EP1803793B1 - Composiitons d'huile lubrifiante - Google Patents

Composiitons d'huile lubrifiante Download PDF

Info

Publication number
EP1803793B1
EP1803793B1 EP06122380.6A EP06122380A EP1803793B1 EP 1803793 B1 EP1803793 B1 EP 1803793B1 EP 06122380 A EP06122380 A EP 06122380A EP 1803793 B1 EP1803793 B1 EP 1803793B1
Authority
EP
European Patent Office
Prior art keywords
lubricating oil
detergent
mass
oil composition
phenate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06122380.6A
Other languages
German (de)
English (en)
Other versions
EP1803793A1 (fr
Inventor
Matthew David c/o Infineum UK Ltd. Irving
Stephen Arrowsmith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP06122380.6A priority Critical patent/EP1803793B1/fr
Publication of EP1803793A1 publication Critical patent/EP1803793A1/fr
Application granted granted Critical
Publication of EP1803793B1 publication Critical patent/EP1803793B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/24Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to lubricating oil compositions. More specifically, the present invention is directed to lubricating oil compositions, particularly crankcase lubricants for internal combustion engines, more particularly compression-ignited (diesel) internal combustion engines, especially heavy duty diesel engines, which lubricating oil compositions provide improved compatibility with exhaust gas after-treatment devices and acceptable lubricating oil performance, particularly excellent piston cleanliness performance.
  • lubricating oil compositions particularly crankcase lubricants for internal combustion engines, more particularly compression-ignited (diesel) internal combustion engines, especially heavy duty diesel engines, which lubricating oil compositions provide improved compatibility with exhaust gas after-treatment devices and acceptable lubricating oil performance, particularly excellent piston cleanliness performance.
  • Such exhaust gas after-treatment devices may include catalytic converters, which can contain one or more oxidation catalysts, NO x storage catalysts, and/or NH 3 reduction catalysts; and/or a particulate trap.
  • Oxidation catalysts can become poisoned and rendered less effective by exposure to certain elements/compounds present in engine exhaust gasses, particularly by exposure to phosphorus and phosphorus compounds introduced into the exhaust gas by the degradation of phosphorus-containing lubricating oil additives.
  • Reduction catalysts are sensitive to sulfur and sulfur compounds in the engine exhaust gas introduced by the degradation of both the base oil used to blend the lubricant, and sulfur-containing lubricating oil additives.
  • Particulate traps can become blocked by metallic ash, which is a product of degraded metal-containing lubricating oil additives.
  • lubricating oil additives that exert a minimum negative impact on such after-treatment devices must be identified, and OEM specifications for "new service fill” and “first fill” heavy duty diesel (HDD) lubricants require maximum sulfur levels of 0.4 mass %; maximum phosphorus levels of 0.12 mass %, and sulfated ash contents below 1.1 mass %, which lubricants are referred to as “mid-SAPS” lubricants (where "SAPS” is an acronym for "Sulfated Ash, Phosphorus, Sulfur”).
  • the lubricating oil composition must continue to provide the high levels of lubricant performance, including adequate detergency, dictated by the "new service", and "first fill" specifications of the OEM's, such as the ACEA E6 and MB p228.51 specifications for heavy duty engine lubricants.
  • United States patent application number US 2005/0043191 discloses a lubricating oil formulation which is free of zinc and phosphorus and comprises at least one borated dispersant, a mixture of metal detergents, an amine antioxidant and a trinuclear molybdenum additive. Provided the composition comprises at least 700 ppm boron and at least 80 ppm molybdenum, acceptable engine performance is achieved.
  • dihydrocarbyl dithiophosphate metal salts The metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper.
  • ZDDP zinc salts of dihydrocarbyl dithiophosphate
  • metal-based detergent additives include two distinct components, "soap", the function of which is to remove deposits from engine parts, particularly piston deposits; and overbasing, which neutralizes acidic combustion products. Each of the soap and overbasing components of the detergent contribute to the ash content of the detergent.
  • carboxylate soap is generally considered to provide superior piston cleaning performance and as superior performance allows for the use of less detergent soap
  • carboxylate detergents have been favored in the formulation of mid- and low-SAPS lubricating oil compositions.
  • Carboxylates also provide an antioxidancy credit and do not contribute to copper corrosivity.
  • carboxylate detergents are available from only a few sources and therefore, supply is constrained. Phenate and sulfonate detergents each have performance debits and credits relative to one another.
  • Phenates for example, provide a credit in antioxidancy relative sulfonates, but have a deleterious effect on copper corrosivity. Sulfonates provide an antiwear credit relative to phenates, but introduce more sulfur and do not boost antioxidancy. Therefore, when used, phenate and sulfonate detergents are commonly employed in combination. It would be beneficial to be able to provide mid- and low-SAPS lubricating oil compositions formulated with phenate/sulfonate mixtures, which provide acceptable piston cleanliness performance.
  • the present inventors have identified an anomaly in the performance of phenate detergents. Specifically, while increasing the amount of phenate soap had not been found to have a significant effect on piston cleanliness performance in lubricating oil compositions having conventional ash contents, it has been observed that piston cleanliness performance can be improved dramatically by increasing the level of phenate soap in mid- and low-SAPS lubricating oil compositions therefore allowing formulators to adjust the phenate/sulfonate detergent mixture to provide excellent piston cleanliness performance in mid- and low-SAPS lubricating oil compositions.
  • a lubricating oil composition having a phosphorus content of no more than 0.12 mass %, a sulfur content of no more than 0.4 mass % and an ash content, calculated as sulfated ash, of no more than 1.1 mass %, comprising a major amount of oil of lubricating viscosity, a phenate detergent and a sulfonate detergent, wherein the phenate detergent is present in an amount providing the lubricating oil composition with at least 1.4 grams of phenate soap (per 100 grams of lubricating oil composition), and wherein the ratio of the amount of phenate soap to sulfonate soap in grams is at least 5: 1.
  • the lubricating oil composition has a phosphorus content of less than 0.08 mass %, a sulfur content of less than 0.3 mass % and an ash content, calculated as sulfated ash, of less than 1.0 mass %.
  • a method of operating a spark- or compression-ignited internal combustion vehicular engine particularly a compression-ignited internal combustion vehicular engine, more particularly a heavy duty diesel engine, equipped with an aftertreatment device containing an oxidation and/or reduction catalyst and/or a particulate trap, which method comprises lubricating said engine with a lubricating oil composition of the first aspect.
  • a lubricating oil composition of the first aspect to maintain the piston cleanliness of a spark- or compression-ignited internal combustion vehicular engine, particularly a compression-ignited internal combustion vehicular engine, more particularly a heavy duty diesel engine, provided with at least one exhaust gas treatment device.
  • oils of lubricating viscosity useful in the practice of the invention may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gasoline engine oils, mineral lubricating oils and heavy duty diesel oils.
  • the viscosity of the oil ranges from about 2 mm 2 /sec (centistokes) to about 40 mm 2 /sec, especially from about 3 mm 2 /sec to about 20 mm 2 /sec, most preferably from about 4 mm 2 /sec to about 10 mm 2 /sec, as measured at 100°C.
  • Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and derivative, analogs and homologs thereof.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester of tetraethylene glycol.
  • polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide
  • alkyl and aryl ethers of polyoxyalkylene polymers e.g.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
  • esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra- (4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes.
  • oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra- (4-methyl-2-ethylhexyl)
  • Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
  • base oil examples include gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch-synthesized hydrocarbons made from synthesis gas containing hydrogen and carbon monoxide using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
  • GTL gas-to-liquid
  • the oil of lubricating viscosity may comprise a Group I, Group II, Group III oil, or may comprise base oil blends of Group I, Group II, Group III oil and Group IV and/or Group V oil.
  • the oil of lubricating viscosity is a Group II, Group III, Group IV or Group V base oil or base oil blend, or a blend of a Group I base oil and one or more of a Group II, Group III, Group IV or Group V base oil.
  • the base oil or base oil blend preferably has a saturate content of at least 65%, more preferably at least 75%, such as at least 85%. Most preferably, the base oil, or base oil blend, has a saturate content of greater than 90%.
  • the base oil or base oil blend will have a sulfur content of less than 1 mass %, preferably less than 0.6 mass %, most preferably less than 0.3 mass %.
  • the viscosity index (VI) of the base oil or base oil blend is at least 80, preferably at least 90, more preferably from about 120 to 150.
  • Base oil in this invention is the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 .
  • Said publication categorizes base oil as follows: a) Group I base oils contains less than 90 percent saturates and/or greater than 0.03 mass % sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table 1. b) Group II base oils contains greater than or equal to 90 percent saturates and less than or equal to 0.03 mass % sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table 1.
  • Group III base oils contains greater than or equal to 90 percent saturates and less than or equal to 0.03 mass % sulfur and have a viscosity index greater than or equal to 120 using the test methods specified in Table 1.
  • Group IV base oils are polyalphaolefins (PAO).
  • Group V base oil includes all other base oil not included in Group I, II, III, or IV. Analytical Methods for Base Stock Property Test Method Saturates ASTM D 2007 Viscosity Index ASTM D 2270 Sulfur ASTM D 4294
  • Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
  • Detergents generally comprise a polar head with long hydrophobic tail, with the polar head comprising a metal salt of an acid organic compound.
  • the salts may contain a substantially stoichiometric amount of the metal in which they are usually described as normal or neutral salts, and would typically have a total base number (TBN), as may be measured by ASTM D-2896 of from 0 to 80. It is possible to include large amounts of a metal base by reacting an excess of a metal compound, such as an oxide or hydroxide, with an acidic gas such as carbon dioxide.
  • the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g., carbonate) micelle.
  • a metal base e.g., carbonate
  • Such overbased detergents may have a TBN of 150 or greater, and overbased detergents typically used have a TBN from 250 to 450, or more.
  • Detergents that are conventionally employed include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., barium, sodium, potassium, lithium, calcium, and magnesium.
  • a metal particularly the alkali or alkaline earth metals, e.g., barium, sodium, potassium, lithium, calcium, and magnesium.
  • the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
  • Particularly convenient metal detergents are neutral and overbased metal detergents having TBN of from 20 to 450. Combinations of detergents, whether overbased or neutral or both, may be used.
  • Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
  • the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
  • the alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
  • the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
  • the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 wt. % of that stoichiometrically required.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
  • Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
  • Carboxylate detergents e.g., salicylates
  • the aromatic moiety of the aromatic carboxylic acid can contain heteroatoms, such as nitrogen and oxygen. Preferably, the moiety contains only carbon atoms; more preferably the moiety contains six or more carbon atoms; for example benzene is a preferred moiety.
  • the aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, either fused or connected via alkylene bridges. The carboxylic moiety may be attached directly or indirectly to the aromatic moiety.
  • the carboxylic acid group is attached directly to a carbon atom on the aromatic moiety, such as a carbon atom on the benzene ring. More preferably, the aromatic moiety also contains a second functional group, such as a hydroxy group or a sulfonate group, which can be attached directly or indirectly to a carbon atom on the aromatic moiety.
  • a second functional group such as a hydroxy group or a sulfonate group
  • the lubricating oil compositions of the present invention comprise combinations of phenate detergents and sulfonate detergents wherein the phenate detergent is present in an amount providing the lubricating oil composition with at least 1.4 grams of phenate soap per 100 grams of lubricating oil composition, such as from 1.4 to 2.0 grams of phenate soap per 100 grams of lubricating oil composition, preferably at least 1.5 grams of phenate soap phenate soap per 100 grams of lubricating oil composition, such as from about 1.5 to about 1.8 grams of phenate soap per 100 grams of lubricating oil composition, more preferably at least 1.55 grams of phenate soap per 100 grams of lubricating oil composition, such as from about 1.55 to about 1.75 grams of phenate soap per 100 grams of lubricating oil composition.
  • the ratio of the amount of phenate soap to sulfonate soap (in grams) is at least 5:1, such as from about 5:1 to 50:1; preferably, at least about 7.5: 1, such as from about 7.5:1 to 25:1; more preferably, at least 10:1, such as from about 10:1 to 20:1.
  • lubricating oil compositions of the present invention are substantially free from carboxylate detergents (e.g., contain such detergents in an amount providing no more than 0.5 grams of carboxylate soap per 100 grams of lubricating oil composition), or completely free from carboxylate detergent.
  • Detergents generally useful in the formulation of lubricating oil compositions also include "hybrid" detergents formed with mixed surfactant systems including phenate and/or sulfonate components, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described, for example, in U.S. Patent Nos. 6,429,178 ; 6,429,179 ; 6,153,565 ; and 6,281,179 .
  • phenate/salicylates e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, as described, for example, in U.S. Patent Nos. 6,429,178 ; 6,429,179 ; 6,153,565 ; and 6,281,179 .
  • hybrid detergent would be considered equivalent to amounts of distinct phenate and sulfonate detergents introducing like amounts of phenate and sulfonate soaps, respectively.
  • Phenate detergents useful in the practice of the present invention are preferably those having, or having on average, a soap to metal ratio, in terms of grams of soap to grams of metal, of at least 6.0, and are preferably used in a total amount introducing into the composition no more than 0.85 mass % of ash, (expressed as sulfated ash or "SASH", and based on the total weight of the composition), such as 0.4 to 0.85 mass % ash, preferably no more than 0.75 mass % of ash, such as 0.55 to 0.75 mass % of ash, most preferably no more than 0.70 mass % of ash, such as 0.60 to 0.70 mass % of ash.
  • a soap to metal ratio in terms of grams of soap to grams of metal, of at least 6.0
  • the sulfonate detergent is present in an amount introducing into the composition no more than 0.35 mass % of ash, (expressed as sulfated ash or "SASH", and based on the total weight of the composition), such as 0.10 to 0.35 mass % of ash, preferably no more than 0.30 mass % of ash, such as 0.15 to 0.30 mass % of ash, most preferably no more than 0.25 mass % of ash, such as 0.18 to 0.25 mass % of ash, such that the total amount of ash introduced by detergent is preferably no more than 0.95 mass %, such as from 0.5 to 0.95 mass %, especially no more than 0.90 mass %, such as from about 0.70 to about 0.90 mass %, more preferably no more than 0.85 mass %, such as from about 0.75 to about 0.85 mass %.
  • 0.95 mass % such as from 0.5 to 0.95 mass %
  • 0.90 mass % such as from about 0.70 to about 0.90 mass %, more
  • the phenate detergent is neutral or only slightly overbased and has a total base number of from 50 to 150, preferably from 80 to 120, more preferably from about 90 to about 115, and the sulfonate provides the majority of the TBN to the lubricating oil composition and has a TBN of from 150 to 475, preferably from 250 to 425, more preferably from about 300 to about 410.
  • detergent(s) may comprise from about 3.0 to about 5.5 mass %, preferably from about 3.5 to about 5.0 mass %, most preferably from about 4.0 to about 4.75 mass % of the lubricating oil composition.
  • the percentage of surfactant, or soap in an overbased detergent, and thus the soap to metal ratio of a detergent, or mixture of detergents can be measured by dialysing a known amount (A g, approximately 20 g) of the liquid overbased detergent (substantially free from other lubricating oil additives) through a membrane in a Soxhlet extractor (150 mm height x 75 mm internal diameter) using n-hexane siphoning at a rate of 3 to 4 times per hour for 20 hours.
  • the membrane should be one which retains substantially all the metal-containing material, and passes substantially all the remainder of the sample.
  • a suitable membrane is a gum rubber membrane supplied by Carters Products, Division of Carter Wallace Inc., New York, NY 10105 under the trade name Trojans.
  • the dialysate and residue obtained on completion of the dialysis step are evaporated to dryness, any remaining volatile material then being removed in a vacuum oven (100°C at less than 1 torr or less than about 130 Pa).
  • the mass of the dried residue, in grams, is designated B.
  • Phenate and Sulfonate detergents are most commonly calcium-based.
  • magnesium salts can be used to replace some or all of the calcium salts. Because magnesium is a lighter metal than calcium, a magnesium-based detergent will introduce less sulfated ash, on a mass % basis, than a like amount of the corresponding calcium-based detergent.
  • lubricating oil compositions of the present invention contain a combination of magnesium and calcium detergents, such as a calcium sulfonate detergent and a magnesium phenate detergent; a calcium phenate detergent and a magnesium sulfonate detergent; a calcium sulfonate detergent, a calcium phenate detergent and a magnesium phenate detergent; or a calcium sulfonate detergent, a magnesium sulfonate detergent and a calcium phenate detergent.
  • magnesium and calcium detergents such as a calcium sulfonate detergent and a magnesium phenate detergent; a calcium phenate detergent and a magnesium sulfonate detergent; a calcium sulfonate detergent, a magnesium sulfonate detergent and a calcium phenate detergent.
  • additives may be incorporated into the compositions of the invention to enable particular performance requirements to be met.
  • additives which may be included in the lubricating oil compositions of the present invention are ashless dispersants, supplemental, phosphorus-free antioxidants, metal rust inhibitors, viscosity index improvers, corrosion inhibitors, anti-foaming agents, and pour point depressants. Some are discussed in further detail below.
  • Dihydrocarbyl dithiophosphate metal salts used as antiwear and antioxidant agents include those in which the metal is an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a zinc compound.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed.
  • Commercial additives frequently contain an excess of zinc due to the use of an excess of the basic zinc compound in the neutralization reaction.
  • the amount of dihydrocarbyl dithiophosphate metal salt used in the lubricating oil composition according to the invention is preferably such that it introduces an amount of phosphorus from about 0.03 to 0.12 mass %, preferably from about 0.04 to 0.10 mass %, and more preferably from about 0.05 to 0.08 mass %.
  • the preferred zinc dihydrocarbyl dithiophosphates are oil soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following formula: wherein R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
  • the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater.
  • the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
  • ZDDP is the most commonly used antioxidant/antiwear agent in lubricating oil compositions for internal combustion engines, and in conventional passenger car diesel engines formulated to meet present European ACEA specifications, ZDDP is present in lubricating oil in amounts of from about 1 to about 1.5 mass %, based upon the total weight of the lubricating oil composition. This amount of ZDDP introduces from about 0.1 to about 0.14 mass % of phosphorus into the lubricating oil composition.
  • the phosphorus content of the lubricating oil compositions is determined in accordance with the procedures of ASTM D5185.
  • Ashless dispersants maintain in suspension oil insolubles resulting from oxidation of the oil during wear or combustion. They are particularly advantageous for preventing the precipitation of sludge and the formation of varnish, particularly in gasoline engines.
  • Ashless dispersants comprise an oil soluble polymeric hydrocarbon backbone bearing one or more functional groups that are capable of associating with particles to be dispersed. Typically, the polymer backbone is functionalized by amine, alcohol, amide, or ester polar moieties, often via a bridging group.
  • the ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
  • the oil soluble polymeric hydrocarbon backbone of these dispersants is typically derived from an olefin polymer or polyene, especially polymers comprising a major molar amount (i.e., greater than 50 mole %) of a C 2 to C 18 olefin (e.g., ethylene, propylene, butylene, isobutylene, pentene, octene-1, styrene), and typically a C 2 to C 5 olefin.
  • a C 2 to C 18 olefin e.g., ethylene, propylene, butylene, isobutylene, pentene, octene-1, styrene
  • the oil soluble polymeric hydrocarbon backbone may be a homopolymer (e.g., polypropylene or polyisobutylene) or a copolymer of two or more of such olefins (e.g., copolymers of ethylene and an alpha-olefin such as propylene or butylene, or copolymers of two different alpha-olefins).
  • a homopolymer e.g., polypropylene or polyisobutylene
  • a copolymer of two or more of such olefins e.g., copolymers of ethylene and an alpha-olefin such as propylene or butylene, or copolymers of two different alpha-olefins.
  • copolymers include those in which a minor molar amount of the copolymer monomers, for example, 1 to 10 mole %, is a non-conjugated diene, such as a C 3 to C 22 non-conjugated diolefin (for example, a copolymer of isobutylene and butadiene, or a copolymer of ethylene, propylene and 1,4-hexadiene or 5-ethylidene-2-norbornene).
  • a non-conjugated diene such as a C 3 to C 22 non-conjugated diolefin (for example, a copolymer of isobutylene and butadiene, or a copolymer of ethylene, propylene and 1,4-hexadiene or 5-ethylidene-2-norbornene).
  • Preferred are polyisobutenyl (Mn 400-2500, preferably 950-2200) succinimide dis
  • heavy duty diesel (HDD) engine lubricating oil compositions of the present invention contain an amount of a nitrogen-containing dispersant introducing from about 0.08 to about 0.25 mass %, preferably from about 0.09 to about 0.18 mass %, more preferably from about 0.10 to about 0.15 mass %, of nitrogen into the composition.
  • a nitrogen-containing dispersant introducing from about 0.08 to about 0.25 mass %, preferably from about 0.09 to about 0.18 mass %, more preferably from about 0.10 to about 0.15 mass %, of nitrogen into the composition.
  • Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C 12 alkyl side chains, calcium nonylphenol sulfide, oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons or esters, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in U.S. Patent No. 4,867,890 , and molybdenum-containing compounds.
  • Phosphorus-free supplemental oxidation inhibitors other than the previously described hindered phenol antioxidants, suitable for use in the present invention include alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C 12 alkyl side chains, calcium nonylphenol sulfide, ashless oil soluble phenates and sulfurized phenates and phosphosulfurized or sulfurized hydrocarbons.
  • Aromatic amines having at least two aromatic groups attached directly to the nitrogen constitute another class of compounds that is frequently used for antioxidancy. While these materials may be used in small amounts, preferred embodiments of the present invention are free of these compounds.
  • Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms.
  • the amines may contain more than two aromatic groups.
  • Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an atom or group (e.g., an oxygen or sulfur atom, or a -CO-, -SO 2 - or alkylene group) and two are directly attached to one amine nitrogen also considered aromatic amines having at least two aromatic groups attached directly to the nitrogen.
  • the aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups.
  • lubricating oil compositions of the present invention contain hindered phenolic antioxidants, diphenyl amine antioxidants, or a mixture thereof.
  • the viscosity modifier functions to impart high and low temperature operability to a lubricating oil.
  • the VM used may have that sole function, or may be multifunctional.
  • suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene, polymethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, interpolymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene.
  • Multifunctional viscosity modifiers that further function as dispersants are also known.
  • a viscosity index improver-dispersant functions as both a viscosity index improver and as a dispersant.
  • viscosity index improver dispersants include reaction products of amines, for example polyamines, with a hydrocarbyl-substituted mono -or dicarboxylic acid in which the hydrocarbyl substituent comprises a chain of sufficient length to impart viscosity index improving properties to the compounds.
  • the viscosity index improver dispersant may be, for example, a polymer of a C 4 to C 24 unsaturated ester of vinyl alcohol or a C 3 to C 10 unsaturated mono-carboxylic acid or a C 4 to C 10 di-carboxylic acid with an unsaturated nitrogen-containing monomer having 4 to 20 carbon atoms; a polymer of a C 2 to C 20 olefin with an unsaturated C 3 to C 10 mono- or di-carboxylic acid neutralised with an amine, hydroxyamine or an alcohol; or a polymer of ethylene with a C 3 to C 20 olefin further reacted either by grafting a C 4 to C 20 unsaturated nitrogen-containing monomer thereon or by grafting an unsaturated acid onto the polymer backbone and then reacting carboxylic acid groups of the grafted acid with an amine, hydroxy amine or alcohol.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
  • Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
  • Friction modifiers and fuel economy agents that are compatible with the other ingredients of the final oil may also be included.
  • examples of such materials include glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkylsubstituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
  • Other known friction modifiers comprise oil-soluble organo-molybdenum compounds.
  • organo-molybdenum friction modifiers also provide antioxidant and antiwear credits to a lubricating oil composition.
  • oil soluble organo-molybdenum compounds there may be mentioned the dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and the like, and mixtures thereof.
  • Particularly preferred are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates.
  • the molybdenum compound may be an acidic molybdenum compound. These compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure and are typically hexavalent. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl 4 , MoO 2 Br 2 , Mo 2 O 3 Cl 6 , molybdenum trioxide or similar acidic molybdenum compounds.
  • Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
  • Copper and lead bearing corrosion inhibitors may be used, but are typically not required with the formulation of the present invention.
  • such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof.
  • Derivatives of 1,3,4 thiadiazoles such as those described in U.S. Patent Nos. 2,719,125 ; 2,719,126 ; and 3,087,932 ; are typical.
  • Other similar materials are described in U.S. Patent Nos. 3,821,236 ; 3,904,537 ; 4,097,387 ; 4,107,059 ; 4,136,043 ; 4,188,299 ; and 4,193,882 .
  • additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK Patent Specification No. 1,560,830 .
  • Benzotriazoles derivatives also fall within this class of additives. When these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 mass % active ingredient.
  • a small amount of a demulsifying component may be used.
  • a preferred demulsifying component is described in EP 330,522 . It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol.
  • the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
  • Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • additives which maintains the stability of the viscosity of the blend may be necessary to include an additive which maintains the stability of the viscosity of the blend.
  • polar group-containing additives achieve a suitably low viscosity in the pre-blending stage it has been observed that some compositions increase in viscosity when stored for prolonged periods.
  • Additives which are effective in controlling this viscosity increase include the long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides which are used in the preparation of the ashless dispersants as hereinbefore disclosed.
  • an additive to a lubricating oil, or additive concentrate, in a diluent, such that only a portion of the added weight represents an active ingredient (A.I.).
  • dispersant may be added together with an equal weight of diluent in which case the "additive" is 50% A.I. dispersant.
  • detergents are conventionally formed in diluent to provide a specified TBN and are oftentimes not referred to on an A.I. basis.
  • mass percent (mass %) when applied to a detergent refers to the total amount of detergent and diluent unless otherwise indicated, and when applied to all other additive refers to the weight of active ingredient unless otherwise indicated.
  • each of the components can be added directly to the base stock or base oil blend by dispersing or dissolving it in the base stock or base oil blend at the desired level of concentration. Such blending may occur at ambient temperature or at an elevated temperature.
  • each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function. Representative amounts of such additives, used in crankcase lubricants, are listed below. All the values listed are stated as mass percent active ingredient.
  • all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package that is subsequently blended into base stock to make the finished lubricant.
  • the concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of a base lubricant.
  • the concentrate is preferably made in accordance with the method described in U.S. Patent No. 4,938,880 . That patent describes making a pre-mix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about
  • the pre-mix is cooled to at least 85°C and the additional components are added.
  • the final crankcase lubricating oil formulation may employ from 2 to 25 mass %, preferably 4 to 20 mass %, and most preferably about 5 to 18 mass % of the concentrate or additive package with the remainder being base stock.
  • the volatility of the final crankcase lubricating oil formulation is less than or equal to 15 mass %, preferably less than or equal to 13 mass %, more preferably less than or equal to 12 mass %, most preferably less than or equal to 10 mass %.
  • lubricating oil compositions of the present invention have a compositional TBN (using ASTM D4739) of less than about 10.5, such as between 7.5 and 10.5, preferably less than or equal to about 9.5, such as about 8.0 to about 9.5.
  • the lubricating oil composition according to the invention is preferably capable of providing at least 40, more preferably at least 42, piston cleanliness merits in an OM441LA test.
  • the oil composition is preferably a heavy duty diesel (HDD) engine lubricant meeting the performance requirements of at least one of, preferably each of, the ACEA E4/E6 and MB p228.5/p228.51 specifications.
  • HDD heavy duty diesel
  • a series of lubricating oil compositions representing conventional SAPS lubricating oil compositions were prepared.
  • As detergent combinations of 300 BN calcium sulfonate, 400 BN magnesium sulfonate and 150 BN sulfurized calcium phenate detergents were employed.
  • By adjusting the detergent blend low soap content (Comparative 1) and high-soap content (Comparative 2) lubricant samples were formulated.
  • a "very-high" soap conventional SAPS lubricating oil composition (Comparative 3) was produced by formulating with a similar additive composition in which the 300 BN calcium sulfonate described above was used in combination with a 135 BN sulfurized calcium phenate, and an amount of nonyl phenol sulfide; an ashless source of phenate soap.
  • compositions described as "comprising" a plurality of defined components are to be construed as including compositions formed by admixing the defined plurality of defined components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Claims (16)

  1. Composition d'huile lubrifiante ayant une teneur en phosphore non supérieure à 0,12 % en masse, une teneur en soufre non supérieure à 0,4 % en masse et une teneur en cendre, calculée en cendre sulfatée, non supérieure à 1,1 % en masse, comprenant une quantité dominante d'une huile de viscosité propre à la lubrification, un détergent du type phénate ayant, ou ayant en moyenne, un indice de basicité total (TBN) de 50 à 150 tel que mesuré suivant la norme ASTM D-2896 et un détergent du type sulfonate ayant, ou ayant en moyenne, un TBN de 150 à 475 tel que mesuré suivant la norme ASTM D-2896, dans laquelle le détergent du type phénate est présent en une quantité fournissant à la composition d'huile lubrifiante au moins 1,4 g de savon de phénate pour 100 g de composition d'huile lubrifiante, et dans laquelle le rapport de la quantité du savon de phénate au savon de sulfonate en grammes est égal à au moins 5:1.
  2. Composition d'huile lubrifiante suivant la revendication 1, dans laquelle le rapport de la quantité du savon de phénate à la quantité du savon de sulfonate en grammes va de 5:1 à 50:1.
  3. Huile lubrifiante suivant la revendication 2, dans laquelle le rapport va de 7,5:1 à 25:1.
  4. Huile lubrifiante suivant la revendication 3, dans laquelle le rapport va de 10:1 à 20:1.
  5. Huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle le détergent du type phénate fournit 1,4 à 2,0 g de savon de phénate pour 100 g de composition d'huile lubrifiante.
  6. Huile lubrifiante suivant la revendication 5, dans laquelle le détergent du type phénate fournit au moins 1,5 g de savon de phénate pour 100 g de composition d'huile lubrifiante.
  7. Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle ledit détergent du type phénate est présent en une quantité introduisant dans la composition d'huile lubrifiante pas plus de 0,85 % en masse de cendre sulfatée (SASH).
  8. Huile lubrifiante suivant la revendication 7, dans laquelle le détergent du type phénate est présent en une quantité fournissant 0,4 à 0,85 % en masse de cendre sulfatée.
  9. Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle la quantité totale de cendre sulfatée introduite par le détergent est non supérieure à 0,95 % en masse.
  10. Composition d'huile lubrifiante suivant la revendication 9, dans laquelle la quantité totale de cendre sulfatée introduite par le détergent va de 0,50 à 0,95 % en masse.
  11. Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, qui ne contient pas plus de 0,5 g de savon de carboxylate pour 100 g de composition d'huile lubrifiante.
  12. Composition d'huile lubrifiante suivant la revendication 11, qui est dépourvue de détergent du type carboxylate.
  13. Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, comprenant au moins un détergent renfermant du calcium et au moins un détergent renfermant du magnésium.
  14. Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle le détergent du type phénate a, ou a en moyenne, un TBN de 80 à 120, et ledit détergent du type sulfonate a, ou a en moyenne, un TBN de 250 à 425.
  15. Procédé pour faire fonctionner un moteur de véhicule à combustion interne à allumage par étincelle ou compression équipé d'un dispositif de post-traitement contenant un catalyseur d'oxydation et/ou de réduction et/ou un piège à particules, procédé qui comprend la lubrification dudit moteur avec une composition d'huile lubrifiante suivant l'une quelconque des revendications 1 à 14.
  16. Utilisation d'une composition d'huile lubrifiante suivant l'une quelconque des revendications 1 à 14, pour améliorer les performances de propreté des pistons d'un moteur à combustion interne, de préférence d'un moteur diesel à haut rendement (HDD).
EP06122380.6A 2005-12-28 2006-10-16 Composiitons d'huile lubrifiante Active EP1803793B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06122380.6A EP1803793B1 (fr) 2005-12-28 2006-10-16 Composiitons d'huile lubrifiante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05113044 2005-12-28
EP06122380.6A EP1803793B1 (fr) 2005-12-28 2006-10-16 Composiitons d'huile lubrifiante

Publications (2)

Publication Number Publication Date
EP1803793A1 EP1803793A1 (fr) 2007-07-04
EP1803793B1 true EP1803793B1 (fr) 2015-06-17

Family

ID=38115987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06122380.6A Active EP1803793B1 (fr) 2005-12-28 2006-10-16 Composiitons d'huile lubrifiante

Country Status (1)

Country Link
EP (1) EP1803793B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151490A (ja) 2014-02-17 2015-08-24 出光興産株式会社 潤滑油組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340803A1 (fr) * 2002-02-27 2003-09-03 Infineum International Limited Compositions d'huiles lubrifiantes
US20050043191A1 (en) * 2003-08-22 2005-02-24 Farng L. Oscar High performance non-zinc, zero phosphorus engine oils for internal combustion engines
JP2007514040A (ja) * 2003-12-12 2007-05-31 ザ ルブリゾル コーポレイション スクシンイミド分散剤を含有する潤滑組成物

Also Published As

Publication number Publication date
EP1803793A1 (fr) 2007-07-04

Similar Documents

Publication Publication Date Title
EP1741772B1 (fr) Utilisation de compositions lubrifiantes pour des moteurs diesel pourvus d'un système RGE
EP2319904B1 (fr) Lubrification et compositions lubrifiantes comprenant des phénylène diamines
CA2777769C (fr) Phenylenediamines trialiphatiques destinees aux lubrifiants
EP2457984B1 (fr) Composition d'huile lubrifiante
EP2687583B1 (fr) Compositions d'huile lubrifiante contenant des amines à encombrement stérique en tant que sources d'IBT sans cendre
US20040127371A1 (en) Combination of a low ash lubricating oil composition and low sulfur fuel
EP3263676B1 (fr) Compositions d'huile de lubrification
EP2366761B1 (fr) Dérivés de morpholine en tant que sources de TBN sans cendre et compositions d'huile lubrifiante les contenant
JP5291284B2 (ja) 潤滑油組成物
CA2572357C (fr) Huiles lubrifiantes comprenant du phenate et du sulfonate
CA2799378C (fr) Methode de reduction du taux d'alcanilite d'une composition d'huile lubrifiante dans un moteur
EP1724330B1 (fr) Utilisation de compositions d'huile lubrifiante pour réduire l'usure dans le moteur d'automobiles equipés d'une tringlerie tournante
CA2749634C (fr) Moteurs diesel a recirculation des gaz d'echappement et compositions d'huiles lubrifiantes connexes
US20150240181A1 (en) Lubricating oil composition
EP1803793B1 (fr) Composiitons d'huile lubrifiante
EP1403359A1 (fr) Mélange d'une composition d'huile lubrifiante à faible teneur en cendres et d'un carburant à faible teneur en soufre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070809

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 731949

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006045691

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 731949

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150918

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151017

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006045691

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

26N No opposition filed

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151016

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190927

Year of fee payment: 14

Ref country code: FR

Payment date: 20190924

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190918

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230914

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231011

Year of fee payment: 18

Ref country code: DE

Payment date: 20230915

Year of fee payment: 18