EP2045314B1 - Détergent à base de sulfonate métallique surbasé - Google Patents

Détergent à base de sulfonate métallique surbasé Download PDF

Info

Publication number
EP2045314B1
EP2045314B1 EP08105207.8A EP08105207A EP2045314B1 EP 2045314 B1 EP2045314 B1 EP 2045314B1 EP 08105207 A EP08105207 A EP 08105207A EP 2045314 B1 EP2045314 B1 EP 2045314B1
Authority
EP
European Patent Office
Prior art keywords
amines
friction modifier
alkoxylated
mixture
overbased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08105207.8A
Other languages
German (de)
English (en)
Other versions
EP2045314A1 (fr
Inventor
Peter Dowding
Christopher John Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP08105207.8A priority Critical patent/EP2045314B1/fr
Publication of EP2045314A1 publication Critical patent/EP2045314A1/fr
Application granted granted Critical
Publication of EP2045314B1 publication Critical patent/EP2045314B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/24Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Definitions

  • This invention relates to an overbased metal sulphonate detergent.
  • the present invention is therefore concerned with overcoming the compatibility issues between friction modifiers and overbased metal sulphonate detergents in lubricating oil compositions.
  • an overbased metal sulphonate detergent having incorporated therein at least one friction modifier including at least one amine group; wherein the friction modifier is selected from: alkoxylated hydrocarbyl-substituted mono-amines and diamines, and hydrocarbyl ether amines; preferably from alkoxylated tallow amines and alkoxylated tallow ether amines; preferably alkoxylated amines containing about two moles of alkylene oxide per mole of nitrogen.
  • the friction modifier having at least one amine group is hereinafter known as 'amine-based friction modifier'.
  • the overbased metal sulphonate detergent is manufactured in the presence of the amine-based friction modifier so that the friction modifier is incorporated into the detergent.
  • US2007/0015672 discloses method of improving compatibility of an overbased detergent
  • GB-A-1513441 and EP-A-1018539 disclose the preparation of overbased sulfonate detergents having incorporated therein a polyisobutylene succinimide-amine and aliphatic amide, respectively.
  • Friction modifiers are generally long, slender molecules added to lubricants for the purpose of minimizing light surface contacts. They have a polar end (head) and an oil-soluble end (tail).
  • the tail is normally a straight hydrocarbon chain including at least 10 carbon atoms, preferably 10-40 carbon atoms, more preferably 12-25 carbon atoms, and even more preferably 15-19 carbon atoms. If the tail is too long or too short, the molecule will not function as a friction modifier. In use, the heads attach to a metal surface and the tails stack side by side.
  • the amine-based friction modifier is selected from: alkoxylated hydrocarbyl-substituted mono-amines and diamines, and hydrocarbyl ether amines; preferably from alkoxylated tallow amines and alkoxylated tallow ether amines; with alkoxylated amines containing about two moles of alkylene oxide per mole of nitrogen being the most preferred. Ethoxylated amines and ethoxylated ether amines are especially preferred.
  • Such friction modifiers preferably include linear hydrocarbyl groups. Hydrocarbyl groups are predominantly composed of carbon and hydrogen but may contain one or more hetero atoms such as sulphur or oxygen.
  • Preferred hydrocarbyl groups range from 12-25 carbon atoms, preferably 15-19 carbon atoms.
  • Preferred structures are illustrated by (but not limited to) the two figures below: wherein R is a C 6 to C 28 alkyl group, preferably a C 12 to C 25 alkyl group, X and Y are independently O or S or CH 2 , x and y are independently 1 to 6, p is 2 to 4 (preferably 2), and m and n are independently 0 to 5.
  • the alkyl group or groups are sufficiently linear in character to impart friction modifier properties.
  • the overbased metal sulphonate detergent is synthesized in the presence of the amine-based friction modifier in order to produce a hybrid system that functions as both a detergent and a friction modifier. Therefore, it may be used in a lubricating oil composition as both the detergent and the friction modifier, which means that a separate, additional friction modifier may not be required.
  • the amine-based friction modifier is preferably added to the reaction components after a "'heat-soaking" step.
  • a lubricating oil composition comprising oil of lubricating viscosity and the overbased metal sulphonate detergent comprising the above-defined at least one friction modifier having at least one amine group.
  • a lubricating oil composition as both a detergent and a friction modifier of the overbased metal sulphonate detergent comprising the at least one friction modifier having at least one amine group.
  • a method for preparing the overbased metal sulphonate detergent comprising the above-defined at least one friction modifier having at least one amine group; the method comprising the following steps:
  • the engine is preferably an automotive engine, especially a gasoline engine.
  • the alkyl arene sulphonic acid is preferably an alkylbenzene sulphonic acid.
  • the alkali metal or alkaline earth metal base is preferably calcium hydroxide.
  • a detergent is an additive that reduces formation of piston deposits, for example high-temperature varnish and lacquer deposits, in engines; it normally has acid-neutralising properties and is capable of keeping finely divided solids in suspension.
  • Most detergents are based on metal "soaps"; that is metal salts of acidic organic compounds, sometimes referred to as surfactants.
  • Detergents generally comprise a polar head with a long hydrophobic tail, the polar head comprising a metal salt of an acidic organic compound.
  • a metal base such as an oxide or hydroxide
  • an acidic gas such as carbon dioxide
  • Overbased metal sulphonate detergents are preferably formed from a mixture of a sulphonic acid, a hydrocarbon solvent, an alcohol, water and a stoichiometric excess of a metallic base (preferably calcium hydroxide) above that required to react with the sulphonic acid.
  • the mixture is overbased (carbonated) with an overbasing agent which provides a source of base.
  • the process involves adding the reagents to a reactor and injecting the overbasing agent into the reactor until most or all of the metal compound has been carbonated.
  • the carbonation step is followed by a "heat-soaking" step in which the mixture is maintained, without addition of any further chemical reagents, in a selected temperature range (or at a selected temperature), which is normally higher than the temperature at which carbonation is effected, for a period before any further processing steps are carried out.
  • the amine-based friction modifier is preferably added to the overbased detergent after the "heat-soaking" step.
  • overbasing agents examples include carbon dioxide, a source of boron (for example, boric acid), sulphur dioxide, hydrogen sulphide, and ammonia.
  • Preferred overbasing agents are carbon dioxide or boric acid, or a mixture of the two.
  • the most preferred overbasing agent is carbon dioxide and, for convenience, the treatment with overbasing agent will in general be referred to as "carbonation". Unless the context clearly requires otherwise, it will be understood that references herein to carbonation include references to treatment with other overbasing agents.
  • part of the basic metal compound remains uncarbonated.
  • up to 15 mass % of the basic calcium compound remains uncarbonated, especially up to 11 mass %.
  • Carbonation is effected at less than 100°C. Typically the carbonation is effected at at least 15°C, preferably at least 25°C.
  • carbonation is carried out at less than 80°C, more advantageously less than 60°C, preferably at most 50 °C, more preferably at most 40°C, and especially at most 35°C.
  • the temperature is maintained substantially constant during the carbonation step, with only minor fluctuations.
  • both or all carbonation steps are preferably carried out at substantially the same temperature, although different temperatures may be used, if desired, provided that each step is carried out at less than 100°C.
  • Carbonation may be effected at atmospheric, super-atmospheric or subatmospheric pressures. Preferably, carbonation is carried out at atmospheric pressure.
  • the carbonation step is followed by a "heat-soaking" step in which the mixture is maintained, without addition of any further chemical reagents, in a selected temperature range (or at a selected temperature), which is normally higher than the temperature at which carbonation is effected, for a period before any further processing steps are carried out.
  • the mixture is normally stirred during heat-soaking.
  • heat-soaking may be carried out for a period of at least 30 minutes, advantageously at least 45 minutes, preferably at least 60 minutes, especially at least 90 minutes.
  • Temperatures at which heat-soaking may be carried out are typically in the range of from 15°C to just below the reflux temperature of the reaction mixture, preferably 25°C to 60°C: the temperature should be such that substantially no materials (for example, solvents) are removed from the system during the heat-soaking step.
  • substantially no materials for example, solvents
  • the amine-based friction modifier is preferably added to the detergent after the heat-soaking step.
  • Products of reduced viscosity may be obtained by employing one or more further additions of basic calcium compound and subsequent carbonation, each carbonation step advantageously being followed by a heat-soaking step.
  • Basic metal compounds include metal oxides, hydroxides, alkoxides, and carboxylates. Calcium oxide and, more especially, hydroxide are preferably used. A mixture of basic compounds may be used, if desired.
  • the mixture to be overbased by the overbasing agents should normally contain water, and may also contain one or more solvents, promoters (such as alkanols, preferably methanol) or other substances commonly used in overbasing processes.
  • solvents such as water, and may also contain one or more solvents, promoters (such as alkanols, preferably methanol) or other substances commonly used in overbasing processes.
  • promoters such as alkanols, preferably methanol
  • suitable solvents are aromatic solvents, for example, benzene, alkyl-substituted benzenes, for example, toluene or xylene, halogen-substituted benzenes, and lower alcohols (with up to 8 carbon atoms).
  • Preferred solvents are toluene and/or methanol.
  • the amount of toluene used is advantageously such that the percentage by mass of toluene, based on the metal overbased detergent (excluding oil) is at least 1.5, preferably at least 15, more preferably at least 45, especially at least 60, more especially at least 90.
  • the said percentage of toluene is typically at most 1200, advantageously at most 600, preferably at most 500, especially at most 150.
  • the amount of methanol used is advantageously such that the percentage by mass of methanol, based on the metal detergent (excluding oil) is at least 1.5, preferably at least 15, more preferably at least 30, especially at least 45, more especially at least 50.
  • the said percentage of methanol (as solvent) is typically at most 800, advantageously at most 400, preferably at most 200, especially at most 100. The above percentages apply whether the toluene and methanol are used together or separately.
  • Preferred promoters are methanol and water.
  • the amount of methanol used is advantageously such that the percentage by mass of methanol, based on the initial charge of basic metal compound(s), for example, calcium hydroxide (that is, excluding any basic metal compound(s) added in a second or subsequent step) is at least 6, preferably at least 60, more preferably at least 120, especially at least 180, more especially at least 210.
  • the said percentage of methanol (as promoter) is typically at most 3200, advantageously at most 1600, preferably at most 800, especially at most 400.
  • the amount of water in the initial reaction mixture is advantageously such that the percentage by mass of water, based on the initial charge of basic metal compound(s), for example, calcium hydroxide, (that is, excluding any basic metal compound(s) added in a second or subsequent step) is at least 0.1, preferably at least 1, more preferably at least 3, especially at least 6, more especially at least 12, particularly at least 20.
  • the said percentage of water is typically at most 320, advantageously at most 160, preferably at most 80, especially at most 40. If reactants used are not anhydrous, the proportion of water in the reaction mixture should take account of any water in the components and also water formed by neutralization of the surfactants. In particular, allowance must be made for any water present in the surfactants themselves.
  • the reaction medium comprises methanol, water (at least part of which may be generated during salt formation), and toluene.
  • low molecular weight carboxylic acids for example, formic acid, inorganic halides, or ammonium compounds may be used to facilitate carbonation, to improve filtrability, or as viscosity agents for overbased detergents.
  • the overbased detergents are preferably free from inorganic halides, ammonium salts, dihydric alcohols or residues thereof.
  • the overbased detergent advantageously has a KV 40 of at most 20,000 mm 2 /s, preferably at most 10,000 mm 2 /s, especially at most 5,000 mm 2 /s, and a KV 100 of at most 2,000 mm 2 /s, preferably at most 1,000 mm 2 /s, especially at most 500 mm 2 /s.
  • KV 40 of at most 20,000 mm 2 /s, preferably at most 10,000 mm 2 /s, especially at most 5,000 mm 2 /s
  • KV 100 of at most 2,000 mm 2 /s, preferably at most 1,000 mm 2 /s, especially at most 500 mm 2 /s.
  • the basicity of the detergent is preferably expressed as a total base number (TBN).
  • TBN total base number is the amount of acid needed to neutralize all of the basicity of the overbased material.
  • the TBN may be measured using ASTM standard D2896 or an equivalent procedure.
  • the detergent may have a low TBN (i.e. a TBN of less than 50), a medium TBN (i.e. a TBN of 50 to 150) or a high TBN (i.e. a TBN of greater than 150, such as 150-500).
  • Preferred detergents according to the invention have a TBN of greater than 150.
  • Sulphonic acids are typically obtained by sulphonation of hydrocarbyl-substituted, especially alkyl-substituted, aromatic hydrocarbons, for example, those obtained from the fractionation of petroleum by distillation and/or extraction, or by the alkylation of aromatic hydrocarbons.
  • alkyl-substituted aromatic hydrocarbons for example, those obtained from the fractionation of petroleum by distillation and/or extraction, or by the alkylation of aromatic hydrocarbons.
  • Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, biphenyl or their halogen derivatives, for example, chlorobenzene, chlorotoluene or chloronaphthalene.
  • Alkylation of aromatic hydrocarbons may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 100 carbon atoms, such as, for example, haloparaffins, olefins that may be obtained by dehydrogenation of paraffins, and polyolefins, for example, polymers of ethylene, propylene, and/or butene.
  • alkylaryl sulphonic acids usually contain from about 7 to about 100 or more carbon atoms. They preferably contain from about 16 to about 80 carbon atoms, or 12 to 40 carbon atoms, per alkyl-substituted aromatic moiety, depending on the source from which they are obtained.
  • hydrocarbon solvents and/or diluent oils may also be included in the reaction mixture, as well as promoters and viscosity control agents.
  • Such sulphonic acids can be sulphurized. Whether sulphurized or non-sulphurized these sulphonic acids are believed to have surfactant properties comparable to those of sulphonic acids, rather than surfactant properties comparable to those of phenols.
  • Sulphonic acids suitable for use in accordance with the invention also include alkyl sulphonic acids.
  • the alkyl group suitably contains 9 to 100 carbon atoms, advantageously 12 to 80 carbon atoms, especially 16 to 60 carbon atoms.
  • any suitable cation may be present, for example, a quaternary nitrogenous ion, or, preferably, a metal ion.
  • Suitable metal ions include those of alkali metals, alkaline earth metals (including magnesium) and transition metals. Examples of suitable metals are lithium, potassium, sodium, magnesium, calcium, barium, copper, zinc, and molybdenum. Preferred metals are lithium, potassium, sodium, magnesium and calcium, more preferably lithium, sodium, magnesium and calcium, especially calcium. Neutralization of surfactants may be effected before addition of the basic calcium compound used in the overbasing step or by means of the basic calcium compound.
  • Overbased detergents which are normally prepared as concentrates in oil containing, for example, 50 to 70 mass % overbased detergent based on the mass of the concentrate, are useful as additives for oil-based compositions, for example, lubricants or greases.
  • the amount of overbased detergent to be included in the oil-based composition depends on the type of composition and its proposed application: lubricants for marine applications typically contain 0.5 to 18 mass % of overbased detergent, on an active ingredient basis based on the final lubricant, while automotive crankcase lubricating oils typically contain 0.01 to 6 mass % of overbased detergent, on an active ingredient basis based on the final lubricant.
  • the overbased detergents prepared are oil-soluble or are dissolvable in oil with the aid of a suitable solvent, or are stably dispersible materials.
  • Oil-soluble, dissolvable, or stably dispersible does not necessarily indicate that the additives are soluble, dissolvable, miscible, or capable of being suspended in oil in all proportions. It does mean, however, that the additives are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed.
  • the incorporation in an oil-based composition of other additives may permit incorporation of higher levels of a particular additive, if desired.
  • the overbased detergents may be incorporated into a base oil in any convenient way. Thus, they may be added directly to the oil by dispersing or by dissolving them in the oil at the desired level of concentration, optionally with the aid of a suitable solvent such, for example, as toluene or cyclohexane. Such blending can occur at room temperature or at elevated temperature.
  • the detergent may also contain a further surfactant group, such as groups selected from: phenol, salicylic acid, carboxylic acid and naphthenic acid, that may be obtained by manufacture of a hybrid material in which two or more different surfactant groups are incorporated during the overbasing process.
  • a further surfactant group such as groups selected from: phenol, salicylic acid, carboxylic acid and naphthenic acid, that may be obtained by manufacture of a hybrid material in which two or more different surfactant groups are incorporated during the overbasing process.
  • hybrid materials are an overbased calcium salt of surfactants sulphonic acid and phenol; an overbased calcium salt of surfactants sulphonic acid and salicylic acid; an overbased calcium salt of surfactants sulphonic acid and carboxylic acid; and an overbased calcium salt of surfactants salicylic acid, phenol and sulphonic acid.
  • any suitable proportions by mass may be used, preferably the mass to mass proportion of any one overbased metal compound to any other metal overbased compound is in the range of from 5:95 to 95:5; such as from 90:10 to 10:90; more preferably from 20:80 to 80:20; especially from 70:30 to 30:70; advantageously from 60:40 to 40:60.
  • hybrid materials include, for example, those described in WO-A- 97/46643 ; WO-A- 97/46644 ; WO-A- 97/46645 ; WO-A- 97/46646 ; and WO-A- 97/46647 .
  • the lubricating oil composition may include at least one friction modifier, such as, for example, a friction modifier selected from: glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
  • a friction modifier selected from: glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and
  • Other known friction modifiers comprise oil-soluble organo-molybdenum compounds.
  • organo-molybdenum friction modifiers also provide antioxidant and antiwear credits to a lubricating oil composition.
  • oil-soluble organo-molybdenum compounds there may be mentioned the dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulphides, and the like, and mixtures thereof.
  • Particularly preferred are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates.
  • the molybdenum compound may be an acidic molybdenum compound. These compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure and are typically hexavalent. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl 4 , MoO 2 Br 2 , Mo 2 O 3 Cl 6 , molybdenum trioxide or similar acidic molybdenum compounds.
  • the molybdenum compounds may be of the formula Mo(ROCS 2 ) 4 and Mo(RSCS 2 ) 4 wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms. Especially preferred are the dialkyldithiocarbamates of molybdenum.
  • organo-molybdenum compounds are trinuclear molybdenum compounds, especially those of the formula Mo 3 S k L n Q z and mixtures thereof wherein the L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
  • the ligands are independently selected from the group of -X- R 1, and and mixtures thereof, wherein X, X 1 , X 2 , and Y are independently selected from the group of oxygen and sulphur, and wherein R 1 , R 2 , and R are independently selected from hydrogen and organo groups that may be the same or different.
  • the organo groups are hydrocarbyl groups such as alkyl (e.g., in which the carbon atom attached to the remainder of the ligand is primary or secondary), aryl, substituted aryl and ether groups. More preferably, each ligand has the same hydrocarbyl group.
  • hydrocarbyl denotes a substituent having carbon atoms directly attached to the remainder of the ligand and is predominantly hydrocarbyl in character within the context of this invention.
  • substituents include the following:
  • the organo groups of the ligands have a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil.
  • the number of carbon atoms in each group will generally range between about 1 to about 100, preferably from about 1 to about 30, and more preferably between about 4 to about 20.
  • Preferred ligands include dialkyldithiophosphate, alkylxanthate, and dialkyldithiocarbamate, and of these dialkyldithiocarbamate is more preferred.
  • Organic ligands containing two or more of the above functionalities are also capable of serving as ligands and binding to one or more of the cores. Those skilled in the art will realize that formation of the compounds requires selection of ligands having the appropriate charge to balance the core's charge.
  • Oil-soluble or dispersible trinuclear molybdenum compounds can be prepared by reacting in the appropriate liquid(s)/solvent(s) a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 ⁇ n(H 2 O), where n varies between 0 and 2 and includes non-stoichiometric values, with a suitable ligand source such as a tetralkylthiuram disulphide.
  • a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 ⁇ n(H 2 O), where n varies between 0 and 2 and includes non-stoichiometric values
  • a molybdenum source such as of (NH 4 ) 2 Mo 3 S1 3 ⁇ n(H 2 O)
  • a ligand source such as tetralkylthiuram disulphide, dialkyldithiocarbamate, or dialkyldithiophosphate
  • a sulphur abstracting agent such cyanide ions, sulphite ions, or substituted phosphines.
  • a trinuclear molybdenum-sulphur halide salt such as [M'] 2 [Mo 3 S 7 A 6 ], where M' is a counter ion, and A is a halogen such as Cl, Br, or I, may be reacted with a ligand source such as a dialkyldithiocarbamate or dialkyldithiophosphate in the appropriate liquid(s)/solvent(s) to form an oil-soluble or dispersible trinuclear molybdenum compound.
  • the appropriate liquid/solvent may be, for example, aqueous or organic.
  • a compound's oil solubility or dispersibility may be influenced by the number of carbon atoms in the ligand's organo groups. At least 21 total carbon atoms should be present among all the ligand's organo groups.
  • the ligand source chosen has a sufficient number of carbon atoms in its organo groups to render the compound soluble or dispersible in the lubricating composition.
  • oil-soluble or “dispersible” used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible, or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
  • the molybdenum compound is preferably an organo-molybdenum compound. Moreover, the molybdenum compound is preferably selected from the group consisting of a molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate, molybdenum dithiophosphinate, molybdenum xanthate, molybdenum thioxanthate, molybdenum sulphide and mixtures thereof. Most preferably, the molybdenum compound is present as molybdenum dithiocarbamate. The molybdenum compound may also be a trinuclear molybdenum compound.
  • MoDTC molybdenum dithiocarbamate
  • molybdenum dithiophosphate molybdenum dithiophosphinate
  • molybdenum xanthate molybdenum thioxanthate
  • molybdenum sulphide molybdenum s
  • the lubricating oil composition may include at least one antiwear agent or antioxidant agent.
  • Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents.
  • the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper.
  • the zinc salts are most commonly used in lubricating oils in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of zinc due to the use of an excess of the basic zinc compound in the neutralization reaction.
  • the preferred zinc dihydrocarbyl dithiophosphates are oil soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following formula: wherein R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
  • the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater.
  • the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
  • the present invention may be particularly useful when used with lubricant compositions containing phosphorus levels of from about 0.02 to about 0.12 wt. %, preferably from about 0.03 to about 0.10 wt. %. More preferably, the phosphorous level of the lubricating oil composition will be less than about 0.08 wt. %, such as from about 0.05 to about 0.08 wt. %.
  • the lubricating oil composition may include at least one oxidation inhibitor.
  • Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C 12 alkyl side chains, alkylphenol sulphides, oil soluble phenates and sulphurized phenates, phosphosulphurized or sulphurized hydrocarbons or esters, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in U.S. Patent No. 4,867,890 , and molybdenum-containing compounds.
  • Aromatic amines having at least two aromatic groups attached directly to the nitrogen constitute another class of compounds that is frequently used for antioxidancy. They are preferably used in only small amounts, i.e., up to 0.4 wt. %, or more preferably avoided altogether other than such amount as may result as an impurity from another component of the composition.
  • Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms.
  • the amines may contain more than two aromatic groups.
  • Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an atom or group (e.g., an oxygen or sulphur atom, or a -CO-, -SO 2 - or alkylene group) and two are directly attached to one amine nitrogen also considered aromatic amines having at least two aromatic groups attached directly to the nitrogen.
  • the aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups.
  • the amount of any such oil-soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen should preferably not exceed 0.4 wt. % active ingredient.
  • the lubricating oil composition may include at least one viscosity modifier.
  • suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene, polymethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, interpolymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene.
  • the lubricating oil composition may include at least one viscosity index improver.
  • a viscosity index improver dispersant functions both as a viscosity index improver and as a dispersant.
  • examples of viscosity index improver dispersants include reaction products of amines, for example polyamines, with a hydrocarbyl-substituted mono -or dicarboxylic acid in which the hydrocarbyl substituent comprises a chain of sufficient length to impart viscosity index improving properties to the compounds.
  • the viscosity index improver dispersant may be, for example, a polymer of a C 4 to C 24 unsaturated ester of vinyl alcohol or a C 3 to C 10 unsaturated mono-carboxylic acid or a C 4 to C 10 di-carboxylic acid with an unsaturated nitrogen-containing monomer having 4 to 20 carbon atoms; a polymer of a C 2 to C 20 olefin with an unsaturated C 3 to C 10 mono- or di-carboxylic acid neutralised with an amine, hydroxyamine or an alcohol; or a polymer of ethylene with a C 3 to C 20 olefin further reacted either by grafting a C 4 to C 20 unsaturated nitrogen-containing monomer thereon or by grafting an unsaturated acid onto the polymer backbone and then reacting carboxylic acid groups of the grafted acid with an amine, hydroxy amine or alcohol.
  • the lubricating oil composition may include at least one pour point depressant.
  • Pour point depressants otherwise known as lube oil flow improvers (LOFI)
  • LOFI lube oil flow improvers
  • Such additives are well known. Typical of those additives that improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, and polymethacrylates.
  • Foam control can be provided by an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
  • additives which maintains the stability of the viscosity of the blend include the long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides which are used in the preparation of the ashless dispersants as hereinbefore disclosed.
  • each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function.
  • Representative effective amounts of such additives, when used in crankcase lubricants, are listed below. All the values listed are stated as mass percent active ingredient.
  • the Noack volatility of the fully formulated lubricating oil composition (oil of lubricating viscosity plus all additives) will be no greater than 12, such as no greater than 10, preferably no greater than 8.
  • additive concentrates comprising additives (concentrates sometimes being referred to as additive packages) whereby several additives can be added simultaneously to the oil to form the lubricating oil composition.
  • the final composition may employ from 5 to 25 mass %, preferably 5 to 18 mass %, typically 10 to 15 mass % of the concentrate, the remainder being oil of lubricating viscosity.
  • the lubricating oils may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gasoline engine oils, mineral lubricating oils and heavy duty diesel oils. Generally, the viscosity of the oil ranges from about 2 mm 2 /sec (centistokes) to about 40 mm 2 /sec, especially from about 4 mm 2 /sec to about 20 mm 2 /sec, as measured at 100°C.
  • Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulphides and derivative, analogs and homologs thereof.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester of tetraethylene glycol.
  • polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide
  • alkyl and aryl ethers of polyoxyalkylene polymers e.g.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
  • esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes.
  • oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexy
  • Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
  • Unrefined, refined and re-refined oils can be used in lubricants of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations; petroleum oil obtained directly from distillation; or ester oil obtained directly from an esterification and used without further treatment would be an unrefined oil.
  • Refined oils are similar to unrefined oils except that the oil is further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to provide refined oils but begin with oil that has already been used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and are often subjected to additionally processing using techniques for removing spent additives and oil breakdown products.
  • the oil of lubricating viscosity may comprise a Group I, Group II, Group III, Group IV or Group V base stocks or base oil blends of the aforementioned base stocks.
  • the oil of lubricating viscosity is a Group III, Group IV or Group V base stock, or a mixture thereof provided that the volatility of the oil or oil blend, as measured by the NOACK test (ASTM D5880), is less than or equal to 13.5%, preferably less than or equal to 12%, more preferably less than or equal to 10%, most preferably less than or equal to 8%; and a viscosity index (VI) of at least 120, preferably at least 125, most preferably from about 130 to 140.
  • VI viscosity index
  • base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 . Said publication categorizes base stocks as follows:
  • Example 1 300TBN Ca sulphonate detergent manufactured in presence of 7.9% glycerol monooleate (Atsurf 594, available from Uniqema).
  • Example 2 300TBN Ca sulphonate detergent manufactured in presence of 7.9% ethoxylated tallow amine (ETHOMEEN T/12, available from Akzo Nobel).
  • Comparative Example 3 300TBN Ca sulphonate detergent manufactured in presence of 7.9% oleamide (Armid O, available from Akzo Nobel.
  • Comparative Example 4 300TBN Ca sulphonate detergent manufactured in presence of 8.2% oleamide (Armid O, available from Akzo Nobel.
  • the initial charge of alkyl benzene sulphonic acid is reduced by the same mass % as the charge of oleamide used.
  • overbased calcium sulphonate detergents in Table 1 and a 300 TBN calcium sulphonate detergent were blended into the following blends: Table 2 Blend 1 Blend 2 Blend 3 Blend 4 Blend 5 300 TBN Calcium Sulphonate, (available from Infineum UK Ltd) 17.78 - - - - Comparative Example 1 from Table 1 - 21.11 - - - Example 2 from Table 1 - - 19.63 - - Comparative Example 3 from Table 1 - - - 12.73 - Comparative Example 4 from Table 1 - - - - 12.73 Dispersant (available from Infineum UK Ltd) 35.56 35.56 35.56 35.56 35.56 35.56 35.56 Anti-foam (available from Infineum UK Ltd) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Aminic Anti-oxidant (Naugalube 438L, available from Chemtura) 7.78 7.78 7.78 7.78 7.78 7.78 Phenolic Anti-oxidant (AN 12
  • Blend 3 produces the best results in the stability test.
  • Blend 3 includes an overbased calcium sulphonate detergent manufactured in the presence of an amine-based friction modifier. Such improvements in stability are not observed for hybrids containing ester or amide-based friction modifiers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Détergent sulfonate métallique surbasé ayant incorporé à l'intérieur au moins un modificateur de frottement comprenant au moins un groupe amine ; dans lequel le modificateur de frottement est choisi parmi : des mono-amines et des diamines à substitution hydrocarbyle alkoxylées et des hydrocarbyl éther amines ; de préférence parmi des amines de suif alkoxylées et des éther amines de suif alkoxylées ; de préférence des amines alkoxylées contenant environ deux moles d'oxyde d'alkylène par mole d'azote.
  2. Détergent sulfonate métallique surbasé tel que revendiqué dans la revendication 1, dans lequel le détergent sulfonate métallique surbasé est un détergent sulfonate alkylbenzène surbasé.
  3. Détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le modificateur de frottement est choisi parmi : des amines éthoxylées et des éther amines éthoxylées.
  4. Détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le modificateur de frottement comprend un groupe hydrocarbyle linéaire, de préférence un groupe alkyle linéaire.
  5. Détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le modificateur de frottement est choisi parmi les deux structures suivantes :
    Figure imgb0014
    Figure imgb0015
    dans lesquelles R est un groupe alkyle en C6 à C28, de préférence un groupe alkyle en C12 à C25, X et Y sont indépendamment O, S ou CH2, x et y valent indépendamment 1 à 6, p vaut 2 à 4, de préférence 2, et m et n valent indépendamment 0 à 5.
  6. Composition d'huile lubrifiante comprenant une huile de viscosité propre à la lubrification et le détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications 1 à 5.
  7. Utilisation du détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications 1 à 5, comme détergent et modificateur de frottement dans une composition d'huile lubrifiante.
  8. Procédé de préparation du détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications 1 à 5 ; le procédé comprenant les étapes suivantes :
    - fourniture d'un mélange d'un acide alkyl arène sulfonique, d'un solvant hydrocarbure, d'un alcool et d'un excès stoechiométrique d'une base de métal alcalin ou de métal alcalino-terreux, de préférence l'hydroxyde de calcium, au-dessus de ce qui est requis pour réagir avec l'acide sulfonique ;
    - surbasage du mélange avec un agent de surbasage, de préférence le dioxyde de carbone ;
    - « maturation thermique » du mélange ; et
    - addition d'un modificateur de frottement ayant au moins un groupe amine au mélange après l'étape de « maturation thermique », où le modificateur de frottement est choisi parmi : des mono-amines et des diamines à substitution hydrocarbyle alkoxylées et des hydrocarbyl éther amines ; de préférence parmi des amines de suif alkoxylées et des éther amines de suif alkoxylées ; de préférence des amines alkoxylées contenant environ deux moles d'oxyde d'alkylène par mole d'azote.
  9. Procédé de réduction du frottement dans un moteur, le procédé comprenant l'étape de lubrification du moteur avec la composition d'huile lubrifiante telle que revendiquée dans la revendication 6.
  10. Détergent sulfonate métallique surbasé tel que revendiqué dans l'une quelconque des revendications 1 à 5, que l'on peut obtenir par :
    - fourniture d'un mélange d'un acide alkyl arène sulfonique, d'un solvant hydrocarbure, d'un alcool et d'un excès stoechiométrique d'une base de métal alcalin ou de métal alcalino-terreux, de préférence l'hydroxyde de calcium, au-dessus de ce qui est requis pour réagir avec l'acide sulfonique ;
    - surbasage du mélange avec un agent de surbasage, de préférence le dioxyde de carbone ;
    - « maturation thermique » du mélange ; et
    - addition d'un modificateur de frottement ayant au moins un groupe amine au mélange après l'étape de « maturation thermique », où le modificateur de frottement est choisi parmi des mono-amines et des diamines à substitution hydrocarbyle alkoxylées et des hydrocarbyl éther amines ; de préférence parmi des amines de suif alkoxylées et des éther amines de suif alkoxylées ; de préférence des amines alkoxylées contenant environ deux moles d'oxyde d'alkylène par mole d'azote.
EP08105207.8A 2007-10-04 2008-09-02 Détergent à base de sulfonate métallique surbasé Active EP2045314B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08105207.8A EP2045314B1 (fr) 2007-10-04 2008-09-02 Détergent à base de sulfonate métallique surbasé

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07117915 2007-10-04
EP08105207.8A EP2045314B1 (fr) 2007-10-04 2008-09-02 Détergent à base de sulfonate métallique surbasé

Publications (2)

Publication Number Publication Date
EP2045314A1 EP2045314A1 (fr) 2009-04-08
EP2045314B1 true EP2045314B1 (fr) 2017-11-08

Family

ID=39364075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08105207.8A Active EP2045314B1 (fr) 2007-10-04 2008-09-02 Détergent à base de sulfonate métallique surbasé

Country Status (5)

Country Link
EP (1) EP2045314B1 (fr)
JP (2) JP2009091576A (fr)
CN (1) CN101402898B (fr)
CA (1) CA2640400C (fr)
SG (1) SG151242A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2974111B1 (fr) * 2011-04-14 2013-05-10 Total Raffinage Marketing Lubrifiant cylindre pour moteur marin deux temps
FR3005474B1 (fr) * 2013-05-07 2016-09-09 Total Raffinage Marketing Lubrifiant pour moteur marin
CN106800960B (zh) * 2015-11-25 2020-02-28 中国石油化工股份有限公司 环烷酸盐清净剂过碳酸化的处理方法和高碱值环烷酸盐清净剂的制备方法
CN106800961B (zh) * 2015-11-25 2020-02-28 中国石油化工股份有限公司 磺酸盐清净剂过碳酸化的处理方法和高碱值磺酸盐清净剂的制备方法
EP3192858B1 (fr) 2016-01-15 2018-08-22 Infineum International Limited Utilisation d'une composition d'huile lubrifiante

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429811A (en) * 1966-08-17 1969-02-25 Exxon Research Engineering Co Preparation of overbased sulfonates
GB1399092A (en) * 1971-05-27 1975-06-25 Cooper & Co Ltd Edwin Lubricant additives
FR2271281B2 (fr) * 1974-03-29 1977-01-21 Inst Francais Du Petrole
GB2056482A (en) 1979-08-13 1981-03-18 Exxon Research Engineering Co Lubricating oil compositions
EP0323087A1 (fr) * 1987-12-29 1989-07-05 Exxon Chemical Patents Inc. Sulfonate de magnésium superbasique
GB9504033D0 (en) * 1995-02-28 1995-04-19 Exxon Chemical Patents Inc Magnesium low base number sulphonates
JPH093467A (ja) * 1995-06-15 1997-01-07 Kao Corp エンジン用潤滑油添加剤及びエンジン用潤滑油組成物
GB9611317D0 (en) 1996-05-31 1996-08-07 Exxon Chemical Patents Inc Overbased metal-containing detergents
GB9611424D0 (en) 1996-05-31 1996-08-07 Exxon Chemical Patents Inc Overbased metal-containing detergents
GB9611316D0 (en) 1996-05-31 1996-08-07 Exxon Chemical Patents Inc Overbased metal-containing detergents
GB9611428D0 (en) 1996-05-31 1996-08-07 Exxon Chemical Patents Inc Overbased metal-containing detergents
GB9611318D0 (en) 1996-05-31 1996-08-07 Exxon Chemical Patents Inc Overbased metal-containing detergents
GB9900035D0 (en) * 1999-01-04 1999-02-24 Infineum Uk Ltd Overbased metal detergents
US6300291B1 (en) * 1999-05-19 2001-10-09 Infineum Usa L.P. Lubricating oil composition
US6333298B1 (en) * 1999-07-16 2001-12-25 Infineum International Limited Molybdenum-free low volatility lubricating oil composition
US6723685B2 (en) * 2002-04-05 2004-04-20 Infineum International Ltd. Lubricating oil composition
US20040087452A1 (en) * 2002-10-31 2004-05-06 Noles Joe R. Lubricating oil composition
US20060030498A1 (en) * 2004-08-05 2006-02-09 Hartley Rolfe J Lubricating oil additive concentrates
US20060229216A1 (en) * 2005-04-06 2006-10-12 Dowding Peter J Method of improving the stability or compatibility of a detergent
EP1743933B1 (fr) * 2005-07-14 2019-10-09 Infineum International Limited Utilisation pour améliorer la compatibilité d'un détergent avec des modificateurs de friction d'une composition lubrifiante
JP2007126542A (ja) * 2005-11-02 2007-05-24 Nippon Oil Corp 潤滑油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP5925929B2 (ja) 2016-05-25
CA2640400C (fr) 2015-12-01
EP2045314A1 (fr) 2009-04-08
CA2640400A1 (fr) 2009-04-04
JP2009091576A (ja) 2009-04-30
SG151242A1 (en) 2009-04-30
JP2015098614A (ja) 2015-05-28
CN101402898B (zh) 2014-04-16
CN101402898A (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
US8105991B2 (en) Overbased metal sulphonate detergent
US8703673B2 (en) Method of improving the compatibility of an overbased detergent with other additives in a lubricating oil composition
EP1743933B1 (fr) Utilisation pour améliorer la compatibilité d'un détergent avec des modificateurs de friction d'une composition lubrifiante
CA2542201C (fr) Methode permettant d'accroitre la stabilite ou la compatibilite d'un detergent
JP5925929B2 (ja) 過塩基化金属スルホナート清浄剤
EP1710294B1 (fr) Une méthode pour améliorer la stabilité ou la compatibilité des tensioactifs
CA2799378C (fr) Methode de reduction du taux d'alcanilite d'une composition d'huile lubrifiante dans un moteur
EP1803793B1 (fr) Composiitons d'huile lubrifiante
EP3321347B1 (fr) Additifs d'huile lubrifiante à base d'un tensioactif gemini surbasique
EP2559748B1 (fr) Composition d'huile lubrifiante
EP3192858B1 (fr) Utilisation d'une composition d'huile lubrifiante
SG181215A1 (en) Lubricating oil composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20090514

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 944143

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008052838

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 944143

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008052838

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210818

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210813

Year of fee payment: 14

Ref country code: DE

Payment date: 20210812

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008052838

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20221001

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240808

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240808

Year of fee payment: 17