs huiles de base, préférentiellement de groupe 1, de manière à ce que ledit concentré représente entre 20 et 30% en masse, typiquement de l'ordre de 25 % en masse, dans le lubrifiant cylindre.
  • Mesure du différentiel de performance, entre un lubrifiant traditionnel de référence et un lubrifiant selon l'invention.
  • Cette mesure est caractérisée par un indice d'efficacité de neutralisation mesuré selon la méthode du test enthalpique décrite précisément dans les exemples et dans laquelle l'avancement de la réaction exothermique de neutralisation est suivie par l'élévation de la température observée lorsque ledit lubrifiant contenant les sites basiques est mis en présence d'acide sulfurique.
  • Bien entendu, la présente invention n'est pas limitée aux exemples et au mode de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.
  • Exemples : Exemple 1 : cet exemple vise à décrire la méthode permettant de mesurer la contribution des sels métalliques insolubles présents dans les détergents surbasés au BN des compositions lubrifiantes contenant lesdits détergents surbasés :
  • La mesure totale de la basicité (dite BN ou Base Number) des huiles lubrifiantes finies ou des détergents surbasés se fait par la méthode ASTM D2896. Ce BN est composé de deux formes distinctes :
    • ▪ BN carbonate, amené par le surbasage du détergent par des carbonates métalliques, généralement carbonate de calcium, désigné ci après par «BNCaCO3»,
    • ▪ BN dit organique amené par le savon métallique du détergent du type essentiellement phénate ou salicylate, ou sulfonate.
  • Le BN carbonate, désigné ci après par BNCaCO3 est mesuré, sur l'huile finie ou les détergents surbasés seuls, selon le mode opératoire suivant. Celui-ci a pour principe d'attaquer le surbasage, carbonate (de calcium), de l'échantillon par de l'acide sulfurique. Ce carbonate se transforme en gaz carbonique suivant la réaction ;
    Figure imgb0004
  • Le volume du réacteur étant constant, la pression augmente proportionnellement au dégagement de CO2.
    Mode opératoire : on pèse, dans un vase de réaction de volume 100 ml, muni d'un bouchon sur lequel on a adapté un manomètre différentiel, la quantité nécessaire de produit dont on veut mesurer le BNCaCO3, pour ne pas dépasser la limite de mesure du manomètre différentiel, qui est de 600 mb d'augmentation de pression. La quantité est déterminée à partir du graphe figure 2, indiquant pour chaque masse de produit (1 à 10 grammes, droites de droite à gauche sur la figure) la pression mesurée sur le manomètre différentiel (qui correspond à l'augmentation de pression due au dégagement de CO2) en fonction de la part du BNCaCO3 de l'échantillon. Si le résultat de BNCaCO3 est inconnu, on pèse une quantité moyenne de produit d'environ 4 g. Dans tous les cas, on note la masse d'échantillon (m).
  • Le vase de réaction peut être en pyrex, verre, polycarbonate, ... ou tout autre matériau favorisant les échanges thermiques avec le milieu ambiant, de telle sorte que la température interne du vase s'équilibre rapidement avec celle du milieu ambiant.
  • On introduit, dans le vase de réaction contenant un petit barreau aimanté, une petite quantité d'huile de base fluide, du type 600 NS.
    On met environ 2ml d'acide sulfurique concentré dans le vase de réaction, en faisant attention à ne pas agiter le milieu à ce stade.
  • On visse l'ensemble bouchon et manomètre sur le vase de réaction. Les filetages peuvent être graissés. On serre pour avoir une parfaite étanchéité.
  • On démarre l'agitation, et on agite le temps nécessaire pour que la pression se stabilise, et que la température s'équilibre avec le milieu ambiant. Un temps de 30 minutes est suffisant. On note l'augmentation de pression P et la température ambiante T°C(σ).
  • On nettoie l'ensemble avec un solvant du type heptane.
  • Méthode de calcul
  • Pour calculer la pression on utilise la formule des gaz parfaits. PV = nRT
    Figure imgb0005
    • P = Pression partielle de CO2(Pa) (1Pa = 10-2 mb)
    • V = Volume du récipient (m3).
    • R = 8,32 (J). T = 273 + σ ° C = ° K .
      Figure imgb0006
    • n = nombre de moles de CO2 dégagé P CO 2 = nCO 2 * R * T V * 10 2
      Figure imgb0007
    Calcul du nombre de moles de CO 2 .
  • m * B N carbonate = m g K O H é q u i v a l e n t .
    Figure imgb0008
    • m = masse de produit en grammes
    • BN carbonate = BN exprimé en équivalent KOH pour 1g. m * BN carbonate* 44 2 * 56,1 1000 = g
      Figure imgb0009
      de CO2 dégagé, soit en nombre de moles de CO2 dégagé : m * BN carbonate * 44 * 10 3 44 * 2 * 56,1 = m * BN carbonate * 0,0089 10 3
      Figure imgb0010
    Formule de calcul de la Pression de CO 2 en fonction du BN carbonate.
  • P CO 2 = m*BN carbonte * 0,0089 10 3 * R * T* 10 2 V
    Figure imgb0011
  • Formule de calcul du BN carbonate à partir de la pression de CO 2 .
  • BN carbonate = P * V m * 0,0089 * 10 3 * R * T * 10 2
    Figure imgb0012
  • En fixant les valeurs liées aux conditions d'essai, on obtient la formule simplifiée :
    • P CO2 = valeur lue sur le manomètre différentiel, en mbars = P lue
    • V = volume du récipient en m3 = 0,0001.
    • R = 8,32 (J). T = 273 + σ ° C = ° K . σ = T e m p é r a t u r e a m b i a n t e lue .
      Figure imgb0013
      m = masse de produit introduit dans le vase de réaction. BN carbonate = P lue * 0,0001 m * 0,0089 * 10 3 * 8,32 273 * σ lue * 10 2
      Figure imgb0014
      BN carbonate = P lue m * 0,0074 * R * 273 * σ lue
      Figure imgb0015
  • Le résultat obtenu est le BNCaCO3 exprimé en mgKOH/g.
  • Le BN apporté par les savons métalliques de détergents, encore désigné par « BN organique », est obtenu par différence entre le BN total selon ASTM D2896 et le BNCaCO3 ainsi mesuré.
  • Exemple 2 : cet exemple vise à décrire le test enthalpique permettant de mesurer l'efficacité de neutralisation des lubrifiants vis-à-vis de l'acide sulfurique.
  • La disponibilité ou accessibilité des sites basiques inclus dans un lubrifiant, notamment lubrifiant cylindre pour moteur marin deux temps, vis-à-vis des molécules d'acide, peut être quantifiée par un essai dynamique de suivi de la vitesse ou cinétique de neutralisation.
  • Principe :
  • Les réactions de neutralisation acide-base sont généralement exothermiques et on peut donc mesurer le dégagement de chaleur obtenu par réaction d'acide sulfurique sur les lubrifiants à tester. Ce dégagement est suivi par l'évolution de la température au cours du temps dans un réacteur adiabatique de type DEWAR
  • A partir de ces mesures, on peut calculer un indice quantifiant l'efficacité d'un lubrifiant selon la présente invention par rapport à un lubrifiant pris comme référence, et pour une quantité d'acide ajoutée représentant un nombre fixe de points de BN à neutraliser. Le BN des lubrifiants à tester est préférentiellement en excès par rapport au BN nécessaire pour neutraliser la quantité d'acide ajoutée. Pour tester des lubrifiants de BN 70, on ajoutera ainsi, dans les exemples qui suivent, une quantité d'acide correspondant à la neutralisation de 55 points de BN.
  • L'indice d'efficacité est ainsi calculé par rapport à l'huile de référence à laquelle on attribue la valeur de 100. C'est le rapport entre les durées de réaction de neutralisation de la référence (Sref) et de l'échantillon mesuré (Smes) : Indice d'efficacité de neutralisation = S ref / S mes x 100
    Figure imgb0016
  • Les valeurs de ces durées de réaction de neutralisation, qui sont de l'ordre de quelques secondes, sont déterminées à partir des courbes d'acquisition de l'augmentation de la température en fonction du temps lors de la réaction de neutralisation. (Voir courbe figure 1).
  • La durée S est égale à la différence tf - ti entre le temps à la température de fin de réaction et le temps à la température de début de réaction.
  • Le temps ti à la température de début de réaction correspond à la première élévation de température après mise en route de l'agitation.
  • Le temps tf à la température finale de réaction est celui à partir duquel le signal de température reste stable pendant une durée supérieure ou égale à la demi-durée de réaction.
  • Le lubrifiant est d'autant plus efficace qu'il conduit à de courtes durées de neutralisation et donc à un indice élevé.
  • Matériel utilisé :
  • Les géométries du réacteur et de l'agitateur ainsi que les conditions opératoires ont été choisies de façon à se placer en régime chimique, où l'effet des contraintes diffusionnelles dans la phase huile est négligeable.
  • De ce fait dans la configuration du matériel utilisé, la hauteur de fluide doit être égale au diamètre intérieur du réacteur, et l'hélice d'agitation doit être positionnée à environ 1/3 de la hauteur du fluide.
  • L'appareillage est constitué d'un réacteur adiabatique de type cylindrique de 300 ml, dont le diamètre interne est de 52 mm et la hauteur interne de 185 mm, d'une tige d'agitation munie d'une hélice à pales inclinées, de 22 mm de diamètre ; le diamètre des pales est compris entre 0,3 et 0,5 fois le diamètre du DEWAR, c'est-à-dire de 15,6 à 26 mm.
  • La position de l'hélice est fixée à une distance d'environ 15 mm du fonds du réacteur. Le système d'agitation est entraîné par un moteur à vitesse variable de 10 à 5000 tours par minute et d'un système d'acquisition de la température en fonction du temps.
  • Ce système est adapté à la mesure de durées de réaction de l'ordre de 5 à 20 secondes et à la mesure d'élévation de température de quelques dizaines de degrés à partir d'une température d'environ 20°C à 35°C, de préférence environ 30°C. La position du système d'acquisition de la température dans le DEWAR est fixe.
  • Le système d'agitation sera réglé de telle sorte que la réaction se produise en régime chimique: dans la configuration de la présente expérience, la vitesse de rotation est réglée à 2000 tours par minute, et la position du système est fixe.
  • Par ailleurs, le régime chimique de la réaction est également dépendant de la hauteur d'huile introduite dans le DEWAR, qui doit être égale au diamètre de celui-ci, et qui correspond dans le cadre de cette expérience à une masse d'environ 86 g du lubrifiant testé.
  • Pour tester les lubrifiants de BN 70, on introduit ici dans le réacteur la quantité d'acide correspondant à la neutralisation de 55 points de BN.
  • On introduit dans le réacteur 4,13 g d'acide sulfurique concentré à 95 % et 85,6 g de lubrifiant à tester, pour un lubrifiant de BN 70.
  • Après mise en place du système d'agitation à l'intérieur du réacteur de manière à ce que l'acide et le lubrifiant se mélangent bien et de façon répétable entre deux essais, l'agitation est démarrée afin de suivre la réaction en régime chimique. Le système d'acquisition est permanent.
  • Mise en oeuvre du test enthalpique - calibration :
  • Pour calculer les indices d'efficacité des lubrifiants selon la présente invention par la méthode ci-dessus décrite, nous avons choisi de prendre comme référence le temps de réaction de neutralisation mesuré pour une huile cylindre pour moteur marin deux temps de BN 70 (mesuré par ASTM D-2896), ne comportant pas d'amines grasses selon la présente invention.
  • Cette huile est obtenue à partir d'une base minérale obtenue par mélange d'un distillat de masse volumique à 15°C comprise entre 880 et 900 Kg/m3 avec un résidu de distillation de masse volumique comprise entre 895 et 915 Kg/m3 (Brightstock) dans un rapport distillat / résidu de 3.
  • A cette base est ajouté un concentré dans lequel on retrouve un sulfonate de calcium surbasé de BN égal à 400 mg KOH/g, un dispersant, un phénate de calcium surbasé de BN égal à 250 mg KOH/g. Cette huile est formulée spécifiquement pour avoir une capacité de neutralisation suffisante pour être utilisée avec des fuels à forte teneur en soufre, à savoir des teneurs en S supérieures à 3 % voire 3,5 %.
  • Le lubrifiant de référence contient 25,50 % en masse de ce concentré. Son BN de 70 est exclusivement apporté par les détergents surbasés (phénates et sulfonates surbasés) contenu dans ledit concentré.
  • Ce lubrifiant de référence a une viscosité à 100°C comprise entre 18 et 21,5 mm2/s.
  • Le temps de réaction de neutralisation de cette huile (ci après référence Href) est de 10,59 secondes et son indice d'efficacité de neutralisation est fixé à 100.
  • Exemple 3 : compositions lubrifiantes
  • Plusieurs compositions lubrifiantes ont été préparées à partir des composés suivants :
    • Huiles de base de groupe I, pour conférer un KV100 de l'ordre de 20 cSt et un KV 40 de l'ordre de 225 à 240 cSt aux compositions,
    • Détergent phénate neutre,
    • Détergent Phénate surbasé,
    • Détergent sulfonate surbasé,
    • Monoamine oléique éthoxylée,
    • Oleyl propylène diamine (non éthoxylée),
    • Alcool gras (mélange de monoalcools gras avec chaînes grasses en C16 à C18).
  • Pour chacune des compositions préparées, on a mesuré le BN total, selon ASTM D-2896, le BN Carbonate, selon la méthode décrite dans l'exemple 1, l'indice d'efficacité de neutralisation, selon la méthode décrite dans l'exemple 2.
  • On a également mesuré les propriétés anti usure de ces compositions grâce à l'essai d'usure Falex (mesure de l'usure en µm) : plus la marque d'usure est faible, meilleure sont les propriétés anti usure.
  • Cet essai utilise un tribomètre de marque Falex avec pion et blocs. Le lubrifiant à tester est placé dans un récipient chauffé jusqu'à la température désirée. Les blocs sont placés dans l'entrefer des mâchoires et le pion fixé sur le mandrin. L'ensemble pion-blocs est immergé dans le bain d'huile. Une charge fixe (3760 N dans notre cas) est appliquée sur l'ensemble pion-blocs au travers des mâchoires et d'un vérin pneumatique. Le pion est mis en rotation à une vitesse fixe. Un détecteur d'écartement situé sur le vérin mesure en permanence l'écartement des mâchoires et donc l'usure du pion et des blocs. Cette usure est enregistrée et le résultat final d'usure rapporté comme résultat d'essai.
  • On a également mesuré la tenue thermique de ces compositions grâce à l'essai ECBT continu, où l'on mesure la masse de dépôts (en mg) générés dans des conditions déterminées. Plus cette masse est faible, meilleure est la tenue thermique.
  • Cet essai permet de simuler tout à la fois la stabilité thermique et la détergence des lubrifiants marine. L'essai met en oeuvre des béchers en Aluminium qui simulent la forme de pistons. Ces béchers sont placés dans dans un conteneur en verre, maintenu à température contrôlée de l'ordre de 60°C. Le lubrifiant est placé dans ces conteneurs, eux-mêmes équipés d'une brosse métallique, partiellement immergée dans le lubrifiant. Cette brosse est animée d'un mouvement rotatif à une vitesse de 1000 rpm, ce qui crée une projection de lubrifiant sur la surface inférieure du bécher. Le bécher est maintenu à une température de 310°C par une résistance électrique chauffante, régulée par un thermocouple.
  • Dans la procédure appliquée et appelée ECBT Continu, l'essai a une durée de 12 heures et la projection de lubrifiant est continue. Cette procédure simule la formation de dépôts dans l'ensemble piston-segment. Le résultat est le poids de dépôts mesuré sur le bécher.
  • Une description détaillée de cet essai est donnée dans la publication intitulée « Research and Development of Marine Lubricants in ELF ANTAR France - The relevance of laboratory tests in simulating field performance » par Jean-Philipppe ROMAN, MARINE PROPULSION CONFERENCE 2000 - AMSTERDAM - 29-30 MARCH 2000.
  • Les compositions B, F, G et H sont des compositions selon l'invention, dont le BN est de l'ordre de 43 à 44.
  • On constate que leur efficacité de neutralisation est identique voire supérieure à celle de la référence, une huile cylindre de BN 70 utilisable avec des fuels ayant des teneurs en soufre élevées. Ainsi, les compositions selon l'invention pourront par exemple être utilisées comme huile cylindre pour moteur marin 2 temps, avec des fuels dont la teneur est de l'ordre de 4,5% m/m. La réduction de la teneur en détergent surbasés (et donc en sels métalliques insolubles) ainsi rendu possible permet également leur utilisation comme huile cylindre pour moteur marin 2 temps, avec des fuels dont la teneur est basse, de l'ordre de 1,5% m/m et moins.
  • Par rapport aux compositions A et C, qui ne contiennent pas d'amine alkoxylée, on constate que les propriétés en usure des compositions selon l'invention sont fortement améliorées.
  • Dans les compositions D et E, où l'apport de BN par les amines est élevé (de l'ordre de 10 à 15 points de BN), on constate une dégradation de la tenue thermique par rapport aux compositions selon l'invention.
  • Dans les compositions I, J et K, où le pourcentage de BN apporté par les carbonates est élevé (de l'ordre de 70 % et au-delà), on constate également une dégradation de la tenue thermique par rapport aux compositions selon l'invention.
  • Ainsi les compositions selon l'invention présentent l'avantage d'une efficacité de neutralisation leur permettant d'être utilisées à la fois avec les fuels à haute et basse teneur en soufre, tout en présentant des propriétés anti usure et de tenue thermique améliorées. Table 1 : compositions lubrifiantes et propriétés
    A B C D E F G H I J K
    Détergents neutres 1,90 1,90 1,90 1,90 1,90 7,70 3,85 5,80 0,00 2,80 0,00
    Détergents surbasés 13,65 13,65 13,65 13,65 13,65 9,20 11,10 11,40 10 8,60 12,70
    Amine éthoxylée *** - 3,00 6,20 9,00 3,00 3,00 3,00 3,00 3,00 3,00
    Diamine grasse **** - 3,15
    Dispersant 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20
    Antimousse 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04
    Alcool gras C1618 0,50
    Bases groupe I 80,21 80,06 77,01 74,21 78,86 80,81 78,56 85,76 84,36 83,06
    Total 100 100 100 100 100 100 100 100 100 100 100
    BN Total ASTM D-2896 43,8 43,5 43,3 44,2 43,8 44,8 43,4 43,1
    BN CaCO3* 26,7 25,7 24,1 25,6 22,4 37,1 32,7 29,5
    %BNCaCo3/BNtotal 62 % 59% 56% 58% 51% 83% 75% 68%
    Indice d'efficacité de neutralisation** 105 101 103 101 114 100 101 115
    Usure Falex (µm) 58 18 55 19 23 19 17 19
    Dépôt ECBT (mg) 213 167 191 334 148 158 122 334 256 248
    *Mesuré selon méthode décrite dans l'exemple 1
    ** Mesuré selon méthode décrite dans l'exemple 2
    *** BN 160
    **** BN 320
  • Exemple 4 :
  • L'exemple 3 a été répété dans les mêmes conditions expérimentales mais avec d'autres compositions lubrifiantes selon l'invention. Ces compositions sont préparées à partir des composés suivants :
    • Un mélange d'huiles de base de groupe I et de groupe II, pour conférer un KV100 de l'ordre de 20cSt et un KV 40 de l'ordre de 225 à 240 cSt à la composition L,
    • Un détergent carboxylate neutre (composition M),
    • Un mélange de détergents surbasés phénate et carboxylate (composition N),
    • Une bis (2-hydroxyéthyl) cocoalkylamine (composition O), dans les proportions du Tableau 2 ci-dessous,
    • Les détergents phénates neutres utilisés dans les compositions L, N et O sont les mêmes que ceux utilisés dans l'exemple 3,
    • Les détergents surbasés phénates et sulfonate utilisés dans les compositions L, M, O sont les mêmes que ceux utilisés dans l'exemple 3,
    • L'amine éthoxylée monoamine oléique utilisée dans les compositions L, M et O est la même que celle utilisée dans l'exemple 3.
  • On constate que les compositions lubrifiantes L à O selon l'invention présentent une bonne efficacité de neutralisation, de bonnes propriétés anti usure et tenue thermique quelle que soit l'huile de base utilisée (composition L), le détergent neutre utilisé (composition M), le détergent surbasé utilisé (composition N) ou l'amine éthoxylée utilisée (composition O). Table 2 : compositions lubrifiantes et propriétés (suite)
    L M N O
    Détergents phénates neutres 5,80 - 5,80 5,80
    Détergents carboxylates neutres - 6,20 - -
    Détergents surbasés phénate et sulfonate 11,40 11,40 - 11,40
    Détergents surbasés phénate et carboxylate - - 11,60 -
    Amine éthoxylée monoamine oléique éthoxylée*** 3,00 3,00 3,00 -
    Amine éthoxylée bis (2-hydroxyéthyl) cocoalky lamine**** - - - 2,45
    Dispersant 1,20 1,20 1,20 1,20
    Antimousse 0,04 0,04 0,04 0,04
    Bases groupe I - 78,16 78,36 79,11
    Bases groupe I et II 78,56 - - -
    Total 100 100 100 100
    BN Total ASTM D-2896 43,6 44,2 43,8 43,9
    BN CaCO3∗ 26,7 27,0 26,7 27,4
    %BNCaCo3/BNtotal 61,2 61,1 61,0 62,4
    Indice d'efficacité de neutralisation** 111 144 123 134
    Usure Falex (µm) 28 33 21 27
    Dépôt ECBT (mg) 121 99 105 103
    *Mesuré selon méthode décrite dans l'exemple 1
    ** Mesuré selon méthode décrite dans l'exemple 2
    *** BN 160 mg KOH/g
    **** BN 196 mg KOH/g

Claims (14)

  1. Lubrifiant cylindre pour moteur marin deux temps ayant un BN déterminé selon la norme ASTM D-2896 supérieur ou égal à 15 milligrammes de potasse par gramme de lubrifiant, comprenant :
    (a) une ou plusieurs huiles de base lubrifiantes pour moteur marin,
    (b) au moins un détergent à base de métaux alcalins ou alcalino terreux, surbasé par des sels métalliques de carbonate,
    (c) au moins un détergent neutre,
    (d) une ou plusieurs amines grasses alkoxylées solubles dans l'huile, et ayant un BN déterminé selon la norme ASTM D-2896 compris entre 100 et 600 milligrammes de potasse par gramme,
    où le pourcentage massique d'amines grasses alkoxylées par rapport au poids total de lubrifiant est choisi de manière à ce que le BN apporté par ces composés représente une contribution comprise entre 2 et 8 milligrammes de potasse par gramme de lubrifiant,
    et où le BN apporté par les sels métalliques de carbonate représente une contribution d'au plus 65 % du BN total, mesuré selon la norme ASTM D2896, dudit lubrifiant cylindre, ladite contribution étant calculée selon la méthode décrite dans la présente description partie expérimentale.
  2. Lubrifiant cylindre selon la revendication 1 où le BN des amines grasses alkoxylées déterminé selon la norme ASTM D-2896 est compris entre 120 et 500, préférentiellement entre 150 et 400, préférentiellement entre 200 et 300 milligrammes de potasse par gramme.
  3. Lubrifiant cylindre selon l'une des revendications 1 à 2 où le pourcentage massique d'amines grasses alkoxylées par rapport au poids total de lubrifiant est choisi de manière à ce que le BN apporté par ces composés représente une contribution comprise entre 3 et 7 milligrammes de potasse par gramme de lubrifiant, préférentiellement entre 3,5 et 5 milligrammes de potasse par gramme de lubrifiant au BN total dudit lubrifiant cylindre, déterminé selon la norme ASTM D-2896.
  4. Lubrifiant cylindre selon l'une des revendications 1 à 3 ayant un BN, déterminé selon la norme ASTM D-2896, supérieur ou égal à 20, de préférence supérieur à 30, avantageusement supérieur à 40 milligrammes de potasse par gramme de lubrifiant.
  5. Lubrifiant cylindre selon l'une des revendications 1 à 4 ayant un BN, déterminé selon la norme ASTM D-2896, inférieur à 55 milligrammes de potasse par gramme de lubrifiant.
  6. Lubrifiant cylindre selon l'une des revendications 1 à 5 où le BN apporté par les sels métalliques de carbonates représente une contribution comprise entre 10% et 60 %, préférentiellement entre 20% et 55 %, préférentiellement entre 30% et 50%, du BN total dudit lubrifiant cylindre.
  7. Lubrifiant cylindre selon l'une quelconque des revendications 1 à 6 dans lequel la ou les amines grasses alkoxylées solubles dans l'huile sont obtenues à partir d'acides gras comportant entre 16 et 18 atomes de carbone.
  8. Lubrifiant cylindre selon l'une quelconque des revendications 1 à 7 dans lequel la ou les amines grasses alkoxylées répondent à la formule générale (I) :
    Figure imgb0017
    R1 est un radical éthylène, propylène, butylène, de préférence éthylène,
    R2 est une chaîne grasse d'acides gras saturé ou insaturé, comprenant entre 12 et 22 atomes de carbone, préférentiellement entre 16 et 18 atomes de carbone, préférentiellement la chaîne grasse de l'acide oléique,
    R3 est un radical alkylène comprenant entre 2 et 3 atomes de carbone,
    q est égal à 0 ou à 1, et lorsque q est égal à zéro, p est égal à zéro
    n, m et p sont des entiers compris entre 0 et 12, préférentiellement entre 0 et 5, préférentiellement entre 0 et 2
    et n + m + p est strictement supérieur à zéro, préférentiellement compris entre 1 et 15, préférentiellement entre 2 et 10, préférentiellement entre 3 et 7, préférentiellement entre 3 et 4.
  9. Lubrifiant cylindre selon la revendication 8 où :
    • q = p = 0
    • m + n est compris entre 2 et 5, préférentiellement entre 3 et 4
    • m et n sont non nuls.
  10. Lubrifiant cylindre selon l'une quelconque des revendications 1 à 9 dans lequel les détergents surbasés (b) et les détergents neutres (c) sont choisis parmi les carboxylates, sulfonates, salicylates, naphténates, phénates, et les détergents mixtes associant au moins deux de ces types de détergents.
  11. Lubrifiant cylindre selon l'une des revendications 1 à 10 où au moins un détergent surbasé (b) est un sulfonate.
  12. Lubrifiant cylindre selon l'une des revendications 1 à 11 où au moins un détergent neutre (c) est un phénate ou un sulfonate, préférentiellement un phénate.
  13. Utilisation d'un lubrifiant selon l'une quelconque des revendications 1 à 12 comme lubrifiant cylindre unique utilisable à la fois avec des fiouls à teneur en soufre inférieure à 1,5% m/m et avec des fiouls à teneur en soufre supérieure à 3,5% m/m dans des moteurs marins deux temps.
  14. Utilisation d'un lubrifiant selon l'une quelconque des revendications 1 à 12 comme lubrifiant cylindre utilisable avec tous les fiouls à teneur en soufre comprise entre 0,1% m/m et 3,5% m/m dans des moteurs marins deux temps.
EP12714700.7A 2011-04-14 2012-04-13 Lubrifiant cylindre pour moteur marin deux temps Active EP2697344B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12714700T PL2697344T3 (pl) 2011-04-14 2012-04-13 Smar do cylindrów dla silników okrętowych dwusuwowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153276A FR2974111B1 (fr) 2011-04-14 2011-04-14 Lubrifiant cylindre pour moteur marin deux temps
PCT/EP2012/056812 WO2012140215A1 (fr) 2011-04-14 2012-04-13 Lubrifiant cylindre pour moteur marin deux temps

Publications (2)

Publication Number Publication Date
EP2697344A1 EP2697344A1 (fr) 2014-02-19
EP2697344B1 true EP2697344B1 (fr) 2019-01-09

Family

ID=45974343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12714700.7A Active EP2697344B1 (fr) 2011-04-14 2012-04-13 Lubrifiant cylindre pour moteur marin deux temps

Country Status (16)

Country Link
US (1) US9605568B2 (fr)
EP (1) EP2697344B1 (fr)
JP (1) JP5914633B2 (fr)
KR (1) KR101958808B1 (fr)
CN (1) CN103649285B (fr)
AR (1) AR086009A1 (fr)
DK (1) DK2697344T3 (fr)
ES (1) ES2718833T3 (fr)
FR (1) FR2974111B1 (fr)
LT (1) LT2697344T (fr)
PL (1) PL2697344T3 (fr)
PT (1) PT2697344T (fr)
RU (1) RU2598848C2 (fr)
SG (1) SG194140A1 (fr)
TR (1) TR201904927T4 (fr)
WO (1) WO2012140215A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2980799B1 (fr) 2011-09-29 2013-10-04 Total Raffinage Marketing Composition lubrifiante pour moteur marin
FR3000103B1 (fr) 2012-12-21 2015-04-03 Total Raffinage Marketing Composition lubrifiante a base d'ether de polyglycerol
FR3002947B1 (fr) * 2013-03-06 2016-03-25 Total Raffinage Marketing Composition lubrifiante pour moteur marin
FR3005474B1 (fr) 2013-05-07 2016-09-09 Total Raffinage Marketing Lubrifiant pour moteur marin
FR3017876B1 (fr) 2014-02-24 2016-03-11 Total Marketing Services Composition d'additifs et carburant de performance comprenant une telle composition
FR3017875B1 (fr) 2014-02-24 2016-03-11 Total Marketing Services Composition d'additifs et carburant de performance comprenant une telle composition
FR3027607B1 (fr) * 2014-10-27 2018-01-05 Total Marketing Services Lubrifiant pour moteur marin
US10577556B2 (en) 2015-06-12 2020-03-03 The Lubrizol Corporation Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions
FR3039835B1 (fr) 2015-08-03 2019-07-05 Total Marketing Services Utilisation d'une amine grasse pour prevenir et/ou reduire les pertes metalliques des pieces dans un moteur
FR3043691A1 (fr) * 2015-11-12 2017-05-19 Total Marketing Services Compositions lubrifiantes pour prevenir ou diminuer la combustion anormale dans un moteur de vehicule automobile
EP3211062B1 (fr) * 2016-02-29 2022-07-27 TotalEnergies OneTech Lubrifiant pour moteur marin deux temps
US11518957B2 (en) 2016-02-29 2022-12-06 Lord Corporation Additive for magnetorheological fluids
EP3510130A1 (fr) 2016-09-12 2019-07-17 The Lubrizol Corporation Amplificateurs de l'indice de base total pour compositions lubrifiantes de moteur diesel marin
FR3065964B1 (fr) * 2017-05-04 2020-03-13 Total Marketing Services Utilisation d'une amine grasse pour reduire et/ou controler la combustion anormale du gaz dans un moteur marin
FR3071252B1 (fr) * 2017-09-19 2020-04-03 Total Marketing Services Utilisation d'ester dans une composition lubrifiante pour ameliorer la proprete moteur
CN110646564A (zh) * 2018-06-26 2020-01-03 中国石油天然气股份有限公司 一种评价清净剂的碱值保持性的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016856A1 (fr) * 2007-12-12 2010-02-11 The Lubrizol Corporation Lubrifiants de cylindre de moteur diesel marin permettant d'obtenir un meilleur rendement du carburant

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711406A (en) 1970-06-11 1973-01-16 Chevron Res Lubricating oil containing an hydroxylated amine and an overbased sulfonate or phenate
CA1118750A (fr) * 1978-08-01 1982-02-23 Ernst L. Neustadter Lubrifiant
RU1829401C (ru) * 1991-06-28 1996-02-20 Всероссийский научно-исследовательский институт по переработке нефти Смазочная композиция
WO1993021288A1 (fr) * 1992-04-15 1993-10-28 Exxon Chemical Patents Inc. Composition de lubrifiant contenant un melange d'agents modifiant le frottement
US6333298B1 (en) * 1999-07-16 2001-12-25 Infineum International Limited Molybdenum-free low volatility lubricating oil composition
JP5414955B2 (ja) * 1999-09-21 2014-02-12 インフィニューム インターナショナル リミテッド 潤滑油組成物
EP1229101A1 (fr) * 2001-02-06 2002-08-07 Infineum International Limited Lubrifiant pour un moteur diesel marin
EP1401991A2 (fr) * 2001-06-29 2004-03-31 The Lubrizol Corporation Lubrifiant a base d'eau en emulsion de type huileux avec base solide en suspension
FR2879621B1 (fr) 2004-12-16 2007-04-06 Total France Sa Huile pour moteur marin 4-temps
PL1914295T3 (pl) * 2006-10-11 2014-05-30 Total Marketing Services Środek smarujący okrętowy do oleju napędowego z niską lub wysoką zawartością siarki
EP2045314B1 (fr) * 2007-10-04 2017-11-08 Infineum International Limited Détergent à base de sulfonate métallique surbasé
FR2924439B1 (fr) * 2007-12-03 2010-10-22 Total France Composition lubrifiante pour moteur quatre temps a bas taux de cendres
FR2928934B1 (fr) * 2008-03-20 2011-08-05 Total France Lubrifiant marin
FR2932813B1 (fr) 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
FR2943678B1 (fr) 2009-03-25 2011-06-03 Total Raffinage Marketing Polymeres (meth)acryliques de bas poids moleculaire, exempts de composes soufres,metalliques et halogenes et de taux de monomeres residuels faible,leur procede de preparation et leurs utilisations
FR2945754A1 (fr) 2009-05-20 2010-11-26 Total Raffinage Marketing Nouveaux additifs pour huiles transmission
FR2968011B1 (fr) 2010-11-26 2014-02-21 Total Raffinage Marketing Composition lubrifiante pour moteur

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016856A1 (fr) * 2007-12-12 2010-02-11 The Lubrizol Corporation Lubrifiants de cylindre de moteur diesel marin permettant d'obtenir un meilleur rendement du carburant

Also Published As

Publication number Publication date
JP5914633B2 (ja) 2016-05-11
FR2974111A1 (fr) 2012-10-19
WO2012140215A1 (fr) 2012-10-18
DK2697344T3 (en) 2019-04-23
LT2697344T (lt) 2019-05-10
RU2013145284A (ru) 2015-05-20
CN103649285B (zh) 2016-08-17
RU2598848C2 (ru) 2016-09-27
ES2718833T3 (es) 2019-07-04
US20140041610A1 (en) 2014-02-13
AR086009A1 (es) 2013-11-13
JP2014510824A (ja) 2014-05-01
KR101958808B1 (ko) 2019-03-15
EP2697344A1 (fr) 2014-02-19
SG194140A1 (en) 2013-11-29
TR201904927T4 (tr) 2019-05-21
FR2974111B1 (fr) 2013-05-10
KR20140044799A (ko) 2014-04-15
PL2697344T3 (pl) 2019-07-31
US9605568B2 (en) 2017-03-28
PT2697344T (pt) 2019-04-30
CN103649285A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
EP2697344B1 (fr) Lubrifiant cylindre pour moteur marin deux temps
EP2304006B1 (fr) Lubrifiant cylindre pour moteur marin deux temps
EP2994521B1 (fr) Lubrifiant pour moteur marin
EP1914295B1 (fr) Lubrifiant marin pour fioul à basse et haute teneur en soufre
EP2271731B1 (fr) Lubrifiant marin
EP3212745B1 (fr) Lubrifiant pour moteur marin
FR2980799A1 (fr) Composition lubrifiante pour moteur marin
FR3039835B1 (fr) Utilisation d&#39;une amine grasse pour prevenir et/ou reduire les pertes metalliques des pieces dans un moteur
EP3523407A1 (fr) Composition lubrifiante pour moteur marin ou moteur stationnaire
EP2964736A1 (fr) Composition lubrifiante pour moteur marin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTAL MARKETING SERVICES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012055675

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10M0163000000

Ipc: C10M0159200000

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 159/20 20060101AFI20180705BHEP

Ipc: C10M 163/00 20060101ALI20180705BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1087279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012055675

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190415

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2697344

Country of ref document: PT

Date of ref document: 20190430

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190404

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E017140

Country of ref document: EE

Effective date: 20190403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2718833

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190704

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1087279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20190401115

Country of ref document: GR

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012055675

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

26N No opposition filed

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20200325

Year of fee payment: 9

Ref country code: SE

Payment date: 20200320

Year of fee payment: 9

Ref country code: IE

Payment date: 20200318

Year of fee payment: 9

Ref country code: LT

Payment date: 20200317

Year of fee payment: 9

Ref country code: PL

Payment date: 20200318

Year of fee payment: 9

Ref country code: PT

Payment date: 20200319

Year of fee payment: 9

Ref country code: GR

Payment date: 20200318

Year of fee payment: 9

Ref country code: BG

Payment date: 20200327

Year of fee payment: 9

Ref country code: EE

Payment date: 20200317

Year of fee payment: 9

Ref country code: MC

Payment date: 20200320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200323

Year of fee payment: 9

Ref country code: BE

Payment date: 20200319

Year of fee payment: 9

Ref country code: LU

Payment date: 20200319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20200410

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120413

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20210413

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E017140

Country of ref document: EE

Effective date: 20210430

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210414

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220420

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220420

Year of fee payment: 11

Ref country code: GB

Payment date: 20220425

Year of fee payment: 11

Ref country code: FR

Payment date: 20220421

Year of fee payment: 11

Ref country code: ES

Payment date: 20220629

Year of fee payment: 11

Ref country code: DE

Payment date: 20220420

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012055675

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230413

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240531