EP2979139B1 - Arbre de mobile pivotant d'horlogerie - Google Patents

Arbre de mobile pivotant d'horlogerie Download PDF

Info

Publication number
EP2979139B1
EP2979139B1 EP14710311.3A EP14710311A EP2979139B1 EP 2979139 B1 EP2979139 B1 EP 2979139B1 EP 14710311 A EP14710311 A EP 14710311A EP 2979139 B1 EP2979139 B1 EP 2979139B1
Authority
EP
European Patent Office
Prior art keywords
arbor
piece
pivot axis
piece arbor
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14710311.3A
Other languages
German (de)
English (en)
Other versions
EP2979139A2 (fr
Inventor
Alain Zaugg
Davide Sarchi
Nakis Karapatis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montres Breguet SA
Original Assignee
Montres Breguet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Breguet SA filed Critical Montres Breguet SA
Priority to EP14710311.3A priority Critical patent/EP2979139B1/fr
Publication of EP2979139A2 publication Critical patent/EP2979139A2/fr
Application granted granted Critical
Publication of EP2979139B1 publication Critical patent/EP2979139B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • G04B13/026
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/16Barrels; Arbors; Barrel axles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/042Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using mechanical coupling
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements

Definitions

  • the invention relates to a mobile rotating watch-making shaft, said shaft being made in one or more aligned parts.
  • the invention also relates to a rotating clock watch comprising such a shaft.
  • the invention also relates to a clockwork mechanism comprising such a shaft and / or such a mobile, including an escape mechanism.
  • the invention also relates to a watch movement comprising such a shaft and / or such a mobile and / or such a mechanism.
  • the invention also relates to a timepiece, including a watch, including such a shaft and / or such a mobile, and / or such a mechanism, and / or such a movement.
  • the invention relates to the field of watch mechanisms, in particular the field of regulating members, in particular for mechanical watches.
  • the regulating organ of a mechanical watch is constituted by a harmonic oscillator, the sprung balance, whose oscillation natural frequency depends mainly on the inertia of the balance and the elastic rigidity of the spiral.
  • the oscillations of the sprung balance, otherwise damped, are maintained by the pulses provided by an escapement generally composed of one or two pivoting mobiles.
  • these pivoting mobiles are the anchor and the escape wheel.
  • the march of the watch is determined by the frequency of the sprung balance and by the disturbance generated by the impulse of the escapement, which generally slows down the natural oscillation of the sprung balance and thus causes a delay in running.
  • gait defects related to the residual effect of the field
  • the origin of these defects is the permanent magnetization of the fixed ferromagnetic components of the movement or the cladding and the permanent or transient magnetization of the moving magnetic components forming part of the regulating organ (sprung balance) and / or the exhaust .
  • magnetically or magnetically permeable mobile components (balance, hairspring, exhaust) are subjected to magnetostatic torque and / or magnetostatic forces.
  • these interactions modify the apparent rigidity of the sprung balance, the dynamics of the escape mobiles and the friction. These modifications produce a fault that can range from a few tens to a few hundred seconds a day.
  • the interaction of the watch movement with the external field, during the exhibition, can also lead to the stop of the movement.
  • the arrest in the field and the residual run-out are not correlated, because the arrest in field depends on the transient magnetization, sub-field, of the components (and therefore of the permeability and the saturation field). components), while the residual run fault depends on the residual magnetization (and therefore, mainly, the coercive field of the components) which can be low even in the presence of a significant magnetic permeability.
  • the anchor body and the escape wheel can be made of very low paramagnetic materials, without their mechanical performance being affected.
  • the shafts of the mobiles require very good mechanical performances (good tribology, low fatigue) to allow an optimal and constant pivoting in the time, and it is therefore preferable to manufacture them in hardened steel (typically carbon steel type 20AP or the like).
  • hardened steel typically carbon steel type 20AP or the like.
  • such steels are materials that are sensitive to magnetic fields because they have a high saturation field combined with a high coercive field.
  • the balance, anchor and escape wheel shafts are currently the most critical components in the face of the magnetic disturbances of the watch.
  • parts mounted on the balance shaft are formed from a material selected from the group consisting of monel, silver, nickel, copper, a beryllium alloy, and a copper-manganese alloy or a nickel alloy.
  • the anchor and the escape wheel are formed of a material selected from the group consisting of silver, nickel, a copper-beryllium alloy, and a nickel alloy. or manganese-copper.
  • the balance shaft comprises trunnions, and, with the exception of the bearing pins, is integrally formed from a material having a magnetic permeability ⁇ less than 1.01.
  • the assembly of the balance shaft is formed of a material having a magnetic permeability ⁇ less than or equal to 1.01.
  • the balance shaft may, again, be made of a hardenable bronze.
  • this document describes an oscillator comprising a spiral made of paramagnetic or diamagnetic material, and an assembled balance wheel comprising a shaft on which are mounted a balance, a plate, a shell integral with the spiral, and where, or the maximum diameter of the shaft is less than 3.5 / 2.5 / 2.0 times the minimum diameter of the shaft on which one of the other elements is mounted, or the maximum diameter of the shaft is less than 1.6 / 1.3 times the maximum diameter of the shaft on which is mounted one of the other elements.
  • This document discloses a tree having homogeneous intrinsic magnetic properties, in this case a strongly ferromagnetic tree. However, the plateau is not an integral part of the tree.
  • the document DE 11 74 518 B discloses a monobloc alloy shaft based on the elements Fe, Ni, Co, Cr, Mo, W in combination with Be, Ti, Nb, Ta and C. These alloys have low magnetic properties with good mechanical properties.
  • the invention proposes to limit the magnetic interaction on the shafts of a watch mechanism, within a movement incorporated into a timepiece, in particular a watch.
  • the invention relates to a mobile rotating watchmaking tree, said shaft being made in one or more aligned parts, characterized in that said shaft is magnetically inhomogeneous.
  • said shaft is magnetically inhomogeneous with a variation of the intrinsic magnetic properties of said shaft radially with respect to said pivot axis.
  • said shaft is magnetically inhomogeneous with a variation of the intrinsic magnetic properties of said shaft radially with a symmetry of revolution with respect to said pivot axis.
  • the invention also relates to a rotating clock watch comprising such a shaft.
  • the invention also relates to a clockwork mechanism comprising such a shaft and / or such a mobile, including an escape mechanism.
  • the invention also relates to a watch movement comprising such a shaft and / or such a mobile and / or such a mechanism.
  • the invention also relates to a timepiece, including a watch, including such a shaft and / or such a mobile, and / or such a mechanism, and / or such a movement.
  • the object of the invention is to protect an oscillator from any magnetic disturbance.
  • the invention aims in particular at limiting the magnetic interaction on the shafts 1 of the moving parts 10 of a watch mechanism 20, within a movement 30 incorporated in a timepiece 40, in particular a watch, and in particular for the maintenance (exhaust) and control (sprung balance) components which constitute a preferred application on the balance wheel, anchor and escape wheel shafts.
  • the invention can allow watches with spiral, anchor body and nonmagnetic escape wheel to withstand, without stopping, magnetic fields of the order of a Tesla, and without the mechanical performance (chronometry and mobile aging) are affected.
  • the invention makes it possible to reduce the residual effect of watches with spiral, anchor body and non-magnetic escape wheel to less than one second per day.
  • the geometry of the shaft of a pendulum is generally more complex than the geometry of the anchor rod, and that of the shaft of the escape wheel.
  • Two alternative variants, non-limiting, using the same principle are illustrated for the case of a balance shaft.
  • Their generalization in the case of the anchor rod and the escape wheel, or other mobiles, will be obvious to the skilled person.
  • axis refers to a virtual geometric element such as a pivot axis, and “shaft” to a real mechanical element, made in one or more parts.
  • a pair of pivots 2A and 2B aligned and reported on either side of a median portion 6 of a mobile 10, to guide it in pivoting is also called “tree”.
  • magnetically permeable materials are defined as materials having a relative permeability of between 10 and 10,000, such as steels, which have a relative permeability close to 100 for balance shafts for example. or around 4000 for steels commonly used in electrical circuits, or other alloys whose relative permeability reaches values of 8000 to 10000.
  • Magnetic materials for example in the case of polar masses, will be called materials capable of being magnetized so as to have a residual field of between 0.1 and 1.5 Tesla, such as for example the "Neodymium Iron Boron". a magnetic energy density Em close to 512 kJ / m 3 and giving a residual field of 0.5 to 1.3 Tesla. A lower residual field level, towards the lower part of the range can be used when combining, in a magnetization couple, such a magnetic material with a magnetically permeable antagonist component of high permeability, closer to 10000, in the range of 100 to 10,000.
  • Magnetic materials will be referred to as materials having a relative magnetic permeability of between 1.0001 and 100, for example for spacers interposed between a magnetic material and a magnetically permeable antagonist component, or alternatively between two magnetic materials, for example a spacer between a component and a polar mass.
  • Low paramagnetic materials having magnetic permeability of between 1.01 and 2, can be used for the implementation of the invention.
  • Materials such as CoCr20Ni16 Mo7, known especially under the name "Phynox®” or nickel-phosphorus NiP (either with a concentration of 12% phosphorus but hardened, or with a concentration of phosphorus of less than 12%) are weakly paramagnetic, therefore usable for the implementation of the invention.
  • non-magnetic materials magnet permeability less than 1.01
  • magnetic permeability less than 1.01
  • these materials are either difficult to machine or mechanically unsuitable for the requested functions (and therefore require a coating or a hardening procedure making them ferromagnetic).
  • non-magnetic materials are: aluminum, gold, brass or similar.
  • Magnetic materials will be referred to as materials of relative magnetic permeability less than 1 (negative magnetic susceptibility, less than or equal to -10 -5 ), such as graphite or graphene.
  • soft magnetic materials not to say non-magnetic, especially for shielding, materials with high permeability but high saturation, because we do not want them to be permanently magnetized: they must drive the best possible the field, so as to reduce the field to their outside. Such components can then also protect a magnetic system from external fields.
  • These materials are preferably chosen to have a relative magnetic permeability of between 50 and 200, and with a saturation field greater than 500 A / m.
  • Non-magnetic have a relative magnetic permeability very slightly greater than 1, and less than 1.0001, as typically silicon, diamond, palladium and the like. These materials can generally be obtained by MEMS technologies or by the "LIGA” process.
  • the one-piece shaft 1 of a rotating mobile watch 10 is made of one or more parts 2, which are then aligned on a pivot axis D.
  • this shaft 1 is a pivoting axial element, which serves as a support for other components: plate, flange, collar, balance, but which is not constituted by these other components, which are driven, glued, welded, brazed , or supported on the tree, or maintained by other methods.
  • the characteristics presented below concern this single tree 1.
  • this one-piece shaft 1 is magnetically inhomogeneous.
  • the tree 1 according to the invention has intrinsic magnetic properties (permeability, saturation field, coercive field, Curie temperature, dependent hysteresis curve) which are non-uniform in its volume.
  • magnetization is not part of these intrinsic magnetic properties.
  • the magnetization profile of such a tree after magnetization does not depend solely on the intrinsic magnetic properties, but depends in particular on the magnetic field source that magnetized it and the shape and size of said tree.
  • the tree may have non-uniform magnetization even if the intrinsic magnetic properties are uniform
  • a component can not become, for example, ferromagnetic after being subjected to a magnetic field: a material is either ferromagnetic, or paramagnetic, antiferromagnetic or diamagnetic.
  • the temperature can modify this characteristic but it can not be modified by an external field. It is important to differentiate the magnetization from the intrinsic magnetic properties of the material.
  • the invention proposes, in a particular case, to use, in a case where the tree is bi-material, either paramagnetic materials or ferromagnetic materials having well-defined intrinsic properties.
  • this one-piece shaft 1 is magnetically inhomogeneous, with a variation of the intrinsic magnetic properties of this one-piece shaft 1, either in the axial direction of the pivot axis D of the one-piece shaft 1, or radially with a symmetry of revolution relative to this pivot axis D, both in the axial direction of the pivot axis D and radially with a symmetry of revolution relative to this pivot axis D.
  • the one-piece shaft 1 is magnetically inhomogeneous with a variation of the intrinsic magnetic properties radially with respect to the pivot axis D.
  • this variation of the intrinsic magnetic properties of the one-piece shaft 1 is made radially with a symmetry of revolution with respect to the pivot axis D.
  • inhomogeneous tree in the radial direction is meant here that the magnetic properties of the shaft vary in the radial direction from the center of the shaft to the periphery (while the shaft may or may not be magnetically homogeneous in the axial direction).
  • central zone 3 Only the material located in the heart of the tree, in an area hereinafter called central zone 3, that is to say in the vicinity of the pivot axis D, has a high saturation field (Bs> 1 T ), a magnetic permeability ⁇ R maximum greater than 50, and a coercive field Hc greater than 3 kA / m (all these properties are typical of 20AP steel preferably used for pivoting shafts because of good mechanical performance). Naturally, if other materials are used, these threshold values must be adapted by routine tests.
  • peripheral zone 4 While the material at the periphery of the shaft, in a zone hereinafter referred to as the peripheral zone 4, is either weakly paramagnetic or ferromagnetic with a low saturation field (Bs ⁇ 0.5 T), a low maximum magnetic permeability ⁇ R ⁇ 10, and a weak coercive field.
  • FIG 1 is a three-dimensional diagram of the first variant.
  • the one-piece balance shaft 1 is composed of a strongly ferromagnetic central zone 3 (grayed out) and a paramagnetic or weakly ferromagnetic peripheral zone 4 (in white).
  • the two regions strongly ferromagnetic in central zone 3 and weakly paramagnetic in peripheral zone 4 are precisely separated by a steep interface zone 7: the interface between the two regions 3 and 4 may however have a finite width, in correspondence with a regular gradient of the magnetic properties, without the results being affected, the strongly ferromagnetic region in the central zone 3 at the heart of the monobloc shaft 1 is preferably contained in a cylinder with a radius less than 100 micrometers (and centered on the pivot axis D) to achieve the desired performance.
  • the magnetic inhomogeneity described here can be obtained by combining two different materials (by brazing, welding or depositing one material on the other), or, in the case where an alloy is used (for example, steel carbon), by heat treatment or under electric or magnetic field of all or part of the finished component. More particularly, thermal and electromagnetic treatments are well suited for a well-defined treatment in space.
  • the figure 3 shows the remanent field of a monobloc shaft 1 radially inhomogeneous balance according to the first embodiment of the invention.
  • This monoblock tree 1 has the same geometry as that of the figure 2 , but only the heart, in central zone 3, is made of steel AP, while its periphery, in peripheral zone 4, is weakly paramagnetic.
  • the shaft is subjected to an external field of 0.2 T oriented in the direction orthogonal to the pivot axis D.
  • the remanent field is about 0.4 T and concentrated in the core in central zone 3.
  • the magnetic shaft of the balance is subjected to a magnetic torque which tends to orient it in the direction of the external field.
  • the moment of this pair may be high enough to stop the movement of this balance-spring.
  • the homogeneous tree of the figure 2 is subjected to a magnetic torque, whose moment is more than 10 times higher than that which is applied to the inhomogeneous tree of the figure 3 .
  • the one-piece shaft 1 according to the invention comprises a remanent field field on a very small radius, whereas in the prior art the high remanent field areas are precisely in the areas of larger radius.
  • Stopping movement occurs if the torque acting on the shaft is greater than the restoring moment exerted by the hairspring for angles lower than the lifting angle, and the maintenance torque applied by the anchor to the balance.
  • the figure 4 illustrates the comparison of the magnetic couples exerted on these two models of balance shafts: the graph G2 corresponding to the homogeneous tree of the figure 2 is shown in broken lines, and the graph G3 corresponding to the inhomogeneous monobloc shaft 1 according to the invention (first variant of the figure 3 , or second variant of the figure 7 explained later) is shown in solid lines.
  • On the abscissa is the angle in degrees, and in ordinate the torque exerted on the balance, in mN.mm. In both cases, the torque varies sinusoidally with the rotation angle of the balance spring (here zero is fixed arbitrarily).
  • the homogeneous tree of the figure 2 is subjected to a magnetic torque much greater than the pair of the spiral and the maintenance torque. In this case, the sprung balance will be stopped for a field smaller than 0.2 T.
  • the inhomogeneous monobloc shaft 1 according to the first variant of the invention is subjected to a torque less than the torque exerted by the spiral in the angle of lift ( ⁇ 30 °) and the maintenance torque. In this case, the sprung balance will not be stopped under a field of 0.2 T.
  • the figure 5 illustrates the comparison of the magnetic pairs on a balance shaft, homogeneous according to the prior art, and inhomogeneous according to the invention (first variant, or second variant exposed later), imposed by an external field of 0.2 T, compared to torque of the spiral and the torque applied to the balance by the anchor.
  • the figure 5 illustrates the comparison, on a small angular amplitude, of the magnetic couples exerted on these two models of balance shafts: the graph G2 corresponding to the homogeneous tree is shown in broken lines, and the graph G3 corresponding to the inhomogeneous tree is shown in solid line.
  • the interrupted mixed line G4 represents the return torque exerted by the spiral.
  • the maintenance torque, applied to the balance by the anchor is represented in the form of a horizontal G5 dotted line.
  • the one-piece shaft 1 of the balance 10 is immersed in the magnetic field created by the fixed ferromagnetic components of the movement 30, or / and the timepiece 40, of which it is part.
  • the one-piece shaft 1 is then subjected to a torque similar to that shown in FIG. figure 4 but from a weaker moment. This disturbance torque is responsible for the residual running error.
  • a movement equipped with an inhomogeneous monobloc shaft 1 according to the first variant of the invention is therefore affected by a walking defect which is between 3 and 10 times less than that which affects a movement equipped with a traditional homogeneous tree.
  • the second variant of the invention relates to a shaft which is inhomogeneous in the axial direction, parallel to the axis of pivoting of the shaft.
  • the inhomogeneity of the magnetic properties is this time realized in the axial direction.
  • the ends 2 of the monobloc shaft 1, constituted by the pivots 2A and 2B, which must have optimum mechanical properties, are generally made of magnetic materials, while the middle part 6 of the monobloc shaft 1 is made of weakly paramagnetic material.
  • the length (in the axial direction) accumulated of the magnetic parts of the one-piece shaft 1 is advantageously less than one third of the total length of the one-piece shaft 1.
  • the difference in length between the magnetic parts is advantageously kept below 10%.
  • This second variant is schematized on the figure 6 , on which preferably only the pivots 2A and 2B are made of ferromagnetic material.
  • the monobloc shaft 1 of the figure 6 comprises, in the direction of the pivot axis D, a median portion 6 surrounded on both sides by two end zones 8. And only these end zones 8, preferably made of pivoted steel, have a high saturation field of Bs greater than 1 T, a maximum magnetic permeability ⁇ R greater than 50, and a coercive field Hc greater than 3 kA / m. While the material in the middle part 6 is either weakly paramagnetic or ferromagnetic with a low saturation field Bs of less than 0.5 T, a low maximum magnetic permeability ⁇ R less than 10, and a low coercive field.
  • This figure 7 represents the remanent field, after magnetization at 0.2 T, of a one-piece integral shaft 1 of inhomogeneous balance according to the second variant of the invention.
  • the pivots are made of 20 AP steel.
  • the middle part 6 is weakly paramagnetic.
  • the torque acting on the one-piece shaft 1 in this case is equivalent to that obtained for the first variant ( Figure 4 and Figure 5 ).
  • the desired magnetic inhomogeneity can be obtained by combining two different materials (by brazing, welding or depositing one material on the other) or, in the case where an alloy is used (by carbon steel), by heat treatment or under electric or magnetic field of all or part of the finished component.
  • the monobloc shaft 1 is then magnetically inhomogeneous with a variation of its intrinsic magnetic properties both in the axial direction of the pivot axis D and radially relative to to this pivot axis D.
  • the invention is easy to implement and inexpensive, since, in practice, a simple two-material embodiment makes it possible to obtain the desired result.
  • a balance rod constituting the peripheral zone 4 which is produced, according to the desired inertia, of aluminum, gold, brass or the like, while the central zone 3 is made in the form of a 20AP steel bar or similar: a low inertia beam is obtained with a light alloy serge, in particular of aluminum, easy to machine and to drill through, and a core of drawn or drawn steel, or cleavage, with a diameter less than 100 micrometers.
  • a rocker according to the second variant and with very low inertia has a machined middle portion 6 of aluminum alloy and having at its axial ends two housings for driving pivots 2A and 2B pivoted steel.
  • the shaft 1 comprises at least one projecting part of larger radius about its pivot axis D, and at least said projecting part is delimited, on either side of said pivot axis D, by two surfaces symmetrical with respect to said pivot axis D and which define, in projection on a plane perpendicular to said pivot axis D, a profile inscribed in a rectangle whose ratio of the length to the width defines a shape ratio which is greater than or equal to at 2, the direction of said length defining a main axis DP.
  • the invention also relates to a pivoting watchmaking wheel 10 comprising a one-piece shaft 1 according to the invention.
  • the invention also relates to a watchmaking mechanism comprising such a monobloc shaft 1 and / or such a mobile 10, in particular an escape mechanism.
  • this clockwork mechanism 20 comprises such a mobile 10 oscillating around a rest position defined by a rest plane passing through a pivot axis D, said mobile 10 being biased towards a rest position by elastic return means.
  • this mobile 10 comprises such a shaft 1 which comprises at least one such particular projecting part, this shaft 1 being made of steel, and said main axis DP of said shaft 1, in the plane orthogonal to said shaft, occupies a determined angular position relative to said plane of rest in said rest position of said mobile 10, said mechanism 20 having a preferred magnetization direction DA which is substantially orthogonal to said main axis DP of said shaft 1 in said rest position.
  • the invention also relates to a horological movement comprising such a monobloc shaft 1 and / or such a mobile 10 and / or such a mechanism 20.
  • the invention also relates to a timepiece 40, in particular a watch, comprising such a one-piece shaft 1 and / or such a mobile 10, and / or such a mechanism 20, and / or such a movement 30.
  • the invention requires no pre-magnetized permanent magnet or magnetic wheel, but only magnetically passive (paramagnetic or ferromagnetic) shafts.
  • the object of the invention is not to provide a maintenance solution of the oscillator, but to protect the oscillator from any magnetic disturbance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Micromachines (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Electric Clocks (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

    Domaine de l'invention
  • L'invention concerne un arbre de mobile pivotant d'horlogerie, ledit arbre étant réalisé en une ou plusieurs parties alignées.
  • L'invention concerne encore un mobile pivotant d'horlogerie comportant un tel arbre.
  • L'invention concerne encore un mécanisme d'horlogerie comportant un tel arbre ou/et un tel mobile, notamment un mécanisme d'échappement.
  • L'invention concerne encore un mouvement d'horlogerie comportant un tel arbre ou/et un tel mobile ou/et un tel mécanisme.
  • L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel arbre ou/et un tel mobile, ou/et un tel mécanisme, ou/et un tel mouvement.
  • L'invention concerne le domaine des mécanismes d'horlogerie, en particulier le domaine des organes réglants, en particulier pour des montres mécaniques.
  • Arrière-plan de l'invention
  • L'organe réglant d'une montre mécanique est constitué par un oscillateur harmonique, le balancier-spiral, dont la fréquence propre d'oscillation dépend principalement de l'inertie du balancier et de la rigidité élastique du spiral.
  • Les oscillations du balancier-spiral, autrement amorties, sont entretenues par les impulsions fournies par un échappement généralement composé par un ou deux mobiles pivotants. Dans le cas de l'échappement à ancre suisse, ces mobiles pivotants sont l'ancre et la roue d'échappement. La marche de la montre est déterminée par la fréquence du balancier-spiral et par la perturbation générée par l'impulsion de l'échappement, qui généralement ralentit l'oscillation propre du balancier-spiral et donc provoque un retard de marche.
  • La marche de la montre est donc perturbée par tous les phénomènes qui peuvent altérer la fréquence propre du balancier-spiral et/ou la dépendance temporelle de l'impulsion fournie par l'échappement.
  • En particulier, suite à l'exposition transitoire d'une montre mécanique à un champ magnétique, des défauts de marche (liés à l'effet résiduel du champ) sont généralement observés. L'origine de ces défauts est la magnétisation permanente des composants ferromagnétiques fixes du mouvement ou de l'habillage et la magnétisation permanente ou transitoire des composants magnétiques mobiles faisant partie de l'organe réglant (balancier-spiral) et/ou de l'échappement.
  • Après l'exposition au champ, les composants mobiles (balancier, spiral, échappement) magnétisés ou perméables magnétiquement sont soumis à un couple magnétostatique et/ou à des forces magnétostatiques. En principe, ces interactions modifient la rigidité apparente du balancier-spiral, la dynamique des mobiles d'échappement et les frottements. Ces modifications produisent un défaut de marche qui peut aller de quelques dizaines à quelques centaines de secondes par jour.
  • L'interaction du mouvement horloger avec le champ externe, lors de l'exposition, peut aussi mener à l'arrêt du mouvement. En principe, l'arrêt sous champ et le défaut de marche résiduel ne sont pas corrélés, parce que l'arrêt sous champ dépend de l'aimantation transitoire, sous-champ, des composants (et donc de la perméabilité et du champ de saturation des composants), tandis que le défaut de marche résiduel dépend de l'aimantation résiduelle (et donc, principalement, du champ coercitif des composants) qui peut être faible même en présence d'une perméabilité magnétique importante.
  • Après l'introduction des spiraux fabriqués en matériaux très faiblement paramagnétiques (par exemple, en silicium), le spiral n'est plus responsable du défaut de marche des montres. Les perturbations magnétiques encore observables pour des champs d'aimantation inférieurs à 1,5 Tesla sont donc dues à l'aimantation de l'arbre de balancier et à l'aimantation des mobiles d'échappement.
  • Le corps d'ancre et la roue d'échappement peuvent être fabriqués en matériaux très faiblement paramagnétiques, sans que leur performance mécanique en soit affectée. Au contraire, les arbres des mobiles nécessitent de très bonnes performances mécaniques (bonne tribologie, faible fatigue) pour permettre un pivotement optimal et constant dans le temps, et il est donc préférable de les fabriquer en acier trempable (typiquement en acier au carbone de type 20AP ou similaire). Or de tels aciers sont des matériaux sensibles aux champs magnétiques parce qu'ils présentent un champ de saturation élevé combiné à un champ coercitif élevé. Les arbres de balancier, ancre et roue d'échappement sont actuellement les composants les plus critiques face aux perturbations magnétiques de la montre.
  • Le document D1 WO 2004/008258 A2 DETAR- PATEK PHILIPPE décrit un système rotor-stator composé d'une roue constituée d'un aimant permanent pré-aimantée dans une direction diamétrale fixée, ainsi qu'une solution d'entretien d'un oscillateur. Ce document divulgue un arbre de production d'un couple électromagnétique sur lequel sont montés un rotor et un deuxième pignon, lesquels ne sont pas des parties de l'arbre mais sont montés sur l'arbre, cet arbre étant un arbre standard sans aucune propriété magnétique spécifique.
  • Le document D2 US 3 683 616 A STEINEMANN (Institut STRAUMANN), décrit un mécanisme d'échappement où toutes les parties montées sur l'axe de balancier, et sur l'ancre, la roue d'échappement, ainsi que au moins la partie principale de l'axe de balancier sont fabriquées à partir d'un matériau très faiblement paramagnétique, ayant une perméabilité magnétique µ inférieure à 1,01. Une variante concerne l'application d'une couche au moins au niveau des points d'appui de l'axe de balancier. Dans des variantes particulières, certains des composants de l'échappement sont formés uniquement à partir d'un tel matériau très faiblement paramagnétique. Le spiral peut, quant à lui être réalisé dans un tel matériau très faiblement paramagnétique, ou d'un métal anti-ferromagnétique ayant une perméabilité magnétique µ inférieure à 1,01. Dans une autre variante encore, des parties montées sur l'axe de balancier sont formées à partir d'un matériau choisi dans le groupe constitué du monel, de l'argent, du nickel, du cuivre, d'un alliage de béryllium, et d'un alliage cuivre-manganèse ou d'un alliage de nickel. Dans une autre variante encore, l'ancre et la roue d'échappement sont formées d'un matériau choisi dans le groupe constitué de l'argent, du nickel, d'un alliage de cuivre-béryllium, et d'un alliage de nickel ou de manganèse-cuivre.
    Plus particulièrement, l'arbre de balancier comprend des tourillons, et, à l'exception des broches de palier, est intégralement formé à partir d'un matériau ayant une perméabilité magnétique µ inférieure à 1,01. Dans une autre variante, l'ensemble de l'arbre de balancier est formé d'un matériau ayant une perméabilité magnétique µ inférieure ou égale à 1,01. L'axe de balancier peut, encore, être constitué d'un bronze durcissable.
  • Le document D3 CH 705 655 A2 ROLEX décrit la minimisation de l'effet résiduel, c'est-à-dire de la différence de marche que subit une montre soumise à des variations de champs magnétiques externes. Cette minimisation est corrélée en tant qu'effet surprenant, avec la géométrie de l'axe du balancier. Plus particulièrement, ce document décrit un oscillateur comprenant un spiral en matériau paramagnétique ou diamagnétique, et un balancier assemblé comprenant un arbre sur lequel sont montés un balancier, un plateau, une virole solidaire du spiral, et où, ou bien le diamètre maximal de l'arbre est inférieur à 3,5/2,5/2,0 fois le diamètre minimal de l'arbre sur lequel est monté l'un des autres éléments, ou bien le diamètre maximal de l'arbre est inférieur à 1,6/1,3 fois le diamètre maximal de l'arbre sur lequel est monté l'un des autres éléments. Ce document divulgue un arbre ayant des propriétés magnétiques intrinsèques homogènes, en l'occurrence un arbre fortement ferromagnétique. Toutefois le plateau n'est pas une partie intégrante de l'arbre. Le document DE 11 74 518 B décrit un arbre monobloc en alliage basé sur les éléments Fe, Ni, Co, Cr, Mo, W en combinaison avec Be, Ti, Nb, Ta et C. Ces alliages présentent des propriétés magnétiques faibles avec de bonnes propriétés mécaniques.
  • Résumé de l'invention
  • L'invention se propose de limiter l'interaction magnétique sur les arbres des mobiles d'un mécanisme horloger, au sein d'un mouvement incorporé à une pièce d'horlogerie, notamment une montre.
  • A cet effet, l'invention concerne un arbre de mobile pivotant d'horlogerie, ledit arbre étant réalisé en une ou plusieurs parties alignées, caractérisé en ce que ledit arbre est magnétiquement inhomogène.
  • Selon une caractéristique de l'invention, ledit arbre est magnétiquement inhomogène avec une variation des propriétés magnétiques intrinsèques dudit arbre de façon radiale par rapport audit axe de pivotement.
  • Selon une caractéristique de l'invention, ledit arbre est magnétiquement inhomogène avec une variation des propriétés magnétiques intrinsèques dudit arbre de façon radiale avec une symétrie de révolution par rapport audit axe de pivotement.
  • L'invention concerne encore un mobile pivotant d'horlogerie comportant un tel arbre.
  • L'invention concerne encore un mécanisme d'horlogerie comportant un tel arbre ou/et un tel mobile, notamment un mécanisme d'échappement.
  • L'invention concerne encore un mouvement d'horlogerie comportant un tel arbre ou/et un tel mobile ou/et un tel mécanisme.
  • L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel arbre ou/et un tel mobile, ou/et un tel mécanisme, ou/et un tel mouvement.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, sous forme d'un schéma tridimensionnel, une première variante d'arbre de mobile selon l'invention, comportant une zone centrale de propriétés magnétiques intrinsèques différentes de celles de la zone périphérique qui entoure cette zone centrale axée sur l'axe de pivotement du mobile ;
    • la figure 2 représente, de façon schématisée, en vue en coupe et avec une coloration grisée d'autant plus intense que le champ rémanent est élevé, un arbre homogène de l'art antérieur après son exposition à un champ magnétique ;
    • la figure 3 représente, de façon schématisée et similaire à la figure 2, l'arbre de la figure 1, avec un champ rémanent concentré sur sa zone centrale et axiale ;
    • la figure 4 illustre, sous forme d'un graphe, la comparaison des couples magnétiques exercés sur ces deux modèles d'arbres de balancier de la figure 2 et de la figure 3, le graphe G2 correspondant à l'arbre homogène de la figure 2 est représenté en trait interrompu, et le graphe G3 correspondant à l'arbre inhomogène selon l'invention est représenté en trait continu. En abscisse figure l'angle en degrés, et en ordonnée le couple exercé sur le balancier, en mN.mm ;
    • la figure 5 illustre, sous forme d'un graphe, la comparaison des couples magnétiques exercés sur ces deux modèles d'arbres de balancier de la figure 2 et de la figure 3, comparés au couple de rappel du spiral et au couple appliqué au balancier par l'ancre. Le graphe G2 correspondant à l'arbre homogène de la figure 2 est représenté en trait interrompu, et le graphe G3 correspondant à l'arbre inhomogène selon l'invention est représenté en trait continu. Le trait mixte interrompu G4 représente le couple de rappel exercé par le spiral. Le couple d'entretien, appliqué au balancier par l'ancre, est représenté sous la forme d'une horizontale G5 en trait pointillé.
    • la figure 6 représente, de façon similaire à la figure 1, une deuxième variante d'arbre de mobile selon l'invention, comportant une partie médiane de propriétés magnétiques intrinsèques différentes de celles de deux zones d'extrémité qui entourent cette partie médiane, de part et d'autre selon la direction de l'axe de pivotement du mobile ;
    • la figure 7 représente, de façon analogue à la figure 3, la répartition du champ rémanent sur l'arbre de la figure 6, avec un champ rémanent concentré sur ses deux zones d'extrémité axiales ;
    • la figure 8 représente, sous forme d'un schéma-blocs, une pièce d'horlogerie, comportant un mouvement comportant un mécanisme comportant un mobile équipé d'un arbre selon l'invention.
    Description détaillée des modes de réalisation préférés
  • L'objet de l'invention est de protéger un oscillateur de toute perturbation magnétique.
  • L'invention vise en particulier à limiter l'interaction magnétique sur les arbres 1 des mobiles 10 d'un mécanisme horloger 20, au sein d'un mouvement 30 incorporé à une pièce d'horlogerie 40, notamment une montre, et, en particulier pour les organes d'entretien (échappement) et de régulation (balancier-spiral) qui constituent une application préférée, sur les arbres du balancier, de l'ancre et de la roue d'échappement.
  • L'invention est décrite ici pour cette seule application aux organes d'entretien (échappement) et de régulation (balancier-spiral). L'homme du métier, constructeur horloger, saura l'extrapoler à d'autres mécanismes.
  • L'invention peut permettre à des montres avec spiral, corps d'ancre et roue d'échappement amagnétiques de résister, sans s'arrêter, à des champs magnétiques de l'ordre de un Tesla, et sans que les performances mécaniques (chronométrie et vieillissement des mobiles) soient affectées.
  • L'invention permet de réduire l'effet résiduel des montres avec spiral, corps d'ancre et roue d'échappement amagnétiques à moins de une seconde par jour.
  • La géométrie de l'arbre d'un balancier est généralement plus complexe que la géométrie de la tige d'ancre, et que celle de l'arbre de la roue d'échappement. Deux variantes alternatives, non limitatives, exploitant le même principe sont illustrées pour le cas d'un arbre de balancier. Leur généralisation au cas de la tige d'ancre et de la roue d'échappement, ou à d'autres mobiles, sera évidente à l'homme du métier.
  • Par convention, on appelle, dans la présente description « axe » un élément géométrique virtuel tel qu'un axe de pivotement, et « arbre » un élément mécanique réel, réalisé en une ou plusieurs parties. Par exemple, une paire de pivots 2A et 2B alignés et rapportés de part et d'autre d'une partie médiane 6 d'un mobile 10, pour le guider en pivotement est aussi dénommée « arbre ».
  • Dans la suite de l'exposé, on définit par matériaux « perméables magnétiquement », des matériaux qui ont une perméabilité relative comprise entre 10 et 10000, comme des aciers, qui ont une perméabilité relative voisine de 100 pour des arbres de balanciers par exemple, ou voisine de 4000 pour les aciers utilisés couramment dans les circuits électriques, ou encore d'autres alliages dont la perméabilité relative atteint des valeurs de 8000 à 10000.
  • On appellera matériaux « magnétiques », par exemple dans le cas de masses polaires, des matériaux aptes à être aimantés de façon à présenter un champ rémanent compris entre 0,1 et 1,5 Tesla, comme par exemple le « Neodymium Iron Boron » d'une densité d'énergie magnétique Em voisine de 512 kJ/m3 et donnant un champ rémanent de 0,5 à 1.3 Tesla. Un niveau de champ rémanent inférieur, vers la partie inférieure de la fourchette peut être utilisé en cas de combinaison, dans un couple d'aimantation, d'un tel matériau magnétique avec un composant antagoniste perméable magnétiquement de perméabilité élevée, plus proche de 10000, dans la fourchette de 100 à 10000.
  • On appellera matériaux « ferromagnétiques » des matériaux dont les caractéristiques sont : champ de saturation Bs > 0 à la température T = 23°C, champ coercitif Hc > 0 à la température T = 23°C, perméabilité magnétique maximale µR > 2 à la température T = 23°C, température de Curie Tc > 60°C. Plus particulièrement, on qualifiera de « faiblement ferromagnétiques » ceux dont les caractéristiques sont : champ de saturation Bs < 0,5 T à la température T = 23°C, champ coercitif Hc < 1'000 kA/m à la température T = 23°C, perméabilité magnétique maximale µR < 10 à la température T = 23°C, température de Curie Tc > 60 °C.
  • La possibilité d'utiliser des matériaux ferromagnétiques ayant des caractéristiques spécifiques permet de satisfaire simultanément la demande de tenue mécanique, résistance magnétique, et fabricabilité des composants.
  • Plus particulièrement, on qualifiera de « fortement ferromagnétiques » ceux dont les caractéristiques sont : champ de saturation Bs > 1 T à la température T = 23°C, champ coercitif Hc > 3'000 kA/m à la température T = 23°C, perméabilité magnétique maximale µR > 50 à la température T = 23°C, température de Curie Tc > 60 °C
  • On appellera matériaux « paramagnétiques » des matériaux de perméabilité magnétique relative comprise entre 1.0001 et 100, par exemple pour des entretoises interposées entre un matériau magnétique et un composant antagoniste perméable magnétiquement, ou encore entre deux matériaux magnétiques, par exemple une entretoise entre un composant et une masse polaire. Des matériaux faiblement paramagnétiques, ayant perméabilité magnétique comprise entre 1.01 et 2, sont utilisables pour la mise en oeuvre de l'invention. Des matériaux comme le CoCr20Ni16 Mo7, connu notamment sous le nom de « Phynox®» ou le nickel-phosphore NiP (soit avec concentration de phosphore 12% mais durci, soit avec concentration de phosphore inférieure à 12%) sont faiblement paramagnétiques, donc utilisables pour la mise en oeuvre de l'invention.
  • L'utilisation de matières amagnétiques (perméabilité magnétique inférieure à 1.01), est très limitante, parce que ces matériaux sont soit difficilement usinables, soit mécaniquement inadaptés aux fonctions demandées (et donc demandent un revêtement ou une procédure de durcissement les rendant ferromagnétiques), ce qui explique pourquoi la première montre résistante à 15'000 Gauss a été présentée seulement en 2013. Par exemple, des matériaux amagnétiques sont : aluminium, or, laiton ou similaire.
  • On appellera matériaux «diamagnétiques » des matériaux de perméabilité magnétique relative inférieure à 1 (susceptibilité magnétique négative, inférieure ou égale à -10-5), tels que graphite ou graphène.
  • On appellera enfin matériaux «magnétiques doux», pour ne pas dire amagnétiques, notamment pour des blindages, des matériaux ayant une perméabilité élevée mais une haute saturation, car on ne veut pas qu'ils soient aimantés de manière permanente: ils doivent conduire le mieux possible le champ, de manière à réduire le champ à leur extérieur. De tels composants peuvent alors protéger aussi un système magnétique des champs externes. Ces matériaux sont choisis de préférence de perméabilité magnétique relative comprise entre 50 et 200, et avec un champ de saturation supérieur à 500 A/m.
  • Des matériaux qualifiés d'«amagnétiques », ont quant à eux une perméabilité magnétique relative très légèrement supérieure à 1, et inférieure à 1.0001, comme typiquement le silicium, le diamant, le palladium et similaires. Ces matériaux peuvent en général être obtenus par des technologies MEMS ou par le procédé « LIGA ».
  • Ainsi, l'arbre monobloc 1 de mobile pivotant 10 d'horlogerie est réalisé en une ou plusieurs parties 2, qui sont alors alignées sur un axe de pivotement D.
  • Précisons que cet arbre 1 est un élément axial pivotant, qui sert de support à d'autres composants : plateau, collerette, virole, balancier, mais qui n'est pas constitué par ces autres composants, qui sont chassés, collés, soudés, brasés, ou appuyés sur l'arbre, ou encore maintenus par d'autres procédés. Les caractéristiques présentées ci-après concernent cet arbre 1 seul.
  • Selon l'invention, cet arbre monobloc 1 est magnétiquement inhomogène.
  • L'arbre 1 selon l'invention a des propriétés magnétiques intrinsèques (perméabilité, champ de saturation, champ coercitif, température de Curie, courbe d'hystérèse dépendante) qui sont non-uniformes dans son volume.
  • Rappelons que l'aimantation ne fait pas partie de ces propriétés magnétiques intrinsèques. Le profil d'aimantation d'un tel arbre après aimantation ne dépend pas uniquement des propriétés magnétiques intrinsèques, mais il dépend notamment de la source de champ magnétique qui l'a aimanté ainsi que de la forme et de la taille dudit arbre. Par exemple, l'arbre peut présenter une aimantation non-uniforme même si les propriétés magnétiques intrinsèques sont uniformes
  • Rappelons aussi qu'un composant ne peut pas devenir, par exemple, ferromagnétique après avoir été soumis à un champ magnétique : une matière est soit ferromagnétique, soit paramagnétique, antiferromagnétique ou diamagnétique. La température peut modifier cette caractéristique mais elle ne peut pas être modifiée par un champ externe. Il convient de bien différencier l'aimantation des propriétés magnétiques intrinsèques de la matière.
  • L'invention propose, dans un cas particulier, d'utiliser, dans un cas où l'arbre est bi-matériau, soit des matières paramagnétiques, soit des matériaux ferromagnétiques, ayant des propriétés intrinsèques bien définies.
  • Notamment, cet arbre monobloc 1 est magnétiquement inhomogène, avec une variation des propriétés magnétiques intrinsèques de cet arbre monobloc 1, soit selon la direction axiale de l'axe de pivotement D de l'arbre monobloc 1, soit de façon radiale avec une symétrie de révolution par rapport à cet axe de pivotement D, soit à la fois selon la direction axiale de l'axe de pivotement D et de façon radiale avec une symétrie de révolution par rapport à cet axe de pivotement D.
  • Dans une variante particulière, l'arbre monobloc 1 est magnétiquement inhomogène avec une variation des propriétés magnétiques intrinsèques de façon radiale par rapport à l'axe de pivotement D.
  • Dans une réalisation préférée, cette variation des propriétés magnétiques intrinsèques de l'arbre monobloc 1 est faite de façon radiale avec une symétrie de révolution par rapport à l'axe de pivotement D.
  • Par « arbre inhomogène dans la direction radiale », on entend ici que les propriétés magnétiques de l'arbre varient selon la direction radiale, du centre de l'arbre vers la périphérie (tandis que l'arbre peut être, ou non, magnétiquement homogène selon la direction axiale).
  • Seule la matière située au coeur de l'arbre, dans une zone dite ci-après zone centrale 3, c'est-à-dire au voisinage de l'axe de pivotement D, présente un champ de saturation élevé (Bs > 1 T), une perméabilité magnétique µR maximale supérieure à 50, et un champ coercitif Hc supérieur à 3 kA/m (toutes ces propriétés sont typiques de l'acier 20AP utilisé préférablement pour les arbres pivotants à cause des bonnes performances mécaniques). Naturellement, en cas d'emploi d'autres matériaux, ces valeurs seuils sont à adapter par des essais de routine.
  • Tandis que la matière en périphérie de l'arbre, dans une zone dite ci-après zone périphérique 4, est, soit faiblement paramagnétique, soit ferromagnétique avec un faible champ de saturation (Bs < 0,5 T), une faible perméabilité magnétique maximale µR < 10, et un faible champ coercitif.
  • Un schéma de cette solution est montré en figure 1, qui est un schéma tridimensionnel de la première variante. L'arbre monobloc 1 de balancier est composé d'une zone centrale 3 fortement ferromagnétique (grisée) et d'une zone périphérique 4 paramagnétique ou faiblement ferromagnétique (en blanc).
  • Dans ce cas les deux régions (fortement ferromagnétique en zone centrale 3, et faiblement paramagnétique en zone périphérique 4 sont précisément séparées par une zone d'interface 7 abrupte : l'interface entre les deux régions 3 et 4 peut toutefois avoir une largeur finie, en correspondance d'un gradient régulier des propriétés magnétiques, sans que les résultats en soient affectés. La région fortement ferromagnétique en zone centrale 3 au coeur de l'arbre monobloc 1 est de préférence contenue dans un cylindre de rayon inférieur à 100 micromètres (et centré sur l'axe de pivotement D) pour atteindre les performances souhaitées.
  • En pratique, l'inhomogénéité magnétique décrite ici peut être obtenue en combinant deux matériaux différents (par brasure, soudure ou dépôt d'un matériau sur l'autre), ou bien, dans le cas où un alliage est utilisé (par exemple, acier carbone), par un traitement thermique ou sous champ électrique ou magnétique de tout ou partie du composant fini. Plus particulièrement, les traitements thermiques et électromagnétiques sont bien appropriés pour un traitement bien délimité dans l'espace.
  • La figure 2 montre l'art antérieur, sous la forme d'un arbre monobloc 1 de balancier classique, homogène, en acier 20 AP. Cette figure illustre le champ rémanent, après aimantation à 0,2 T. Lors de cette aimantation, cet arbre est soumis à un champ externe de 0,2 T orienté dans la direction orthogonale à l'axe de pivotement, l'arbre est magnétisé dans tout son volume, son champ rémanent étant compris entre 0,3 T et 0,6 T, comme le montre la figure 2 qui fait apparaître :
    • en grisé foncé les zones avec un champ rémanent de 0,6T ;
    • en grisé moyen les zones avec un champ rémanent de l'ordre de 0,2 à 0,4T ;
    • et en gris très clair ou en blanc les zones avec un champ rémanent inférieur à 0,2T.
    L'aimantation est supérieure en correspondance du rayon maximum de l'arbre.
  • La figure 3 montre le champ rémanent d'un arbre monobloc 1 de balancier inhomogène radialement selon la première variante de l'invention. Cet arbre monobloc 1 a la même géométrie que celui de la figure 2, mais seul le coeur, en zone centrale 3, est en acier 20 AP, tandis que sa périphérie, en zone périphérique 4, est faiblement paramagnétique. L'arbre est soumis à un champ externe de 0,2 T orienté dans la direction orthogonale à l'axe de pivotement D. Le champ rémanent est d'environ 0,4 T et concentré dans le coeur en zone centrale 3.
  • Quand la pièce d'horlogerie est soumise à l'action d'un champ magnétique externe, pendant l'oscillation du balancier-spiral, l'arbre aimanté du balancier est soumis à un couple magnétique qui tend à l'orienter dans la direction du champ externe. Le moment de ce couple peut être suffisamment élevé pour arrêter le mouvement de ce balancier-spiral.
  • A cause de l'aimantation très différenciée, l'arbre homogène de la figure 2 est soumis à un couple magnétique, dont le moment est plus de 10 fois supérieur à celui qui est appliqué à l'arbre inhomogène de la figure 3. En effet, l'arbre monobloc 1 selon l'invention comporte une zone de champ rémanent sur un très faible rayon, alors que dans l'art antérieur les zones de champ rémanent élevé sont précisément dans les zones de plus grand rayon.
  • L'arrêt du mouvement a lieu si le couple agissant sur l'arbre est supérieur au couple de rappel exercé par le spiral pour des angles inférieurs à l'angle de levée, et au couple d'entretien appliqué par l'ancre au balancier. Ces deux couples, obtenus pour des paramètres typiques, sont comparés au couple magnétique agissant sur l'arbre homogène et sur l'arbre inhomogène, sur le graphique de la figure 5.
  • La figure 4 illustre la comparaison des couples magnétiques exercés sur ces deux modèles d'arbres de balancier: le graphe G2 correspondant à l'arbre homogène de la figure 2 est représenté en trait interrompu, et le graphe G3 correspondant à l'arbre monobloc 1 inhomogène selon l'invention (première variante de la figure 3, ou deuxième variante de la figure 7 exposée plus loin) est représenté en trait continu. En abscisse figure l'angle en degrés, et en ordonnée le couple exercé sur le balancier, en mN.mm. Dans les deux cas, le couple varie sinusoïdalement avec l'angle de rotation du balancier-spiral (ici le zéro est fixé de manière arbitraire).
  • L'arbre homogène de la figure 2 est soumis à un couple magnétique largement supérieur au couple du spiral et au couple d'entretien. Dans ce cas, le balancier-spiral sera donc arrêté pour un champ inférieur à 0,2 T.
  • L'arbre monobloc 1 inhomogène selon la première variante de l'invention est soumis à un couple inférieur au couple exercé par le spiral dans l'angle de levée (< 30°) et au couple d'entretien. Dans ce cas, le balancier-spiral ne sera pas arrêté sous un champ de 0,2 T.
  • La figure 5 illustre la comparaison des couples magnétiques sur un arbre de balancier, homogène selon l'art antérieur, et inhomogène selon l'invention (première variante, ou deuxième variante exposée plus loin), imposé par un champ externe de 0,2 T, comparé au couple de rappel du spiral et au couple appliqué au balancier par l'ancre. De la même façon que la figure 4, la figure 5 illustre la comparaison, sur une faible amplitude angulaire, des couples magnétiques exercés sur ces deux modèles d'arbres de balancier: le graphe G2 correspondant à l'arbre homogène est représenté en trait interrompu, et le graphe G3 correspondant à l'arbre inhomogène est représenté en trait continu. Le trait mixte interrompu G4 représente le couple de rappel exercé par le spiral. Le couple d'entretien, appliqué au balancier par l'ancre, est représenté sous la forme d'une horizontale G5 en trait pointillé.
  • A la suite de l'aimantation de la montre, l'arbre monobloc 1 du balancier 10 se trouve immergé dans le champ magnétique crée par les composants ferromagnétiques fixes du mouvement 30, ou/et de la pièce d'horlogerie 40, dont il fait partie. L'arbre monobloc 1 est alors soumis à un couple similaire à celui qui est montré en figure 4, mais de moment plus faible. Ce couple de perturbation est responsable du défaut de marche résiduel. Un mouvement équipé d'un arbre monobloc 1 inhomogène selon la première variante de l'invention est donc affecté d'un défaut de marche qui est entre 3 et 10 fois inférieur à celui qui affecte un mouvement équipé d'un arbre homogène traditionnel.
  • La deuxième variante de l'invention concerne un arbre qui est inhomogène dans la direction axiale, parallèle à l'axe de pivotement de l'arbre.
  • L'inhomogénéité des propriétés magnétiques est cette fois réalisée dans la direction axiale. Les extrémités 2 de l'arbre monobloc 1, constituées par les pivots 2A et 2B, qui doivent avoir des propriétés mécaniques optimales, sont généralement en matériaux magnétiques, tandis que la partie médiane 6 de l'arbre monobloc 1 est en matériau faiblement paramagnétique.
  • La longueur (dans la direction axiale) cumulée des parties magnétiques de l'arbre monobloc 1 est avantageusement inférieure a un tiers de la longueur totale de l'arbre monobloc 1.
  • La différence de longueur entre les parties magnétiques est avantageusement maintenue inférieure à 10%.
  • Cette deuxième variante est schématisée sur la figure 6, sur laquelle de préférence seuls les pivots 2A et 2B sont en matériau ferromagnétique.
  • L'arbre monobloc 1 de la figure 6 comporte, selon la direction de l'axe de pivotement D, une partie médiane 6 entourée de part et d'autre par deux zones d'extrémité 8. Et seules ces zones d'extrémité 8, réalisées de préférence en acier à pivots, présentent un champ de saturation élevé de valeur Bs supérieure à 1 T, une perméabilité magnétique maximale µR supérieure à 50, et un champ coercitif Hc supérieur à 3 kA/m. Tandis que la matière dans la partie médiane 6 est, soit faiblement paramagnétique, soit ferromagnétique avec un faible champ de saturation Bs de valeur inférieure à 0,5 T, une faible perméabilité magnétique maximale µR inférieure à 10, et un faible champ coercitif.
  • Plus particulièrement, dans ce type d'exécution de la figure 6, on peut avoir des choix avantageux:
    • une partie médiane paramagnétique avec 2>µ>1.01 ;
    • une partie médiane amagnétique (tel que défini plus haut) ;
    • une partie médiane paramagnétique avec µ<1.01, et dont le volume est inférieur au volume de la partie ferromagnétique, pourvu que le volume de la partie ferromagnétique soit inférieur à une valeur X = δ m C ech + k θ l / b μ 0 B s H θ l
      Figure imgb0001
    où, pour un arbre 1 qui est un arbre de balancier d'un ensemble balancier-spiral de mouvement de montre, X est fonction du défaut de marche relatif maximal souhaité δm, (généralement δm = 10-4) de la rigidité du spiral k, du couple d'entretien maximal du balancier Cech, de l'angle de levée θl, de la perméabilité du vide µ0, du champ de saturation Bs de la partie ferromagnétique de l'arbre et du champ d'aimantation maximal H que la montre est censée supporter sans dépasser le défaut relatif δm. Le coefficient b est un facteur, de l'ordre de l'unité si les autres quantités sont exprimées dans le système internationale, et qui dépend de la forme géométrique de l'arbre X est typiquement compris entre 0.1 mm3 et 1 mm3. Comme pour la première variante, le champ rémanent est inférieur (et plus localisé) que dans le cas d'un arbre homogène selon la figure 2, comme le montre la figure 7.
  • Cette figure 7 représente le champ rémanent, après aimantation à 0,2 T, d'un arbre monobloc 1 de balancier inhomogène selon la deuxième variante de l'invention. Les pivots sont en acier 20 AP. La partie médiane 6 est faiblement paramagnétique.
  • Le couple agissant sur l'arbre monobloc 1 dans ce cas est équivalent à celui obtenu pour la première variante (figure 4 et figure 5).
  • En pratique, comme pour la première variante, l'inhomogénéité magnétique souhaitée peut être obtenue en combinant deux matériaux différents (par brasure, soudure ou dépôt d'un matériau sur l'autre) ou, dans le cas où un alliage est utilisé (par exemple, acier carbone), par le traitement thermique ou sous champ électrique ou magnétique de tout ou partie du composant fini.
  • Il est encore possible de panacher la première et la deuxième variante, l'arbre monobloc 1 est alors magnétiquement inhomogène avec une variation de ses propriétés magnétiques intrinsèques à la fois selon la direction axiale de l'axe de pivotement D et de façon radiale par rapport à cet axe de pivotement D.
  • Dans l'une ou l'autre de ces variantes, l'invention est de réalisation aisée et peu coûteuse, puisque, en pratique, une simple réalisation bi-matière permet d'obtenir le résultat souhaité. Par exemple une exécution selon la première variante avec une serge de balancier constituant la zone périphérique 4 qui est réalisée, selon l'inertie recherchée, en aluminium, or, laiton ou similaire, tandis que la zone centrale 3 est réalisé sous forme d'un barreau en acier 20AP ou similaire : un balancier de faible inertie est obtenu avec une serge en alliage léger, notamment d'aluminium, facile à usiner et à percer de part en part, et un noyau en acier brut d'étirage ou de tréfilage, ou encore décolleté, d'un diamètre inférieur à 100 micromètres. De façon similaire, un balancier selon la deuxième variante et à très faible inertie comporte une partie médiane 6 usinée en alliage d'aluminium et comportant à ses extrémités axiales deux logements pour le chassage de pivots 2A et 2B en acier à pivots.
  • Les réalisations bi-matériaux suivantes donnent de bons résultats, malgré des enseignements contraires de la littérature :
    • cas fortement ferromagnétique / faiblement ferromagnétique ;
    • cas fortement ferromagnétique / faiblement paramagnétique avec 2>µ>1.01, malgré un préjugé considérant un tel matériau comme inutilisable pour ce type de construction. Notamment le « Phynox » rentre dans cette gamme de matériaux ;
    • cas où la portion (masse) paramagnétique de l'arbre n'est pas la portion (masse) principale. Des solutions où la portion ferromagnétique est dominante sont efficaces et inclues dans la présente demande : les dimensions maximales (absolues) de la portion fortement ferromagnétique sont déterminées uniquement par la rigidité du spiral et le couple d'entretien (voir équation (1)).
  • Dans une réalisation particulière, l'arbre 1 comporte au moins une partie saillante de plus grand rayon autour de son axe de pivotement D, et au moins ladite partie saillante est délimitée, de part et d'autre dudit axe de pivotement D, par deux surfaces symétriques par rapport audit axe de pivotement D et qui définissent, en projection sur un plan perpendiculaire audit axe de pivotement D, un profil inscrit dans un rectangle dont le rapport de la longueur à la largeur définit un rapport de forme qui est supérieur ou égal à 2, la direction de ladite longueur définissant un axe principal DP.
  • L'invention concerne encore un mobile pivotant 10 d'horlogerie comportant un arbre monobloc 1 selon l'invention.
  • L'invention concerne encore un mécanisme 20 d'horlogerie comportant un tel arbre monobloc 1 ou/et un tel mobile 10, notamment un mécanisme d'échappement.
  • Dans la réalisation particulière exposée ci-dessus et où l'arbre 1 comporte au moins une telle partie saillante particulière, ce mécanisme d'horlogerie 20 comporte un tel mobile 10 oscillant autour d'une position de repos définie par un plan de repos passant par un axe de pivotement D, ledit mobile 10 étant rappelé vers une position de repos par des moyens de rappel élastique. Et ce mobile 10 comporte un tel arbre 1 qui comporte au moins une telle partie saillante particulière, cet arbre 1 étant en acier, et ledit axe principal DP dudit arbre 1, dans le plan orthogonal audit arbre, occupe une position angulaire déterminée par rapport audit plan de repos dans ladite position de repos dudit mobile 10, ledit mécanisme 20 ayant une direction d'aimantation préférentielle DA qui est sensiblement orthogonale audit axe principal DP dudit arbre 1 dans ladite position de repos.
  • L'invention concerne encore un mouvement 30 d'horlogerie comportant un tel arbre monobloc 1 ou/et un tel mobile 10 ou/et un tel mécanisme 20.
  • L'invention concerne encore une pièce d'horlogerie 40, notamment une montre, comportant un tel arbre monobloc 1 ou/et un tel mobile 10, ou/et un tel mécanisme 20, ou/et un tel mouvement 30.
  • En somme, l'invention ne nécessite aucun aimant permanent préaimanté, ni aucune roue magnétique, mais seulement des arbres magnétiquement passifs (paramagnétiques ou ferromagnétiques).
  • L'objet de l'invention n'est pas de fournir une solution d'entretien de l'oscillateur, mais bien de protéger l'oscillateur de toute perturbation magnétique.
  • L'invention, dans l'une ou l'autre de ses variantes, présente d'importants avantages :
    • intensité du champ d'arrêt sous-champ augmentée pour les montres avec spiral, corps d'ancre et roue d'échappement amagnétique ; ceci signifie qu'une montre devrait être soumise à des champs magnétiques beaucoup plus élevés que ceux que peut rencontrer l'utilisateur dans sa vie normale, avant de risquer une perturbation risquant de mener à l'arrêt du mouvement ;
    • effet résiduel réduit pour les montres avec spiral, corps d'ancre et roue d'échappement amagnétique ;
    • performances mécaniques identiques aux montres de l'état actuel de la technique, puisque les surfaces de contact tribologiques continuent à être réalisées dans des matériaux validés pour ces applications.

Claims (34)

  1. Arbre monobloc (1) de mobile pivotant (10) d'horlogerie, ledit arbre monobloc (1) étant réalisé en une ou plusieurs parties (2) alignées, caractérisé en ce que ledit arbre monobloc (1) est magnétiquement inhomogène et a des propriétés magnétiques intrinsèques, qui sont la perméabilité et le champ de saturation et le champ coercitif et la température de Curie et la courbe d'hystérèse dépendante, qui sont non-uniformes dans son volume.
  2. Arbre monobloc (1) selon la revendication 1, caractérisé en ce que ledit arbre (1) est magnétiquement inhomogène, avec une variation des propriétés magnétiques intrinsèques dudit arbre monobloc (1), soit selon la direction axiale de l'axe de pivotement (D) dudit arbre monobloc (1), soit de façon radiale par rapport audit axe de pivotement (D), soit à la fois selon la direction axiale de l'axe de pivotement (D) dudit arbre monobloc (1) et de façon radiale avec une symétrie de révolution par rapport audit axe de pivotement (D).
  3. Arbre monobloc (1) selon la revendication 1, caractérisé en ce que ledit arbre (1) est magnétiquement inhomogène avec une variation des propriétés magnétiques intrinsèques dudit arbre monobloc (1) de façon radiale par rapport audit axe de pivotement (D).
  4. Arbre monobloc (1) selon la revendication 3, caractérisé en ce que ledit arbre (1) est magnétiquement inhomogène avec une variation des propriétés magnétiques intrinsèques dudit arbre monobloc (1) de façon radiale avec une symétrie de révolution par rapport audit axe de pivotement (D).
  5. Arbre monobloc (1) selon la revendication 1, caractérisé en ce que ledit arbre (1) est magnétiquement inhomogène avec une variation des propriétés magnétiques intrinsèques dudit arbre monobloc (1) selon la direction axiale de l'axe de pivotement (D) dudit arbre monobloc (1).
  6. Arbre monobloc (1) selon la revendication 1, caractérisé en ce que ledit arbre (1) est magnétiquement inhomogène avec une variation desdites propriétés magnétiques intrinsèques dudit arbre monobloc (1) à la fois selon la direction axiale de l'axe de pivotement (D) dudit arbre monobloc (1) et de façon radiale par rapport audit axe de pivotement (D).
  7. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins, ou bien une partie paramagnétique avec une perméabilité magnétique (µ) comprise entre 1.01 et 2, ou bien une partie ferromagnétique.
  8. Arbre monobloc (1) selon la revendication précédente, caractérisé en ce qu'il comporte au moins une partie paramagnétique avec une perméabilité magnétique (µ) comprise entre 1.01 et 2.
  9. Arbre monobloc (1) selon la revendication précédente, caractérisé en ce qu'il comporte au moins une partie médiane paramagnétique avec une perméabilité magnétique (µ) comprise entre 1.01 et 2.
  10. Arbre monobloc (1) selon l'une des revendications 7 à 9, caractérisé en ce qu'il comporte au moins une partie faiblement ferromagnétique, avec un champ de saturation Bs < 0,5 T à la température T = 23°C, un champ coercitif Hc < 1'000 kA/m à la température T = 23°C, une perméabilité magnétique maximale µR < 10 à la température T = 23°C, et une température de Curie Tc > 60°C.
  11. Arbre monobloc (1) selon l'une des revendications 7 à 10, caractérisé en ce qu'il comporte au moins une partie paramagnétique avec une perméabilité magnétique (µ) compris entre 1.01 et 2, et au moins une partie faiblement ferromagnétique, avec un champ de saturation Bs < 0,5 T à la température T = 23°C, un champ coercitif Hc < 1'000 kA/m à la température T = 23°C, une perméabilité magnétique maximale µR < 10 à la température T = 23°C, et une température de Curie Tc > 60°C.
  12. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins une partie en CoCr20Ni16 Mo7.
  13. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins une partie en NiP.
  14. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce qu'il est au moins bi-matériaux et comporte au moins une partie en matériau fortement ferromagnétique et au moins une partie en matériau faiblement ferromagnétique.
  15. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce qu'il est au moins bi-matériaux et comporte au moins une partie en matériau fortement ferromagnétique et au moins une partie en matériau faiblement paramagnétique avec une perméabilité magnétique (µ) comprise entre 1.01 et 2.
  16. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce qu'il est au moins bi-matériaux et comporte une partie en matériau paramagnétique, dont la masse est inférieure à celle d'une autre partie en matériau ferromagnétique.
  17. Arbre monobloc (1) selon la revendication précédente, caractérisé en ce qu'il est un arbre de balancier d'un ensemble balancier-spiral de mouvement de montre, et que le volume de ladite autre partie en matériau ferromagnétique est inférieur à une valeur X = δm (Cech + k θl) / (b µ0 Bs H θl)
    où :
    - δm est le défaut de marche relatif maximal souhaité voisin de 10-4,
    - k est la rigidité du spiral,
    - Cech est le couple d'entretien maximal du balancier,
    - θl est l'angle de levée,
    - µ0 est la perméabilité du vide,
    - Bs est le champ de saturation de la partie ferromagnétique dudit arbre (1),
    - H est le champ d'aimantation maximal que ladite montre est censée supporter sans dépasser ledit défaut de marche relatif δm,
    - b est un coefficient dépendant de la forme géométrique de l'arbre et est voisin de 1.0 si les autres quantités sont exprimées dans les unités du système international, et ladite valeur X étant comprise entre 0.1 mm3 et 1 mm3.
  18. Arbre monobloc (1) selon l'une des revendications 1 à 13, caractérisé en ce qu'il est en un seul matériau, et est magnétiquement inhomogène du fait de son procédé de fabrication.
  19. Arbre monobloc (1) selon la revendication 3 ou 4, caractérisé en ce que seule la matière située au coeur dudit arbre monobloc (1), dans une zone centrale (3) au voisinage de l'axe de pivotement (D) dudit arbre monobloc (1) réalisée en acier, présente un champ de saturation élevé de valeur (Bs) supérieure à 1 T, une perméabilité magnétique maximale µR supérieure à 50, et un champ coercitif (Hc) supérieur à 3 kA/m, tandis que la matière dans une zone périphérique (4) dudit arbre monobloc (1), est faiblement paramagnétique.
  20. Arbre monobloc (1) selon la revendication 3 ou 4, caractérisé en ce que seule la matière située au coeur dudit arbre monobloc (1), dans une zone centrale (3) au voisinage de l'axe de pivotement (D) dudit arbre monobloc (1) réalisée en acier, présente un champ de saturation élevé de valeur (Bs) supérieure à 1 T, une perméabilité magnétique maximale µR supérieure à 50, et un champ coercitif (Hc) supérieur à 3 kA/m, tandis que la matière dans une zone périphérique (4) dudit arbre monobloc (1), est ferromagnétique avec un faible champ de saturation (Bs) de valeur inférieure à 0,5 T, une faible perméabilité magnétique maximale(µR) inférieure à 10, et un faible champ coercitif.
  21. Arbre monobloc (1) selon la revendication 20, caractérisé en ce que la matière dans une zone périphérique (4) dudit arbre monobloc (1), est faiblement paramagnétique, avec un faible champ de saturation (Bs) de valeur inférieure à 0,5 T, une faible perméabilité magnétique maximale(µR) inférieure à 10, et un faible champ coercitif.
  22. Arbre monobloc (1) selon la revendication 20, caractérisé en ce que la matière dans une zone périphérique (4) dudit arbre monobloc (1), est ferromagnétique, avec un faible champ de saturation (Bs) de valeur inférieure à 0,5 T, une faible perméabilité magnétique maximale (µR) inférieure à 10, et un faible champ coercitif.
  23. Arbre monobloc (1) selon l'une des revendications 20 à 22, caractérisé en ce que la région fortement ferromagnétique de ladite zone centrale (3) au coeur dudit arbre monobloc (1) est contenue dans un cylindre de rayon inférieur à 100 micromètres et centré sur ledit axe de pivotement (D) dudit arbre monobloc (1).
  24. Arbre monobloc (1) selon la revendication 5, caractérisé en ce qu'il comporte, selon la direction dudit axe de pivotement (D), une partie médiane (6) entourée de part et d'autre par deux zones d'extrémité (8), et que seules lesdites zones d'extrémité (8), réalisées en acier, présentent un champ de saturation élevé de valeur (Bs) supérieure à 1 T, une perméabilité magnétique maximale µR supérieure à 50, et un champ coercitif (Hc) supérieur à 3 kA/m, tandis que la matière dans ladite partie médiane (6) dudit arbre monobloc (1), est faiblement paramagnétique.
  25. Arbre monobloc (1) selon la revendication 5, caractérisé en ce qu'il comporte, selon la direction dudit axe de pivotement (D), une partie médiane (6) entourée de part et d'autre par deux zones d'extrémité (8), et que seules lesdites zones d'extrémité (8), réalisées en acier, présentent un champ de saturation élevé de valeur (Bs) supérieure à 1 T, une perméabilité magnétique maximale µR supérieure à 50, et un champ coercitif (Hc) supérieur à 3 kA/m, tandis que la matière dans ladite partie médiane (6) dudit arbre monobloc (1), est ferromagnétique avec un faible champ de saturation (Bs) de valeur inférieure à 0,5 T, une faible perméabilité magnétique maximale (µR) inférieure à 10, et un faible champ coercitif.
  26. Arbre monobloc (1) selon l'une des revendications précédentes, caractérisé en ce que son inhomogénéité magnétique est obtenue par combinaison de deux matériaux différents par brasure, soudure ou dépôt d'un matériau sur l'autre.
  27. Arbre monobloc (1) selon l'une des revendications 1 à 25, caractérisé en ce que son inhomogénéité magnétique est obtenue par utilisation d'un alliage soumis à un traitement thermique ou à l'action d'un champ électrique ou magnétique sur tout ou partie dudit arbre monobloc (1) ou dudit mobile (10).
  28. Arbre monobloc (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est un arbre de balancier.
  29. Arbre monobloc (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit arbre (1) comporte au moins une partie saillante de plus grand rayon autour de son axe de pivotement (D), et au moins ladite partie saillante est délimitée, de part et d'autre dudit axe de pivotement (D), par deux surfaces symétriques par rapport audit axe de pivotement (D) et qui définissent, en projection sur un plan perpendiculaire audit axe de pivotement (D), un profil inscrit dans un rectangle dont le rapport de la longueur à la largeur définit un rapport de forme qui est supérieur ou égal à 2, la direction de ladite longueur définissant un axe principal DP.
  30. Mobile pivotant (10) d'horlogerie comportant un dit arbre monobloc (1) selon l'une quelconque des revendications précédentes.
  31. Mécanisme (20) d'horlogerie comportant un dit arbre monobloc (1) selon l'une des revendications 1 à 29 ou/et un dit mobile (10) selon la revendication précédente, caractérisé en ce que ledit mécanisme (20) est un mécanisme d'échappement.
  32. Mécanisme d'horlogerie (20) selon la revendication précédente, comportant un dit mobile (10) selon la revendication 30 oscillant autour d'une position de repos définie par un plan de repos passant par un axe de pivotement (D), ledit mobile (10) étant rappelé vers une position de repos par des moyens de rappel élastique, caractérisé en ce que ledit mobile (10) comporte un dit arbre (1) selon la revendication 29, ledit arbre (1) étant en acier, et ledit axe principal (DP) dudit arbre (1), dans le plan orthogonal audit arbre (1), occupe une position angulaire déterminée par rapport audit plan de repos dans ladite position de repos dudit mobile (10), ledit mécanisme (20) ayant une direction d'aimantation préférentielle (DA) qui est sensiblement orthogonale audit axe principal (DP) dudit arbre (1) dans ladite position de repos.
  33. Mouvement (30) d'horlogerie comportant un dit arbre monobloc (1) selon l'une des revendications 1 à 29 ou/et un dit mécanisme (20) selon la revendication précédente.
  34. Pièce d'horlogerie (40) ou montre, comportant un dit arbre monobloc (1) selon l'une des revendications 1 à 9 ou/et un dit mécanisme (20) selon la revendication 32, ou/et un ledit mouvement (30) selon la revendication précédente.
EP14710311.3A 2013-03-26 2014-03-17 Arbre de mobile pivotant d'horlogerie Active EP2979139B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14710311.3A EP2979139B1 (fr) 2013-03-26 2014-03-17 Arbre de mobile pivotant d'horlogerie

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13161124.6A EP2784601B1 (fr) 2013-03-26 2013-03-26 Arbre de mobile pivotant d'horlogerie
PCT/EP2014/055267 WO2014154510A2 (fr) 2013-03-26 2014-03-17 Arbre de mobile pivotant d'horlogerie
EP14710311.3A EP2979139B1 (fr) 2013-03-26 2014-03-17 Arbre de mobile pivotant d'horlogerie

Publications (2)

Publication Number Publication Date
EP2979139A2 EP2979139A2 (fr) 2016-02-03
EP2979139B1 true EP2979139B1 (fr) 2018-05-09

Family

ID=47915605

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13161124.6A Active EP2784601B1 (fr) 2013-03-26 2013-03-26 Arbre de mobile pivotant d'horlogerie
EP14710311.3A Active EP2979139B1 (fr) 2013-03-26 2014-03-17 Arbre de mobile pivotant d'horlogerie

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13161124.6A Active EP2784601B1 (fr) 2013-03-26 2013-03-26 Arbre de mobile pivotant d'horlogerie

Country Status (7)

Country Link
US (1) US9915923B2 (fr)
EP (2) EP2784601B1 (fr)
JP (1) JP6315727B2 (fr)
CN (1) CN105103057B (fr)
CH (1) CH707790B1 (fr)
HK (1) HK1217776A1 (fr)
WO (1) WO2014154510A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208664B1 (fr) * 2016-02-19 2023-08-16 Omega SA Mecanisme horloger ou horloge sans signature magnetique
EP3273303A1 (fr) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Pièce pour mouvement d'horlogerie
JP6915602B2 (ja) * 2018-10-24 2021-08-04 セイコーエプソン株式会社 時計部品および時計
WO2023036928A1 (fr) 2021-09-09 2023-03-16 Rolex Sa Élément inertiel pour mouvement horloger

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1830032A (en) * 1924-01-08 1931-11-03 John H Kohler Staff for rotating apparatus
US2131797A (en) 1934-04-16 1938-10-04 Dreyfus Jean Transmission means for control members
FR1145049A (fr) 1955-07-19 1957-10-21 Complications Sa Moteur à impulsions
CH343303A (de) 1956-01-24 1959-12-15 Straumann Inst Ag Verfahren zur Herstellung einer Welle mit bruchfesten Lagerzapfen für Uhrwerke und feinmechanische Apparate und nach diesem Verfahren hergestellte Welle mit bruchfesten Lagerzapfen
FR1475005A (fr) * 1966-02-18 1967-03-31 Procédé de fabrication de fils métalliques et fils métalliques obtenus selon ce procédé
CH1246668A4 (fr) * 1968-08-19 1972-11-30
CH530665A (de) 1968-09-15 1970-08-14 Reich Joachim Elektronische angetriebene Uhr
CH587510B5 (fr) * 1973-11-29 1977-05-13 Omega Brandt & Freres Sa Louis
JPH04124246A (ja) * 1990-09-13 1992-04-24 Alps Electric Co Ltd 時計の文字盤
JP3370636B2 (ja) * 2000-03-03 2003-01-27 三井金属鉱業株式会社 キャリア箔付金属箔及びその製造方法
AU2001235314A1 (en) 2000-04-11 2001-10-23 Detra S.A. Escapement device for timepiece component
DE60307471D1 (de) 2002-07-11 2006-09-21 Detra Sa Hemmung
US20070249762A1 (en) * 2002-08-29 2007-10-25 Ram Technologies Group, Inc. Rubber modified asphalt cement compositions and methods
GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
EP1986059A1 (fr) * 2007-04-26 2008-10-29 ETA SA Manufacture Horlogère Suisse Dispositif de pivotement d'un arbre dans une pièce d'horlogerie
CN103890666B (zh) * 2011-10-24 2017-10-13 劳力士有限公司 用于钟表机芯的振荡器
EP2757424B1 (fr) * 2013-01-17 2018-05-16 Omega SA Pièce pour mouvement d'horlogerie
EP2757423B1 (fr) * 2013-01-17 2018-07-11 Omega SA Pièce pour mouvement d'horlogerie
EP2784602B1 (fr) * 2013-03-26 2018-12-05 Montres Breguet SA Arbre de mobile à géométrie optimisée en environnement magnétique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2979139A2 (fr) 2016-02-03
WO2014154510A4 (fr) 2015-01-29
US9915923B2 (en) 2018-03-13
WO2014154510A2 (fr) 2014-10-02
US20160085213A1 (en) 2016-03-24
JP2016514834A (ja) 2016-05-23
WO2014154510A3 (fr) 2014-12-31
EP2784601B1 (fr) 2017-09-13
HK1217776A1 (zh) 2017-01-20
CN105103057B (zh) 2018-04-13
CH707790A2 (fr) 2014-09-30
EP2784601A1 (fr) 2014-10-01
JP6315727B2 (ja) 2018-04-25
CH707790B1 (fr) 2017-12-15
WO2014154510A9 (fr) 2015-03-05
CN105103057A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
EP3545364B1 (fr) Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre
EP2979139B1 (fr) Arbre de mobile pivotant d&#39;horlogerie
EP2638436B1 (fr) Pivot magnétique
EP2496990B1 (fr) Organe réglant pour montre bracelet, et pièce d&#39;horlogerie comportant un tel organe réglant
CH714952B1 (fr) Composant horloger, son procédé de fabrication et application de ce procédé.
CH696881A5 (fr) Pièce de micro-mécanique en silicium renforcé et son procédé de fabrication.
CH709328B1 (fr) Echappement, mouvement de pièce d&#39;horlogerie et pièce d&#39;horlogerie.
EP3451076A1 (fr) Porte-piton pour un mouvement d&#39;horlogerie mécanique
WO2019145434A1 (fr) Axe de pivotement d&#39;un organe reglant
CH716862A2 (fr) Mouvement horloger résistant aux perturbations magnétiques et piece d&#39;horlogerie le comportant.
EP2979140B1 (fr) Arbre de mobile a géométrie optimisée en environnement magnétique
EP2887153B1 (fr) Dispositif de centrage magnétique
EP2309344B1 (fr) Procédé pour changer la fréquence d&#39;oscillation d&#39;un mouvement horloger
EP3483666A1 (fr) Dispositif pour guidage en rotation d&#39;un composant mobile
EP3489768B1 (fr) Dispositif de centrage magnetique d&#39;un arbre dans un mouvement horloger
CH706361A2 (fr) Dispositif de remontage de montre à remontage automatique et montre associée.
CH707990A1 (fr) Mouvement de montre mécanique.
CH718969A2 (fr) Élément inertiel pour mouvement horloger, résistant aux champs magnétiques.
FR3124834A1 (fr) Roulement pour mécanisme horloger ou médical et son procédé de fabrication
CH718794A2 (fr) Roulement pour mécanisme horloger ou médical et son procédé de fabrication.
CH702188A1 (fr) Organe réglant pour montre bracelet, et pièce d&#39;horlogerie comportant un tel organe réglant.
CH714107A2 (fr) Porte-piton pour un mouvement d&#39;horlogerie mécanique.
CH707883B1 (fr) Organe d&#39;échappement pour mouvement d&#39;horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151026

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014025161

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G04B0015140000

Ipc: G04B0001160000

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 1/16 20060101AFI20171129BHEP

Ipc: G04C 3/04 20060101ALI20171129BHEP

Ipc: G04C 5/00 20060101ALI20171129BHEP

Ipc: G04B 17/32 20060101ALI20171129BHEP

Ipc: G04B 15/14 20060101ALI20171129BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 998116

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014025161

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 998116

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014025161

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230401

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 11

Ref country code: GB

Payment date: 20240220

Year of fee payment: 11