EP2989809B1 - Array of electroacoustic actuators und method for producing such an array - Google Patents
Array of electroacoustic actuators und method for producing such an array Download PDFInfo
- Publication number
- EP2989809B1 EP2989809B1 EP15720645.9A EP15720645A EP2989809B1 EP 2989809 B1 EP2989809 B1 EP 2989809B1 EP 15720645 A EP15720645 A EP 15720645A EP 2989809 B1 EP2989809 B1 EP 2989809B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electroacoustic
- array
- parallel
- branch
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/40—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
- H04R1/403—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/12—Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/40—Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
- H04R2201/403—Linear arrays of transducers
Definitions
- the present invention relates to arrays, and more particularly to so-called Bessel weighted arrays of electroacoustic actuators.
- Loudspeakers of a loudspeaker array can be controlled differently.
- the EP 0034844 A1 discloses an amplitude / phase weighting based on the function values of the Bessel function of the first kind at different order.
- FIG Fig. 11 (a) shown. It consists of five individual loudspeakers, which are designated according to the arrangement in the example linear array with 1, 2, 3, 4, 5.
- the amplitude / phase weighting is to the left of the speaker array 1100 in FIG Fig. 11 shown.
- the two outermost loudspeakers have a weighting of 0.5 and the inner loudspeakers have a weighting of 1, wherein a loudspeaker, namely the loudspeaker 2 additionally has a phase shift of 180 °.
- Fig. 11 For the line-shaped speaker array used in Fig. 11 (a) Bessel weighting provides the amplitude ratio shown to the left of the array 1100. The phase ratio is 0 °: 180 °: 0 °: 0 °: 0 ° of the single speakers to each other.
- Fig. 11 (b) shows an interconnection of the speakers in the form of a series circuit.
- the loudspeakers 2, 3, 4 are connected in series and in turn in series with a parallel connection of the two outer loudspeakers 1 and 5. This results in the required Bessel-like weighting on each speaker due to the corresponding voltage drop.
- the Bessel weighting can also be generated with a parallel circuit consisting of several parallel branches ( Fig. 11 (c) ).
- One of these parallel branches consists of a series connection of the loudspeakers 1 and 5, the remaining parallel branches each contain a single loudspeaker (2, 3, 4)
- the Bessel weighting can not be optimally implemented with conventional impedance speakers, such as 4 ⁇ to 8 ⁇ .
- the object of the present invention is to provide an improved loudspeaker array. This object is achieved by an array according to claim 1 or a method for producing an array according to claim 17.
- An array of electroacoustic actuators comprises at least five electroacoustic actuators (101, 102, 103, 104, 105), wherein the electroacoustic actuators are connected such that in a first parallel branch (110a) at least two electroacoustic actuators are connected in series, and in a second parallel branch (110b) an electroacoustic actuator is connected in series with a parallel connection of two electroacoustic actuators, and wherein the first parallel branch is connected in parallel to the second parallel branch.
- the electroacoustic actuators are connected such that in a first series branch (110c) at least two electroacoustic actuators are connected in parallel, and that in a second series branch (110d) an electroacoustic actuator is connected in parallel to a series connection of two electroacoustic actuators, wherein the first series branch is connected in series with the second series branch, and wherein the serially connected series branches (110c, 110d) are adapted to be driven by a loudspeaker amplifier (112).
- the circuits can each be mirrored.
- each parallel connection becomes a series connection and vice versa.
- the total impedance is again in the immediate vicinity of the single speaker impedance.
- parallel branches where the impedance is just below that of the ELS, it is just above that of the ELS for modification with series branches.
- an approximate Bessel weighting is achieved, but with a significantly lower overall impedance compared to the known series circuit or with a significantly higher overall impedance compared with the known parallel circuit.
- loudspeaker amplifiers which are optimized for the impedances of the individual loudspeakers.
- a parallel branch comprises a series circuit of a loudspeaker and a parallel circuit of two speakers
- total impedances of loudspeaker arrays not too large as in the series circuit or not too small as in the Parallel connection are.
- loudspeaker arrays can be implemented which have a not identical but approximated Bessel weighting.
- the deviation from the ideal Bessel weighting has, as has been found, so low that the radiation behavior of a loudspeaker array with parallel connection of the parallel branches according to the invention with a well manageable total impedance of the beam behavior of an array, according to Fig. 11 implemented and actually has the ideal Bessel weighting, is almost indistinguishable.
- the problem of high or too low electrical impedances in the application of a Bessel weighting by the special interconnection, which causes a slightly modified Bessel weighting solved.
- the amplitude / phase weighting is implemented solely by polarity reversal or series and parallel switching of the individual loudspeakers.
- the resulting amplitude / phase weighting of each speaker is similar to that of Fig. 11 ,
- the electrical impedance of the array is due to the interconnection used in the invention, for example, to implement the modified Bessel weighting, now in the field of impedance of the speakers used. This allows the array to be easily operated with conventional amplifiers.
- structure-borne sound exciters as further examples of electroacoustic actuators. These are also known as exciters or shakers, the z. B. are attached to a plate and can generate sound by stimulating the plate.
- Fig. 1 (a) shows a speaker array according to an embodiment of the present invention.
- the speaker array comprises an array housing 100 with mounted individual speakers 101, 102, 103, 104, 105, which in the in Fig. 1 (a) embodiment shown are arranged as a line array.
- the single speakers are interconnected by a single speaker interconnect 110 and the single speaker interconnect 110 is drivable through a loudspeaker amplifier 112 via a positive terminal 113 and a negative terminal 114.
- the single speaker circuitry 110 is designed to achieve an approximate Bessel weighting, but the overall impedance of the speaker array seen by the speaker amplifier 112 is within manageable dimensions.
- the single-speaker circuitry 110 includes an implementation as described in U.S. Pat Fig. 1 (b) is shown.
- the single-speaker interconnection comprises a first parallel branch 110a comprising a series connection of individual loudspeakers and a second parallel branch 110b comprising a series-parallel connection of individual loudspeakers.
- the first parallel branch 110a comprises at least two series-connected individual loudspeakers
- the second parallel branch comprises a single loudspeaker in series with a parallel connection of two individual loudspeakers.
- the two parallel branches 110a, 110b connected in parallel and from the loudspeaker amplifier 112 of Fig. 1 (a) drivable.
- the single speaker interconnect 110 includes an implementation as shown in FIG Fig. 1 (c) is shown.
- the single-speaker circuitry includes a first series branch 110c having a parallel connection of single loudspeakers and a second series branch 110d comprising a parallel series connection of single loudspeakers.
- the first series branch 110c comprises at least two individual speakers connected in parallel
- the second series branch comprises a single loudspeaker in parallel with a series connection of two individual loudspeakers.
- the two series branches 110c, 110d are connected in series and from the loudspeaker amplifier 112 of FIG Fig. 1 (a) drivable.
- Fig. 2 shows an array, eg the array of Fig. 1 (a) , but here in a vertical representation.
- the single speakers 101 to 105 are represented by "1" to "5", and further the Figs modified Bessel weights in Fig. 2 are shown to the left of the individual speakers.
- These modified Bessel weights are provided by the special series parallel connection of Fig. 3 reached.
- the first parallel branch 110a comprises the two individual loudspeakers 2, 3 connected in series with one another
- the second parallel branch 110b comprises the individual loudspeaker 4 connected in series with the parallel connection of the two outer array loudspeakers 1 and 5.
- the negative weighting factor for the second loudspeaker 102 is achieved by opposing poling of the loudspeaker with respect to the other loudspeakers in the first parallel branch 110a, as shown schematically in FIG Fig. 3 is shown.
- Figs. 4 (a) and 4 (b) show an alternative implementation.
- the positions of the speakers 3 and 4 are compared to Fig. 2 respectively.
- Fig. 3 reversed.
- the speaker 4 in Fig. 4 (b) is now arranged in the first parallel branch 110a, and the speaker 3 is arranged in the second parallel branch 110b.
- This results in that the weightings of the loudspeakers are exchanged, ie that the loudspeaker 3 has a weighting of 1 and the loudspeaker 4 has a weighting of 0.75, which is an inverse compared to the corresponding weighting in FIG Fig. 2 is.
- the exemplary linear arrays of Fig. 2 and Fig. 4 (a) each include five speakers. Compared to a loudspeaker array with five loudspeakers with original Bessel weighting, the loudspeakers will be in accordance with Fig. 3 respectively. Fig. 4 (b) connected. As a result, the electrical impedance of the modified array is only 14% lower than that of the single loudspeaker, for example, 3.4 ⁇ if the speaker impedance of the individual speakers is 4 ⁇ . For an original Bessel weight, the array's electrical impedance would be 14 ⁇ for series connection from Fig. 11 (b) or 1.14 ⁇ for the parallel connection of Fig. 11 (c) , In the mirrored variant with series branches, the impedance is only 14% higher than that of a single loudspeaker, ie at 4.56 ⁇ , for example.
- Fig. 4 (c) shows a more detailed representation of the interconnection of Fig. 4 (b) , wherein in particular the interconnection of the positive / negative inputs of the individual speakers is shown.
- the negative reverse polarity of the loudspeaker 2 is shown, in which the negative terminal of the loudspeaker 4 is coupled to the negative terminal of the loudspeaker 2, so that the 180 ° phase shift is achieved in comparison to the other loudspeakers in the array.
- Fig. 5 . 6 and 7 show further embodiments for larger line arrays.
- Such Bessel-weighted line arrays are typically also used with seven and nine elements, respectively D. Keele, "Effective Performance of Bessel Arrays", Journal of Audio Engineering Society, Vol. 38, No. 10, pages 723-748, October 1990 , is described.
- Loudspeakers are the elements of the array that have an amplitude weighting not equal to zero. There is no need to place a speaker at the array positions with the amplitude weighting 0. The gap should not be closed by a back-to-back of the adjacent speakers.
- a speaker may be placed at the array position with the amplitude weighting 0. However, this speaker would then be inactive or would only emit significantly less sound pressure level (eg, at most 10%) than other speakers in the array with an amplitude weighting not equal to zero.
- Fig. 7 shows an implementation for a 7-array with six active speakers.
- the middle position is a position for a single speaker that is inactive, or is a position that is left empty, so no single speaker is disposed at all for the 7-speaker array.
- the remaining six single speakers will be as in Fig. 5 connected.
- the weights of each speaker in Fig. 5 which are generated due to the series / parallel circuit, are entered in the figure.
- the two loudspeakers with the weighting 0.4 for all different interconnections which are in Fig. 6 are shown, the two outermost speakers.
- the positions of the loudspeakers with the weights of 0.8 and 1 can be varied accordingly, so that at least six different ways of arranging the individual loudspeakers to the in Fig. 7 positions shown are obtained.
- the interconnection is preferably as they are in Fig. 5 is shown, however, that the positions of the speakers with the weights 1 and 0.8 in Fig. 5 can be at different inner positions of the speaker array, that is, at the positions 2, 3, 5, 6. There are also more possibilities than they are in Fig. 6 are shown.
- the phase weighting is achieved, in particular, by oppositely poling the loudspeaker arranged at the third position or at a phase mirroring at the middle of the array at the fifth position. This will vary depending on the implementation of one of Fig. 6 be shown possibilities of the corresponding speaker.
- Fig. 8 . 9, 10 show further embodiments with respect to a line array with nine speakers, in which, as it is in Fig. 10 is shown, two positions 4, 6 are not present or inactive, so that in particular an interconnection of seven individual speakers results (eg. Fig. 8 ). While at the in Fig. 5 shown embodiment in comparison to Fig. 3 or Fig. 4 (b) an additional single loudspeaker in the second parallel branch 110b was necessary to the preferred Weighting is now, as it is in Fig. 8 an additional single speaker 110a is shown.
- the weights as in Fig. 8 are shown.
- the individual positions of the speakers can be restored as it is in Fig. 9 is shown, depending on the weighting are varied, resulting in a variety of different positions of the individual speakers, as long as the position 4 and the position 6 remain free or inactive, inactive does not have to be completely inactive, but may also mean a level which at z. B. may be less than 10% of the least-emitting speaker in the array, and as long as the two speakers are arranged with the weighting 0.45 at the ends of the line array.
- the loudspeakers with the weights 0.75 and 1.0 in the inner positions can be varied relatively arbitrarily, care being taken in preferred embodiments that the polarity reversal be performed for the second position and the fifth position.
- Fig. 13 (a) shows the use of series branches for the variant of six speakers in analogy to Fig. 5 ,
- the additional speaker 500 is included in the second series branch and in series with the speaker 104 of FIG Fig. 12 (a) ,
- Fig. 13 (b) shows the use of series branches for the variant of seven speakers in analogy to Fig. 8 ,
- the additional speaker 500 is included in the second series branch and in series with the speaker 104 of FIG Fig. 12a ,
- the additional speaker is in the first series branch parallel to the speakers 102, 103 of Fig. 12 (a) arranged.
- FIG. 14 Figure 5 shows a simulated emission characteristic of a linear array of five loudspeakers with original Bessel weighting, the simulated emission characteristic being for an array lying horizontally in the drawing plane and radiating upwards with respect to the drawing plane. Furthermore, the representation is parameterized over the frequency, namely from 100 Hz to 8000 Hz.
- Fig. 15 shows a corresponding representation for the implementation of Fig. 3
- Fig. 16 shows a corresponding representation for the implementation of Fig. 4 (b)
- Fig. 17 shows an isobaric representation of the measured radiation characteristic of a linear array of five loudspeakers with original Bessel weighting along the array extension. It should be noted that the 0 ° line corresponds to the main beam direction, ie the 90 ° line of eg Fig. 16 , Furthermore, the isobaric representation shows the deviation at a certain degree coordinate with respect to the sound pressure at the 0-coordinate, for frequencies from 319.9 to 20,000 Hz. From a comparison of Fig. 18 and Fig. 17 It can be seen that the inventive array of Fig. 4 (b) Although the isobaric representation of the ideal Bessel array of Fig. 17 not completely simulated, but very well approximates.
- the two individual loudspeakers connected in parallel in the second parallel branch such as 1 and 5 in FIG Fig. 3 or the corresponding speakers from Fig. 5 respectively.
- Fig. 8 arranged at the array ends of a line array.
- each individual speaker has an impedance where the impedances of the individual speakers are equal or differ by at most 20% from an average of all the impedances of the individual speakers.
- the at least nominal impedances of the individual loudspeakers are the same, although production-related deviations can not be ruled out, of course. Even with relatively moderately deviating loudspeaker impedances of the individual loudspeakers, that is, deviating impedances, a good overall impedance value of the array can still be achieved, which is suitable for conventional loudspeaker amplifiers.
- Typical speaker impedances are 4 to 8 ⁇ . However, it is preferred to use for the present invention single speakers whose impedances are greater than or equal to 2.5 ⁇ or less than or equal to 12 ⁇ .
- the individual loudspeakers in the first parallel branch and the second parallel branch are interconnected and arranged in the array with respect to one another, resulting in at least an approximate Bessel weighting for the loudspeaker array.
- the approximate Bessel weighting states that in Fig. 2 the value 0.75 approximates the weighting factor 1 or that the value -0.75 approximates the weighting factor -1, etc.
- other series / parallel circuits with the goal of average total impedances are also for those skilled in particular for larger arrays in view of the present presentation recognizable.
- Fig. 5 shown includes the correspondingly larger array compared to Fig. 3 the additional loudspeaker in the second parallel branch 500, which has a weight of 0.8.
- the turn bigger array is in Fig. 8 shown and includes, in comparison to Fig. 5 , in addition to the in Fig. 5 also existing speaker 500 in the first parallel branch the additional speaker 800th
Landscapes
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Circuit For Audible Band Transducer (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Description
Die vorliegende Erfindung bezieht sich auf Arrays und insbesondere auf sogenannte Bessel-gewichtete Arrays aus elektroakustischen Aktoren.The present invention relates to arrays, and more particularly to so-called Bessel weighted arrays of electroacoustic actuators.
Lautsprecher eines Lautsprecher-Arrays, z.B. eines Linienarrays bzw. eines Flächen-Arrays, können unterschiedlich angesteuert werden. Die
Eine mögliche Ausführungsform eines solchen Arrays ist in
Ein solches Array erzielt gegenüber dem Einzellautsprecher einen höheren Schalldruckpegel. Obwohl das Array eine größere Abstrahlfläche als der Einzellautsprecher besitzt, unterscheiden sich die Abstrahlcharakteristiken kaum voneinander.Such an array achieves a higher sound pressure level compared to the single loudspeaker. Although the array has a larger emission area than the single speaker, the emission characteristics are hardly different from each other.
Für das linienförmige Lautsprecher-Array, das in
Alternativ kann die Bessel-Gewichtung auch mit einer Parallelschaltung erzeugt werden, die aus mehreren Parallelzweigen besteht (
Vorteilhaft an den Verschaltungen in
Diese Verschaltung hat jedoch die Problematik der Gesamtimpedanz des Arrays. Bei der seriellen Verschaltung des 5er-Bessel-Arrays von
Für die Realisierung mittels Parallelschaltung in
Aus diesem Grund kann die Bessel-Gewichtung mit Lautsprechern üblicher Impedanz, wie beispielsweise 4 Ω bis 8 Ω, nicht optimal umgesetzt werden.For this reason, the Bessel weighting can not be optimally implemented with conventional impedance speakers, such as 4Ω to 8Ω.
Im Hinblick auf linienförmige Arrays mit einer größeren Anzahl an Lautsprechern, wobei die Anzahl größer als fünf ist, erreicht die Gesamtimpedanz bei der Parallelschaltung einen noch geringeren Wert und bei der Serienschaltung einen noch größeren Wert, wenn wiederum von der gleichen Lautsprecherimpedanz ausgegangen wird.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Lautsprecher-Array zu schaffen.
Diese Aufgabe wird durch ein Array nach Patentanspruch 1 oder ein Verfahren zum Herstellen eines Arrays nach Patentanspruch 17 gelöst.
Ein Array aus elektroakustischen Aktoren, umfasst wenigstens fünf elektroakustische Aktoren (101, 102, 103, 104, 105), wobei die elektroakustischen Aktoren so verschaltet sind, dass in einem ersten Parallelzweig (110a) wenigstens zwei elektroakustische Aktoren in Serie geschaltet sind, und dass in einem zweiten Parallelzweig (110b) ein elektroakustischer Aktor in Serie zu einer Parallelschaltung von zwei elektroakustischen Aktoren geschaltet ist, und wobei der erste Parallelzweig parallel zu dem zweiten Parallelzweig geschaltet ist. Bei einer alternativen Implementierung sind die elektroakustischen Aktoren so verschaltet, dass in einem ersten Serienzweig (110c) wenigstens zwei elektroakustische Aktoren parallel geschaltet sind, und dass in einem zweiten Serienzweig (110d) ein elektroakustischer Aktor parallel zu einer Serienschaltung von zwei elektroakustischen Aktoren geschaltet ist, wobei der erste Serienzweig in Serie zu dem zweiten Serienzweig geschaltet ist, und wobei die seriell geschalteten Serienzweige (110c, 110d) ausgebildet sind, um von einem Lautsprecher-Verstärker (112) getrieben zu werden.With regard to line arrays with a larger number of loudspeakers, the number being greater than five, the total impedance achieved in parallel connection an even lower value and in the series connection an even greater value, if in turn is assumed by the same speaker impedance.
The object of the present invention is to provide an improved loudspeaker array.
This object is achieved by an array according to
An array of electroacoustic actuators comprises at least five electroacoustic actuators (101, 102, 103, 104, 105), wherein the electroacoustic actuators are connected such that in a first parallel branch (110a) at least two electroacoustic actuators are connected in series, and in a second parallel branch (110b) an electroacoustic actuator is connected in series with a parallel connection of two electroacoustic actuators, and wherein the first parallel branch is connected in parallel to the second parallel branch. In an alternative implementation, the electroacoustic actuators are connected such that in a first series branch (110c) at least two electroacoustic actuators are connected in parallel, and that in a second series branch (110d) an electroacoustic actuator is connected in parallel to a series connection of two electroacoustic actuators, wherein the first series branch is connected in series with the second series branch, and wherein the serially connected series branches (110c, 110d) are adapted to be driven by a loudspeaker amplifier (112).
Erfindungsgemäß können also die Schaltungen jeweils gespiegelt werden. Bei einer elektrisch "gespiegelten" Schaltung wird jede Parallelschaltung zu einer Serienschaltung und umgekehrt. Die Gesamtimpedanz liegt wieder in unmittelbarer Nähe der Einzellautsprecherimpedanz. Im Gegensatz zur Verwendung von Parallelzweigen, bei der die Impedanz knapp unterhalb der des ELS liegt, ist sie für Modifikation mit Serienzweigen knapp oberhalb des der ELS.
Damit wird eine annähernde Bessel-Gewichtung erreicht, jedoch mit einer im Vergleich zur bekannten Serienschaltung deutlich niedrigeren Gesamtimpedanz oder mit einer im Vergleich zur bekannten Parallelschaltung deutlich höheren Gesamtimpedanz. Dadurch können übliche Lautsprecher-Verstärker verwendet werden, die auf die Impedanzen der einzelnen Lautsprecher optimiert sind.According to the invention, therefore, the circuits can each be mirrored. In an electrically "mirrored" circuit, each parallel connection becomes a series connection and vice versa. The total impedance is again in the immediate vicinity of the single speaker impedance. In contrast to the use of parallel branches, where the impedance is just below that of the ELS, it is just above that of the ELS for modification with series branches.
Thus, an approximate Bessel weighting is achieved, but with a significantly lower overall impedance compared to the known series circuit or with a significantly higher overall impedance compared with the known parallel circuit. Thereby It is possible to use conventional loudspeaker amplifiers, which are optimized for the impedances of the individual loudspeakers.
In anderen Worten ausgedrückt, erreicht die erfindungsgemäße Verwendung von zwei Parallelzweigen, wobei ein Parallelzweig eine Serienschaltung aus einem Lautsprecher und einer Parallelschaltung aus zwei Lautsprechern aufweist, Gesamtimpedanzen von Lautsprecher-Arrays, die nicht zu groß wie bei der Serienschaltung oder nicht zu klein wie bei der Parallelschaltung sind.In other words, the inventive use of two parallel branches, wherein a parallel branch comprises a series circuit of a loudspeaker and a parallel circuit of two speakers, total impedances of loudspeaker arrays not too large as in the series circuit or not too small as in the Parallel connection are.
Somit sind Lautsprecher-Arrays implementierbar, die eine zwar nicht identische, aber angenäherte Bessel-Gewichtung haben. Die Abweichung von der idealen Bessel-Gewichtung ist jedoch, wie sich herausgestellt hat, so gering, dass das Abstrahlverhalten eines Lautsprecher-Arrays mit erfindungsgemäßer Parallelschaltung der Parallelzweige also mit einer gut handhabbaren Gesamtimpedanz vom Strahlverhalten eines Arrays, das gemäß
Erfindungsgemäß wird also die Problematik zu hoher bzw. zu niedriger elektrischer Impedanzen bei der Anwendung einer Bessel-Gewichtung durch die spezielle Verschaltung, die eine leicht modifizierte Bessel-Gewichtung hervorruft, gelöst. Dabei wird in Analogie zum Stand der Technik die Amplituden-/Phasengewichtung allein durch Verpolen bzw. Serien- und Parallelschalten der Einzellautsprecher umgesetzt. Die daraus resultierende Amplituden-/Phasengewichtung der einzelnen Lautsprecher ist ähnlich der von
Gegenüber dem Einzellautsprecher werden weiterhin ein Schalldruckpegelgewinn und eine nahezu identische Abstrahlcharakteristik erzielt. Die elektrische Impedanz des Arrays liegt jedoch in Folge der erfindungsgemäß eingesetzten Verschaltung, um beispielsweise die modifizierte Bessel-Gewichtung zu implementieren, nun im Bereich der Impedanz der eingesetzten Lautsprecher. Dadurch kann das Array problemlos mit konventionellen Verstärkern betrieben werden.Compared to the single speaker, a sound pressure level gain and a nearly identical emission characteristic are still achieved. However, the electrical impedance of the array is due to the interconnection used in the invention, for example, to implement the modified Bessel weighting, now in the field of impedance of the speakers used. This allows the array to be easily operated with conventional amplifiers.
Alternativ oder zusätzlich zu Lautsprechern können auch Körperschallanreger eingesetzt werden, als weitere Beispiele für elektroakustische Aktoren. Diese werden auch als Exciter oder Shaker bezeichnet, die z. B. an einer Platte angebracht sind und durch Anregung der Platte Schall erzeugen können.As an alternative or in addition to loudspeakers, it is also possible to use structure-borne sound exciters as further examples of electroacoustic actuators. These are also known as exciters or shakers, the z. B. are attached to a plate and can generate sound by stimulating the plate.
In der nachfolgenden Beschreibung wird auf Einzellautsprecher Bezug genommen. Es sei jedoch darauf hingewiesen, dass ein Einzellautsprecher lediglich stellvertretend für sämtliche elektroakustische Aktoren stehtIn the following description, reference will be made to single loudspeakers. It should be noted, however, that a single speaker is merely representative of all electro-acoustic actuators
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
- Fig. 1(a)
- eine schematische Darstellung des Lautsprecher-Arrays;
- Fig. 1(b)
- eine schematische Darstellung einer Einzellautsprecher- (ELS-) Verschaltung von
Fig. 1(a) mit Parallelzweigen; - Fig. 1(c)
- eine schematische Darstellung einer Einzellautsprecher- (ELS-) Verschaltung von
Fig. 1(a) mit Serienzweigen; - Fig. 2
- eine Darstellung eines Lautsprecher-Arrays mit modifizierter Bessel-Gewichtung;
- Fig. 3
- ein Verschaltungsbeispiel für das Ausführungsbeispiel von
Fig. 2 ; - Fig. 4(a)
- eine alternative Implementierung eines Lautsprecher-Arrays mit modifizierter bzw. angenäherter Bessel-Gewichtung;
- Fig. 4(b)
- eine Verschaltung für die Implementierung von
Fig. 4(a) ; - Fig. 4(c)
- ein detailliertes Schaltungsdiagramm zur Erklärung der Verschaltungsdarstellung von
Fig. 4(b) ; - Fig. 5
- eine Verschaltungsvariante für ein Array mit sechs aktiven Einzellautsprechern;
- Fig. 6
- eine tabellarische Darstellung verschiedener Verschaltungsvarianten;
- Fig. 7
- eine schematische Darstellung des Arrays mit sechs aktiven Einzellautsprechern;
- Fig. 8
- eine Verschaltungsvariante für ein Array mit sieben aktiven Einzellautsprechern;
- Fig. 9
- eine tabellarische Darstellung der verschiedenen Verschaltungen der einzelnen Lautsprecher bezüglich ihrer Anordnung im Array;
- Fig. 10
- eine schematische Darstellung des Lautsprecher-Arrays, wobei zwei Einzellautsprecher nicht vorhanden oder inaktiv sind;
- Fig. 11(a) bis 11(c)
- ein bekanntes Array mit einer bekannten Verschaltung;
- Fig. 12(a)
- eine Verschaltung mit Serienzweigen;
- Fig. 12(b)
- eine Gewichtung für die Verschaltung mit Serienzweigen;
- Fig. 13(a)
- eine Verschaltungsvariante für ein Array mit sechs Einzellautsprechern;
- Fig. 13(b)
- eine Verschaltungsvariante für ein Array mit sieben Einzellautsprechern;
- Fig. 14
- eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit originaler Bessel-Gewichtung;
- Fig. 15
- eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit modifizierter Bessel-Gewichtung von
Fig. 3 ; - Fig. 16
- eine simulierte Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit modifizierter Bessel-Gewichtung von
Fig. 4(b) ; - Fig. 17
- eine Isobaren-Darstellung der gemessenen Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit originaler Bessel-Gewichtung entlang der Array-Ausdehnung; und
- Fig. 18
- eine Isobaren-Darstellung der gemessenen Abstrahlcharakteristik eines linienförmigen Arrays aus fünf Lautsprechern mit modifizierter Bessel-Gewichtung entlang der Array-Ausführung von
Fig. 4(b) .
- Fig. 1 (a)
- a schematic representation of the speaker array;
- Fig. 1 (b)
- a schematic representation of a Einzelellautsprecher- (ELS) interconnection of
Fig. 1 (a) with parallel branches; - Fig. 1 (c)
- a schematic representation of a Einzelellautsprecher- (ELS) interconnection of
Fig. 1 (a) with serial branches; - Fig. 2
- a representation of a speaker array with modified Bessel weighting;
- Fig. 3
- an interconnection example for the embodiment of
Fig. 2 ; - Fig. 4 (a)
- an alternative implementation of a speaker array with modified or approximated Bessel weighting;
- Fig. 4 (b)
- an interconnection for the implementation of
Fig. 4 (a) ; - Fig. 4 (c)
- a detailed circuit diagram for explaining the wiring diagram of
Fig. 4 (b) ; - Fig. 5
- an interconnection variant for an array with six single active loudspeakers;
- Fig. 6
- a tabular representation of various interconnection variants;
- Fig. 7
- a schematic representation of the array with six individual active speakers;
- Fig. 8
- a connection variant for an array with seven single active loudspeakers;
- Fig. 9
- a tabular representation of the different interconnections of the individual speakers with respect to their arrangement in the array;
- Fig. 10
- a schematic representation of the speaker array, wherein two individual speakers are not present or inactive;
- Figs. 11 (a) to 11 (c)
- a known array with a known interconnection;
- Fig. 12 (a)
- an interconnection with series branches;
- Fig. 12 (b)
- a weighting for the interconnection with series branches;
- Fig. 13 (a)
- an interconnection variant for an array with six individual loudspeakers;
- Fig. 13 (b)
- a connection variant for an array with seven individual loudspeakers;
- Fig. 14
- a simulated emission characteristic of a linear array of five loudspeakers with original Bessel weighting;
- Fig. 15
- a simulated emission characteristic of a linear array of five loudspeakers with modified Bessel weighting of
Fig. 3 ; - Fig. 16
- a simulated emission characteristic of a linear array of five loudspeakers with modified Bessel weighting of
Fig. 4 (b) ; - Fig. 17
- an isobaric representation of the measured radiation characteristic of a linear array of five loudspeakers with original Bessel weighting along the array extension; and
- Fig. 18
- an isobaric representation of the measured radiation characteristic of a linear array of five speakers with modified Bessel weighting along the array design of
Fig. 4 (b) ,
Zu diesem Zweck umfasst die Einzellautsprecher-Verschaltung 110 eine Implementierung, wie sie in
Alternativ umfasst die Einzellautsprecher-Verschaltung 110 eine Implementierung, wie sie in
Die beispielhaften linienförmigen Arrays von
Aufgrund der geänderten Lautsprecher-Verschaltung ergibt sich eine modifizierte Amplituden- und Phasengewichtung, da statt der Faktoren "0,75" eigentlich die Faktoren "1" gefordert werden. Dennoch verändert sich die Abstrahlcharakteristik des Arrays gegenüber dem Array mit originaler Bessel-Gewichtung bzw. gegenüber einem einzelnen Lautsprecher nur gering, wie es anhand der
Die
Bezüglich
Die Problematik einer zu großen (Serienschaltung) bzw. einer zu kleinen (Parallelschaltung) elektrischen Impedanz beim Einsatz üblicher Lautsprecherimpedanzen, also von Lautsprecherimpedanzen zwischen 4 und 8 Ω, tritt hier noch stärker auf, wenn die konventionelle Verschaltung verwendet wird.The problem of a too large (series connection) or a too small (parallel circuit) electrical impedance when using conventional speaker impedances, ie of speaker impedances between 4 and 8 Ω, occurs even more here when the conventional interconnection is used.
So sind die beiden Lautsprecher mit der Gewichtung 0,4 bei allen verschiedenen Verschaltungen, die in
0,4:1:1:0:0,8:0,8:0,4
0,4:1:0,8:0:1:0,8:0,4.Thus, the two loudspeakers with the weighting 0.4 for all different interconnections, which are in
0.4: 1: 1: 0: 0.8: 0.8: 0.4
0.4: 1: 0.8: 0: 1: 0.8: 0.4.
Die Phasengewichtung bleibt dabei gleich!The phase weighting remains the same!
Eine weitere Variante besteht darin, dass wenn die Phasen, und die Amplitudengewichtung an der Array-Mitte (ELS 4) gespiegelt werden. Dies wäre eine Drehung des Arrays (
Die Phasengewichtung wird insbesondere dadurch erreicht, dass der an der dritten oder bei einer Phasenspiegelung an der Arraymitte an der fünften Position angeordnete Lautsprecher entgegengesetzt gepolt wird. Dies wird je nach Implementierung von einer der in
Die
Damit ergeben sich wiederum die Gewichtungen, wie sie in
Nachfolgend werden weitere Ausführungsbeispiele der vorliegenden Erfindung dargestellt.Hereinafter, further embodiments of the present invention will be illustrated.
Wie es anhand von diversen Figuren bereits dargestellt worden ist, werden die beiden im zweiten Parallelzweig parallel geschalteten Einzellautsprecher, wie beispielsweise 1 und 5 in
Bei einer Implementierung hat jeder Einzellautsprecher eine Impedanz, wobei die Impedanzen der Einzellautsprecher gleich sind oder um höchstens 20 % von einem Mittelwert aller Impedanzen der Einzellautsprecher abweichen. Vorzugsweise sind jedoch die zumindest Nenn-Impedanzen der Einzellautsprecher gleich, obgleich herstellungsbedingte Abweichungen natürlich nicht auszuschließen sind. Selbst jedoch bei relativ moderat abweichenden Lautsprecher-Impedanzen der Einzellautsprecher, also abweichenden Impedanzen kann immer noch ein guter Gesamtimpedanzwert des Arrays erreicht werden, der für übliche Lautsprecher-Verstärker geeignet ist.In one implementation, each individual speaker has an impedance where the impedances of the individual speakers are equal or differ by at most 20% from an average of all the impedances of the individual speakers. Preferably, however, the at least nominal impedances of the individual loudspeakers are the same, although production-related deviations can not be ruled out, of course. Even with relatively moderately deviating loudspeaker impedances of the individual loudspeakers, that is, deviating impedances, a good overall impedance value of the array can still be achieved, which is suitable for conventional loudspeaker amplifiers.
Darüber hinaus sind bei den dargestellten Arrays und auch bei größeren Arrays die im ersten Parallelzweig angeordneten in Serie geschalteten Einzellautsprecher und auch der im zweiten Parallelzweig angeordnete in Serie geschaltete Einzellautsprecher, wie beispielsweise die Einzellautsprecher 2, 3, 4 in
Typische Lautsprecherimpedanzen liegen bei 4 bis 8 Ω. Es wird jedoch bevorzugt, auch für die vorliegende Erfindung Einzellautsprecher einzusetzen, deren Impedanzen größer oder gleich 2,5 Ω oder kleiner oder gleich 12 Ω sind.Typical speaker impedances are 4 to 8 Ω. However, it is preferred to use for the present invention single speakers whose impedances are greater than or equal to 2.5 Ω or less than or equal to 12 Ω.
Wie es z.B. anhand von
Wie es in
Bei einem Verfahren zum Herstellen eines Lautsprecher-Arrays werden in einem Schritt die Einzellautsprecher in einem Lautsprecher-Array angeordnet. Darüber hinaus werden die Einzellautsprecher so verschaltet, dass sich die beschriebene Parallelschaltung von Parallelzweigen ergibt, woraufhin die verschalteten Lautsprecher mit einem Lautsprecher-Verstärker, der typischerweise und vorzugsweise für die Impedanz eines Einzellautsprechers optimiert bzw. konfiguriert ist, getrieben werden.In a method for producing a loudspeaker array, the individual loudspeakers are arranged in a loudspeaker array in one step. In addition, the single speakers are interconnected to provide the described parallel connection of parallel branches, whereupon the interconnected loudspeakers are driven with a loudspeaker amplifier which is typically and preferably optimized for the impedance of a single loudspeaker.
Claims (17)
- An array of electroacoustic actuators, comprising:at least five electroacoustic actuators (101, 102, 103, 104, 105),wherein the electroacoustic actuators are connected such that, in a first parallel branch (110a), at least two electroacoustic actuators are connected in series and, in a second parallel branch (110b), an electroacoustic actuator is connected in series to a parallel connection of two electroacoustic actuators,wherein the first parallel branch is connected in parallel to the second parallel branch, andwherein the parallel branches (110a, 110b) connected in parallel are configured to be driven by an actuator amplifier (112), orwherein the electroacoustic actuators are connected such that, in a first serial branch (110c), at least two electroacoustic actuators are connected in parallel and, in a second serial branch (110d), an electroacoustic actuator is connected in parallel to a serial connection of two electroacoustic actuators,wherein the first serial branch is connected in series to the second serial branch, andwherein the serial branches (110c, 110d) connected in series are configured to be driven by an actuator amplifier (112).
- The array in accordance with claim 1,
wherein the array comprises an array line, and
wherein the electroacoustic actuators of the parallel connection (101, 105) in the second parallel branch (110b) are arranged at the ends of the array line, one electroacoustic actuator being arranged per array end, or
wherein the electroacoustic actuators of the series connection (101, 105) in the second serial branch (110d) are arranged at the ends of the array line, one electroacoustic actuator being arranged per array end. - The array in accordance with claim 1 or 2,
wherein an electroacoustic actuator in the first parallel branch is of opposite polarity relative to another loudspeaker in the first parallel branch (110a), or
wherein an electroacoustic actuator in the first serial branch is of opposite polarity relative to another loudspeaker in the first serial branch (110c). - The array in accordance with any of the preceding claims,
wherein each electroacoustic actuator exhibits an impedance, the impedances of the electroacoustic actuators being equal or the impedance of an electroacoustic actuator deviating by at most 20 % from a mean value of all the impedances of the electroacoustic actuators. - The array in accordance with any of the preceding claims,
wherein an electroacoustic actuator connected in series in the first parallel branch (110a) and an electroacoustic actuator connected in series in the second parallel branch (110b) are arranged at inner positions of an array line in the array line of the electroacoustic actuator, or
wherein an electroacoustic actuator connected in parallel in the first serial branch (110c) and an electroacoustic actuator connected in parallel in the second serial branch (110d) are arranged at inner positions of an array line in the array line of the electroacoustic actuator. - The array in accordance with any of the preceding claims,
wherein impedances of the electroacoustic actuators are greater than or equal to 2.5 Ω or smaller than or equal to 12 Ω. - The array in accordance with any of the preceding claims,
wherein the electroacoustic actuators in the first parallel branch and in the second parallel branch are connected and arranged in the array to one another such that an at least approximated Bessel weighting results for the loudspeaker array, or
wherein the electroacoustic actuators in the first serial branch and in the second serial branch are connected and arranged in the array to one another such that an at least approximated Bessel weighting results for the loudspeaker array. - The array in accordance with any of the preceding claims,
wherein the loudspeaker array comprises an array line of five loudspeakers, which are arranged in ascending numbering along the array line,
wherein the first electroacoustic actuator and the fifth electroacoustic actuator are connected in parallel in the second parallel branch or are connected in series in the second serial branch,
wherein the third electroacoustic actuator is arranged in the first parallel branch or in the second parallel branch, wherein the fourth electroacoustic actuator is in the second parallel branch or in the first parallel branch, or wherein the third electroacoustic actuator is arranged in the first serial branch or in the second serial branch, wherein the fourth electroacoustic actuator is in the second serial branch or in the first serial branch, and
wherein the second electroacoustic actuator is in the first parallel branch or the first serial branch. - The array in accordance with any of claims 1 to 7,
wherein the loudspeaker array comprises six electroacoustic actuators, wherein, in the second parallel branch, another electroacoustic actuator (500) is connected in series to the electroacoustic actuator which is connected in series to the parallel connection, or
wherein, in the second serial branch, another electroacoustic actuator (500) is connected in series to the electroacoustic actuator which is connected in parallel to the serial connection. - The array in accordance with any of the preceding claims 1 to 7,
wherein the loudspeaker array comprises seven electroacoustic actuators, wherein there is another electroacoustic actuator (800) in the first parallel branch (110a) such that three electroacoustic actuators are connected in series in the first parallel branch, or
wherein there is another electroacoustic actuator (800) in the first serial branch (110c) such that three electroacoustic actuators are connected in parallel in the first serial branch. - The array in accordance with claim 9 or 10,
wherein the electroacoustic actuators connected in parallel, in the second parallel branch, are arranged at ends of the loudspeaker array,
wherein no electroacoustic actuator is arranged at a central position of the loudspeaker array, or an inactive actuator or an actuator comprising an emission level of less than 10 % of that actuator emitting the least among the array, and
wherein one of the electroacoustic actuators connected in series in the first or second parallel branch is of opposite polarity compared to another electroacoustic actuator of the series connection in the parallel branch, or
wherein the electroacoustic actuators connected in series, in the second serial branch, are arranged at ends of the loudspeaker array,
wherein no electroacoustic actuator is arranged at a central position of the loudspeaker array, or an inactive actuator or an actuator with an emission level of less than 10 % of that actuator emitting the least among the array, and
wherein one of the electroacoustic actuators connected in parallel in the first or second serial branch is of opposite polarity compared to another electroacoustic actuator of the parallel connection in the serial branch. - The array in accordance with claim 9, 10 or 11,
wherein the two electroacoustic actuators in the first parallel branch (110a) and the two electroacoustic actuators in the second parallel branch are arranged at respective inner positions of the loudspeaker array, but not in the center of the loudspeaker array, or
wherein the two electroacoustic actuators in the first serial branch (110c) and the two electroacoustic actuators in the second serial branch (110d) are arranged at respective inner positions of the loudspeaker array, but not in the center of the loudspeaker array. - The array in accordance with claim 10,
wherein the loudspeaker array comprises nine positions, wherein no electroacoustic actuator or an inactive electroacoustic actuator is arranged at a fourth position and at a sixth position of the loudspeaker array, and
wherein the electroacoustic actuators arranged at a second or fifth position of the loudspeaker array are of opposite polarity compared to other electroacoustic actuators connected in series, or wherein the electroacoustic actuators arranged at a second or fifth position of the loudspeaker array are of opposite polarity compared to other electroacoustic actuators connected in parallel. - The array in accordance with claim 13,
wherein the electroacoustic actuators connected in series in the first parallel branch and in the second parallel branch are arranged at respective inner positions of the loudspeaker array, or
wherein the electroacoustic actuators connected in parallel in the first serial branch and in the second serial branch are arranged at respective inner positions of the loudspeaker array. - The array in accordance with any of the preceding claims,
wherein the loudspeaker array is an area array including several line arrays of electroacoustic actuators,
wherein each line array comprises the first parallel branch and the second parallel branch or the first serial branch and the second serial branch, and
wherein the electroacoustic actuators of the line arrays are connected such that an at least approximated Bessel weighting for the loudspeaker array is obtained. - The array in accordance with any of the preceding claims,
wherein the actuator amplifier or actuators amplifier (112), in nominal operation, is configured for an actuator input impedance which is between 0.8 times and 2 times an individual impedance of the electroacoustic actuators. - A method of producing an array of electroacoustic actuators, comprising:arranging the electroacoustic actuators in an array (100);connecting the electroacoustic actuators such that:in a first parallel branch (110a), at least two electroacoustic actuators are connected in series and, in a second parallel branch (110b), an electroacoustic actuator is connected in series to a parallel connection of two electroacoustic actuators, the first parallel branch being connected in parallel to the second parallel branch, orin a first serial branch (110c), at least two electroacoustic actuators are connected in parallel and, in a second serial branch (110d), an electroacoustic actuator is connected in parallel to a serial connection of two electroacoustic actuators, the first serial branch being connected in series to the second serial branch; andthe connected electroacoustic actuators can be driven using an actuator amplifier (112).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014208256.0A DE102014208256B4 (en) | 2014-04-30 | 2014-04-30 | Array of electroacoustic actuators and method for producing an array |
PCT/EP2015/058792 WO2015165794A1 (en) | 2014-04-30 | 2015-04-23 | Array of electroacoustic actuators and method for producing such an array |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2989809A1 EP2989809A1 (en) | 2016-03-02 |
EP2989809B1 true EP2989809B1 (en) | 2017-10-04 |
Family
ID=53052821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15720645.9A Not-in-force EP2989809B1 (en) | 2014-04-30 | 2015-04-23 | Array of electroacoustic actuators und method for producing such an array |
Country Status (7)
Country | Link |
---|---|
US (1) | US10425735B2 (en) |
EP (1) | EP2989809B1 (en) |
JP (1) | JP6364485B2 (en) |
CN (1) | CN105393556B (en) |
DE (1) | DE102014208256B4 (en) |
HK (1) | HK1222078A1 (en) |
WO (1) | WO2015165794A1 (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1063675A (en) * | 1951-10-08 | 1954-05-05 | Bendix Aviat Corp | Dielectric element converter with adjustable electrical impedance |
NL8001119A (en) * | 1980-02-25 | 1981-09-16 | Philips Nv | DIRECTIONAL INDEPENDENT SPEAKER COLUMN OR SURFACE. |
US6115475A (en) * | 1998-07-23 | 2000-09-05 | Diaural, L.L.C. | Capacitor-less crossover network for electro-acoustic loudspeakers |
US6801631B1 (en) * | 1999-10-22 | 2004-10-05 | Donald J. North | Speaker system with multiple transducers positioned in a plane for optimum acoustic radiation pattern |
KR20030039926A (en) * | 2001-11-16 | 2003-05-22 | 삼성전기주식회사 | Receiver United in Speaker |
US20040017921A1 (en) * | 2002-07-26 | 2004-01-29 | Mantovani Jose Ricardo Baddini | Electrical impedance based audio compensation in audio devices and methods therefor |
US20060018490A1 (en) * | 2004-07-20 | 2006-01-26 | Stiles Enrique M | Bessel array |
CN101124848A (en) * | 2004-11-18 | 2008-02-13 | 阿佩里奥恩音频公司 | Crossover circuit for reducing impedance response variance of a speaker |
US20080013759A1 (en) * | 2006-07-11 | 2008-01-17 | Baird Derrick L | Impedance selection circuit |
JP2008109281A (en) * | 2006-10-24 | 2008-05-08 | Mitsubishi Electric Engineering Co Ltd | Speaker apparatus |
US8238588B2 (en) * | 2006-12-18 | 2012-08-07 | Meyer Sound Laboratories, Incorporated | Loudspeaker system and method for producing synthesized directional sound beam |
JP2008258968A (en) * | 2007-04-05 | 2008-10-23 | Mitsubishi Electric Engineering Co Ltd | Array speaker |
DE102009010278B4 (en) | 2009-02-16 | 2018-12-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | speaker |
GB2486688A (en) * | 2010-12-22 | 2012-06-27 | Wolfson Microelectronics Plc | Speaker system using several low-frequency loudspeakers around a high-frequency loudspeaker |
-
2014
- 2014-04-30 DE DE102014208256.0A patent/DE102014208256B4/en not_active Expired - Fee Related
-
2015
- 2015-04-23 WO PCT/EP2015/058792 patent/WO2015165794A1/en active Application Filing
- 2015-04-23 CN CN201580000959.8A patent/CN105393556B/en not_active Expired - Fee Related
- 2015-04-23 JP JP2016528560A patent/JP6364485B2/en not_active Expired - Fee Related
- 2015-04-23 EP EP15720645.9A patent/EP2989809B1/en not_active Not-in-force
- 2015-12-09 US US14/964,531 patent/US10425735B2/en active Active
-
2016
- 2016-08-24 HK HK16110065.1A patent/HK1222078A1/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2989809A1 (en) | 2016-03-02 |
CN105393556B (en) | 2019-01-11 |
JP6364485B2 (en) | 2018-07-25 |
JP2016527814A (en) | 2016-09-08 |
DE102014208256B4 (en) | 2016-03-24 |
HK1222078A1 (en) | 2017-06-16 |
WO2015165794A1 (en) | 2015-11-05 |
CN105393556A (en) | 2016-03-09 |
US10425735B2 (en) | 2019-09-24 |
DE102014208256A1 (en) | 2015-11-05 |
US20160094915A1 (en) | 2016-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3140719C2 (en) | ||
DE3329194C2 (en) | ||
DE3124217C2 (en) | ||
DE3406899C2 (en) | ||
DE2524922A1 (en) | ELECTROSTATIC SPEAKER SYSTEM | |
DE2213513C2 (en) | Control circuit for the magnetic storage of a body | |
DE1762375B2 (en) | ELECTROSTATIC SPEAKER | |
DE102009019707A1 (en) | Feed device for feeding a microphone | |
DE102004017497A1 (en) | amplifier circuit | |
EP2989809B1 (en) | Array of electroacoustic actuators und method for producing such an array | |
DE602005001887T2 (en) | Cross connection through permutations by means of configurable printed circuit boards | |
DE4127909C2 (en) | Superconducting magnetic device with magnetic shielding | |
DE102008051959A1 (en) | Apparatus and method for reducing resonance in multiple inverter systems | |
DE102005002980B3 (en) | Monolithic multilayer actuator and method for its production | |
DE102015103490A1 (en) | DC / DC converter with flying capacitor | |
DE2750974A1 (en) | PARALLEL POWER AMPLIFIER CIRCUITS | |
EP3836559B1 (en) | Flat loudspeaker | |
EP1445820A1 (en) | High-frequency switching device | |
DE102004058410A1 (en) | Multi-layer component with ESD protection elements | |
DE102015213631A1 (en) | circuit board | |
DE2426375C3 (en) | Surface acoustic wave arrangement | |
EP0214376A2 (en) | Circuit arrangement for a low-noise audio-frequency signal source | |
DE2922451C2 (en) | Piezoelectric resonator device | |
DE1922382B2 (en) | ELECTRONIC COUPLING DEVICE WITH FIELD EFFECT TRANSISTORS | |
DE2550146B2 (en) | SOUND FREQUENCY AMPLIFIER CIRCUIT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20161130 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20170424 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1222078 Country of ref document: HK |
|
DAV | Request for validation of the european patent (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 935083 Country of ref document: AT Kind code of ref document: T Effective date: 20171015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015002021 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180105 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180204 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015002021 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1222078 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
26N | No opposition filed |
Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171004 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 935083 Country of ref document: AT Kind code of ref document: T Effective date: 20200423 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210421 Year of fee payment: 7 Ref country code: FR Payment date: 20210421 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200423 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210422 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015002021 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220423 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221103 |