EP2989809B1 - Array aus elektroakustischen aktoren und verfahren zum herstellen eines solchen arrays - Google Patents

Array aus elektroakustischen aktoren und verfahren zum herstellen eines solchen arrays Download PDF

Info

Publication number
EP2989809B1
EP2989809B1 EP15720645.9A EP15720645A EP2989809B1 EP 2989809 B1 EP2989809 B1 EP 2989809B1 EP 15720645 A EP15720645 A EP 15720645A EP 2989809 B1 EP2989809 B1 EP 2989809B1
Authority
EP
European Patent Office
Prior art keywords
electroacoustic
array
parallel
branch
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15720645.9A
Other languages
English (en)
French (fr)
Other versions
EP2989809A1 (de
Inventor
Lorenz Betz
Lutz Ehrig
Daniel Beer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2989809A1 publication Critical patent/EP2989809A1/de
Application granted granted Critical
Publication of EP2989809B1 publication Critical patent/EP2989809B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/403Linear arrays of transducers

Definitions

  • the present invention relates to arrays, and more particularly to so-called Bessel weighted arrays of electroacoustic actuators.
  • Loudspeakers of a loudspeaker array can be controlled differently.
  • the EP 0034844 A1 discloses an amplitude / phase weighting based on the function values of the Bessel function of the first kind at different order.
  • FIG Fig. 11 (a) shown. It consists of five individual loudspeakers, which are designated according to the arrangement in the example linear array with 1, 2, 3, 4, 5.
  • the amplitude / phase weighting is to the left of the speaker array 1100 in FIG Fig. 11 shown.
  • the two outermost loudspeakers have a weighting of 0.5 and the inner loudspeakers have a weighting of 1, wherein a loudspeaker, namely the loudspeaker 2 additionally has a phase shift of 180 °.
  • Fig. 11 For the line-shaped speaker array used in Fig. 11 (a) Bessel weighting provides the amplitude ratio shown to the left of the array 1100. The phase ratio is 0 °: 180 °: 0 °: 0 °: 0 ° of the single speakers to each other.
  • Fig. 11 (b) shows an interconnection of the speakers in the form of a series circuit.
  • the loudspeakers 2, 3, 4 are connected in series and in turn in series with a parallel connection of the two outer loudspeakers 1 and 5. This results in the required Bessel-like weighting on each speaker due to the corresponding voltage drop.
  • the Bessel weighting can also be generated with a parallel circuit consisting of several parallel branches ( Fig. 11 (c) ).
  • One of these parallel branches consists of a series connection of the loudspeakers 1 and 5, the remaining parallel branches each contain a single loudspeaker (2, 3, 4)
  • the Bessel weighting can not be optimally implemented with conventional impedance speakers, such as 4 ⁇ to 8 ⁇ .
  • the object of the present invention is to provide an improved loudspeaker array. This object is achieved by an array according to claim 1 or a method for producing an array according to claim 17.
  • An array of electroacoustic actuators comprises at least five electroacoustic actuators (101, 102, 103, 104, 105), wherein the electroacoustic actuators are connected such that in a first parallel branch (110a) at least two electroacoustic actuators are connected in series, and in a second parallel branch (110b) an electroacoustic actuator is connected in series with a parallel connection of two electroacoustic actuators, and wherein the first parallel branch is connected in parallel to the second parallel branch.
  • the electroacoustic actuators are connected such that in a first series branch (110c) at least two electroacoustic actuators are connected in parallel, and that in a second series branch (110d) an electroacoustic actuator is connected in parallel to a series connection of two electroacoustic actuators, wherein the first series branch is connected in series with the second series branch, and wherein the serially connected series branches (110c, 110d) are adapted to be driven by a loudspeaker amplifier (112).
  • the circuits can each be mirrored.
  • each parallel connection becomes a series connection and vice versa.
  • the total impedance is again in the immediate vicinity of the single speaker impedance.
  • parallel branches where the impedance is just below that of the ELS, it is just above that of the ELS for modification with series branches.
  • an approximate Bessel weighting is achieved, but with a significantly lower overall impedance compared to the known series circuit or with a significantly higher overall impedance compared with the known parallel circuit.
  • loudspeaker amplifiers which are optimized for the impedances of the individual loudspeakers.
  • a parallel branch comprises a series circuit of a loudspeaker and a parallel circuit of two speakers
  • total impedances of loudspeaker arrays not too large as in the series circuit or not too small as in the Parallel connection are.
  • loudspeaker arrays can be implemented which have a not identical but approximated Bessel weighting.
  • the deviation from the ideal Bessel weighting has, as has been found, so low that the radiation behavior of a loudspeaker array with parallel connection of the parallel branches according to the invention with a well manageable total impedance of the beam behavior of an array, according to Fig. 11 implemented and actually has the ideal Bessel weighting, is almost indistinguishable.
  • the problem of high or too low electrical impedances in the application of a Bessel weighting by the special interconnection, which causes a slightly modified Bessel weighting solved.
  • the amplitude / phase weighting is implemented solely by polarity reversal or series and parallel switching of the individual loudspeakers.
  • the resulting amplitude / phase weighting of each speaker is similar to that of Fig. 11 ,
  • the electrical impedance of the array is due to the interconnection used in the invention, for example, to implement the modified Bessel weighting, now in the field of impedance of the speakers used. This allows the array to be easily operated with conventional amplifiers.
  • structure-borne sound exciters as further examples of electroacoustic actuators. These are also known as exciters or shakers, the z. B. are attached to a plate and can generate sound by stimulating the plate.
  • Fig. 1 (a) shows a speaker array according to an embodiment of the present invention.
  • the speaker array comprises an array housing 100 with mounted individual speakers 101, 102, 103, 104, 105, which in the in Fig. 1 (a) embodiment shown are arranged as a line array.
  • the single speakers are interconnected by a single speaker interconnect 110 and the single speaker interconnect 110 is drivable through a loudspeaker amplifier 112 via a positive terminal 113 and a negative terminal 114.
  • the single speaker circuitry 110 is designed to achieve an approximate Bessel weighting, but the overall impedance of the speaker array seen by the speaker amplifier 112 is within manageable dimensions.
  • the single-speaker circuitry 110 includes an implementation as described in U.S. Pat Fig. 1 (b) is shown.
  • the single-speaker interconnection comprises a first parallel branch 110a comprising a series connection of individual loudspeakers and a second parallel branch 110b comprising a series-parallel connection of individual loudspeakers.
  • the first parallel branch 110a comprises at least two series-connected individual loudspeakers
  • the second parallel branch comprises a single loudspeaker in series with a parallel connection of two individual loudspeakers.
  • the two parallel branches 110a, 110b connected in parallel and from the loudspeaker amplifier 112 of Fig. 1 (a) drivable.
  • the single speaker interconnect 110 includes an implementation as shown in FIG Fig. 1 (c) is shown.
  • the single-speaker circuitry includes a first series branch 110c having a parallel connection of single loudspeakers and a second series branch 110d comprising a parallel series connection of single loudspeakers.
  • the first series branch 110c comprises at least two individual speakers connected in parallel
  • the second series branch comprises a single loudspeaker in parallel with a series connection of two individual loudspeakers.
  • the two series branches 110c, 110d are connected in series and from the loudspeaker amplifier 112 of FIG Fig. 1 (a) drivable.
  • Fig. 2 shows an array, eg the array of Fig. 1 (a) , but here in a vertical representation.
  • the single speakers 101 to 105 are represented by "1" to "5", and further the Figs modified Bessel weights in Fig. 2 are shown to the left of the individual speakers.
  • These modified Bessel weights are provided by the special series parallel connection of Fig. 3 reached.
  • the first parallel branch 110a comprises the two individual loudspeakers 2, 3 connected in series with one another
  • the second parallel branch 110b comprises the individual loudspeaker 4 connected in series with the parallel connection of the two outer array loudspeakers 1 and 5.
  • the negative weighting factor for the second loudspeaker 102 is achieved by opposing poling of the loudspeaker with respect to the other loudspeakers in the first parallel branch 110a, as shown schematically in FIG Fig. 3 is shown.
  • Figs. 4 (a) and 4 (b) show an alternative implementation.
  • the positions of the speakers 3 and 4 are compared to Fig. 2 respectively.
  • Fig. 3 reversed.
  • the speaker 4 in Fig. 4 (b) is now arranged in the first parallel branch 110a, and the speaker 3 is arranged in the second parallel branch 110b.
  • This results in that the weightings of the loudspeakers are exchanged, ie that the loudspeaker 3 has a weighting of 1 and the loudspeaker 4 has a weighting of 0.75, which is an inverse compared to the corresponding weighting in FIG Fig. 2 is.
  • the exemplary linear arrays of Fig. 2 and Fig. 4 (a) each include five speakers. Compared to a loudspeaker array with five loudspeakers with original Bessel weighting, the loudspeakers will be in accordance with Fig. 3 respectively. Fig. 4 (b) connected. As a result, the electrical impedance of the modified array is only 14% lower than that of the single loudspeaker, for example, 3.4 ⁇ if the speaker impedance of the individual speakers is 4 ⁇ . For an original Bessel weight, the array's electrical impedance would be 14 ⁇ for series connection from Fig. 11 (b) or 1.14 ⁇ for the parallel connection of Fig. 11 (c) , In the mirrored variant with series branches, the impedance is only 14% higher than that of a single loudspeaker, ie at 4.56 ⁇ , for example.
  • Fig. 4 (c) shows a more detailed representation of the interconnection of Fig. 4 (b) , wherein in particular the interconnection of the positive / negative inputs of the individual speakers is shown.
  • the negative reverse polarity of the loudspeaker 2 is shown, in which the negative terminal of the loudspeaker 4 is coupled to the negative terminal of the loudspeaker 2, so that the 180 ° phase shift is achieved in comparison to the other loudspeakers in the array.
  • Fig. 5 . 6 and 7 show further embodiments for larger line arrays.
  • Such Bessel-weighted line arrays are typically also used with seven and nine elements, respectively D. Keele, "Effective Performance of Bessel Arrays", Journal of Audio Engineering Society, Vol. 38, No. 10, pages 723-748, October 1990 , is described.
  • Loudspeakers are the elements of the array that have an amplitude weighting not equal to zero. There is no need to place a speaker at the array positions with the amplitude weighting 0. The gap should not be closed by a back-to-back of the adjacent speakers.
  • a speaker may be placed at the array position with the amplitude weighting 0. However, this speaker would then be inactive or would only emit significantly less sound pressure level (eg, at most 10%) than other speakers in the array with an amplitude weighting not equal to zero.
  • Fig. 7 shows an implementation for a 7-array with six active speakers.
  • the middle position is a position for a single speaker that is inactive, or is a position that is left empty, so no single speaker is disposed at all for the 7-speaker array.
  • the remaining six single speakers will be as in Fig. 5 connected.
  • the weights of each speaker in Fig. 5 which are generated due to the series / parallel circuit, are entered in the figure.
  • the two loudspeakers with the weighting 0.4 for all different interconnections which are in Fig. 6 are shown, the two outermost speakers.
  • the positions of the loudspeakers with the weights of 0.8 and 1 can be varied accordingly, so that at least six different ways of arranging the individual loudspeakers to the in Fig. 7 positions shown are obtained.
  • the interconnection is preferably as they are in Fig. 5 is shown, however, that the positions of the speakers with the weights 1 and 0.8 in Fig. 5 can be at different inner positions of the speaker array, that is, at the positions 2, 3, 5, 6. There are also more possibilities than they are in Fig. 6 are shown.
  • the phase weighting is achieved, in particular, by oppositely poling the loudspeaker arranged at the third position or at a phase mirroring at the middle of the array at the fifth position. This will vary depending on the implementation of one of Fig. 6 be shown possibilities of the corresponding speaker.
  • Fig. 8 . 9, 10 show further embodiments with respect to a line array with nine speakers, in which, as it is in Fig. 10 is shown, two positions 4, 6 are not present or inactive, so that in particular an interconnection of seven individual speakers results (eg. Fig. 8 ). While at the in Fig. 5 shown embodiment in comparison to Fig. 3 or Fig. 4 (b) an additional single loudspeaker in the second parallel branch 110b was necessary to the preferred Weighting is now, as it is in Fig. 8 an additional single speaker 110a is shown.
  • the weights as in Fig. 8 are shown.
  • the individual positions of the speakers can be restored as it is in Fig. 9 is shown, depending on the weighting are varied, resulting in a variety of different positions of the individual speakers, as long as the position 4 and the position 6 remain free or inactive, inactive does not have to be completely inactive, but may also mean a level which at z. B. may be less than 10% of the least-emitting speaker in the array, and as long as the two speakers are arranged with the weighting 0.45 at the ends of the line array.
  • the loudspeakers with the weights 0.75 and 1.0 in the inner positions can be varied relatively arbitrarily, care being taken in preferred embodiments that the polarity reversal be performed for the second position and the fifth position.
  • Fig. 13 (a) shows the use of series branches for the variant of six speakers in analogy to Fig. 5 ,
  • the additional speaker 500 is included in the second series branch and in series with the speaker 104 of FIG Fig. 12 (a) ,
  • Fig. 13 (b) shows the use of series branches for the variant of seven speakers in analogy to Fig. 8 ,
  • the additional speaker 500 is included in the second series branch and in series with the speaker 104 of FIG Fig. 12a ,
  • the additional speaker is in the first series branch parallel to the speakers 102, 103 of Fig. 12 (a) arranged.
  • FIG. 14 Figure 5 shows a simulated emission characteristic of a linear array of five loudspeakers with original Bessel weighting, the simulated emission characteristic being for an array lying horizontally in the drawing plane and radiating upwards with respect to the drawing plane. Furthermore, the representation is parameterized over the frequency, namely from 100 Hz to 8000 Hz.
  • Fig. 15 shows a corresponding representation for the implementation of Fig. 3
  • Fig. 16 shows a corresponding representation for the implementation of Fig. 4 (b)
  • Fig. 17 shows an isobaric representation of the measured radiation characteristic of a linear array of five loudspeakers with original Bessel weighting along the array extension. It should be noted that the 0 ° line corresponds to the main beam direction, ie the 90 ° line of eg Fig. 16 , Furthermore, the isobaric representation shows the deviation at a certain degree coordinate with respect to the sound pressure at the 0-coordinate, for frequencies from 319.9 to 20,000 Hz. From a comparison of Fig. 18 and Fig. 17 It can be seen that the inventive array of Fig. 4 (b) Although the isobaric representation of the ideal Bessel array of Fig. 17 not completely simulated, but very well approximates.
  • the two individual loudspeakers connected in parallel in the second parallel branch such as 1 and 5 in FIG Fig. 3 or the corresponding speakers from Fig. 5 respectively.
  • Fig. 8 arranged at the array ends of a line array.
  • each individual speaker has an impedance where the impedances of the individual speakers are equal or differ by at most 20% from an average of all the impedances of the individual speakers.
  • the at least nominal impedances of the individual loudspeakers are the same, although production-related deviations can not be ruled out, of course. Even with relatively moderately deviating loudspeaker impedances of the individual loudspeakers, that is, deviating impedances, a good overall impedance value of the array can still be achieved, which is suitable for conventional loudspeaker amplifiers.
  • Typical speaker impedances are 4 to 8 ⁇ . However, it is preferred to use for the present invention single speakers whose impedances are greater than or equal to 2.5 ⁇ or less than or equal to 12 ⁇ .
  • the individual loudspeakers in the first parallel branch and the second parallel branch are interconnected and arranged in the array with respect to one another, resulting in at least an approximate Bessel weighting for the loudspeaker array.
  • the approximate Bessel weighting states that in Fig. 2 the value 0.75 approximates the weighting factor 1 or that the value -0.75 approximates the weighting factor -1, etc.
  • other series / parallel circuits with the goal of average total impedances are also for those skilled in particular for larger arrays in view of the present presentation recognizable.
  • Fig. 5 shown includes the correspondingly larger array compared to Fig. 3 the additional loudspeaker in the second parallel branch 500, which has a weight of 0.8.
  • the turn bigger array is in Fig. 8 shown and includes, in comparison to Fig. 5 , in addition to the in Fig. 5 also existing speaker 500 in the first parallel branch the additional speaker 800th

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf Arrays und insbesondere auf sogenannte Bessel-gewichtete Arrays aus elektroakustischen Aktoren.
  • Lautsprecher eines Lautsprecher-Arrays, z.B. eines Linienarrays bzw. eines Flächen-Arrays, können unterschiedlich angesteuert werden. Die EP 0034844 A1 offenbart eine Amplituden-/Phasengewichtung basierend auf den Funktionswerten der Bessel-Funktion erster Art bei unterschiedlicher Ordnung.
  • Eine mögliche Ausführungsform eines solchen Arrays ist in Fig. 11 (a) gezeigt. Es besteht aus fünf Einzellautsprechern, die entsprechend der Anordnung im beispielsweise linienförmigen Array mit 1, 2, 3, 4, 5 bezeichnet sind. Die Amplituden-/Phasengewichtung ist links neben dem Lautsprecher-Array 1100 in Fig. 11 dargestellt. Die beiden äußersten Lautsprecher haben eine Gewichtung von 0,5 und die inneren Lautsprecher haben eine Gewichtung von 1, wobei ein Lautsprecher, nämlich der Lautsprecher 2 zusätzlich eine Phasenverschiebung von 180° aufweist.
  • Ein solches Array erzielt gegenüber dem Einzellautsprecher einen höheren Schalldruckpegel. Obwohl das Array eine größere Abstrahlfläche als der Einzellautsprecher besitzt, unterscheiden sich die Abstrahlcharakteristiken kaum voneinander.
  • Für das linienförmige Lautsprecher-Array, das in Fig. 11 (a) gezeigt ist, das aus fünf aktiven Lautsprechern gleichen Typs besteht, sieht die Bessel-Gewichtung das Amplitudenverhältnis vor, das links vom Array 1100 eingezeichnet ist. Das Phasenverhältnis beträgt 0°:180°:0°:0°:0° der Einzellautsprecher zueinander. Fig. 11 (b) zeigt eine Verschaltung der Lautsprecher in Form einer Serienschaltung. Insbesondere sind die Lautsprecher 2, 3, 4 in Serie geschaltet und wiederum in Serie zu einer Parallelschaltung der beiden äußeren Lautsprecher 1 und 5. Damit ergibt sich aufgrund des entsprechenden Spannungsabfalls die an jedem Lautsprecher geforderte Besselähnliche Gewichtung.
  • Alternativ kann die Bessel-Gewichtung auch mit einer Parallelschaltung erzeugt werden, die aus mehreren Parallelzweigen besteht (Fig. 11 (c)). Einer dieser Parallelzweige besteht aus einer Serienschaltung der Lautsprecher 1 und 5, die restlichen Parallelzweige enthalten jeweils einen einzigen Lautsprecher (2, 3, 4)
  • Vorteilhaft an den Verschaltungen in Fig. 11 (b) und 11 (c) ist, dass die geforderte Bessel-Gewichtung allein durch eine geeignete Verschaltung der Lautsprecher realisierbar ist. Die Amplituden werden durch Parallel-/Serienschaltung und die Phasen durch die entsprechende Polung der Lautsprecher untereinander erzielt. Dies ergibt sich in Fig. 11 dadurch, dass die Polung des Lautsprechers 2 jeweils umgedreht ist, im Vergleich zu den Polungen der anderen Lautsprecher, dass also der negative Eingang des Lautsprechers mit dem entsprechenden positiven Ausgang des Lautsprecher-Verstärkers, der in Fig. 11 nicht gezeigt ist, verbunden ist.
  • Diese Verschaltung hat jedoch die Problematik der Gesamtimpedanz des Arrays. Bei der seriellen Verschaltung des 5er-Bessel-Arrays von Fig. 11 (b) ergibt sich eine Gesamtimpedanz des Arrays, die dem 3,5-fachen der Einzellautsprecher entspricht. Bei einer Nennimpedanz des einzelnen Lautsprechers von 4 Ω bzw. 8 Ω beträgt die Gesamtimpedanz der Reihenschaltung demnach 14 Ω bzw. 28 Ω. Konventionelle Audioverstärker sind dagegen für Nennimpedanzen von 4 Ω bis 8 Ω optimiert. Um eine Impedanz von 14 Ω mit der gleichen elektrischen Leistung wie eine Impedanz von 4 Ω zu treiben, ist eine wesentlich höhere Spannungsverstärkung erforderlich.
  • Für die Realisierung mittels Parallelschaltung in Fig. 11 (c) sinkt die Impedanz des 5er-Bessel-Arrays auf das 0,29-fache der Einzelimpedanz. Für ein Array aus 4 Ω bzw. 8 Ω-Lautsprechern beträgt somit die Gesamtimpedanz 1,14 Ω bzw. 2,29 Ω. Dies liegt in der Regel deutlich unter den für heutige Verstärker optimalen Lastimpedanzen. Dem Verstärker wird hierbei ein zu großer Strom abverlangt, was zur Zerstörung seiner Bauteile führen kann.
  • Aus diesem Grund kann die Bessel-Gewichtung mit Lautsprechern üblicher Impedanz, wie beispielsweise 4 Ω bis 8 Ω, nicht optimal umgesetzt werden.
  • Im Hinblick auf linienförmige Arrays mit einer größeren Anzahl an Lautsprechern, wobei die Anzahl größer als fünf ist, erreicht die Gesamtimpedanz bei der Parallelschaltung einen noch geringeren Wert und bei der Serienschaltung einen noch größeren Wert, wenn wiederum von der gleichen Lautsprecherimpedanz ausgegangen wird.
    Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Lautsprecher-Array zu schaffen.
    Diese Aufgabe wird durch ein Array nach Patentanspruch 1 oder ein Verfahren zum Herstellen eines Arrays nach Patentanspruch 17 gelöst.
    Ein Array aus elektroakustischen Aktoren, umfasst wenigstens fünf elektroakustische Aktoren (101, 102, 103, 104, 105), wobei die elektroakustischen Aktoren so verschaltet sind, dass in einem ersten Parallelzweig (110a) wenigstens zwei elektroakustische Aktoren in Serie geschaltet sind, und dass in einem zweiten Parallelzweig (110b) ein elektroakustischer Aktor in Serie zu einer Parallelschaltung von zwei elektroakustischen Aktoren geschaltet ist, und wobei der erste Parallelzweig parallel zu dem zweiten Parallelzweig geschaltet ist. Bei einer alternativen Implementierung sind die elektroakustischen Aktoren so verschaltet, dass in einem ersten Serienzweig (110c) wenigstens zwei elektroakustische Aktoren parallel geschaltet sind, und dass in einem zweiten Serienzweig (110d) ein elektroakustischer Aktor parallel zu einer Serienschaltung von zwei elektroakustischen Aktoren geschaltet ist, wobei der erste Serienzweig in Serie zu dem zweiten Serienzweig geschaltet ist, und wobei die seriell geschalteten Serienzweige (110c, 110d) ausgebildet sind, um von einem Lautsprecher-Verstärker (112) getrieben zu werden.
  • Erfindungsgemäß können also die Schaltungen jeweils gespiegelt werden. Bei einer elektrisch "gespiegelten" Schaltung wird jede Parallelschaltung zu einer Serienschaltung und umgekehrt. Die Gesamtimpedanz liegt wieder in unmittelbarer Nähe der Einzellautsprecherimpedanz. Im Gegensatz zur Verwendung von Parallelzweigen, bei der die Impedanz knapp unterhalb der des ELS liegt, ist sie für Modifikation mit Serienzweigen knapp oberhalb des der ELS.
    Damit wird eine annähernde Bessel-Gewichtung erreicht, jedoch mit einer im Vergleich zur bekannten Serienschaltung deutlich niedrigeren Gesamtimpedanz oder mit einer im Vergleich zur bekannten Parallelschaltung deutlich höheren Gesamtimpedanz. Dadurch können übliche Lautsprecher-Verstärker verwendet werden, die auf die Impedanzen der einzelnen Lautsprecher optimiert sind.
  • In anderen Worten ausgedrückt, erreicht die erfindungsgemäße Verwendung von zwei Parallelzweigen, wobei ein Parallelzweig eine Serienschaltung aus einem Lautsprecher und einer Parallelschaltung aus zwei Lautsprechern aufweist, Gesamtimpedanzen von Lautsprecher-Arrays, die nicht zu groß wie bei der Serienschaltung oder nicht zu klein wie bei der Parallelschaltung sind.
  • Somit sind Lautsprecher-Arrays implementierbar, die eine zwar nicht identische, aber angenäherte Bessel-Gewichtung haben. Die Abweichung von der idealen Bessel-Gewichtung ist jedoch, wie sich herausgestellt hat, so gering, dass das Abstrahlverhalten eines Lautsprecher-Arrays mit erfindungsgemäßer Parallelschaltung der Parallelzweige also mit einer gut handhabbaren Gesamtimpedanz vom Strahlverhalten eines Arrays, das gemäß Fig. 11 implementiert ist und eigentlich die ideale Bessel-Gewichtung hat, nahezu nicht unterscheidbar ist.
  • Erfindungsgemäß wird also die Problematik zu hoher bzw. zu niedriger elektrischer Impedanzen bei der Anwendung einer Bessel-Gewichtung durch die spezielle Verschaltung, die eine leicht modifizierte Bessel-Gewichtung hervorruft, gelöst. Dabei wird in Analogie zum Stand der Technik die Amplituden-/Phasengewichtung allein durch Verpolen bzw. Serien- und Parallelschalten der Einzellautsprecher umgesetzt. Die daraus resultierende Amplituden-/Phasengewichtung der einzelnen Lautsprecher ist ähnlich der von Fig. 11.
  • Gegenüber dem Einzellautsprecher werden weiterhin ein Schalldruckpegelgewinn und eine nahezu identische Abstrahlcharakteristik erzielt. Die elektrische Impedanz des Arrays liegt jedoch in Folge der erfindungsgemäß eingesetzten Verschaltung, um beispielsweise die modifizierte Bessel-Gewichtung zu implementieren, nun im Bereich der Impedanz der eingesetzten Lautsprecher. Dadurch kann das Array problemlos mit konventionellen Verstärkern betrieben werden.
  • Alternativ oder zusätzlich zu Lautsprechern können auch Körperschallanreger eingesetzt werden, als weitere Beispiele für elektroakustische Aktoren. Diese werden auch als Exciter oder Shaker bezeichnet, die z. B. an einer Platte angebracht sind und durch Anregung der Platte Schall erzeugen können.
  • In der nachfolgenden Beschreibung wird auf Einzellautsprecher Bezug genommen. Es sei jedoch darauf hingewiesen, dass ein Einzellautsprecher lediglich stellvertretend für sämtliche elektroakustische Aktoren steht
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
  • Fig. 1(a)
    eine schematische Darstellung des Lautsprecher-Arrays;
    Fig. 1(b)
    eine schematische Darstellung einer Einzellautsprecher- (ELS-) Verschaltung von Fig. 1(a) mit Parallelzweigen;
    Fig. 1(c)
    eine schematische Darstellung einer Einzellautsprecher- (ELS-) Verschaltung von Fig. 1(a) mit Serienzweigen;
    Fig. 2
    eine Darstellung eines Lautsprecher-Arrays mit modifizierter Bessel-Gewichtung;
    Fig. 3
    ein Verschaltungsbeispiel für das Ausführungsbeispiel von Fig. 2;
    Fig. 4(a)
    eine alternative Implementierung eines Lautsprecher-Arrays mit modifizierter bzw. angenäherter Bessel-Gewichtung;
    Fig. 4(b)
    eine Verschaltung für die Implementierung von Fig. 4(a);
    Fig. 4(c)
    ein detailliertes Schaltungsdiagramm zur Erklärung der Verschaltungsdarstellung von Fig. 4(b);
    Fig. 5
    eine Verschaltungsvariante für ein Array mit sechs aktiven Einzellautsprechern;
    Fig. 6
    eine tabellarische Darstellung verschiedener Verschaltungsvarianten;
    Fig. 7
    eine schematische Darstellung des Arrays mit sechs aktiven Einzellautsprechern;
    Fig. 8
    eine Verschaltungsvariante für ein Array mit sieben aktiven Einzellautsprechern;
    Fig. 9
    eine tabellarische Darstellung der verschiedenen Verschaltungen der einzelnen Lautsprecher bezüglich ihrer Anordnung im Array;
    Fig. 10
    eine schematische Darstellung des Lautsprecher-Arrays, wobei zwei Einzellautsprecher nicht vorhanden oder inaktiv sind;
    Fig. 11(a) bis 11(c)
    ein bekanntes Array mit einer bekannten Verschaltung;
    Fig. 12(a)
    eine Verschaltung mit Serienzweigen;
    Fig. 12(b)
    eine Gewichtung für die Verschaltung mit Serienzweigen;
    Fig. 13(a)
    eine Verschaltungsvariante für ein Array mit sechs Einzellautsprechern;
    Fig. 13(b)
    eine Verschaltungsvariante für ein Array mit sieben Einzellautsprechern;
    Fig. 14
    eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit originaler Bessel-Gewichtung;
    Fig. 15
    eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit modifizierter Bessel-Gewichtung von Fig. 3;
    Fig. 16
    eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit modifizierter Bessel-Gewichtung von Fig. 4(b);
    Fig. 17
    eine Isobaren-Darstellung der gemessenen Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit originaler Bessel-Gewichtung entlang der Array-Ausdehnung; und
    Fig. 18
    eine Isobaren-Darstellung der gemessenen Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit modifizierter Bessel-Gewichtung entlang der Array-Ausführung von Fig. 4(b).
  • Fig. 1 (a) zeigt ein Lautsprecher-Array gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Lautsprecher-Array umfasst ein Array-Gehäuse 100 mit montierten Einzellautsprechern 101, 102, 103, 104, 105, die bei dem in Fig. 1 (a) gezeigten Ausführungsbeispiel als Linien-Array angeordnet sind. Die Einzellautsprecher sind durch eine Einzellautsprecher-Verschaltung 110 miteinander verschaltet, und die Einzellautsprecher-Verschaltung 110 ist durch einen Lautsprecher-Verstärker 112 über einen positiven Anschluss 113 und einen negativen Anschluss 114 treibbar. Vorzugsweise ist die Einzellautsprecher-Verschaltung 110 so ausgeführt, dass eine angenäherte Bessel-Gewichtung erreicht wird, dass jedoch die von dem Lautsprecher-Verstärker 112 gesehene Gesamtimpedanz des Lautsprecher-Arrays in gut handhabbaren Dimensionen liegt.
  • Zu diesem Zweck umfasst die Einzellautsprecher-Verschaltung 110 eine Implementierung, wie sie in Fig. 1(b) gezeigt ist. Die Einzellautsprecher-Verschaltung umfasst einen ersten Parallelzweig 110a, der eine Serienschaltung von Einzellautsprechern aufweist, und einen zweiten Parallelzweig 110b, der eine Serien-Parallelschaltung von Einzellautsprechern aufweist. Insbesondere umfasst der erste Parallelzweig 110a wenigstens zwei in Serie geschaltete Einzellautsprecher, und umfasst der zweite Parallelzweig einen Einzellautsprecher in Serie zu einer Parallelschaltung von zwei Einzellautsprechern. Ferner sind, wie es in Fig. 1 (b) gezeigt ist, die beiden Parallelzweige 110a, 110b parallel geschaltet und von dem Lautsprecher-Verstärker 112 von Fig. 1(a) treibbar.
  • Alternativ umfasst die Einzellautsprecher-Verschaltung 110 eine Implementierung, wie sie in Fig. 1 (c) gezeigt ist. Die Einzellautsprecher-Verschaltung umfasst einen ersten Serienzweig 110c, der eine Parallelschaltung von Einzellautsprechern aufweist, und einen zweiten Serienzweig 110d, der eine Parallel-Serienschaltung von Einzellautsprechern aufweist. Insbesondere umfasst der erste Serienzweig 110c wenigstens zwei parallel geschaltete Einzellautsprecher, und umfasst der zweite Serienzweig einen Einzellautsprecher parallel zu einer Serienschaltung von zwei Einzellautsprechern. Ferner sind, wie es in Fig. 1(c) gezeigt ist, die beiden Serienzweige 110c, 110d seriell geschaltet und von dem Lautsprecher-Verstärker 112 von Fig. 1(a) treibbar.
  • Fig. 2 zeigt ein Array, z.B. das Array von Fig. 1(a), jedoch hier in senkrechter Darstellung. Ferner sind die Einzellautsprecher 101 bis 105 mit "1" bis "5" dargestellt, wobei ferner die modifizierten Bessel-Gewichtungen in Fig. 2 links von den Einzellautsprechern dargestellt sind. Diese modifizierten Bessel-Gewichtungen werden durch die spezielle Serien-Parallelschaltung von Fig. 3 erreicht. So umfasst der erste Parallelzweig 110a die beiden Einzellautsprecher 2, 3 in Serie zueinander geschaltet, und umfasst der zweite Parallelzweig 110b den Einzellautsprecher 4 in Serie geschaltet zu der Parallelschaltung der beiden äußeren Array-Lautsprecher 1 und 5. Der negative Gewichtungsfaktor für den zweiten Lautsprecher 102 wird durch entgegengesetztes Polen des Lautsprechers bezüglich der anderen Lautsprecher im ersten Parallelzweig 110a erreicht, wie es schematisch in Fig. 3 dargestellt ist.
  • Fig. 4(a) und 4(b) zeigen eine alternative Implementierung. Insbesondere sind die Positionen der Lautsprecher 3 und 4 im Vergleich zu Fig. 2 bzw. Fig. 3 vertauscht. Der Lautsprecher 4 in Fig. 4(b) ist nunmehr im ersten Parallelzweig 110a angeordnet, und der Lautsprecher 3 ist im zweiten Parallelzweig 110b angeordnet. Dies führt dazu, dass die Gewichtungen der Lautsprecher ausgetauscht sind, dass also der Lautsprecher 3 eine Gewichtung von 1 und der Lautsprecher 4 eine Gewichtung von 0,75 aufweist, was eine Umkehrung im Vergleich zu der entsprechenden Gewichtung in Fig. 2 ist.
  • Die beispielhaften linienförmigen Arrays von Fig. 2 und Fig. 4(a) umfassen jeweils fünf Lautsprecher. Im Vergleich zu einem Lautsprecher-Array mit fünf Lautsprechern mit originaler Bessel-Gewichtung werden die Lautsprecher gemäß Fig. 3 bzw. Fig. 4(b) verschaltet. Dadurch liegt die elektrische Impedanz des modifizierten Arrays nur 14 % unter der des einzelnen Lautsprechers, z.B. bei 3,4 Ω, wenn die Lautsprecherimpedanz der Einzellautsprecher 4 Ω beträgt Für eine originale Bessel-Gewichtung läge die elektrische Impedanz des Arrays bei 14 Ω für die Serienschaltung von Fig. 11 (b) oder bei 1,14 Ω für die Parallelschaltung von Fig. 11 (c). Bei der gespiegelten Variante mit Serienzweigen liegt die Impedanz nur 14 % über der eines einzelnen Lautsprechers, also bei z.B. 4,56 Ω.
  • Aufgrund der geänderten Lautsprecher-Verschaltung ergibt sich eine modifizierte Amplituden- und Phasengewichtung, da statt der Faktoren "0,75" eigentlich die Faktoren "1" gefordert werden. Dennoch verändert sich die Abstrahlcharakteristik des Arrays gegenüber dem Array mit originaler Bessel-Gewichtung bzw. gegenüber einem einzelnen Lautsprecher nur gering, wie es anhand der Fig. 14, 15, 16, 17, 18 unterstrichen wird.
  • Fig. 4(c) zeigt eine detailliertere Darstellung der Verschaltung von Fig. 4(b), wobei insbesondere die Verschaltung der positiven/negativen Eingänge der einzelnen Lautsprecher gezeigt ist. Insbesondere ist die negative Verpolung des Lautsprechers 2 gezeigt, bei der der negative Anschluss des Lautsprechers 4 mit dem negativen Anschluss des Lautsprechers 2 gekoppelt ist, so dass die 180°-Phasenverschiebung im Vergleiche zu den anderen Lautsprechern im Array erreicht wird.
  • Die Fig. 5, 6 und 7 zeigen weitere Ausführungsbeispiele für größere Linien-Arrays. Solche Bessel-gewichteten Linien-Arrays werden typischerweise auch mit sieben bzw. neun Elementen verwendet, wie es in D. Keele, "Effective Performance of Bessel-Arrays", Journal of Audio Engineering Society, Vol. 38, Nr. 10, Seiten 723 - 748, Oktober 1990, beschrieben ist. Bei diesen Arrays muss zwischen Elementen einerseits und Lautsprechern andererseits unterschieden werden. Lautsprecher sind hierbei die Elemente des Arrays, die eine Amplitudengewichtung ungleich 0 besitzen. An den Array-Positionen mit der Amplitudengewichtung 0 muss kein Lautsprecher platziert werden. Die Lücke soll aber nicht durch ein Aneinander-Rücken der benachbarten Lautsprecher geschlossen werden. Alternativ kann an der Array-Position mit der Amplitudengewichtung 0 ein Lautsprecher platziertsein. Dieser Lautsprecher wäre jedoch dann inaktiv oder würde nur wesentlich weniger Schalldruckpegel (z.B. höchstens 10%) emittieren als andere Lautsprecher im Array mit einer Amplitudengewichtung ungleich 0.
  • Bezüglich Fig. 7 sei darauf hingewiesen, dass die Abstände zwischen den Einzellautsprecherpositionen gleich bzw. äquidistant sind. Zwischen 3 und 5 würde dann ein zweifacher Abstand sein, wenn der Lautsprecher 4 weggelassen wird.
  • Die Problematik einer zu großen (Serienschaltung) bzw. einer zu kleinen (Parallelschaltung) elektrischen Impedanz beim Einsatz üblicher Lautsprecherimpedanzen, also von Lautsprecherimpedanzen zwischen 4 und 8 Ω, tritt hier noch stärker auf, wenn die konventionelle Verschaltung verwendet wird.
  • Fig. 7 zeigt insbesondere eine Implementierung für ein 7er-Array mit sechs aktiven Lautsprechern. Wie es in Fig. 7 gezeigt ist, ist für das 7er-Lautsprecher-Array die Position 4, also die mittlere Position eine Position für einen Einzellautsprecher, der inaktiv ist, oder ist eine Position, die leergelassen ist, an der also überhaupt kein Einzellautsprecher angeordnet ist. Die verbleibenden sechs Einzellautsprecher werden wie in Fig. 5 verschaltet. Die Gewichtungen der einzelnen Lautsprecher in Fig. 5, die aufgrund der Serien/Parallel-Schaltung erzeugt werden, sind in der Figur eingetragen.
  • So sind die beiden Lautsprecher mit der Gewichtung 0,4 bei allen verschiedenen Verschaltungen, die in Fig. 6 dargestellt sind, die beiden äußersten Lautsprecher. Allerdings können die Positionen der Lautsprecher mit den Gewichtungen 0,8 und 1 entsprechend variiert werden, so dass wenigstens sechs verschiedene Möglichkeiten der Anordnung der Einzellautsprecher an den in Fig. 7 gezeigten Positionen erhalten werden. Dies bedeutet, dass die Verschaltung vorzugsweise so ist, wie sie in Fig. 5 dargestellt ist, dass jedoch die Positionen der Lautsprecher mit den Gewichtungen 1 und 0,8 in Fig. 5 an verschiedenen inneren Positionen des Lautsprecher-Arrays sein können, also an den Positionen 2, 3, 5, 6. Es existieren ferner mehr Möglichkeiten, als sie in Fig. 6 dargestellt sind. Diese Varianten sind die, bei denen die Amplitudengewichtung an der Array-Mitte, also ELS 4, gespiegelt ist, also z.B.
    0,4:1:1:0:0,8:0,8:0,4
    0,4:1:0,8:0:1:0,8:0,4.
  • Die Phasengewichtung bleibt dabei gleich!
  • Eine weitere Variante besteht darin, dass wenn die Phasen, und die Amplitudengewichtung an der Array-Mitte (ELS 4) gespiegelt werden. Dies wäre eine Drehung des Arrays (Fig. 5) auf den Kopf.
  • Die Phasengewichtung wird insbesondere dadurch erreicht, dass der an der dritten oder bei einer Phasenspiegelung an der Arraymitte an der fünften Position angeordnete Lautsprecher entgegengesetzt gepolt wird. Dies wird je nach Implementierung von einer der in Fig. 6 gezeigten Möglichkeiten der entsprechende Lautsprecher sein.
  • Die Fig. 8, 9, 10 zeigen weitere Ausführungsbeispiele im Hinblick auf ein Linien-Array mit neun Lautsprechern, bei dem, wie es in Fig. 10 gezeigt ist, zwei Positionen 4, 6 nicht vorhanden bzw. inaktiv sind, so dass sich insbesondere eine Verschaltung von sieben Einzellautsprechern ergibt (z. B. Fig. 8). Während bei dem in Fig. 5 gezeigten Ausführungsbeispiel im Vergleich zu Fig. 3 oder Fig. 4(b) ein zusätzlicher Einzellautsprecher im zweiten Parallelzweig 110b nötig war, um die bevorzugten Gewichtungen zu erhalten, ist nunmehr, wie es in Fig. 8 gezeigt ist, ein zusätzlicher Einzellautsprecher 110a vorhanden.
  • Damit ergeben sich wiederum die Gewichtungen, wie sie in Fig. 8 gezeigt sind. Die einzelnen Positionen der Lautsprecher können wieder, wie es in Fig. 9 gezeigt ist, je nach Gewichtung variiert werden, wobei sich hier eine Vielzahl von unterschiedlichen Positionierungen der Einzellautsprecher ergibt, solange die Position 4 und die Position 6 freibleiben bzw. inaktiv sind, wobei inaktiv nicht komplett inaktiv sein muss, sondern z.B. auch ein Pegel bedeuten kann, der bei z. B. kleiner als 10% des am wenigstens emittierenden Lautsprechers im Array sein kann, und solange die beiden Lautsprecher mit der Gewichtung 0,45 an den Enden des Linien-Arrays angeordnet sind. Andererseits können die Lautsprecher mit den Gewichtungen 0,75 und 1,0 in den inneren Positionen relativ beliebig variiert werden, wobei bei bevorzugten Ausführungsbeispielen darauf geachtet wird, dass die Umpolung für die zweite Position und die fünfte Position durchgeführt wird.
  • Fig. 12a zeigt eine detaillierte Ausführungsform der Implementierung mit Serienzweigen. Der erste Serienzweig umfasst die Lautsprecher 102, 103, und der zweite Serienzweig umfasst die Lautsprecher 104 parallel zur Serienschaltung aus 101 und 105. Die sich ergebenden Gewichtungen sind in Fig. 12(b) gezeigt.
  • Fig. 13(a) zeigt die Verwendung der Serienzweige für die Variante von sechs Lautsprechern in Analogie zu Fig. 5. Der zusätzliche Lautsprecher 500 ist im zweiten Serienzweig enthalten und in Serie zu dem Lautsprecher 104 von Fig. 12(a).
  • Fig. 13(b) zeigt die Verwendung der Serienzweige für die Variante von sieben Lautsprechern in Analogie zu Fig. 8. Der zusätzliche Lautsprecher 500 ist im zweiten Serienzweig enthalten und in Serie zu dem Lautsprecher 104 von Fig. 12a. Der weitere zusätzliche Lautsprecher ist im ersten Serienzweig parallel zu den Lautsprechern 102, 103 von Fig. 12(a) angeordnet.
  • Fig. 14 zeigt eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit originaler Bessel-Gewichtung, wobei die simulierte Abstrahlcharakteristik für ein Array ist, das waagrecht in der Zeichenebene liegt und Bezug nehmend auf die Zeichenebene nach oben strahlt. Ferner ist die Darstellung über der Frequenz parametrisiert, und zwar von 100 Hz bis 8000 Hz.
  • Fig. 15 zeigt eine entsprechende Darstellung für die Implementierung von Fig. 3 und Fig. 16 zeigt eine entsprechende Darstellung für die Implementierung von Fig. 4(b), also für die angenäherte bzw. modifizierte Bessel-Gewichtung, wobei gute Übereinstimmungen zu sehen sind, jedoch mit einer gesamten Lautsprecher-Array-Impedanz, die optimal von handelsüblichen bzw. für die Impedanz eines Einzellautsprechers konfigurierten Lautsprecher-Verstärkern getrieben werden kann.
  • Fig. 17 zeigt eine Isobaren-Darstellung der gemessenen Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit originaler Bessel-Gewichtung entlang der Array-Ausdehnung. Es sei darauf hingewiesen, dass die 0°-Linie der Hauptstrahlrichtung entspricht, also der 90°-Linie von z.B. Fig. 16. Ferner zeigt die Isobaren-Darstellung die Abweichung auf einer bestimmten Grad-Koordinate bezogen auf den Schalldruck auf der 0-Koordinate, und zwar für Frequenzen von 319,9 bis 20.000 Hz. Aus einem Vergleich von Fig. 18 und Fig. 17 ist ersichtlich, dass das erfindungsgemäße Array von Fig. 4(b) zwar die Isobaren-Darstellung des idealen Bessel-Arrays von Fig. 17 nicht komplett nachbildet, jedoch sehr gut annähert.
  • Nachfolgend werden weitere Ausführungsbeispiele der vorliegenden Erfindung dargestellt.
  • Wie es anhand von diversen Figuren bereits dargestellt worden ist, werden die beiden im zweiten Parallelzweig parallel geschalteten Einzellautsprecher, wie beispielsweise 1 und 5 in Fig. 3 oder die entsprechenden Lautsprecher von Fig. 5 bzw. Fig. 8 an den Array-Enden eines Linien-Arrays angeordnet. Ferner wird es bevorzugt, die Gegenpolung zumindest beim 5-Lautsprecher-Array dadurch zu erreichen, dass die beiden im ersten Parallelzweig 110a angeordneten Lautsprecher entgegengesetzt gepolt sind.
  • Bei einer Implementierung hat jeder Einzellautsprecher eine Impedanz, wobei die Impedanzen der Einzellautsprecher gleich sind oder um höchstens 20 % von einem Mittelwert aller Impedanzen der Einzellautsprecher abweichen. Vorzugsweise sind jedoch die zumindest Nenn-Impedanzen der Einzellautsprecher gleich, obgleich herstellungsbedingte Abweichungen natürlich nicht auszuschließen sind. Selbst jedoch bei relativ moderat abweichenden Lautsprecher-Impedanzen der Einzellautsprecher, also abweichenden Impedanzen kann immer noch ein guter Gesamtimpedanzwert des Arrays erreicht werden, der für übliche Lautsprecher-Verstärker geeignet ist.
  • Darüber hinaus sind bei den dargestellten Arrays und auch bei größeren Arrays die im ersten Parallelzweig angeordneten in Serie geschalteten Einzellautsprecher und auch der im zweiten Parallelzweig angeordnete in Serie geschaltete Einzellautsprecher, wie beispielsweise die Einzellautsprecher 2, 3, 4 in Fig. 3 oder Fig. 4(b), in der Array-Linie an inneren Positionen angeordnet und werden jeweils von einem weiteren, typischerweise parallel geschalteten Einzellautsprecher, wie beispielsweise 1 und 5, im Array nach außen hin benachbart.
  • Typische Lautsprecherimpedanzen liegen bei 4 bis 8 Ω. Es wird jedoch bevorzugt, auch für die vorliegende Erfindung Einzellautsprecher einzusetzen, deren Impedanzen größer oder gleich 2,5 Ω oder kleiner oder gleich 12 Ω sind.
  • Wie es z.B. anhand von Fig. 1(a) beschrieben worden ist, sind die Einzellautsprecher in dem ersten Parallelzweig und dem zweiten Parallelzweig so verschaltet und in dem Array zueinander angeordnet, dass sich wenigstens eine annähernde Bessel-Gewichtung für das Lautsprecher-Array ergibt. Die angenäherte Bessel-Gewichtung besagt beispielsweise, dass in Fig. 2 der Wert 0,75 den Gewichtungsfaktor 1 annähert oder dass der Wert -0,75 den Gewichtungsfaktor -1 annähert, etc. Weitere Serien/Parallelschaltungen mit dem Ziel von mittleren Gesamtimpedanzen sind jedoch ebenfalls für Fachleute insbesondere für größere Arrays im Hinblick auf die vorliegende Darstellung erkennbar.
  • Wie es in Fig. 5 gezeigt ist, umfasst das entsprechend größere Array im Vergleich zu Fig. 3 den zusätzlichen Lautsprecher im zweiten Parallelzweig 500, der eine Gewichtung von 0,8 hat. Das wiederum größere Array ist in Fig. 8 gezeigt und umfasst, im Vergleich zur Fig. 5, zusätzlich zu dem in Fig. 5 ebenfalls vorhandenen Lautsprecher 500 im ersten Parallelzweig den zusätzlichen Lautsprecher 800.
  • Bei einem Verfahren zum Herstellen eines Lautsprecher-Arrays werden in einem Schritt die Einzellautsprecher in einem Lautsprecher-Array angeordnet. Darüber hinaus werden die Einzellautsprecher so verschaltet, dass sich die beschriebene Parallelschaltung von Parallelzweigen ergibt, woraufhin die verschalteten Lautsprecher mit einem Lautsprecher-Verstärker, der typischerweise und vorzugsweise für die Impedanz eines Einzellautsprechers optimiert bzw. konfiguriert ist, getrieben werden.

Claims (17)

  1. Array aus elektroakustischen Aktoren, mit folgenden Merkmalen:
    wenigstens fünf elektroakustischen Aktoren (101, 102, 103, 104, 105),
    wobei die elektroakustischen Aktoren so verschaltet sind, dass in einem ersten Parallelzweig (110a) wenigstens zwei elektroakustische Aktoren in Serie geschaltet sind, und dass in einem zweiten Parallelzweig (110b) ein elektroakustischer Aktor in Serie zu einer Parallelschaltung von zwei elektroakustischen Aktoren geschaltet ist,
    wobei der erste Parallelzweig parallel zu dem zweiten Parallelzweig geschaltet ist, und
    wobei die parallel geschalteten Parallelzweige (110a, 110b) ausgebildet sind, um von einem Aktor-Verstärker (112) getrieben zu werden, oder
    wobei die elektroakustischen Aktoren so verschaltet sind, dass in einem ersten Serienzweig (110c) wenigstens zwei elektroakustische Aktoren parallel geschaltet sind, und dass in einem zweiten Serienzweig (110d) ein elektroakustischer Aktor parallel zu einer Serienschaltung von zwei elektroakustischen Aktoren geschaltet ist,
    wobei der erste Serienzweig in Serie zu dem zweiten Serienzweig geschaltet ist, und
    wobei die seriell geschalteten Serienzweige (110c, 110d) ausgebildet sind, um von einem Aktor-Verstärker (112) getrieben zu werden.
  2. Array nach Anspruch 1,
    bei dem das Array eine Array-Linie aufweist, und
    bei dem die elektroakustischen Aktoren der Parallelschaltung (101, 105) im zweiten Parallelzweig (110b) an den Enden der Array-Linie angeordnet sind, wobei pro Array-Ende ein elektroakustischer Aktor angeordnet ist, oder
    bei dem die elektroakustischen Aktoren der Serienschaltung (101, 105) im zweiten Serienzweig (110d) an den Enden der Array-Linie angeordnet sind, wobei pro Array-Ende ein elektroakustischer Aktor angeordnet ist.
  3. Array nach Anspruch 1 oder 2,
    bei dem ein elektroakustischer Aktor in dem ersten Parallelzweig bezüglich einem weiteren Lautsprecher in dem ersten Parallelzweig (110a) entgegengesetzt gepolt ist, oder
    bei dem ein elektroakustischer Aktor in dem ersten Serienzweig bezüglich einem weiteren Lautsprecher in dem ersten Serienzweig (110c) entgegengesetzt gepolt ist.
  4. Array nach einem der vorhergehenden Ansprüche,
    bei dem jeder elektroakustische Aktor eine Impedanz hat, wobei die Impedanzen der elektroakustischen Aktoren gleich sind oder die Impedanz eines elektroakustischen Aktors um höchsten 20 % von einem Mittelwert aller Impedanzen der elektroakustischen Aktoren abweicht.
  5. Array nach einem der vorhergehenden Ansprüche,
    bei dem ein in Serie geschalteter elektroakustischer Aktor im ersten Parallelzweig (110a) und ein in Serie geschalteter elektroakustischer Aktor im zweiten Parallelzweig (110b) in einer Array-Linie des elektroakustischen Aktors an inneren Positionen der Array-Linie angeordnet sind, oder
    bei dem ein parallel geschalteter elektroakustischer Aktor im ersten Serienzweig (110c) und ein parallel geschalteter elektroakustischer Aktor im zweiten Serienzweig (110d) in einer Array-Linie des elektroakustischen Aktors an inneren Positionen der Array-Linie angeordnet sind.
  6. Array nach einem der vorhergehenden Ansprüche,
    bei dem Impedanzen der elektroakustischen Aktoren größer oder gleich 2,5 Ω oder kleiner oder gleich 12 Ω sind.
  7. Array nach einem der vorhergehenden Ansprüche,
    bei dem die elektroakustischen Aktoren in dem ersten Parallelzweig und in dem zweiten Parallelzweig so verschaltet sind, und in dem Array so zueinander angeordnet sind, dass sich eine wenigstens annähernde Bessel-Gewichtung für das Lautsprecher-Array ergibt, oder
    bei dem die elektroakustischen Aktoren in dem ersten Serienzweig und in dem zweiten Serienzweig so verschaltet sind, und in dem Array so zueinander angeordnet sind, dass sich eine wenigstens annähernde Bessel-Gewichtung für das Lautsprecher-Array ergibt.
  8. Array nach einem der vorhergehenden Ansprüche,
    bei dem das Lautsprecher-Array eine Array-Linie mit fünf Lautsprechern aufweist, die in aufsteigender Nummerierung entlang der Array-Linie angeordnet sind,
    wobei der erste elektroakustische Aktor und der fünfte elektroakustische Aktor in dem zweiten Parallelzweig parallel geschaltet sind oder in dem zweiten Serienzweig seriell geschaltet sind,
    wobei der dritte elektroakustische Aktor in dem ersten Parallelzweig oder in dem zweiten Parallelzweig angeordnet ist, wobei der vierte elektroakustische Aktor in dem zweiten Parallelzweig bzw. in dem ersten Parallelzweig ist, oder wobei der dritte elektroakustische Aktor in dem ersten Serienzweig oder in dem zweiten Serienzweig angeordnet ist, wobei der vierte elektroakustische Aktor in dem zweiten Serienzweig bzw. in dem ersten Serienzweig ist, und
    wobei der zweite elektroakustische Aktor in dem ersten Parallelzweig oder dem ersten Serienzweig ist.
  9. Array nach einem der Ansprüche 1 bis 7,
    bei dem das Lautsprecher-Array sechs elektroakustische Aktoren aufweist,
    wobei in dem zweiten Parallelzweig ein weiterer elektroakustischer Aktor (500) zu dem elektroakustischen Aktor, der in Serie zu der Parallelschaltung geschaltet ist, in Serie geschaltet ist, oder
    wobei in dem zweiten Serienzweig ein weiterer elektroakustischer Aktor (500) zu dem elektroakustischen Aktor, der parallel zu der Serienschaltung geschaltet ist, seriell geschaltet ist.
  10. Array nach einem der vorhergehenden Ansprüche 1 bis 7,
    bei dem das Lautsprecher-Array sieben elektroakustische Aktoren aufweist, wobei im ersten Parallelzweig (110a) ein weiterer elektroakustischer Aktor (800) vorhanden ist, so dass in dem ersten Parallelzweig drei elektroakustische Aktoren in Serie geschaltet sind, oder
    wobei im ersten Serienzweig (110c) ein weiterer elektroakustischer Aktor (800) vorhanden ist, so dass in dem ersten Serienzweig drei elektroakustische Aktoren parallel geschaltet sind.
  11. Array nach Anspruch 9 oder 10,
    bei dem die parallel geschalteten elektroakustischen Aktor im zweiten Parallelzweig an Enden des Lautsprecher-Arrays angeordnet sind,
    bei dem an einem mittleren Platz des Lautsprecher-Arrays kein elektroakustischer Aktor angeordnet ist oder ein inaktiver Aktor oder ein Aktor mit einem Emissionspegel von weniger als 10 % des am geringsten emittierenden Aktors von dem Array angeordnet ist, und
    bei dem einer der seriell geschalteten elektroakustischen Aktoren im ersten oder zweiten Parallelzweig gegenüber einem anderen elektroakustischen Aktor der Serienschaltung in dem Parallelzweig entgegengesetzt gepolt ist, oder
    bei dem die seriell geschalteten elektroakustischen Aktor im zweiten Serienzweig an Enden des Lautsprecher-Arrays angeordnet sind,
    bei dem an einem mittleren Platz des Lautsprecher-Arrays kein elektroakustischer Aktor angeordnet ist oder ein inaktiver Aktor oder ein Aktor mit einem Emissionspegel von weniger als 10 % des am geringsten emittierenden Aktors von dem Array angeordnet ist, und
    bei dem einer der parallel geschalteten elektroakustischen Aktoren im ersten oder zweiten Serienzweig gegenüber einem anderen elektroakustischen Aktor der Parallelschaltung in dem Serienzweig entgegengesetzt gepolt ist.
  12. Array nach Anspruch 9, 10, oder 11
    bei dem die zwei elektroakustischen Aktoren in dem ersten Parallelzweig (110a) und die zwei elektroakustischen Aktoren in dem zweiten Parallelzweig an jeweiligen inneren Positionen des Lautsprecher-Arrays, jedoch nicht in der Mitte des Lautsprecher-Arrays angeordnet sind, oder
    bei dem die zwei elektroakustischen Aktoren in dem ersten Serienzweig (110c) und die zwei elektroakustischen Aktoren in dem zweiten Serienzweig (110d) an jeweiligen inneren Positionen des Lautsprecher-Arrays, jedoch nicht in der Mitte des Lautsprecher-Arrays angeordnet sind.
  13. Array nach Anspruch 10,
    bei dem das Lautsprecher-Array neun Positionen aufweist, wobei an einer vierten Position und an einer sechsten Position des Lautsprecher-Arrays kein elektroakustischer Aktor angeordnet ist oder ein inaktiver elektroakustischer Aktor angeordnet ist, und
    wobei die elektroakustischen Aktoren, die an einer zweiten oder fünften Position des Lautsprecher-Arrays angeordnet sind, zu anderen in Serie geschalteten elektroakustischen Aktoren entgegengesetzt gepolt sind, oder wobei die elektroakustischen Aktoren, die an einer zweiten oder fünften Position des Lautsprecher-Arrays angeordnet sind, zu anderen parallel geschalteten elektroakustischen Aktoren entgegengesetzt gepolt sind.
  14. Array nach Anspruch 13,
    bei dem die elektroakustischen Aktoren, die im ersten Parallelzweig und im zweiten Parallelzweig seriell geschaltet sind, an jeweiligen inneren Positionen des Lautsprecher-Arrays angeordnet sind, oder
    bei dem die elektroakustischen Aktoren, die im ersten Serienzweig und im zweiten Serienzweig parallel geschaltet sind, an jeweiligen inneren Positionen des Lautsprecher-Arrays angeordnet sind.
  15. Array nach einem der vorhergehenden Ansprüche,
    bei dem das Lautsprecher-Array ein Flächen-Array ist, das aus mehreren Linien-Arrays von elektroakustischen Aktoren besteht,
    wobei jedes Linien-Array den ersten Parallelzweig und den zweiten Parallelzweig bzw. den ersten Serienzweig und den zweiten Serienzweig aufweist, und
    wobei die elektroakustischen Aktoren der Linien-Arrays so verschaltet sind, dass eine wenigstens annähernde Bessel-Gewichtung für das Lautsprecher-Array erhalten wird.
  16. Array nach einem der vorhergehenden Ansprüche,
    bei dem der Lautsprecher-Verstärker bzw. Aktoren-Verstärker (112) in einem Nennbetrieb für eine Lautsprecher-Eingangsimpedanz ausgebildet ist, die zwischen einem 0,8-fachen und einem 2-fachen einer Einzelimpedanz der elektroakustischen Aktoren liegt.
  17. Verfahren zum Herstellen eines Arrays aus elektroakustischen Aktoren, mit folgenden Schritten:
    Anordnen der elektroakustischen Aktoren in einem Array (100); und
    Verschalten der elektroakustischen Aktoren so,
    dass in einem ersten Parallelzweig (110a) wenigstens zwei elektroakustische Aktoren in Serie geschaltet sind, und dass in einem zweiten Parallelzweig (110b) ein elektroakustischer Aktor in Serie zu einer Parallelschaltung von zwei elektroakustischen Aktoren geschaltet ist, wobei der erste Parallelzweig parallel zu dem zweiten Parallelzweig geschaltet ist, oder
    dass in einem ersten Serienzweig (110c) wenigstens zwei elektroakustische Aktoren parallel geschaltet sind, und dass in einem zweiten Serienzweig (110d) ein elektroakustischer Aktor parallel zu einer Serienschaltung von zwei elektroakustischen Aktoren geschaltet ist, wobei der erste Serienzweig in Serie zu dem zweiten Serienzweig geschaltet ist; und
    dass die verschalteten elektroakustischen Aktoren mit einem Aktor-Verstärker (112) treibbar sind.
EP15720645.9A 2014-04-30 2015-04-23 Array aus elektroakustischen aktoren und verfahren zum herstellen eines solchen arrays Not-in-force EP2989809B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208256.0A DE102014208256B4 (de) 2014-04-30 2014-04-30 Array aus elektroakustischen Aktuoren und Verfahren zum Herstellen eines Arrays
PCT/EP2015/058792 WO2015165794A1 (de) 2014-04-30 2015-04-23 Array aus elektroakustischen aktoren und verfahren zum herstellen eines solchen arrays

Publications (2)

Publication Number Publication Date
EP2989809A1 EP2989809A1 (de) 2016-03-02
EP2989809B1 true EP2989809B1 (de) 2017-10-04

Family

ID=53052821

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15720645.9A Not-in-force EP2989809B1 (de) 2014-04-30 2015-04-23 Array aus elektroakustischen aktoren und verfahren zum herstellen eines solchen arrays

Country Status (7)

Country Link
US (1) US10425735B2 (de)
EP (1) EP2989809B1 (de)
JP (1) JP6364485B2 (de)
CN (1) CN105393556B (de)
DE (1) DE102014208256B4 (de)
HK (1) HK1222078A1 (de)
WO (1) WO2015165794A1 (de)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1042436B (de) * 1951-10-08 1958-10-30 Bendix Aviat Corp Sende-Empfangs-Geraet fuer Unterwasserschallzeichen
NL8001119A (nl) * 1980-02-25 1981-09-16 Philips Nv Richtingsonafhankelijk luidsprekerszuil- of vlak.
US6115475A (en) * 1998-07-23 2000-09-05 Diaural, L.L.C. Capacitor-less crossover network for electro-acoustic loudspeakers
US6801631B1 (en) * 1999-10-22 2004-10-05 Donald J. North Speaker system with multiple transducers positioned in a plane for optimum acoustic radiation pattern
KR20030039926A (ko) * 2001-11-16 2003-05-22 삼성전기주식회사 스피커 일체형 리시버
US20040017921A1 (en) * 2002-07-26 2004-01-29 Mantovani Jose Ricardo Baddini Electrical impedance based audio compensation in audio devices and methods therefor
US20060018490A1 (en) * 2004-07-20 2006-01-26 Stiles Enrique M Bessel array
CN101124848A (zh) * 2004-11-18 2008-02-13 阿佩里奥恩音频公司 用于减少扬声器阻抗响应偏差的分频电路
US20080013759A1 (en) * 2006-07-11 2008-01-17 Baird Derrick L Impedance selection circuit
JP2008109281A (ja) * 2006-10-24 2008-05-08 Mitsubishi Electric Engineering Co Ltd スピーカ装置
US8238588B2 (en) * 2006-12-18 2012-08-07 Meyer Sound Laboratories, Incorporated Loudspeaker system and method for producing synthesized directional sound beam
JP2008258968A (ja) * 2007-04-05 2008-10-23 Mitsubishi Electric Engineering Co Ltd アレイスピーカ
DE102009010278B4 (de) 2009-02-16 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lautsprecher
GB2486688A (en) * 2010-12-22 2012-06-27 Wolfson Microelectronics Plc Speaker system using several low-frequency loudspeakers around a high-frequency loudspeaker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105393556A (zh) 2016-03-09
CN105393556B (zh) 2019-01-11
US10425735B2 (en) 2019-09-24
DE102014208256A1 (de) 2015-11-05
HK1222078A1 (zh) 2017-06-16
JP2016527814A (ja) 2016-09-08
WO2015165794A1 (de) 2015-11-05
US20160094915A1 (en) 2016-03-31
DE102014208256B4 (de) 2016-03-24
JP6364485B2 (ja) 2018-07-25
EP2989809A1 (de) 2016-03-02

Similar Documents

Publication Publication Date Title
DE102013204428B4 (de) Akustisches Oberflächenwellenbauelement
DE3140719C2 (de)
DE3329194C2 (de)
DE3124217C2 (de)
DE3406899C2 (de)
DE2524922A1 (de) Elektrostatische lautsprecheranlage
DE2213513C2 (de) Steuerschaltung für die magnetische Lagerung eines Körpers
DE1762375B2 (de) Elektrostatischer lautsprecher
DE2728278A1 (de) Aktives filter
DE102009019707A1 (de) Speisevorrichtung zur Speisung eines Mikrofons
DE102004017497A1 (de) Verstärkerschaltung
EP2989809B1 (de) Array aus elektroakustischen aktoren und verfahren zum herstellen eines solchen arrays
DE602005001887T2 (de) Querverbindung durch Permutationen mittels konfigurierbarer Leiterplatten
DE102008051959A1 (de) Vorrichtung und Verfahren zur Verringerung der Resonanz in Systemen mit mehreren Invertern
DE102005002980B3 (de) Monolithischer Vielschichtaktor und Verfahren zu seiner Herstellung
DE102015103490A1 (de) DC/DC-Wandler mit fliegendem Kondensator
DE2750974A1 (de) Parallele leistungsverstaerkerschaltungen
EP3836559B1 (de) Flächenlautsprecher
EP1445820A1 (de) Hochfrequenz-Schaltvorrichtung
DE102004058410A1 (de) Vielschichtbauelement mit ESD-Schutzelementen
DE102015213631A1 (de) Schaltungsplatine
DE2426375C3 (de) Akustische Oberflächenwellenanordnung
EP0214376A2 (de) Schaltungsanordnung für eine rauscharme Tonfrequenzquelle
DE2922451C2 (de) Piezoelektrische Resonatorvorrichtung
DE1922382B2 (de) Elektronische koppelfeldeinrichtung mit feldeffekttransistoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20161130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170424

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1222078

Country of ref document: HK

DAV Request for validation of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 935083

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002021

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002021

Country of ref document: DE

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1222078

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 935083

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210421

Year of fee payment: 7

Ref country code: FR

Payment date: 20210421

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210422

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015002021

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220423

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103