EP2930450B1 - Klimaanlagenvorrichtung - Google Patents

Klimaanlagenvorrichtung Download PDF

Info

Publication number
EP2930450B1
EP2930450B1 EP12889228.8A EP12889228A EP2930450B1 EP 2930450 B1 EP2930450 B1 EP 2930450B1 EP 12889228 A EP12889228 A EP 12889228A EP 2930450 B1 EP2930450 B1 EP 2930450B1
Authority
EP
European Patent Office
Prior art keywords
source side
heat source
side heat
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12889228.8A
Other languages
English (en)
French (fr)
Other versions
EP2930450A4 (de
EP2930450A1 (de
Inventor
Takeshi Hatomura
Koji Yamashita
Shinichi Wakamoto
Naofumi Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP2930450A1 publication Critical patent/EP2930450A1/de
Publication of EP2930450A4 publication Critical patent/EP2930450A4/de
Application granted granted Critical
Publication of EP2930450B1 publication Critical patent/EP2930450B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0063Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • FIG. 1 the configuration of the air-conditioning apparatus 100 will be specifically described.
  • the air-conditioning apparatus 100 circulates a refrigerant therein so that air-conditioning is performed by using a refrigeration cycle.
  • the air-conditioning apparatus 100 is configured to select a mode from a cooling-only operation mode in which all the operating indoor units 2 perform cooling, a heating-only operation mode in which all the operating indoor units 2 perform heating, and a defrosting operation mode in which the indoor units 2 defrost heat exchange units in the outdoor unit 1 while continuing a heating operation.
  • the compressor 10, the refrigerant channel switching device 11 such as a four-way valve, the heat source side heat exchanger 12a, the heat source side heat exchanger 12b, and the accumulator 13 are connected together by the refrigerant pipes 3.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are connected in parallel to each other by the refrigerant pipes 3.
  • Second opening/closing devices 31a and 31b are provided to portions of the refrigerant pipes 3 connected to the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, the portions of the refrigerant pipes 3 connecting to a load side expansion device 22.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are disposed adjacent to each other such that the fins are oriented in the same direction.
  • the heat source side heat exchanger 12a is located above the heat source side heat exchanger 12b.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are disposed side by side along the direction of stages, that is, the stage direction, of the heat exchanger tubes.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are disposed one above the other such that the fins of the exchangers 12a and 12b are oriented in an identical direction.
  • the first opening/closing device 30a is a shut-off valve for causing a high-temperature refrigerant from the hot gas bypass pipe 5 to flow into the heat source side heat exchanger 12a when the heat source side heat exchanger 12a operates as a condenser in the defrosting operation mode.
  • the first opening/closing device 30b is a shut-off valve for causing a high-temperature refrigerant from the hot gas bypass pipe 5 to flow into the heat source side heat exchanger 12b when the heat source side heat exchanger 12b operates as a condenser in the defrosting operation mode.
  • the first opening/closing devices 30a and 30b are, for example, two way valves, solenoid valves, and electronic expansion valves, which can open and close refrigerant channels.
  • the second opening/closing device 31a is a shut-off valve for shutting off a refrigerant channel in order to prevent a low-temperature two-phase refrigerant flowing out of the indoor unit 2 into the outdoor unit 1 through a refrigerant main pipe 4 from flowing into the heat source side heat exchanger 12a when the heat source side heat exchanger 12a operates as a condenser in the defrosting operation mode.
  • the first temperature sensor 43 is provided to the pipe between the compressor 10 and the refrigerant channel switching device 11.
  • the first temperature sensor 43 measures the temperature of a refrigerant discharged from the compressor 10.
  • the third temperature sensor 48b is provided to the pipe between the heat source side heat exchanger 12b and the refrigerant channel switching device 11.
  • the third temperature sensor 48b measures the temperature of a refrigerant that has flowed from the heat source side heat exchanger 12b operating as an evaporator.
  • the indoor unit 2 includes a load side heat exchanger 21 and a load side expansion device 22.
  • the load side expansion device 22 has functions of a pressure reducing valve and an expansion valve, and reduces the pressure of a refrigerant and expands the refrigerant.
  • the load side expansion device 22 is located upstream of the load side heat exchanger 21 in a refrigerant flow in the cooling-only operation mode.
  • the load side expansion device 22 is a valve whose opening degree is variable by control.
  • the load side expansion device 22 is, for example, an electronic expansion valve.
  • the indoor unit 2 includes, as temperature detection means, a fourth temperature sensor 46, a fifth temperature sensor 47, and a sixth temperature sensor 44.
  • the fourth temperature sensor 46, the fifth temperature sensor 47, and the sixth temperature sensor 44 are, for example, thermistors.
  • the fifth temperature sensor 47 is provided to the pipe between the load side heat exchanger 21 and the refrigerant channel switching device 11 of the outdoor unit 1.
  • the fifth temperature sensor 47 detects the temperature of a refrigerant flowing in the load side heat exchanger 21 or a refrigerant that has flowed from the load side heat exchanger 21.
  • Fig. 3 is a refrigerant circuit diagram showing a refrigerant flow in a cooling-only operation mode of the air-conditioning apparatus 100 of Embodiment 1.
  • the refrigerant channel switching device 11 is switched to a state indicated by the solid lines in Fig. 3 .
  • the first opening/closing device 30a and the first opening/closing device 30b are switched to closed states, and shut off the refrigerant.
  • the second opening/closing device 31a and the second opening/closing device 31b are switched to open states, and allow the refrigerant to pass therethrough.
  • the refrigerant channel switching device 11 is switched to a state indicated by the solid lines in Fig. 4 .
  • the first opening/closing device 30a and the first opening/closing device 30b are switched to closed states, and shut off the refrigerant.
  • the second opening/closing device 31a and the second opening/closing device 31b are switched to an open state, and allow the refrigerant to pass therethrough.
  • a defrosting operation mode is performed when detection results of the third temperature sensors 48a and 48b at the outlets of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are less than or equal to a predetermined value. Specifically, when the heating-only operation is performed so that the detection results of the third temperature sensors 48a and 48b decrease to a predetermined value or less (e.g., about -10 degrees C or less), the control device 50 determines that a predetermined amount of frost is accumulated on the fins of the heat source side heat exchangers 12a and 12b, and the defrosting operation is performed.
  • a predetermined value or less e.g., about -10 degrees C or less
  • Fig. 5 is a refrigerant circuit diagram showing a refrigerant flow in a case where the heat source side heat exchanger 12b is defrosted in the defrosting operation mode of the air-conditioning apparatus 100 of Embodiment 1.
  • the flow direction of a refrigerant is indicated by solid arrow lines.
  • the second opening/closing device 31b is switched to a closed state and shuts off the refrigerant.
  • the second opening/closing device 31a is maintained in an open state and allows the refrigerant to pass therethrough.
  • the low-temperature low-pressure refrigerant is compressed and becomes a high-temperature high-pressure gas refrigerant, and the resulting refrigerant is discharged.
  • the high-temperature high-pressure gas refrigerant that has flowed from the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, transfers heat to the indoor air in the load side heat exchanger 21, and becomes a liquid refrigerant while heating the indoor air.
  • the refrigerant channel switching device 11 In the defrosting operation mode, the refrigerant channel switching device 11 is maintained in a state indicated by the solid lines in Fig. 6 .
  • the control device 50 finishes defrosting of the heat source side heat exchanger 12a.
  • reference numeral 61 denotes a fin of the heat source side heat exchanger 12a.
  • Reference numeral 64 denotes a heat transmission pipe of the heat source side heat exchanger 12a.
  • Reference numeral 62 denotes a fin of the heat source side heat exchanger 12b.
  • Reference numeral 65 denotes a heat transmission pipe of the heat source side heat exchanger 12b.
  • the end face of each of the fin 61 and the fin 62 is subjected to a roughening process and forms a heat leakage reducing mechanism.
  • the heat leakage amount Q1 from the condenser to the evaporator in a case where the fins are not separated and are shared is about 3.60 kW from Equation (1).
  • the overall heat transfer coefficient is a half of the product of a heat transfer area (a contact area) and the overall heat transfer coefficient in a case where the fins are shared.
  • the reduction of the time required for completion of defrosting enables part of a refrigerant discharged from the compressor 10 for defrosting to be quickly used for heating, as compared to a case where heat leakage occurs from the condenser to the evaporator by thermal conduction of the fins.
  • a decrease in heating capacity can be reduced.
  • a temperature decrease in the room can be reduced, thereby comfort of the indoor environments can be obtained.
  • the total number of stages of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b is 60, the product of the number of stages and the heat transfer area ratio is about 58. That is, in order to reduce the decreasing rate of the COP within 1% or less, about 58 or more stages of the heat exchangers are needed.
  • heat leakage between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b can be reduced in the defrosting operation mode.
  • generation of remaining frost and root ice can be reduced in the interface 63 between the adjacent heat source side heat exchangers 12.
  • the defrosting time is reduced and a decrease in heating capacity is reduced, thereby obtaining comfort in the indoor environments.
  • Fig. 15 is a circuit diagram schematically illustrating an example circuit configuration of an air-conditioning apparatus 200 according to Embodiment 2 of the present invention.
  • FIG. 15 a configuration of the air-conditioning apparatus 200 of Embodiment 2 will be described based on the difference from the air-conditioning apparatus 100 of Embodiment 1.
  • a second opening/closing device 31a that shuts off a refrigerant of a heat source side heat exchanger 12a is disposed between the heat source side heat exchanger 12a and a refrigerant channel switching device 11.
  • a second opening/closing device 31b that shuts off a refrigerant of a heat source side heat exchanger 12b is disposed between the heat source side heat exchanger 12b and the refrigerant channel switching device 11.
  • the hot gas bypass pipe 5 connected to the heat source side heat exchanger 12a is provided with a first opening/closing device 30a.
  • the hot gas bypass pipe 5 connected to the heat source side heat exchanger 12b is provided with a first opening/closing device 30b.
  • the third opening/closing devices 32a and 32b are expansion devices whose opening degrees (the areas of the opening ports) can be changed in order to adjust the internal pressure of the heat source side heat exchanger 12 serving as a condenser.
  • the first opening/closing device 30a, the first opening/closing device 30b, the second opening/closing device 31a, the second opening/closing device 31b, the third opening/closing device 32a, and the third opening/closing device 32b constitute "connection switching devices" of the invention.
  • the lower heat source side heat exchanger 12b in the casing 51 is defrosted, and then the upper heat source side heat exchanger 12a in the casing 51 is defrosted.
  • Conditions for starting the defrosting operation mode are similar to those in the air-conditioning apparatus 100 of Embodiment 1.
  • the second opening/closing device 31b is switched to a closed state, and shuts off the refrigerant.
  • the first opening/closing device 30a is kept in a closed state, and shuts off the refrigerant.
  • the third opening/closing device 32b is set in a fully open state, and allows the refrigerant to pass therethrough.
  • the opening degree of the third opening/closing device 32a is controlled by the control device 50 such that the saturation pressure of a two-phase refrigerant calculated from the detection result of the sixth temperature sensor 48b is a predetermined value (e.g., about 0.8 MPa in the case of an R410A refrigerant) or more.
  • a predetermined value e.g., about 0.8 MPa in the case of an R410A refrigerant
  • the low-temperature low-pressure refrigerant is compressed and becomes a high-temperature high-pressure gas refrigerant, and the resulting refrigerant is discharged.
  • Part of the high-temperature high-pressure gas refrigerant discharged from the compressor 10 is subjected to a pressure reduction in the hot gas bypass pipe 5 and the first opening/closing device 30b such that the temperature of the gas refrigerant is 0 degrees C or more in terms of the saturation temperature.
  • the resulting refrigerant becomes an intermediate-pressure high-temperature gas refrigerant, and flows into the heat source side heat exchanger 12b.
  • the intermediate-pressure high-temperature gas refrigerant that has flowed into the heat source side heat exchanger 12b becomes an intermediate-pressure low-quality two-phase refrigerant or an intermediate-pressure refrigerant while melting frost on the heat source side heat exchanger 12b, and passes through the third opening/closing device 32b.
  • the control device 50 controls the opening degree of the third opening/closing device 32a such that the saturation pressure of the two-phase refrigerant calculated from the detection result of the sixth temperature sensor 48b is a predetermined value (e.g., about 0.8 MPa in the case of an R410A refrigerant) or more. That is, the control device 50 controls the opening degree of the third opening/closing device 32a such that the saturation pressure of the two-phase refrigerant calculated from the detection result of the sixth temperature sensor 48b is 0 degrees C or more in terms of the saturation temperature.
  • a predetermined value e.g., about 0.8 MPa in the case of an R410A refrigerant
  • the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set at an intermediate pressure (e.g., about 0.8 MPa or more in the case of an R410A refrigerant), which is higher than the frost temperature, that is, higher than 0 degrees C.
  • an intermediate pressure e.g., about 0.8 MPa or more in the case of an R410A refrigerant
  • the two-phase range (latent heat) of the refrigerant can be used, and substantially the same degrees of defrosting capacity can be obtained with an amount of refrigerant circulation smaller than that in the configuration of the air-conditioning apparatus 100 of Embodiment 1.
  • the saturation temperature T1 of a two-phase refrigerant flowing in a condenser that performs defrosting is 5 degrees C
  • the temperature T2 of a refrigerant flowing in an evaporator that performs heating operation is -25 degrees C.
  • the inter-fin distance 8 between an end of the heat transmission pipe of the evaporator and an end of the heat transmission pipe of the condenser in the interface 63 is 12.5 mm, and in a state where the heat exchangers are not separated, the fin width is 17 mm, the fin thickness is 0.1 mm, and the number of fins is 3700.
  • the air-conditioning apparatus 200 of Embodiment 2 employs the configuration illustrated in Fig. 7 as a configuration of the heat leakage reducing mechanism, but the present invention is not limited to this configuration.
  • the configuration of the heat leakage reducing mechanism may be any one of the configurations illustrated in Figs. 8 to 13 described in Embodiment 1. In such cases, similar advantages as those obtained in the configuration illustrated in Fig. 7 can be obtained.
  • the third opening/closing device 32b (or the third opening/closing device 32a) may be changed to a expansion device whose opening degree (the area of the opening port) is variable.
  • the unchanged third opening/closing device 32a (or the third opening/closing device 32b) is always open, and the third opening/closing device 32b (or the third opening/closing device 32a) changed to the expansion device whose opening degree (the area of the opening port) is variable is used.
  • the internal pressure of the heat source side heat exchanger 12 serving as a condenser is adjusted. In this state, an operation similar to that of the air-conditioning apparatus 200 illustrated in Fig. 15 can be performed, and similar advantages can be obtained.
  • Such a configuration can reduce the number of expansion devices whose opening degrees (the areas of the opening ports), such as electronic expansion valves including stepping motors, generally having structures more complicated and expensive than solenoid valves, and thus, the outdoor unit 1 can be fabricated at low cost.
  • the third opening/closing device 32b (or the third opening/closing device 32a) may be changed to a expansion device whose opening degree (the area of the opening port) is variable.
  • the third opening/closing device 32 is provided, and the internal pressure of the heat source side heat exchanger 12 serving as a condenser is adjusted in the defrosting operation.
  • an operation similar to that of the air-conditioning apparatus 200 illustrated in Fig. 15 can be performed, and similar advantages can be obtained.
  • the configuration illustrated in Fig. 17 can simplify the circuit configuration, and thus, the outdoor unit 1 can be fabricated at low cost.
  • a fourth opening/closing device 33a and a fourth opening/closing device 33b for shutting off the refrigerant in the heat source side heat exchanger 12a or the heat source side heat exchanger 12b are disposed in refrigerant pipes 3 connecting the heat source side heat exchanger 12a and the heat source side heat exchanger 12b to the third opening/closing device 32b (or the third opening/closing device 32a).
  • a fifth opening/closing device 34a and a fifth opening/closing device 34b for switching a refrigerant channel of the refrigerant bypass pipe 6 is provided in the refrigerant bypass pipe 6 between the heat source side heat exchanger 12 and the fourth opening/closing device 33 whose one ends correspond to each other.
  • the open/closed states of the first opening/closing devices 30a and 30b, the fourth opening/closing devices 33a and 33b, and the fifth opening/closing devices 34a and 34b are reversed, and the flow of the refrigerant in the heat source side heat exchanger 12a is replaced by the flow of the refrigerant in the heat source side heat exchanger 12b.
  • the expansion devices may be electronic expansion valves driven by stepping motors, or a plurality of small solenoid valves may be arranged in parallel so that the area of the opening port can be changed by switching the solenoid valves.
  • the fifth opening/closing device 34 of Embodiment 2 is a solenoid valve as an example.
  • valves whose opening degrees are variable such as electronic expansion valves, may be used as shut-off valves, as well as the solenoid valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air Conditioning Control Device (AREA)

Claims (9)

  1. Klimaanlage, umfassend:
    einen Hauptkreislauf, in dem ein Verdichter (10), ein lastseitiger Wärmetauscher (21), eine lastseitige Expansionseinrichtung (22) und eine Vielzahl von parallel verbundenen wärmequellenseitigen Wärmetauschern (12a, 12b) durch Leitungen (3, 4) nacheinander verbunden sind, und in dem ein Kältemittel zirkuliert,
    dadurch gekennzeichnet, dass die Klimaanlage umfasst:
    eine Umgehungsleitung (5), die eingerichtet ist, einen Teil eines Kältemittels, das aus dem Verdichter (10) abgegeben wird, zu veranlassen, sich abzuzweigen und in zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, hineinzuströmen,
    eine Verbindungsschalteinrichtung (30a, 30b, 31a, 31b, 32a, 32b), die eingerichtet ist, den einen der Vielzahl der wärmequellenseitigen Wärmetauscher, der zu entfrosten ist, zu schalten durch Schalten eines Kanals der Bypassleitung (5) zwischen einem offenen Zustand und einem geschlossenen Zustand und Schalten eines Kanals der Leitungen (3, 4) des Hauptkreislaufs, der mit der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) verbunden ist, zwischen einem offenen Zustand und einem geschlossenen Zustand, einen Temperatursensor (48a, 48b), der an jedem der Vielzahl von wärmequellenseitigen Wärmetauschern vorgesehen ist, zum Messen der Temperatur des aus dem wärmequellenseitigen Wärmetauscher herausgeströmten Kältemittels, und
    eine Steuerungseinrichtung (50), die eingerichtet ist, die Verbindungsschalteinrichtung zu steuern, wobei
    die wärmequellenseitigen Wärmetauscher (12a, 12b) jeweils aufweisen:
    eine Vielzahl von Rippen (61, 62), die voneinander beabstandet sind, so dass Luft zwischen der Vielzahl von Rippen (61, 62) passiert, und
    eine Vielzahl von Wärmetauscherrohren (64, 65), die in der Vielzahl von Rippen (61, 62) angeordnet sind, und ermöglichen, dass das Kältemittel in den Wärmetauscherrohren (64, 65) strömen kann,
    die Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) zueinander benachbart angeordnet sind, so dass die Vielzahl von Rippen (61, 62) in einer identischen Richtung orientiert sind, und
    einen Wärmeverlustreduzierungsmechanismus aufweist, der zwischen benachbarten der Vielzahl von Rippen (61, 62) aufgenommen ist und der eine Menge an Wärmeverlust zwischen benachbarten der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) reduziert, und
    die Verbindungsschalteinrichtung (30a, 30b, 31a, 31b, 32a, 32b) eine Vielzahl von ersten Öffnungs-/Schließeinrichtungen (30a, 30b) aufweist, die jeweils einen Kanal von der Umgehungsleitung (5) zur Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) öffnen oder schließen,
    eine Vielzahl von zweiten Öffnungs-/Schließeinrichtungen (31a, 31b), die jeweils einen Kanal von zumindest einer der Leitungen (3), die mit der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) verbunden sind und verbindend mit einer Ansaugseite des Verdichters (10), öffnen oder schließen,
    eine Vielzahl von dritten Öffnungs-/Schließeinrichtungen (32a, 32b), die jeweils an den Leitungen (4) vorgesehen sind, die mit der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) verbunden sind und verbindend mit der lastseitigen Expansionseinrichtung (22) und einen variablen Öffnungsgrad aufweisen, und
    die Umgehungsleitung (5) und die Vielzahl von ersten Öffnungs-/Schließeinrichtungen eingerichtet sind, einen Druck des Kältemittels, das von der Umgehungsleitung (5) in den zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), die zu entfrosten sind, hineinströmt, zu entspannen, so dass der Druck einer Sättigungstemperatur von 0 Grad oder mehr entspricht,
    und
    die Steuerungseinrichtung (50) eingerichtet ist:
    zumindest eine der Vielzahl von ersten Öffnungs-/Schließeinrichtungen (30a, 30b) entsprechend dem zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, zu öffnen, zumindest eine der Vielzahl von zweiten Öffnungs-/Schließeinrichtungen (31a, 31b) entsprechend dem zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, zu schließen, und
    zumindest eine der Vielzahl von dritten Öffnungs-/Schließeinrichtungen (32a, 32b) entsprechend dem zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, zu öffnen, und
    zumindest eine der ersten Öffnungs-/Schließeinrichtungen (30a, 30b) entsprechend dem einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der nicht zu entfrosten ist, zu schließen, zumindest eine der zweiten Öffnungs-/Schließeinrichtungen (31a, 31b) entsprechend dem einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der nicht zu entfrosten ist, zu öffnen, und einen Öffnungsgrad von zumindest einer der Vielzahl von dritten Öffnungs-/Schließeinrichtungen (32a, 32b) entsprechend dem einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der nicht zu entfrosten ist, anzupassen, so dass ein Sättigungsdruck des Kältemittels, der berechnet wird aus einem Erfassungsergebnis einer Temperatur, die durch einen Temperatursensor (48a, 48b) erhalten wird, der an dem zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, vorgesehen ist, einer Sättigungstemperatur von 0 Grad oder mehr entspricht.
  2. Klimaanlage nach Anspruch 1, wobei
    zumindest einer der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) mit Ausnahme des zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, als ein Verdampfer dient und einen Erwärmungsbetrieb in einem Entfrostungsbetrieb durchführt, bei dem ein Teil des vom Verdichter (10) abgegebenen Kältemittels in den zumindest einen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, hineinströmt, und
    zumindest einer der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), der zu entfrosten ist, durch einen anderen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) nacheinander ersetzt wird.
  3. Klimaanlage nach Anspruch 1 oder 2, wobei
    die Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) zueinander benachbart angeordnet sind und übereinander angeordnet sind, und
    eine unterste Endfläche jeder der Rippen (61, 62) eines oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) von einer obersten Endfläche jeder der Rippen (61, 62) eines unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) getrennt ist.
  4. Klimaanlage nach Anspruch 3, wobei
    der Wärmeverlustreduzierungsmechanismus gebildet ist durch einen Zwischenraum (54) zwischen der untersten Endfläche jeder der Rippen (61, 62) des oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) und der obersten Endfläche jeder der Rippen (61, 62) des unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b),
    und eine Länge (Ls) des Zwischenraums (54) kleiner ist als oder gleich ist wie ein Wert, der berechnet wird durch Multiplizieren der Anzahl von Stufen (Dd) der Vielzahl von Wärmetauscherrohren (64, 65) in einem Zustand, wo die Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) nicht getrennt sind, eines Abstands (Ld) zwischen mittleren Abschnitten von benachbarten der Vielzahl von Wärmetauscherrohren (64, 65) in der Stufenrichtung in einem Zustand, wo die Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) nicht getrennt sind, und 0,033.
  5. Klimaanlage nach Anspruch 3, wobei
    die unterste Endfläche jeder der Rippen (61, 62) des oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) in Kontakt ist mit der untersten Endfläche jeder der Rippen (61, 62) des unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), und
    der Wärmeverlustreduzierungsmechanismus gebildet ist durch eine raue Oberfläche, die sich in zumindest einer der untersten Endflächen jeder der Rippen (61, 62) des oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) oder der obersten Endfläche jeder der Rippen (61, 62) des unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) befindet.
  6. Klimaanlage nach Anspruch 3, wobei
    die unterste Endfläche jeder der Rippen (61, 62) des oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) in Kontakt ist mit der untersten Endfläche jeder der Rippen (61, 62) des unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b), und
    der Wärmeverlustreduzierungsmechanismus gebildet ist durch eine Einkerbung (66), die sich in einem Teil der zumindest einen untersten Endfläche jeder der Rippen (61, 62) des oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) oder der obersten Endfläche jeder der Rippen (61, 62) des unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) befindet.
  7. Klimaanlage nach Anspruch 1 oder 2, wobei
    die Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) zueinander benachbart angeordnet sind und übereinander angeordnet sind,
    die Rippe (61, 62) des oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) mit dem unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) integral ausgebildet ist,
    der Wärmeverlustreduzierungsmechanismus gebildet ist durch eine Einkerbung (66), die sich in der Rippe (61, 62) zwischen dem oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) und dem unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) befindet.
  8. Klimaanlage nach Anspruch 6 oder 7, wobei
    eine Breite der Einkerbung (66) größer ist als oder gleich ist wie eine Hälfte einer Breite der Rippe (61, 62).
  9. Klimaanlage nach einem der Ansprüche 1 bis 8, wobei
    die Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) zueinander benachbart angeordnet sind und übereinander angeordnet sind,
    ein Entfrostungsbetrieb auf den unteren der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) durchgeführt wird, während der obere der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) im Erwärmungsbetrieb als ein Verdampfer dient, und dann
    ein Entfrostungsbetrieb auf den oberen der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) durchgeführt wird, während der untere der Vielzahl von wärmequellenseitigen Wärmetauschern (12a, 12b) als ein Verdampfer dient.
EP12889228.8A 2012-11-29 2012-11-29 Klimaanlagenvorrichtung Active EP2930450B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080912 WO2014083650A1 (ja) 2012-11-29 2012-11-29 空気調和装置

Publications (3)

Publication Number Publication Date
EP2930450A1 EP2930450A1 (de) 2015-10-14
EP2930450A4 EP2930450A4 (de) 2016-09-14
EP2930450B1 true EP2930450B1 (de) 2020-03-11

Family

ID=50827323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12889228.8A Active EP2930450B1 (de) 2012-11-29 2012-11-29 Klimaanlagenvorrichtung

Country Status (3)

Country Link
EP (1) EP2930450B1 (de)
JP (1) JP5980349B2 (de)
WO (1) WO2014083650A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320568B2 (ja) * 2015-01-13 2018-05-09 三菱電機株式会社 冷凍サイクル装置
US10520233B2 (en) 2015-01-13 2019-12-31 Mitsubishi Electric Corporation Air-conditioning apparatus for a plurality of parallel outdoor units
CN106225294A (zh) * 2016-08-29 2016-12-14 烟台欧森纳地源空调股份有限公司 一种低温风冷热泵系统
JP6880901B2 (ja) 2017-03-27 2021-06-02 ダイキン工業株式会社 熱交換器ユニット
WO2018180934A1 (ja) 2017-03-27 2018-10-04 ダイキン工業株式会社 熱交換器及び冷凍装置
CN107013977B (zh) * 2017-04-01 2020-11-03 青岛海尔空调器有限总公司 空调系统
CN107504746A (zh) * 2017-08-22 2017-12-22 广东美的暖通设备有限公司 热泵组件、除霜控制方法和存储介质
EP3869114B1 (de) * 2018-10-19 2024-03-20 Mitsubishi Electric Corporation Klimaanlage
CN114061030A (zh) * 2021-10-28 2022-02-18 青岛海尔空调器有限总公司 一种空调除霜控制方法、控制装置及空调器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830583B2 (ja) * 1986-01-30 1996-03-27 松下電器産業株式会社 加熱装置
JP4675927B2 (ja) * 2007-03-30 2011-04-27 三菱電機株式会社 空気調和装置
JP2009036404A (ja) * 2007-07-31 2009-02-19 Denso Corp 冷凍サイクル
JP2009085484A (ja) * 2007-09-28 2009-04-23 Daikin Ind Ltd 空気調和機用室外機
KR20100081621A (ko) 2009-01-06 2010-07-15 엘지전자 주식회사 공기조화기 및 공기조화기의 제상운전방법
CN102272534B (zh) 2009-01-15 2014-12-10 三菱电机株式会社 空气调节装置
JP4864113B2 (ja) * 2009-04-10 2012-02-01 三菱電機株式会社 空気調和機
JP5213817B2 (ja) * 2009-09-01 2013-06-19 三菱電機株式会社 空気調和機
WO2012011688A2 (en) * 2010-07-21 2012-01-26 Chungju National University Industrial Cooperation Foundation Alternating type heat pump
WO2012014345A1 (ja) * 2010-07-29 2012-02-02 三菱電機株式会社 ヒートポンプ
JP2012159256A (ja) * 2011-02-02 2012-08-23 Daikin Industries Ltd 空気調和機用熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2930450A4 (de) 2016-09-14
JPWO2014083650A1 (ja) 2017-01-05
EP2930450A1 (de) 2015-10-14
JP5980349B2 (ja) 2016-08-31
WO2014083650A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
EP2930450B1 (de) Klimaanlagenvorrichtung
JP6685409B2 (ja) 空気調和装置
JP5992112B2 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
JP6005255B2 (ja) 空気調和装置
EP2759785B1 (de) Kühlvorrichtung
JP5847366B1 (ja) 空気調和装置
JP5968519B2 (ja) 空気調和装置
US20110146314A1 (en) Refrigerating device
KR101737365B1 (ko) 공기조화기
JP6479181B2 (ja) 空気調和装置
JP6038382B2 (ja) 空気調和装置
EP2257749B1 (de) Kühlsystem und betriebsverfahren dafür
JP6067178B2 (ja) 熱源側ユニット及び空気調和装置
US20140096551A1 (en) Air-conditioning apparatus
US20240167735A1 (en) Heat source unit and air conditioner
WO2020174618A1 (ja) 空気調和装置
EP2618074B1 (de) Klimaanlage
JP6846915B2 (ja) 多室型空気調和機
KR100821729B1 (ko) 공기 조화 시스템
WO2020208805A1 (ja) 空気調和装置
KR101146783B1 (ko) 냉매시스템
JP2006300507A (ja) 冷凍装置
JP4244900B2 (ja) 冷凍装置
JP3945523B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160812

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 47/02 20060101AFI20160808BHEP

Ipc: F28F 1/32 20060101ALI20160808BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1243628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012068475

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1243628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012068475

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

26N No opposition filed

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602012068475

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20230103

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231006

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231003

Year of fee payment: 12