EP2953146A1 - Équipement de transmission de puissance électrique sans contact - Google Patents
Équipement de transmission de puissance électrique sans contact Download PDFInfo
- Publication number
- EP2953146A1 EP2953146A1 EP14746386.3A EP14746386A EP2953146A1 EP 2953146 A1 EP2953146 A1 EP 2953146A1 EP 14746386 A EP14746386 A EP 14746386A EP 2953146 A1 EP2953146 A1 EP 2953146A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- power transmission
- transmission device
- cover
- load support
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/02—Coils wound on non-magnetic supports, e.g. formers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M7/00—Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
- B60M7/003—Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present disclosure relates to a noncontact power transmission system suitable for noncontact power transmission.
- FIG. 9 is a schematic presentation illustrating the configuration of a conventional noncontact power transmission system.
- a power transmission device 2 connected to a power source for power transmission is disposed on the ground, and a power receiving device 4 is mounted on an electric propulsion vehicle 3.
- the power transmission device 2 has a housing including a cover 5 covering a portion of the power transmission device 2 facing the power receiving device 4, and a base 6 covering a portion of the power transmission device 2 not facing the power receiving device 4.
- a primary coil 7 is provided in the housing of the power transmission device 2.
- the power receiving device 4 is provided with a secondary coil 8 for receiving power.
- an alternating current is applied to the primary coil 7 provided in the power transmission device 2 to produce a magnetic flux.
- the magnetic flux allows the secondary coil 8 of the power receiving device 4 to generate induced electromotive force.
- the power is transmitted from the primary coil 7 to the secondary coil 8 in a noncontact manner.
- FIG. 10 is a cross-sectional view of the power transmission device of FIG. 9 .
- the primary coil 7 is comprised of a plurality of magnetic bodies 12, coil bobbins 13 each covering an associated one of the magnetic bodies 12 partially or entirely, and coil wires 14 wound around the associated one of the coil bobbins 13.
- the power receiving device 4 is connected, for example, to an onboard battery (not shown), which is charged by the power transmitted in the above-described manner.
- the power stored in the onboard battery drives an onboard motor (not shown).
- the power transmission device 2 and the power receiving device 4 exchange required information through wireless communications device (not shown), for example.
- Patent Document 1 Japanese Unexamined Patent Publication No. H08-126120
- the power transmission device 2 is expected to be loaded downward.
- the electric propulsion vehicle 3 approaches to make the power transmission device 2 and the power receiving device 4 face each other.
- the electric propulsion vehicle 3 may possibly run onto the power transmission device 2 to apply a heavy load onto the housing of the power transmission device 2.
- the cover 5 is positioned to face the power transmission device 2 (disposed on the surface of the housing), and tends to receive a direct load. Even if the power transmission device 2 is attached to a wall surface such that the electric propulsion vehicle 3 does not run over the power transmission device 2, the electric propulsion vehicle 3 may still come into contact with the power transmission device 2 sideward to apply a heavy load thereto.
- the power transmission device 2 is required to have strength that is high enough to allow the device to withstand such heavy load, and to prevent the device from being deformed or damaged easily.
- a high strength metal may not be used for the cover 5, because the primary coil 7 needs to generate the magnetic flux to transmit the power to the secondary coil 8.
- a supporting structure may be provided particularly in a center portion inside the housing.
- the primary coil 7 occupies the entire inner space of the housing, and there is no space left for providing such a structure. If such a supporting structure were provided near the center portion of the housing, the supporting structure should be put on the primary coil 7. In such a case, just like the case where the housing is deformed to come into contact with the primary coil 7 disposed in the housing, some force would be applied to the primary coil 7 even under only a little strain. This would increase the risk of doing damage on the primary coil 7.
- a noncontact power transmission system including a power transmission device for transmitting power to a power receiving device in a noncontact manner.
- the power transmission device includes a cover covering a portion of an outline of the power transmission device where the power transmission device faces the power receiving device, a base covering another portion of the outline of the power transmission device where the power transmission device does not face the power receiving device, a magnetic body arranged in a space enclosed with the cover and the base, a coil bobbin covering the magnetic body partially or entirely, and a coil wire which is wound around the coil bobbin and which generates a magnetic flux upon receiving an alternating current, wherein the coil bobbin includes a load support.
- the load support supports a portion surrounding the center of the cover, thereby increasing the strength of the cover.
- the load support supporting the cover receives a force from the cover.
- the load support does not apply the force to the coil wire, but transmits the force to the base, thereby supporting the load without doing damage to the coil wire.
- the load support according to the aspect described above is disposed on an outer surface of the coil bobbin, extends from inside of turns of the coil wire to pass between the turns of the coil wire, and has a height protruding from an outer periphery of the turns of the coil wire.
- the load support according to the aspect described above is disposed on an inner surface of the coil bobbin to connect an upper portion and a lower portion of the inner surface of the coil bobbin.
- the magnetic body also has lower strength, and tends to be damaged more easily, than the material of the cover. If the magnetic body is damaged, the cover is no longer supported by the magnetic body, and thus the cover may also be damaged, or may be deformed so significantly as to apply the force to the coil wire.
- the provision of the load support inside the coil bobbin prevents the force transmitted from the cover from being applied to the magnetic body, thereby avoiding the damage.
- a portion of the coil bobbin is configured as a load support to support a portion around the center of the cover, thereby increasing the strength of the cover.
- the load support supports the cover, and thus receives the force from the cover.
- the load support does not apply the force to the coil wire, but transmits the force to the base directly. This thus allows for supporting the load without doing damage on the coil wire.
- FIG. 1 is a vertical cross-sectional view of a power transmission device of a noncontact power transmission system according to an embodiment.
- the disclosed noncontact power transmission system includes a power transmission device 15 which generates a magnetic field, and a power receiving device (not shown) receives power from the generated magnetic field to achieve noncontact power transmission from the power transmission device 15 to the power receiving device.
- the power receiving device is mounted on an electric propulsion vehicle 16 shown in FIG. 4 , and may be, in particular, the power receiving device 4 mounted on the electric propulsion vehicle 3 shown in FIG. 9 .
- the power transmission device 15 is disposed on the ground, and the power receiving device is disposed in the electric propulsion vehicle 16 (see FIG. 4 ). In transmitting the power, the electric propulsion vehicle 16 is moved to a position where the power receiving device and the power transmission device 15 face each other.
- the housing of the power transmission device 15 includes a cover 18 covering a portion of the power transmission device facing the power receiving device, and a base 19 covering another portion of the power transmission device not facing the power receiving device.
- the cover 18 is made of a nonmetallic material such as a resin, FRP, concrete, or any other suitable material so as not to be heated by the magnetic field generated for the power transmission.
- the power transmission device 15 covered with the cover 18 and the base 19 contains a magnetic body 20, a coil bobbin 21 covering at least part of the magnetic body 20, and a coil wire 22 wound around an outer surface of the coil bobbin 21.
- An alternating current is input to the coil wire 22 to generate a magnetic flux.
- the coil bobbin 21 includes a load support 23.
- the load support 23 includes a first load support 24 and a second load support 25.
- the first load support 24 passes through the gap between the turns of the coil wire 22 and extends from the surface of the coil bobbin 21 on which the coil wire 22 is wound toward the cover 18 (or the base 19) until it protrudes from the turns of the coil wire 22.
- the first load support 24 of the present embodiment has its ends in contact with the cover 18 and the base 19, respectively.
- the second load support 25 is disposed inside the coil bobbin 21 and is shaped to connect an upper portion and a lower portion of an inner surface of the coil bobbin 21.
- FIG. 2 is a horizontal plan view of the power transmission device 15.
- the first load support 24 is provided between the turns of the coil wire 22 wound around the coil bobbin 21, and has its ends protruding from the coil wire 22 (in the horizontal direction) in the same manner as its ends protruding in the vertical direction as shown in FIG. 1 .
- the first load support 24 is configured to be continuous without having any notches, but may have at least one notch (not shown) for connecting the turns of the coil wire 22 on the right and left of the first load support 24.
- the first load support 24 may be divided into several portions, or may not protrude from the coil wire 22 (in the horizontal direction).
- the electric propulsion vehicle 16 makes the power receiving device attempt to receive the transmitted power via the magnetic field generated by the power transmission device 15. To perform the power transmission, the power receiving device and the power transmission device 15 need to be positioned to face each other. Thus, the electric propulsion vehicle 16 is operated such that the vehicle is aligned with the power transmission device 15 by moving its entire vehicle body. However, the electric propulsion vehicle 16 may possibly run onto the power transmission device 15 due to some erroneous operation.
- FIG. 4 is a vertical cross-sectional view of the power transmission device which is run over by the electric propulsion vehicle.
- the load of the electric propulsion vehicle 16 is applied to the cover 18, which would usually cause the cover 18 to be deformed.
- the cover 18 is generally made of a nonmetallic material, and therefore, is low in strength and is easily deformed.
- the first load support 24 (extending upward) is arranged to be in contact with the cover 18 and supports the cover 18, and thus allowing for reducing the deformation.
- the load applied to the first load support 24 (extending upward) is transmitted to the base 19 through the second load support 25 and the first load support 24 (extending downward).
- the base 19 covers the portion of the power transmission device 15 not facing the power receiving device, and therefore, is made of a high strength metallic material or any other suitable material.
- the base 19 can withstand the transmitted load of the electric propulsion vehicle 16. Since the base 19 is disposed on the ground, the force applied to the base 19 is transferred to the ground.
- the first load support 24 configured to have a height protruding from the turns of the coil wire 22, the cover 18 and the coil wire 22 are not brought into contact with each other even if the cover 18 is deformed to some extent, and therefore, the coil wire 22 is not loaded directly.
- the load is not applied to the coil wire 22 and the magnetic body 20 which tend to be damaged easily by the load, thereby avoiding doing damage to them.
- the vehicle When the electric propulsion vehicle 16 runs onto the power transmission device 15, the vehicle does not always run onto a portion of the power transmission device immediately above the first load support 24, but may possibly run onto a portion thereof where the first load support 24 is not provided. Since the portion supported by the first load support 24 is hardly deformed, a portion of the cover 18 which sags is reduced in length. Thus, the magnitude of deformation of the cover 18 is reduced as compared with the case where the load support 23 is not provided.
- FIG. 5 is a vertical cross-sectional view of a power transmission device of a noncontact power transmission system according to a first alternative.
- the load support 23 shown in FIG. 1 is comprised of only the first load support 24.
- the first load support 24 receives the load applied to the cover 18 first, and disperses the load applied downward from the first load support 24. Then, the load is applied to the magnetic body 20. Since the magnetic body 20 has higher strength than the coil wire 22 in general, the magnetic body 20 can be prevented from being damaged as long as the load is dispersed. Further, the space that is occupied in the embodiment described above by the second load support 25 is filled with the magnetic body 20, thereby improving the efficiency of the power transmission by the power transmission device 15 as compared with the embodiment.
- FIG. 6 is a vertical cross-sectional view of a power transmission device of a noncontact power transmission system according to a second alternative.
- the load support 23 shown in FIG. 1 is provided with additional first load supports 24. This configuration allows for further reduction of the sagging of the cover 18.
- the number of the first load supports 24 is increased.
- the positions of the first load supports 24 may be changed.
- each of the first load supports 24 may be arranged at a suitable position depending on where the coil wire 22 is to be wound, and the shape of the second load support 25 may be changed according to the shape of the magnetic body 20.
- FIG. 7 is a vertical cross-sectional view of a power transmission device of a noncontact power transmission system according to a third alternative.
- a load support mount 26 is provided on the coil bobbin 21, and is combined with a load support attachment 27 provided separately from the coil bobbin 21 to constitute the load support 23.
- the load support attachment 27 is configured to have a height protruding from the turns of the coil wire 22.
- the cover 18 and the coil wire 22 do not come into contact with each other even if the cover 18 is deformed to some extent, and therefore, the coil 22 is not loaded directly.
- FIG. 8 is a vertical cross-sectional view of a power transmission device of a noncontact power transmission system according to a fourth alternative.
- the coil bobbin 21 is embodied as a molded product, which is integrated with the magnetic body 20 and the coil wire 22. Also in this case, the advantages similar to those offered by the other alternatives can be obtained.
- the load support 23 is configured to be in permanent contact with the cover 18 and the base 19.
- the load support 23 may be configured such that a gap is left between the load support 23 and the cover 18 when no load is applied onto the cover 18 (when the cover 18 is not deformed), and that the gap disappears and the cover is supported by the load support 23 when the cover 18 is deformed.
- the coil wire and the magnetic body disposed in the power transmission device are not damaged even when a load is applied to the power transmission device.
- the present disclosure is useful for a device which may receive a heavy load, and in which coils and other parts that are sensitive to the load occupy so much of the space inside the device that it is difficult to provide a structure for supporting the load in the inner space.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013015077 | 2013-01-30 | ||
PCT/JP2014/000414 WO2014119285A1 (fr) | 2013-01-30 | 2014-01-28 | Équipement de transmission de puissance électrique sans contact |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2953146A1 true EP2953146A1 (fr) | 2015-12-09 |
EP2953146A4 EP2953146A4 (fr) | 2016-04-06 |
Family
ID=51262003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14746386.3A Withdrawn EP2953146A4 (fr) | 2013-01-30 | 2014-01-28 | Équipement de transmission de puissance électrique sans contact |
Country Status (4)
Country | Link |
---|---|
US (1) | US9543065B2 (fr) |
EP (1) | EP2953146A4 (fr) |
JP (1) | JP6315344B2 (fr) |
WO (1) | WO2014119285A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3456578A4 (fr) * | 2016-05-10 | 2019-04-03 | Yamaha Hatsudoki Kabushiki Kaisha | Dispositif de réception d'énergie, véhicule et véhicule du type à selle |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6257924B2 (ja) * | 2013-05-28 | 2018-01-10 | 矢崎総業株式会社 | 給電コイルユニット |
DE102016103042A1 (de) * | 2016-02-22 | 2017-08-24 | Ipt Technology Gmbh | Spuleneinheit einer Vorrichtung zur induktiven Übertragung elektrischer Energie |
US10374467B2 (en) | 2016-03-30 | 2019-08-06 | Tdk Corporation | Coil unit, wireless power feeding device, wireless power receiving device and wireless power transmission device |
JP6565953B2 (ja) * | 2016-03-30 | 2019-08-28 | Tdk株式会社 | コイルユニット、ワイヤレス給電装置、ワイヤレス受電装置及びワイヤレス電力伝送装置 |
JP6520838B2 (ja) * | 2016-06-24 | 2019-05-29 | トヨタ自動車株式会社 | コイルユニット |
JP2019179907A (ja) * | 2018-03-30 | 2019-10-17 | Tdk株式会社 | コイルユニット、ワイヤレス送電装置、ワイヤレス受電装置及びワイヤレス電力伝送システム |
DE102019110361A1 (de) * | 2019-04-18 | 2020-10-22 | Tdk Electronics Ag | Lastübertragungselement und Gehäuse eines stationären Teils eines WPT-Systems, das ein Lastübertragungselement umfasst |
CN117175721A (zh) * | 2022-05-26 | 2023-12-05 | 英业达科技有限公司 | 无线充电装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3840795A (en) * | 1964-07-07 | 1974-10-08 | Sunbeam Corp | Hand held battery operated device and charging means therefor |
USRE28499E (en) * | 1972-01-03 | 1975-07-29 | Power pack | |
US4800328A (en) * | 1986-07-18 | 1989-01-24 | Inductran Inc. | Inductive power coupling with constant voltage output |
JPH08126120A (ja) | 1994-10-19 | 1996-05-17 | Yazaki Corp | 自動車の自動充電システム |
JP2002208527A (ja) * | 2001-01-12 | 2002-07-26 | Toko Inc | 漏れ磁束型電力変換トランス |
JP2002319514A (ja) * | 2001-04-20 | 2002-10-31 | Matsushita Electric Ind Co Ltd | 非接触電源装置 |
JP3906708B2 (ja) * | 2002-02-25 | 2007-04-18 | 松下電工株式会社 | 非接触電力伝達装置 |
JP4026128B2 (ja) * | 2002-08-22 | 2007-12-26 | ミネベア株式会社 | コイル用ボビン |
JP2004128160A (ja) * | 2002-10-01 | 2004-04-22 | Murata Mfg Co Ltd | 高圧トランス |
JP2005101392A (ja) * | 2003-09-26 | 2005-04-14 | Aichi Electric Co Ltd | 非接触給電装置 |
TWM267472U (en) * | 2004-07-16 | 2005-06-11 | Logah Technology Corp | Air gap transformer for liquid crystal back light driver |
KR100920181B1 (ko) * | 2008-11-28 | 2009-10-06 | 주식회사 상용조명 | 다등용 안정기 및 그의 제조 방법 |
WO2012039077A1 (fr) * | 2010-09-21 | 2012-03-29 | パナソニック株式会社 | Appareil d'alimentation sans contact |
JP5562797B2 (ja) * | 2010-10-18 | 2014-07-30 | 昭和飛行機工業株式会社 | 非接触給電装置の1次コイル配設構造 |
EP2667390B1 (fr) * | 2011-01-19 | 2018-10-31 | Technova Inc. | Système de transfert d'énergie électrique sans contact |
US20140055089A1 (en) | 2011-05-19 | 2014-02-27 | Toyota Jidosha Kabushiki Kaisha | Power reception device, power transmission device and power transfer system |
-
2014
- 2014-01-28 EP EP14746386.3A patent/EP2953146A4/fr not_active Withdrawn
- 2014-01-28 JP JP2014559569A patent/JP6315344B2/ja active Active
- 2014-01-28 WO PCT/JP2014/000414 patent/WO2014119285A1/fr active Application Filing
-
2015
- 2015-07-29 US US14/813,036 patent/US9543065B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3456578A4 (fr) * | 2016-05-10 | 2019-04-03 | Yamaha Hatsudoki Kabushiki Kaisha | Dispositif de réception d'énergie, véhicule et véhicule du type à selle |
Also Published As
Publication number | Publication date |
---|---|
WO2014119285A1 (fr) | 2014-08-07 |
EP2953146A4 (fr) | 2016-04-06 |
JP6315344B2 (ja) | 2018-04-25 |
JPWO2014119285A1 (ja) | 2017-01-26 |
US9543065B2 (en) | 2017-01-10 |
US20150332826A1 (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9543065B2 (en) | Noncontact electric power transmission equipment | |
JP6369493B2 (ja) | 給電コイルユニット、ワイヤレス給電装置およびワイヤレス電力伝送装置 | |
US10199898B2 (en) | Rotary electric machine stator having a resin molded portion | |
JP6017700B2 (ja) | 誘導エネルギー転送コイル構造 | |
EP2953145A1 (fr) | Dispositif d'émission de puissance sans contact | |
WO2013125556A1 (fr) | Enceinte blindée de système de charge sans fil et système de charge sans fil | |
JP5988210B2 (ja) | 電力伝送システム | |
EP3057113A1 (fr) | Dispositif de transmission d'énergie sans contact | |
JP2013219210A (ja) | 非接触電力伝送装置 | |
JP6690706B2 (ja) | コイルユニット | |
EP3920197A1 (fr) | Dispositif de bobine | |
CN109215988A (zh) | 电抗器 | |
CN110999027A (zh) | 一种用于车辆的无线电力传输系统的装置 | |
CN105720723A (zh) | 具有emv措施的机动车电机 | |
CN110140281A (zh) | 用于电动马达的定子 | |
US11001156B2 (en) | Charging device having an induction coil stitched to a surface of a cross-laid structure | |
US20160020019A1 (en) | Power supplying unit, power receiving unit, and power supplying system | |
US9956884B2 (en) | Vehicle | |
JP6249731B2 (ja) | コイルユニット及び非接触電力伝送装置 | |
JP2014233107A (ja) | 給電コイルユニット | |
JP2017212302A (ja) | コイル装置、非接触給電装置、及び非接触受電装置 | |
US20190319508A1 (en) | Stator and Electrical Connection Cap thereof | |
US9473211B2 (en) | Device for the inductive transmission of electrical energy | |
US9633762B2 (en) | Cable | |
JP6241659B2 (ja) | 非接触給電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150729 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20160308 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 38/14 20060101AFI20160317BHEP |
|
DAX | Request for extension of the european patent (deleted) | ||
R17P | Request for examination filed (corrected) |
Effective date: 20150729 |
|
17Q | First examination report despatched |
Effective date: 20200330 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200811 |